
Storage Management Technical Specification,
Part 4 Block Devices

Version 1.8.0, Revision 5

Abstract: This SNIA Techncial Position defines an interface between WBEM-capable clients and
servers for the secure, extensible, and interoperable management of networked storage.

This document has been released and approved by the SNIA. The SNIA believes that the
ideas, methodologies and technologies described in this document accurately represent
the SNIA goals and are appropriate for widespread distribution. Suggestions for revision
should be directed to http://www.snia.org/feedback/.

SNIA Technical Position

 23 March 2020

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45
USAGE

Copyright © 2018 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their
respective owners.

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1) Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alter-
ation, and,

2) Any document, printed or electronic, in which material from this document (or any portion hereof) is
reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting
permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document or any portion
thereof, or distribute this document to third parties. All rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org. Please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the
following license:

BSD 3-Clause Software License

Copyright (c) 2018, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may
be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
SNIA Technical Position 3

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75
DISCLAIMER

The information contained in this publication is subject to change without notice. The SNIA makes no
warranty of any kind with regard to this specification, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing, performance, or use
of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2003-2020 SNIA. All rights reserved. All other trademarks or registered trademarks are the
property of their respective owners.

Portions of the CIM Schema are used in this document with the permission of the Distributed
Management Task Force (DMTF). The CIM classes that are documented have been developed and
reviewed by both the SNIA and DMTF Technical Working Groups. However, the schema is still in
development and review in the DMTF Working Groups and Technical Committee, and subject to change.
4

REVISION HISTORY

Revision 1

Date
April 4, 2017

SCRs Incorporated and other changes
 Annex A (informative) SMI-S Information Model
 - This standard is now based on DMTF’s CIM schema Version 2.50.

Block Services Package

 - 5.4.3.7 CreateOrModifyAnyElementFromStoragePool section added
 (Experimental) (CIMCoreCR01918.000_v3.htm, ScopingDocument_BSP_V1.8.doc)
 - 5.1.18 Storage Compression support in Block Services revised to accommodate both pool-level
 dedup and compression (Experimental) (ScopingDoc Pool level Dedup and Compression.doc)
 - 5.1.18.2 StoragePools that support Compressed Elements revised to accommodate both
 pool-level dedup and compression (Experimental)
 (ScopingDoc Pool level Dedup and Compression.doc)
 - 5.1.18.3 StoragePools that support Compression added to accommodate both pool-level dedup
 and compression (Experimental) (ScopingDoc Pool level Dedup and Compression.doc)
 - 5.1.18.4 StoragePools that support Deduplication added to describe dedup support
 (Experimental) (ScopingDoc Pool level Dedup and Compression.doc)
 - (Mantis 4739) Changed StorageServiceService.CreateOrModifyElementFromStoragePool to
 StorageConfigurationService.CreateOrModifyElementFromStoragePool

CKD Block Services Profile
 - (Mantis 4740) Changed StorageServiceService.CreateOrModifyElementFromStoragePool to
 StorageConfigurationService.CreateOrModifyElementFromStoragePool

Group Masking and Mapping Profile (ScopingDocument_GMM.doc)
 - Added MoveMembers and CreateOrModifyMaskingGroup sections (22.4.5, 22.4.6) (Experimental)
 - Added MoveMembers and CreateOrModifyMaskingGroup to Table 508: Extrinsic Methods for
 Masking Group Management (Experimental)
 - Added GetMaskingGroupOperationOrder and GetSupportedGroupMaximums to
 Table 533: SMI Referenced Properties/Methods for CIM_GroupMaskingMappingCapabilities
 (Experimental)

Replication Services Profile (ScopingDocument_RS_V1.8.doc)
 - Added Adaptive and Active modes
 - Revised Table 488: Features
 - Revised Table 451: Operations
 - Revised Table 458: Copy Methodologies
 - Revised Table 487: SMI Referenced Properties/Methods for CIM_ReplicationGroup
 - Revised Table 489: SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities
 - Revised Table 490: SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Storage Relocation Profile
 - (Mantis 4741) Changed StorageServiceService.CreateOrModifyElementFromStoragePool to
 StorageConfigurationService.CreateOrModifyElementFromStoragePool

Thin Provisioning Profile
 - (Mantis 4742) Changed StorageServiceService.CreateOrModifyElementFromStoragePool to
 StorageConfigurationService.CreateOrModifyElementFromStoragePool

Volume Composition Profile(CIMCoreCR01918.000_v3.html)
 - Added new method "CreateOrModifyAnyElementFromStoragePool" (section 17.5.2)
 - Added values CompositeAdditionCanPreserveData and CompositionCanPreserveData to
 Table 395: CompositionCharacteristics Property.
 - Added row to Table 413: SMI Referenced Properties/Methods for
 CIM_StorageElementCompositionCapabilities

Comments

Editorial notes and DRAFT material are displayed.

Revision 2

Date
March 1, 2018

SCRs Incorporated and other changes

Annex A (informative) SMI-S Information Model
- This standard is now based on DMTF’s CIM schema Version 2.51.

Array Profile (SMI TWG Reviews)
- Fixed versions numbers in the Related Profiles table to match the version identified for the related profiles
- Fixed the version reference in the CIM Elements table for CIM_ComputerSystem (Top Level System) to

match the version defined by the Array Profile.
- Changed the Requirement for CIM_SystemDevice (System to SCSIProtocolController) to Conditional

(from Mandatory), since the SCSIProtocolController is Conditional
- Made the Requirement for OtherIdentifyingInfo and IdentifyingDescriptions in CIM_ComputerSystem

(Top Level System) Mandatory to maintain backward compatibility with 1.6.1

Block Services Package (SMI TWG Reviews)
- Fixed versions numbers in the Related Profiles table to match the version identified for the related profiles
- Added Storage Pool Diagnostics in the Related Profiles table
- Changed the property AvailableFormFactor to AvailableFormFactorType in CIM_StorageCapabilities to

match the mof
- Deleted the AvailablePortType property from CIM_StorageCapabilities since it is not in the mof (it was

replaced by AvailableInterconnectType)
- Added SupportedCompressionElements property to CIM_StorageCapabilities (completes

TEMP00001.001)
- Changed the property FormFactor to FormFactorType in CIM_StorageSetting to match the mof
- In CIM_StorageConfigurationCapabilities (Concrete) the enumeration values were extended for

SupportedSynchronousActions. SupportedAsynchronousActions and
SupportedStorageElementFeatures to match the text of the profile (and the mof).

- In CIM_StorageConfigurationCapabilities (Global and Primordial) the enumeration values were extended
for SupportedStorageElementFeatures to match the text of the profile (and the mof).

- Added the CreateOrModifyAnyElementFromStoragePool() method to CIM_StorageConfigurationService
to match the text of the profile

- Added CompressionActive, CompressionPercent, CompressionRate, CompressionState, DedupActive
and DedupPercent to the CIM Element tables for CIM_StoragePool (all variations)

- Promoted DedupActive and DedupPercent from Draft to Experimental in CIM_StoragePool (all
variations)

Block Storage Views Profile (SMI TWG Reviews)
- Fixed versions numbers in the Related Profiles table to match the version identified for the related profiles
- Changed the Related Profile reference to Copy Services to be Replication Services, since Copy Services

was deprecated in favor of Replication Services.
- Deleted an extra DDLocationIndicator entry from the CIM_DiskDriveView CIM Elements table
6

Block Server Performance Profile (SMI TWG Reviews)
- Fixed versions numbers in the Related Profiles table to match the version identified for the related profiles
- Promoted “Advanced Metrics” from Draft to Experimental
- Added the GetRateStatisticsCollection() method to the CIM Elements table for

CIM_BlockStatisticsService as defined in the text of the profile

CKD Block Services Profile (SMI TWG Reviews)
- Fixed versions numbers in the Related Profiles table to match the version identified for the related profiles
- Propagated the Block Services Package changes to the CKD Block Services Profile

Disk Drive Lite Profile (SMI TWG Reviews)
- Changed the references to “Disk Drive Light” to “Disk Drive Lite” in the Synopsis
- Added DiskType, FormFactor and Encryption properties to the CIM_DiskDrive CIM Elements table to

match the text of the profile.

Disk Sparing Profile (SMI TWG Reviews)
- Removed the Draft “ExtentDiscriminator” property from CIM_LogicalDisk, CIM_StorageVolume and

CIM_StorageExtent.

Erasure Profile (SMI TWG Reviews)
- Added conditional requirements for the conditions for implementing CIM_LogicalDisk and

CIM_StorageVolume

Extent Composition Profile (SMI TWG Reviews)
- Changed the version of the profile to be 1.7.0 due to indication classes removed in 1.7.0

Masking and Mapping Profile (SMI TWG Reviews)
- Added CIM_SystemDevice between the ProtocolController and its scoping system
- Added SupportedAsynchronousActions and SupportedSynchronousActions to the CIM Elements table
for CIM_ProtocolControllerMaskingCapabilities
- Changed the version of the profile to be 1.8.0 due the aforementioned changes

Storage Server Asymmetry Profile (SMI TWG Reviews)
- Added a class table for CIM_StorageResourceLoadGroup
- Added keys to the class tables for CIM_StorageServerAsymmetryCapabilities and CIM_TargetPortGroup

Storage Virtualizer Profile (SMI TWG Reviews)
- Fixed versions numbers in the Related Profiles table to match the version identified for the related profiles
- Changed the related profile group for initiators to be optional (to be consistent with 1.6.1)
- Clarified the possible values for Dedicated in the Top Level System and Shadow systems.
- Changed the version of the profile to be 1.8.0 (since a mof was added to 2.51 to support the profile)

Volume Composition Profile (SMI TWG Reviews)
- Fixed versions numbers in the Related Profiles table to match the version identified for the related profiles
- Extended the enumeration values for SupportedStorageElements in

CIM_StorageElementCompositionCapabilities
- Changed GetSupportedCompositeStripeDepths and GetSupportedCompositeStripeDepthRange to

GetSupportedStripeDepths and GetSupportedStripeDepthRange to match the mof
- Addded GetSupportedStripeLengths and GetSupportedStripeLengthRange to

CIM_StorageElementCompositionService
- Added CreateOrModifyCompositeElementFromStoragePool to CIM_StorageElementCompositionService
- Changed the version of the profile to be 1.8.0 due to the aforementioned changes

Storage Element Protection Profile (SMI TWG Reviews)
SNIA Technical Position 7

- Changed all references to CIM_ElementProtectionSettingData to
CIM_ElementStorageProtectionSettingData.

- Added Keys to StorageProtectionCapabilities, StorageProtectionService and StorageProtectionSettings
- Changed the version of the profile to be 1.8.0 due to the aforementioned changes

Replication Services Profile (SMI TWG Reviews)
- Fixed versions numbers in the Related Profiles table to match the version identified for the related profiles
- Removed the Condition for semi-fixed filter support, since the class has been deleted from the spec and

made adjustments to the conditions defined on it.
- Changed the method name GetReplicationRelationshipInstance to GetReplicationRelationshipInstances

in the CIM Elements table for CIM_ReplicationService
- Made CIM_AllocatedResources and its CIM_HostedCollection Conditional on the "Remote" condition
- In CIM_SAPAvailableForFileShare changed the "FileShare" reference to be "ManagedElement" to match

the mof
- In CIM_SettingsAffectSettings changed the " ManagedElement " reference to be "Dependent" and

changed the "SettingData" reference to be "Antecedent" to match the mof

Pools from Volumes Profile (SMI TWG Reviews)
- Fixed versions numbers in the Related Profiles table to match the version identified for the related profiles

Group Masking and Mapping Profile (SMI TWG Reviews)
- Propagated the Masking and Mapping changes to the Group Masking and Mapping Profile
- Added MoveMembers and CreateOrModifyMaskingGroup to the CIM Element table for

CIM_GroupMaskingMappingService
- Removed the property GetMaskingGroupOperationOrder and the method

GetSupportedGroupMaximums from the CIM Elements table for
CIM_GroupMaskingMappingCapabilities, since they are not in the mof and not referenced anywhere in
the profile text.

Storage Relocation Profile (SMI TWG Reviews)
- Fixed versions numbers in the Related Profiles table to match the version identified for the related profiles

Thin Provisioning Profile (SMI TWG Reviews)
- Propagated the Block Services Package changes to the Thin Provisioning Profile
- Fixed versions numbers in the Related Profiles table to match the version identified for the related profiles
- Added Storage Pool Diagnostics to the Supported Profile List

Automated Storage Tiering Profile (SMI TWG Reviews)
- Fixed versions numbers in the Related Profiles table to match the version identified for the related profiles
- Changed “DeleteOnEmptyElement” to “DeleteOnEmptyStorageTier” in CIM_StorageTier and

CIM_TierSettingData to match the mof

Automated Storage Tiering Policy Profile (SMI TWG Reviews)
- Propagated the Automated Storage Tiering changes to the Automated Storage Tiering Policy Profile
- Fixed versions numbers in the Related Profiles table to match the version identified for the related profiles

Storage Pool Diagnostics Profile (SMI TWG Reviews)
- Edited the profile to remove experimental indication classes and filter collections
- Added propagation information for the specialization of the DMTF Diagnostics Profile.
- Changed the references in CIM_ElementDiagnostics to be Antecedent and Dependent to match the mof.
- Changed the property name of TestType to TestTypes in CIM_StoragePoolDiagnosticTest to match the

mof
- Changed the property name of OtherStoragePoolTestTypeDescription to OtherStoragePoolTestType in

CIM_StoragePoolDiagnosticTest to match the mof.
8

- Fixed the information on CIM_ServiceAffectsElement to replace reference to port controllers to storage
pools

- Changed the version to 1.8.0 because it will rely on CIM 2.51.

Comments

Editorial notes and DRAFT material are hidden
General editorial clean up.

Revision 3

Date
August 14, 2018

SCRs Incorporated and other changes

Storage Server Asymmetry Profile (TSG-SMIS-SCR00332)
- Added a related profile for the Multiple Computer System profile
- Changed Central Class to CIM_StorageServerAsymmetryCapabilities since it is defined in the profile.

Block Services Package (TSG-SMIS-SCR00333)
- Changed the Central Class from StorageConfigurationService to CIM_StoragePool (Primordial)

CKD Block Services Profile (TSG-SMIS-SCR00333)
- Changed the Central Class from StoragePool to CIM_StoragePool (Primordial)

Disk Sparing Profile (TSG-SMIS-SCR00333)
- Changed the Central Class from ComputerSystem to CIM_StorageRedundancySet

Volume Composition Profile (TSG-SMIS-SCR00333)
- Changed the Central Class from StorageVolume to CIM_StorageElementCompositionService

Thin Provisioning Profile (TSG-SMIS-SCR00333)
- Changed the Central Class from StorageConfigurationService to CIM_StoragePool (Primordial)

Comments

None.
SNIA Technical Position 9

Revision 4

Date
October 24, 2019

SCRs Incorporated and other changes

Block Services (SMIS-180-Errata-SCR00001)
 - Changed the property EncryptionSupported to Encryption in CIM_StorageCapabilities
 - Removed the property SupportedCompressionElements from CIM_StorageCapabilities

CKD Block Services (SMIS-180-Errata-SCR00001)
 - Changed the property EncryptionSupported to Encryption in CIM_StorageCapabilities
 - Removed the property SupportedCompressionElements from CIM_StorageCapabilities

Thin Provisioning (SMIS-180-Errata-SCR00001)
 - Changed the property EncryptionSupported to Encryption in CIM_StorageCapabilities
 - Removed the property SupportedCompressionElements from CIM_StorageCapabilities

Comments

Minor editorial clean up to create corrected technical position.

Revision 5

Date

March 23, 2020

SCRs Incorporated and other changes

None.

Comments

Revision number updated to keep all books in sync after a minor update to the architecture book.

Suggestion for changes or modifications to this document should be sent to the SNIA Storage Management
Initiative Technical Work Group (SMI TWG) at http://www.snia.org/feedback/
10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45
INTENDED AUDIENCE

This document is intended for use by individuals and companies engaged in developing, deploying, and
promoting interoperable multi-vendor SANs through the Storage Networking Industry Association (SNIA)
organization.

CHANGES TO THE SPECIFICATION

Each publication of this specification is uniquely identified by a three-level identifier, comprised of a
version number, a release number and an update number. The current identifier for this specification is
version 1.8.0. Future publications of this specification are subject to specific constraints on the scope of
change that is permissible from one publication to the next and the degree of interoperability and
backward compatibility that should be assumed between products designed to different publications of
this standard. The SNIA has defined three levels of change to a specification:

• Major Revision: A major revision of the specification represents a substantial change to the underlying scope
or architecture of the SMI-S API. A major revision results in an increase in the version number of the version
identifier (e.g., from version 1.x.x to version 2.x.x). There is no assurance of interoperability or backward
compatibility between releases with different version numbers.

• Minor Revision: A minor revision of the specification represents a technical change to existing content or an
adjustment to the scope of the SMI-S API. A minor revision results in an increase in the release number of
the specification’s identifier (e.g., from x.1.x to x.2.x). Minor revisions with the same version number preserve
interoperability and backward compatibility.

• Update: An update to the specification is limited to minor corrections or clarifications of existing specification
content. An update will result in an increase in the third component of the release identifier (e.g., from x.x.1 to
x.x.2). Updates with the same version and minor release levels preserve interoperability and backward
compatibility.

TYPOGRAPHICAL CONVENTIONS

Maturity Level

In addition to informative and normative content, this specification includes guidance about the maturity
of emerging material that has completed a rigorous design review but has limited implementation in
commercial products. This material is clearly delineated as described in the following sections. The
typographical convention is intended to provide a sense of the maturity of the affected material, without
altering its normative content. By recognizing the relative maturity of different sections of the standard, an
implementer should be able to make more informed decisions about the adoption and deployment of
different portions of the standard in a commercial product.

This specification has been structured to convey both the formal requirements and assumptions of the
SMI-S API and its emerging implementation and deployment lifecycle. Over time, the intent is that all
content in the specification will represent a mature and stable design, be verified by extensive
implementation experience, assure consistent support for backward compatibility, and rely solely on
content material that has reached a similar level of maturity. Unless explicitly labeled with one of the
subordinate maturity levels defined for this specification, content is assumed to satisfy these
requirements and is referred to as “Finalized”. Since much of the evolving specification

content in any given release will not have matured to that level, this specification defines three
subordinate levels of implementation maturity that identify important aspects of the content’s increasing
maturity and stability. Each subordinate maturity level is defined by its level of implementation
experience, its stability and its reliance on other emerging standards. Each subordinate maturity level is
identified by a unique typographical tagging convention that clearly distinguishes content at one maturity
model from content at another level.
SNIA Technical Position 7

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75
Experimental Maturity Level

No material is included in this document unless its initial architecture has been completed and reviewed.
Some content included in this document has complete and reviewed design, but lacks implementation
experience and the maturity gained through implementation experience. This content is included in order
to gain wider review and to gain implementation experience. This material is referred to as
“Experimental”. It is presented here as an aid to implementers who are interested in likely future
developments within the SMI specification. The contents of an Experimental profile may change as
implementation experience is gained. There is a high likelihood that the changed content will be included
in an upcoming revision of the specification. Experimental material can advance to a higher maturity level
as soon as implementations are available. Figure 1 is a sample of the typographical convention for
Experimental content.

Implemented Maturity Level

Profiles for which initial implementations have been completed are classified as “Implemented”. This
indicates that at least two different vendors have implemented the profile, including at least one provider
implementation. At this maturity level, the underlying architecture and modeling are stable, and changes
in future revisions will be limited to the correction of deficiencies identified through additional
implementation experience. Should the material become obsolete in the future, it must be deprecated in a
minor revision of the specification prior to its removal from subsequent releases. Figure 2 is a sample of
the typographical convention for Implemented content.

Stable Maturity Level

Once content at the Implemented maturity level has garnered additional implementation experience, it
can be tagged at the Stable maturity level. Material at this maturity level has been implemented by three
different vendors, including both a provider and a client. Should material that has reached this maturity
level become obsolete, it may only be deprecated as part of a minor revision to the specification. Material
at this maturity level that has been deprecated may only be removed from the specification as part of a
major revision. A profile that has reached this maturity level is guaranteed to preserve backward
compatibility from one minor specification revision to the next. As a result, Profiles at or above the Stable

EXPERIMENTAL

Experimental content appears here.

EXPERIMENTAL

Figure 1 - Experimental Maturity Level Tag

IMPLEMENTED

Implemented content appears here.

IMPLEMENTED

Figure 2 - Implemented Maturity Level Tag
8

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105
maturity level shall not rely on any content that is Experimental. Figure 3 is a sample of the typographical
convention for Implemented content.

Finalized Maturity Level

Content that has reached the highest maturity level is referred to as “Finalized.” In addition to satisfying
the requirements for the Stable maturity level, content at the Finalized maturity level must solely depend
upon or refine material that has also reached the Finalized level. If specification content depends upon
material that is not under the control of the SNIA, and therefore not subject to its maturity level
definitions, then the external content is evaluated by the SNIA to assure that it has achieved a
comparable level of completion, stability, and implementation experience. Should material that has
reached this maturity level become obsolete, it may only be deprecated as part of a major revision to the
specification. A profile that has reached this maturity level is guaranteed to preserve backward
compatibility from one minor specification revision to the next. Over time, it is hoped that all specification
content will attain this maturity level. Accordingly, there is no special typographical convention, as there is
with the other, subordinate maturity levels. Unless content in the specification is marked with one of the
typographical conventions defined for the subordinate maturity levels, it should be assumed to have
reached the Finalized maturity level.

Deprecated Material

Non-Experimental material can be deprecated in a subsequent revision of the specification. Sections
identified as “Deprecated” contain material that is obsolete and not recommended for use in new
development efforts. Existing and new implementations may still use this material, but shall move to the
newer approach as soon as possible. The maturity level of the material being deprecated determines how
long it will continue to appear in the specification. Implemented content shall be retained at least until the
next revision of the specialization, while Stable and Finalized material shall be retained until the next
major revision of the specification. Providers shall implement the deprecated elements as long as it
appears in the specification in order to achieve backward compatibility. Clients may rely on deprecated
elements, but are encouraged to use non-deprecated alternatives when possible.

Deprecated sections are documented with a reference to the last published version to include the
deprecated section as normative material and to the section in the current specification with the
replacement. Figure 4 contains a sample of the typographical convention for deprecated content.

STABLE

Stable content appears here.

STABLE

Figure 3 - Stable Maturity Level Tag

DEPRECATED

Content that has been deprecated appears here.

DEPRECATED

Figure 4 - Deprecated Tag
SNIA Technical Position 9

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131
10

Contents

Revision History .. 5
List of Figures ... 19
List of Tables ... 23
Foreword ... 41

1 Scope .. 43

2 Normative References... 45
2.1 Overview ... 45
2.2 Approved references... 45
2.3 References under development .. 45
2.4 Other references ... 45

3 Terms, Definitions, Symbols, Abbreviations, and Conventions ... 47

4 Array Profile... 49
4.1 Description .. 49
4.2 Health and Fault Management.. 53
4.3 Cascading Considerations .. 53
4.4 Methods of the Profile ... 53
4.5 Use Cases... 53
4.6 CIM Elements.. 54

5 Block Services Package .. 61
5.1 Description .. 61
5.2 Health and Fault Management Considerations ... 84
5.3 Cascading Considerations .. 87
5.4 Methods of this Profile... 87
5.5 Use Cases... 106
5.6 CIM Elements.. 112

6 Block Storage Views Profile .. 145
6.1 Description .. 145
6.2 Health and Fault Management Consideration... 163
6.3 Cascading Considerations .. 163
6.4 Methods of the Profile ... 163
6.5 Client Considerations and Recipes ... 164
6.6 CIM Elements.. 167

7 Block Server Performance Profile ... 199
7.1 Description .. 199
7.2 Implementation.. 202
7.3 Health and Fault Management Considerations ... 226
7.4 Cascading Considerations .. 226
7.5 Methods of the Profile ... 226
7.6 Client Considerations and Recipes ... 235
7.7 CIM Elements.. 241

8 CKD Block Services Profile ... 269
8.1 Description .. 269
8.2 Health and Fault Management Consideration... 272
8.3 Cascading Considerations .. 272
8.4 Methods of the Profile ... 272
8.5 Use case ... 272
8.6 CIM Elements.. 272

9 Copy Services Profile ...305
SNIA Technical Position 15

9.1 Description..305
9.2 Health and Fault Management Considerations ...341
9.3 Cascading Considerations ...343
9.4 Supported Profiles and Packages ..343
9.5 Methods of the Profile ...344
9.6 Client Considerations and Recipes ..362
9.7 CIM Elements ...374

10 Disk Drive Lite Profile .. 391
10.1 Synopsis.. 391
10.2 Description .. 391
10.3 Modeling.. 391
10.4 Health and Fault Management Considerations... 394
10.5 Cascading Considerations .. 396
10.6 Methods of this Profile... 396
10.7 CIM Elements.. 397

11 Disk Sparing Profile ... 411
11.1 Description .. 411
11.2 Health and Fault Management Considerations... 418
11.3 Cascading Conjurations .. 418
11.4 Methods of the Profile ... 418
11.5 Use Cases... 421
11.6 CIM Elements.. 422

12 Erasure Profile... 433
12.1 Description .. 433
12.2 Health and Fault Management Considerations... 435
12.3 Cascading Considerations .. 435
12.4 Methods of the Profile ... 435
12.5 Use Cases... 436
12.6 CIM Elements.. 436

13 Extent Composition Profile .. 441
13.1 Description .. 441
13.2 Health and Fault Management Considerations... 458
13.3 Cascading Considerations .. 458
13.4 Methods of the Profile ... 458
13.5 Use Cases... 458
13.6 CIM Elements.. 459

14 Masking and Mapping Profile .. 469
14.1 Description .. 469
14.2 Health and Fault Management Considerations... 478
14.3 Cascading Considerations .. 478
14.4 Methods of the Profile ... 478
14.5 Use Cases... 491
14.6 CIM Elements.. 492

15 Storage Server Asymmetry Profile .. 509
15.1 Description .. 509
15.2 Health and Fault Management Consideration... 518
15.3 Cascading Considerations .. 518
15.4 Methods of the Profile ... 518
15.5 Use Cases... 519
15.6 CIM Elements.. 519
16

16 Storage Virtualizer Profile.. 529
16.1 Synopsis.. 529
16.2 Description .. 530
16.3 Instance Diagrams .. 531
16.4 Health and Fault Management.. 536
16.5 Storage Virtualizer Support for Cascading.. 536
16.6 Methods of the Profile ... 537
16.7 Use Cases... 538
16.8 CIM Elements.. 538

17 Volume Composition Profile .. 555
17.1 Description .. 555
17.2 Striped and Concatenated Composite Volumes ... 567
17.3 Health and Fault Management Consideration... 568
17.4 Cascading Considerations .. 568
17.5 Methods of the Profile ... 569
17.6 Use Cases... 581
17.7 CIM Elements.. 582

18 Volume Management Profile ...589

19 Storage Element Protection Profile ... 591
19.1 Description .. 591
19.2 Health and Fault Management Consideration... 602
19.3 Cascading Considerations .. 602
19.4 Methods of the Profile ... 602
19.5 Client Considerations and Recipes ... 606
19.6 CIM Elements.. 606

20 Replication Services Profile... 609
20.1 Description .. 609
20.2 Health and Fault Management Consideration... 638
20.3 Cascading Considerations .. 639
20.4 Mapping of Copy Services and Replication Services Properties and Methods 642
20.5 Methods of the Profile ... 643
20.6 Use Cases... 681
20.7 CIM Elements.. 682

21 Pools from Volumes Profile ... 717
21.1 Description .. 717
21.2 Block Services Enhancements.. 722
21.3 Health and Fault Management Considerations... 723
21.4 Cascading Considerations .. 723
21.5 Methods of the Profile ... 723
21.6 Use Cases... 724
21.7 CIM Elements.. 724

22 Group Masking and Mapping Profile ... 729
22.1 Description .. 729
22.2 Health and Fault Management Consideration... 737
22.3 Cascading Considerations .. 737
22.4 Methods of the Profile ... 737
22.5 Use Cases... 743
22.6 CIM Elements.. 744

23 Storage Relocation Profile... 769
SNIA Technical Position 17

23.1 Description .. 769
23.2 Health and Fault Management Consideration... 774
23.3 Cascading Considerations .. 774
23.4 Mapping & Masking Considerations.. 774
23.5 Methods of the Profile ... 774
23.6 Use Cases... 778
23.7 CIM Elements.. 784

24 Thin Provisioning Profile.. 803
24.1 Description .. 803
24.2 Health and Fault Management Consideration... 807
24.3 Cascading Considerations .. 807
24.4 Methods of the Profile ... 807
24.5 Use Cases... 808
24.6 CIM Elements.. 812

25 Automated Storage Tiering Profile .. 847
25.1 Description .. 847
25.2 Methods of the Profile ... 860
25.3 Client Considerations and Recipes ... 865
25.4 CIM Elements.. 866

26 Automated Storage Tiering Policy Profile.. 889
26.1 Synopsis.. 889
26.2 Description .. 889
26.3 Policies.. 889
26.4 Key Components... 890
26.5 Implementation.. 890
26.6 Methods .. 894
26.7 Use Cases... 899
26.8 CIM Elements.. 900

27 Storage Pool Diagnostics Profile ... 929
27.1 Synopsis.. 929
27.2 Description .. 929
27.3 Implementation.. 931
27.4 Methods .. 949
27.5 Use Cases... 953
27.6 CIM Elements.. 961

Annex A (informative) SMI-S Information Model.. 981

Annex B (informative) Registry of StorageExtent Definitions... 983
18

LIST OF FIGURES

Figure 1 - Experimental Maturity Level Tag ... 12

Figure 2 - Implemented Maturity Level Tag ... 12

Figure 3 - Stable Maturity Level Tag.. 13

Figure 4 - Deprecated Tag... 13

Figure 5 - Array Profile Instance Diagram.. 51

Figure 6 - Array Package Diagram .. 52

Figure 7 - Storage Capacity State.. 62

Figure 8 - StoragePool Manipulation Instance Diagram .. 64

Figure 9 - Capabilities Specific to a StoragePool... 65

Figure 10 - StorageVolume Creation Instance Diagram .. 71

Figure 11 - Storage Configuration.. 72

Figure 12 - StorageExtent Conservation - Step 1 .. 78

Figure 13 - StorageExtent Conservation - Step 2 .. 79

Figure 14 - StorageExtent Conservation - Step 3 .. 80

Figure 15 - Representative Block Service Instance Diagram... 106

Figure 16 - StoragePool Creation - Initial State ... 107

Figure 17 - StoragePool Creation - Step 1... 108

Figure 18 - StoragePool Creation - Step 2... 108

Figure 19 - StoragePool Creation - Step 3... 109

Figure 20 - StorageVolume Creation - Initial State .. 110

Figure 21 - StorageVolume Creation - Step 1.. 110

Figure 22 - StorageVolume Creation - Step 2.. 111

Figure 23 - StorageVolume Creation - Step 3.. 112

Figure 24 - Class diagram for managed element Block Storage View Classes............................... 147

Figure 25 - Class diagram for view associations.. 148

Figure 26 - Block Storage View Class Capabilities .. 149

Figure 27 - VolumeView and related associations... 150

Figure 28 - DiskDriveView and related associations.. 152

Figure 29 - MaskingMappingExposedDeviceView Association ... 154

Figure 30 - MaskingMappingView Association .. 155

Figure 31 - The MappingProtocolControllerView ... 157

Figure 32 - The StoragePoolView.. 159

Figure 33 - The ReplicaPairView ... 162

Figure 34 - Block Server Performance Profile Summary Instance Diagram.................................... 203

Figure 35 - Base Array Profile Block Server Performance Instance Diagram.................................. 207

Figure 36 - Base Storage Virtualizer Profile Block Server Performance Instance Diagram............. 209

Figure 37 - Base Volume Management Profile Block Server Performance Instance Diagram........ 211

Figure 38 - Multiple Computer System Profile Block Server Performance Instance Diagram 215

Figure 39 - Fibre Channel Initiator Port Profile Block Server Performance Instance Diagram 216

Figure 40 - Extent Composition Profile Block Server Performance Instance Diagram 218

Figure 41 - Disk Drive Lite Profile Block Server Performance Instance Diagram 219

Figure 42 - Disk Drive Performance Data Rates.. 220
SNIA Technical Position 19

Figure 43 - SCSIArbitraryLogicalUnit Block Server Performance Instance Diagram....................... 221

Figure 44 - Remote Mirrors Block Server Performance Instance Diagram...................................... 222

Figure 45 - Block Server Performance Manifest Collections.. 224

Figure 46 - Block Services Support for Count Key Data Storage .. 270

Figure 47 - Copy Services Discovery... 306

Figure 48 - Local Replica ... 310

Figure 49 - Multi-Level Local Replication... 311

Figure 50 - Multiple Snapshots Per Source Element ... 312

Figure 51 - SettingsDefineState Association ... 316

Figure 52 - SynchronizationAspect Instance ... 317

Figure 53 - State Transitions for Mirrors and Clones ... 325

Figure 54 - State Transitions for Snapshots and Migration.. 326

Figure 55 - CopyState Transitions ... 328

Figure 56 - Sample CopyState and ProgressStatus Transitions.. 334

Figure 57 - Fixed Space Consumption .. 338

Figure 58 - Variable Space Consumption .. 339

Figure 59 - Fixed Space Consumption .. 369

Figure 60 - Variable Space Consumption .. 370

Figure 61 - CIM Elements in the Disk Drive Model .. 392

Figure 62 - Disk Drive Dependency ... 395

Figure 63 - Drive Dependency and Pool Hierarchy.. 396

Figure 64 - Sparing Instance Diagram ... 412

Figure 65 - Variations of RS per Storage Element... 414

Figure 66 - Before Failure .. 416

Figure 67 - During Failure .. 416

Figure 68 - After Failure ... 417

Figure 69 - Model Elements ... 435

Figure 70 - Remaining Extents in Extent Composition... 444

Figure 71 - Volume Composition from General QOS Pool .. 446

Figure 72 - Single QOS Pool Composition (RAID Groups).. 447

Figure 73 - SIngle QOS Pool Composition - Two Concretes... 448

Figure 74 - Concatenation Composition .. 450

Figure 75 - RAID0 Composition ... 450

Figure 76 - RAID1 Composition ... 451

Figure 77 - RAID10 Composition ... 452

Figure 78 - RAID0+1 Composition ... 453

Figure 79 - RAID4, 5 Composition ... 454

Figure 80 - RAID 6, 5DP, 4DP ... 455

Figure 81 - RAID15 Composition ... 456

Figure 82 - RAID50 Composition ... 457

Figure 83 - RAID51 Composition ... 458

Figure 84 - Generic System with no Configuration Service ... 471

Figure 85 - Generic System with ControllerConfigurationService.. 471

Figure 86 - Relationship of Initiator IDs, Endpoints, and Logical Units .. 473

Figure 87 - StorageClientSettingData Model ... 476

Figure 88 - Entire Model .. 477
20

Figure 89 - Storage Asymmetry Class Hierarchy... 512

Figure 90 - Asymmetry with MCS .. 514

Figure 91 - Ports Do Not Failover, Healthy .. 515

Figure 92 - Ports Do Not Failover, Failed Controller .. 516

Figure 93 - Ports Failover, Healthy .. 517

Figure 94 - Ports Failover, Failed Controller .. 518

Figure 95 - Storage Virtualizer Package Diagram.. 531

Figure 96 - Storage Virtualizer System Instance ... 532

Figure 97 - Dependency to Primordial StorageExtents.. 533

Figure 98 - Primordial Extent Dependency and Pool Hierarchy... 534

Figure 99 - Virtualizer, Cascading and Initiator Ports... 537

Figure 100 - Volume Composition Class Mode.. 557

Figure 101 - Example 1 Step 1 .. 560

Figure 102 - Example 1 Step 2 .. 561

Figure 103 - First Alternative Example - Before Composition .. 562

Figure 104 - First Alternative Example - After Composition ... 563

Figure 105 - Second Alternative Example - Before Composition.. 564

Figure 106 - Second Alternative Example - After Composition.. 565

Figure 107 - Example 2 - Before Composition... 566

Figure 108 - Example 2 - After Composition.. 567

Figure 109 - Striping and Concatenation ... 568

Figure 110 - Storage Element Protection Class Model .. 592

Figure 111 - Retention Time Line .. 596

Figure 112 - Protection State Transition DIagram ... 597

Figure 113 - Step 1 - Initial State ... 598

Figure 114 - Step 2 - Volume Set to Read-only ... 599

Figure 115 - Step 3 - Second Volume Set to Read-only .. 600

Figure 116 - Step 4 - Volume Set to Read/Write Disabled... 601

Figure 117 - Step 5 Volume Access Changed... 602

Figure 118 - Replication Services Discovery ... 612

Figure 119 - Local Replica ... 614

Figure 120 - Remote Replica ... 615

Figure 121 - Remote Replication over two Paths .. 616

Figure 122 - Expanded Remote Replica.. 617

Figure 123 - An instance of ReplicationEntity .. 618

Figure 124 - StorageSynchronized and ReplicationEntity ... 618

Figure 125 - Multi-hop Replication ... 619

Figure 126 - Group Instances .. 620

Figure 127 - Sequentially Consistent Example .. 621

Figure 128 - Associated Groups and Elements ... 622

Figure 129 - SettingsDefineState Association ... 623

Figure 130 - A new instance of SynchronizationAspect... 623

Figure 131 - SynchronizationAspect of a Group of elements .. 624

Figure 132 - SynchronizationAspect Instance ... 625

Figure 133 - One-to-Many Association .. 626

Figure 134 - CopyState Transitions ... 629
SNIA Technical Position 21

Figure 135 - Sample CopyState and ProgressStatus Transitions.. 631

Figure 136 - Fixed Space Consumption .. 635

Figure 137 - Variable Space Consumption .. 636

Figure 138 - Instance Diagram for Access to Leaf Resources... 639

Figure 139 - Instance of ServiceAccessPoint .. 640

Figure 140 - Replication Services support for Cascading.. 641

Figure 141 - Cascading and Replication Groups ... 642

Figure 142 - Class Model ... 718

Figure 143 - Before Pool Creation ... 719

Figure 144 - After Pool Creation .. 721

Figure 145 - After Pool Creation without Extent Composition.. 722

Figure 146 - Group Masking and Mapping Model.. 731

Figure 147 - Masking Groups .. 732

Figure 148 - Nested Masking Groups .. 733

Figure 149 - Nested Masking Group Example... 734

Figure 150 - Example ConsistentLogicalUnitNumber set to true ... 735

Figure 151 - Example ConsistentLogicalUnitNumber set to false.. 736

Figure 152 - Storage Relocation .. 771

Figure 153 - Relocate StorageVolume to local StoragePool ... 778

Figure 154 - Relocate StorageVolume to remote StoragePool.. 779

Figure 155 - Relocate StoragePool to local StoragePool .. 780

Figure 156 - Relocate StoragePool to remote StoragePool... 781

Figure 157 - Relocate StorageVolume to local StorageExtent group .. 782

Figure 158 - Relocate StorageVolume to remote StorageExtent group... 783

Figure 159 - Thin Provisioning Model .. 805

Figure 160 - RAID1 Capacity after Volume Creation ... 810

Figure 161 - RAID1 Capacity with Thin Volume and RAID-at-Pool Approach................................. 811

Figure 162 - RAID1 Capacity with Thin Volume and RAID-at-Volume Approach............................ 812

Figure 163 - Automated Storage Tiering Discovery... 849

Figure 164 - Additional Automated Storage Tiering Components.. 850

Figure 165 - Storage Tiering Model ... 852

Figure 166 - Storage Tiering Model based on different pools .. 853

Figure 167 - Storage Tiering based on StorageVolumes forming a StoragePool 854

Figure 168 - Storage tiers based on QoS .. 855

Figure 169 - StorageTiers based on Primordial StorageExtents.. 856

Figure 170 - Two TierDomain Configuration.. 858

Figure 171 - A volume associated to two storage tiers .. 859

Figure 172 - Automated Storage Tiering Policy Discovery .. 890

Figure 173 - Additional Tiering Policy Components... 891

Figure 174 - PolicyTimePeriodCondition ... 892

Figure 175 - ManagedElement Subject to Tiering ... 893

Figure 176 - Storage Pool Diagnostics Instance Diagram ... 930

Figure 177 - Example OperationalStatus Roll-up .. 953
22

LIST OF TABLES

Table 1 - Supported Profiles for Array ..49

Table 2 - CIM Elements for Array ...54

Table 3 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)........................56

Table 4 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to
System)56

Table 5 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapabil-
ities)57

Table 6 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Arbitrary LU for All
LUNs View)57

Table 7 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Storage volumes for All
LUNs View)58

Table 8 - SMI Referenced Properties/Methods for CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)58

Table 9 - SMI Referenced Properties/Methods for CIM_SCSIProtocolController (All LUNs View)58

Table 10 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIArbitraryLogical-
Unit)59

Table 11 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIProtocolController) ...59

Table 12 - Supported Profiles for Block Services ...61

Table 13 - Mapping: Supported Actions to Methods...68

Table 14 - Valid Values for StorageConfigurationCapabilities associated to a Pool ..68

Table 15 - SupportedStoragePoolFeatures Array ..69

Table 16 - SupportedStoragePoolFeatures Array ..70

Table 17 - RAID Mapping ...73

Table 18 - Meaning of Usage values ..75

Table 19 - Classes Required In Read-Only Implementation ..76

Table 20 - Standard Messages for Block Services Package..84

Table 21 - OperationalStatus for StoragePool..84

Table 22 - OperationalStatus for StoragePool..85

Table 23 - OperationalStatus for StorageVolume...86

Table 24 - OperationalStatus for LogicalDisk ...87

Table 25 - Values for applicable Goal properties..101

Table 26 - CIM Elements for Block Services ..112

Table 27 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from Pool)............117

Table 28 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or LogicalD-
isk from Pool)117

Table 29 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StorageVolume or LogicalDisk)117

Table 30 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StoragePool)118

Table 31 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to
System)118

Table 32 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
ageConfigurationService)118

Table 33 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
agePool)119

Table 34 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to StorageConfigurationService)119

Table 35 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to concrete StoragePool)119

Table 36 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
SNIA Technical Position 23

ties to primordial StoragePool)120

Table 37 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming
capabilities of the StoragePool)120

Table 38 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming
capabilities of the StorageVolume or LogicalDisk)121

Table 39 - SMI Referenced Properties/Methods for CIM_ElementSettingData..121

Table 40 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
ConfigurationService)122

Table 41 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
Pool)122

Table 42 - SMI Referenced Properties/Methods for CIM_HostedService ..123

Table 43 - SMI Referenced Properties/Methods for CIM_HostedStoragePool ..123

Table 44 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapabil-
ities)123

Table 45 - SMI Referenced Properties/Methods for CIM_LogicalDisk ...124

Table 46 - SMI Referenced Properties/Methods for CIM_OwningJobElement ..125

Table 47 - SMI Referenced Properties/Methods for CIM_StorageCapabilities ..125

Table 48 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)128

Table 49 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)130

Table 50 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)131

Table 51 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService....................................133

Table 52 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)..134

Table 53 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty) ..135

Table 54 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial) ..136

Table 55 - SMI Referenced Properties/Methods for CIM_StorageSetting..137

Table 56 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints ..139

Table 57 - SMI Referenced Properties/Methods for CIM_StorageSettingsAssociatedToCapabilities................140

Table 58 - SMI Referenced Properties/Methods for CIM_StorageSettingsGeneratedFromCapabilities141

Table 59 - SMI Referenced Properties/Methods for CIM_StorageVolume...141

Table 60 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageVolume or Logi-
calDisk)143

Table 61 - Supported Profiles for Block Storage Views..145

Table 62 - Discovery of the Volumes on an Array ..164

Table 63 - Discovery of the Disk Drives in a Primordial Pool ...164

Table 64 - Discover Volumes exposed on a (Target) Port..165

Table 65 - Discover (target port) redundancy for a Volume..165

Table 66 - Discover Volumes exposed to a Host Port ..165

Table 67 - Discover Mapping information for an array..166

Table 68 - Discover the Pool topology for an array ..166

Table 69 - Discover the Replica Pairs for an array ...167

Table 70 - CIM Elements for Block Storage Views...167

Table 71 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolView (StoragePoolView
to StoragePool)172

Table 72 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolView (Volume to Stor-
agePoolView)173

Table 73 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolView (VolumeView to
StoragePool)174

Table 74 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolViewView (PoolView to
PoolView)174

Table 75 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolViewView (VolumeView
to PoolView)175
24

Table 76 - SMI Referenced Properties/Methods for CIM_BasedOnView (ExtentOnDriveExtent)......................175

Table 77 - SMI Referenced Properties/Methods for CIM_BasedOnView (VolumeOnExtent)176

Table 78 - SMI Referenced Properties/Methods for CIM_ConcreteComponentView...176

Table 79 - SMI Referenced Properties/Methods for CIM_ContainerView ..177

Table 80 - SMI Referenced Properties/Methods for CIM_DiskDriveView ..177

Table 81 - SMI Referenced Properties/Methods for CIM_DriveComponentViewView179

Table 82 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (View Capabilities)179

Table 83 - SMI Referenced Properties/Methods for CIM_ElementStatisticalDataView (DiskDriveView)180

Table 84 - SMI Referenced Properties/Methods for CIM_ElementStatisticalDataView (VolumeView)180

Table 85 - SMI Referenced Properties/Methods for CIM_ElementView (DiskDrive)..181

Table 86 - SMI Referenced Properties/Methods for CIM_ElementView (StorageSetting)181

Table 87 - SMI Referenced Properties/Methods for CIM_ElementView (Volume) ...182

Table 88 - SMI Referenced Properties/Methods for CIM_ExtentComponentView ...182

Table 89 - SMI Referenced Properties/Methods for CIM_HostedStoragePoolView...182

Table 90 - SMI Referenced Properties/Methods for CIM_MappingProtocolControllerView183

Table 91 - SMI Referenced Properties/Methods for CIM_MaskingMappingExposedDeviceView......................184

Table 92 - SMI Referenced Properties/Methods for CIM_MaskingMappingView...185

Table 93 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnitView186

Table 94 - SMI Referenced Properties/Methods for CIM_ReplicaPairView ...187

Table 95 - SMI Referenced Properties/Methods for CIM_StoragePoolView ..190

Table 96 - SMI Referenced Properties/Methods for CIM_SystemDeviceView (DiskDriveViews)193

Table 97 - SMI Referenced Properties/Methods for CIM_SystemDeviceView (MappingProtocolController-
Views)193

Table 98 - SMI Referenced Properties/Methods for CIM_SystemDeviceView (ReplicaPairViews)193

Table 99 - SMI Referenced Properties/Methods for CIM_SystemDeviceView (VolumeViews)..........................194

Table 100 - SMI Referenced Properties/Methods for CIM_ViewCapabilities ..194

Table 101 - SMI Referenced Properties/Methods for CIM_VolumeView...195

Table 102 - Supported Profiles for Block Server Performance..199

Table 103 - Summary of Element Types by Profile ...212

Table 104 - Summary of Rate Element Types by Profile...213

Table 105 - Creation, Deletion and Modification Methods in Block Server Performance Profile226

Table 106 - Interval for rate statistics...234

Table 107 - Summary of Statistics Support by Element ..236

Table 108 - Cumulative and Rate Statistics Properties ...238

Table 109 - ElementType and RateElementType Properties ..239

Table 110 - Formulas and Calculations ...239

Table 111 - Block Server Performance Profile Supported Capabilities Patterns ...240

Table 112 - CIM Elements for Block Server Performance ...241

Table 113 - SMI Referenced Properties/Methods for CIM_AssociatedBlockStatisticsManifestCollection (Cli-
ent defined collection)244

Table 114 - SMI Referenced Properties/Methods for CIM_AssociatedBlockStatisticsManifestCollection (Pro-
vider defined collection)244

Table 115 - SMI Referenced Properties/Methods for CIM_BlockStatisticsCapabilities245

Table 116 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Client Defined)246

Table 117 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Provider Support)..............248

Table 118 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifestCollection (Client Defined) ..251

Table 119 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifestCollection (Provider De-
fined)252

Table 120 - SMI Referenced Properties/Methods for CIM_BlockStatisticsService..252

Table 121 - SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData254
SNIA Technical Position 25

Table 122 - SMI Referenced Properties/Methods for CIM_ElementCapabilities ...260

Table 123 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Back end Port Stats)260

Table 124 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Component System Stats) 261

Table 125 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Disk Stats)261

Table 126 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Extent Stats)......................262

Table 127 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Front end Port Stats)262

Table 128 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Logical Disk Stats).............263

Table 129 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Remote Copy Stats)263

Table 130 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Top Level System Stats) ...264

Table 131 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Volume Stats)....................264

Table 132 - SMI Referenced Properties/Methods for CIM_HostedCollection (Client Defined)............................265

Table 133 - SMI Referenced Properties/Methods for CIM_HostedCollection (Default).......................................265

Table 134 - SMI Referenced Properties/Methods for CIM_HostedCollection (Provider Supplied)......................265

Table 135 - SMI Referenced Properties/Methods for CIM_HostedService ...266

Table 136 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of client defined
collection)266

Table 137 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of pre-defined col-
lection)267

Table 138 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of statistics collec-
tion)267

Table 139 - SSMI Referenced Properties/Methods for CIM_StatisticsCollection ..268

Table 140 - Supported Profiles for CKD Block Services..269

Table 141 - CIM Elements for CKD Block Services...272

Table 142 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from Pool)...........276

Table 143 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or LogicalD-
isk from Pool)277

Table 144 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StorageVolume or LogicalDisk)277

Table 145 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StoragePool)277

Table 146 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to
System)278

Table 147 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
ageConfigurationService)278

Table 148 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
agePool)278

Table 149 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to StorageConfigurationService)279

Table 150 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to concrete StoragePool)279

Table 151 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to primordial StoragePool)279

Table 152 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the nam-
ing capabilities of the StoragePool)280

Table 153 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the nam-
ing capabilities of the StorageVolume or LogicalDisk)280

Table 154 - SMI Referenced Properties/Methods for CIM_ElementSettingData...281

Table 155 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
ConfigurationService)281

Table 156 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
Pool)282

Table 157 - SMI Referenced Properties/Methods for CIM_HostedService ...282
26

Table 158 - SMI Referenced Properties/Methods for CIM_HostedStoragePool..282

Table 159 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities)283

Table 160 - SMI Referenced Properties/Methods for CIM_LogicalDisk ..283

Table 161 - SMI Referenced Properties/Methods for CIM_OwningJobElement..284

Table 162 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)285

Table 163 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)287

Table 164 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial).........289

Table 165 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService...................................290

Table 166 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete) ...291

Table 167 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty) ...292

Table 168 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial) ...293

Table 169 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints..294

Table 170 - SMI Referenced Properties/Methods for CIM_StorageSettingsAssociatedToCapabilities...............295

Table 171 - SMI Referenced Properties/Methods for CIM_StorageSettingsGeneratedFromCapabilities296

Table 172 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageVolume or Log-
icalDisk)296

Table 173 - SMI Referenced Properties/Methods for CIM_StorageCapabilities..297

Table 174 - SMI Referenced Properties/Methods for CIM_StorageSetting ...299

Table 175 - SMI Referenced Properties/Methods for CIM_StorageVolume..302

Table 176 - Related Profiles for Copy Services...305

Table 177 - Comparing SyncTypes ...308

Table 178 - Alignment of SupportedSynchronizationType and SupportedReplicationType309

Table 179 - Alignment of SyncType/Mode and CopyType ..313

Table 180 - Alignment of CopyState and SyncState..314

Table 181 - Synchronization Operation Support Requirements ..320

Table 182 - SyncState Values ...321

Table 183 - CopyStates Values ...323

Table 184 - SyncMaintained and WhenSynced Properties ...324

Table 185 - Indications ..340

Table 186 - Copy Services Alert Indications..342

Table 187 - Copy Services Error Responses...343

Table 188 - Extrinsic Methods of StorageConfigurationService ..344

Table 189 - ModifySynchronization..345

Table 190 - CreateReplica Method..345

Table 191 - TargetPool Parameter for Delta Replicas ...347

Table 192 - Extrinsic Methods of ReplicationService...348

Table 193 - GetAvailableTargetElements Method...353

Table 194 - Extrinsic Methods of ReplicationServiceCapabilities ..356

Table 195 - SyncTypes..356

Table 196 - Modes...356

Table 197 - Local or Remote ...357

Table 198 - ReplicationTypes ..357

Table 199 - Features ...358

Table 200 - Operations ..358

Table 201 - Comparison of Similar Operations..360

Table 202 - SettingsDefineState Operations ...360

Table 203 - Thin Provisioning Features...361

Table 204 - Components ...361

Table 205 - Replica Specialization by CopyType ..362
SNIA Technical Position 27

Table 206 - Replica Specialization by SyncType/Mode...363

Table 207 - Patterns Supported for StorageReplicationCapabilities..370

Table 208 - Space Consumption Properties ..372

Table 209 - Space Consumption Properties, Fixed Pattern...372

Table 210 - CIM Elements for Copy Services..374

Table 211 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Associates ReplicationSer-
viceCapabilities and ReplicationService)376

Table 212 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Associates StorageReplica-
tionCapabilities and StorageConfigurationService)377

Table 213 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to StorageConfigurationService)377

Table 214 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to StoragePool)377

Table 215 - SMI Referenced Properties/Methods for CIM_HostedService (Replication Service)378

Table 216 - SMI Referenced Properties/Methods for CIM_HostedService (Storage Configuration Service)378

Table 217 - SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage..378

Table 218 - SMI Referenced Properties/Methods for CIM_ReplicationService ...379

Table 219 - SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities379

Table 220 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData ..381

Table 221 - SMI Referenced Properties/Methods for CIM_SettingsDefineState ...382

Table 222 - SMI Referenced Properties/Methods for CIM_StorageCapabilities..382

Table 223 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities383

Table 224 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService...................................383

Table 225 - SMI Referenced Properties/Methods for CIM_StoragePool ...384

Table 226 - SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities................................384

Table 227 - SMI Referenced Properties/Methods for CIM_StorageSetting ...387

Table 228 - SMI Referenced Properties/Methods for CIM_StorageSynchronized ..387

Table 229 - SMI Referenced Properties/Methods for CIM_StorageSynchronized (Between StorageExtent el-
ements)389

Table 230 - SMI Referenced Properties/Methods for CIM_SynchronizationAspect ..390

Table 231 - Related Profiles for Disk Drive Lite ...391

Table 232 - OperationalStatus For DiskDrive ..394

Table 233 - Enabled State ...394

Table 234 - CIM Elements for Disk Drive Lite..397

Table 235 - SMI Referenced Properties/Methods for CIM_ATAPort (Disk Drive Target ATA Port)398

Table 236 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Disk Drive target ATA Pro-
tocol Endpoint)399

Table 237 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool Component to
Primordial Pool)399

Table 238 - SMI Referenced Properties/Methods for CIM_BasedOn (Bottom Level BasedOn)400

Table 239 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Disk Extent to Primordial
Pool)400

Table 240 - SMI Referenced Properties/Methods for CIM_Container ...400

Table 241 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (ATA)............................401

Table 242 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (SCSI)401

Table 243 - SMI Referenced Properties/Methods for CIM_DiskDrive ...401

Table 244 - SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity..402

Table 245 - SMI Referenced Properties/Methods for CIM_FCPort (Disk Drive Target FC Port).........................403

Table 246 - SMI Referenced Properties/Methods for CIM_MediaPresent...403

Table 247 - SMI Referenced Properties/Methods for CIM_PhysicalPackage ...404

Table 248 - SMI Referenced Properties/Methods for CIM_ProtocolControllerAccessesUnit404
28

Table 249 - SMI Referenced Properties/Methods for CIM_Realizes ...404

Table 250 - SMI Referenced Properties/Methods for CIM_ResourcePoolDriveDependency..............................405

Table 251 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..405

Table 252 - SMI Referenced Properties/Methods for CIM_SASPort (Disk Drive Target SAS Port)405

Table 253 - SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath406

Table 254 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Disk Drive target SCSI
Protocol Endpoint)406

Table 255 - SMI Referenced Properties/Methods for CIM_SoftwareIdentity ...407

Table 256 - SMI Referenced Properties/Methods for CIM_StorageElementDriveDependency407

Table 257 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Disk Drive Extent)..........408

Table 258 - SMI Referenced Properties/Methods for CIM_SystemDevice (Disk Drive System)408

Table 259 - SMI Referenced Properties/Methods for CIM_SystemDevice (Port System)...................................408

Table 260 - SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extent System)..................409

Table 261 - Related Profiles for Disk Sparing..411

Table 262 - Supported Methods to Method Mapping...415

Table 263 - CIM Elements for Disk Sparing...422

Table 264 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Spare to Storage
Pool)423

Table 265 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to LogicalDisk)423

Table 266 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to Pool)424

Table 267 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to StorageVolume)...424

Table 268 - SMI Referenced Properties/Methods for CIM_ElementCapabilities ...424

Table 269 - SMI Referenced Properties/Methods for CIM_HostedCollection (ComputerSystem to Failover-
StorageExtentsCollection)425

Table 270 - SMI Referenced Properties/Methods for CIM_HostedCollection (ComputerSystem to Redundan-
cySet)425

Table 271 - SMI Referenced Properties/Methods for CIM_HostedService (ComputerSystem to SpareConfig-
urationService)425

Table 272 - SMI Referenced Properties/Methods for CIM_IsSpare ..426

Table 273 - SMI Referenced Properties/Methods for CIM_LogicalDisk ..426

Table 274 - SMI Referenced Properties/Methods for CIM_MemberOfCollection ..427

Table 275 - SMI Referenced Properties/Methods for CIM_Spared ...427

Table 276 - SMI Referenced Properties/Methods for CIM_StorageExtent (Spare) ...427

Table 277 - SMI Referenced Properties/Methods for CIM_StoragePool ...428

Table 278 - SMI Referenced Properties/Methods for CIM_StorageRedundancySet...428

Table 279 - SMI Referenced Properties/Methods for CIM_StorageVolume..429

Table 280 - SMI Referenced Properties/Methods for CIM_FailoverStorageExtentsCollection............................429

Table 281 - SMI Referenced Properties/Methods for CIM_SpareConfigurationCapabilities429

Table 282 - SMI Referenced Properties/Methods for CIM_SpareConfigurationService......................................431

Table 283 - Erase Method ...436

Table 284 - CIM Elements for Erasure ..436

Table 285 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool......................................437

Table 286 - SMI Referenced Properties/Methods for CIM_LogicalDisk ..437

Table 287 - SMI Referenced Properties/Methods for CIM_StoragePool ...438

Table 288 - SMI Referenced Properties/Methods for CIM_StorageVolume..438

Table 289 - SMI Referenced Properties/Methods for CIM_StorageErasureCapabilities438

Table 290 - SMI Referenced Properties/Methods for CIM_StorageErasureService..439

Table 291 - SMI Referenced Properties/Methods for CIM_StorageErasureSetting ..439

Table 292 - Supported Common RAID Levels...449

Table 293 - CIM Elements for Extent Composition..459
SNIA Technical Position 29

Table 294 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool Component to
Concrete Pool)460

Table 295 - SMI Referenced Properties/Methods for CIM_AssociatedRemainingExtent (Pool to its remain-
ing extents)460

Table 296 - SMI Referenced Properties/Methods for CIM_BasedOn (Mid level BasedOn)461

Table 297 - SMI Referenced Properties/Methods for CIM_BasedOn (Top level BasedOn)................................461

Table 298 - SMI Referenced Properties/Methods for CIM_CompositeExtent (Composite Intermediate)............461

Table 299 - SMI Referenced Properties/Methods for CIM_CompositeExtent (Composite Pool Component)462

Table 300 - SMI Referenced Properties/Methods for CIM_CompositeExtentBasedOn463

Table 301 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Pool Component to Con-
crete Pool)464

Table 302 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Remaining Extent to Pool)....464

Table 303 - SMI Referenced Properties/Methods for CIM_StorageExtent (Intermediate)...................................464

Table 304 - SMI Referenced Properties/Methods for CIM_StorageExtent (Pool Component)............................465

Table 305 - SMI Referenced Properties/Methods for CIM_StorageExtent (Remaining)466

Table 306 - SMI Referenced Properties/Methods for CIM_SystemDevice (Composite Extent System)466

Table 307 - SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extent System)..................467

Table 308 - Related Profiles for Masking and Mapping...469

Table 309 - SCSIProtocolController Property Description ...475

Table 310 - ExposePath Use Cases..479

Table 311 - HidePaths Use Cases...482

Table 312 - Use Cases for ExposeDefaultLUs ...484

Table 313 - Use Cases for HideDefaultLUs...486

Table 314 - CIM Elements for Masking and Mapping..492

Table 315 - SMI Referenced Properties/Methods for CIM_AssociatedPrivilege ...494

Table 316 - SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege..495

Table 317 - SMI Referenced Properties/Methods for CIM_AuthorizedSubject..495

Table 318 - SMI Referenced Properties/Methods for CIM_AuthorizedTarget ...495

Table 319 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates ControllerCon-
figuirationService and ProtocolController)496

Table 320 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates PrivilegeMan-
agementService and AuthorizedPrivilege)496

Table 321 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHardwa-
reIDManagementService and StorageHardwareID)496

Table 322 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHardwa-
reIDManagementService and SystemSpecificCollection)497

Table 323 - SMI Referenced Properties/Methods for CIM_ControllerConfigurationService................................497

Table 324 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to ControllerConfigurationService)498

Table 325 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to ProtocolController)498

Table 326 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StorageHardwareID)498

Table 327 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StorageHardwareIDManagementService)499

Table 328 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to SystemSpecificCollection)499

Table 329 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (System to ProtocolController-
MaskingCapabilities)500

Table 330 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ComputerSys-
tem and StorageClientSettingData)500

Table 331 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Port and Stor-
30

ageClientSettingData)500

Table 332 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ProtocolControl-
ler and StorageClientSettingData)501

Table 333 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates StorageHardware-
ID and StorageClientSettingData)501

Table 334 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities501

Table 335 - SMI Referenced Properties/Methods for CIM_HostedCollection..502

Table 336 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
ControllerConfigurationService)502

Table 337 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
PrivilegeManagementService)502

Table 338 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
StorageHardwareIDManagementService)503

Table 339 - SMI Referenced Properties/Methods for CIM_MemberOfCollection ..503

Table 340 - SMI Referenced Properties/Methods for CIM_PrivilegeManagementService503

Table 341 - SMI Referenced Properties/Methods for CIM_ProtocolController ..504

Table 342 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit ..505

Table 343 - SMI Referenced Properties/Methods for CIM_ProtocolControllerMaskingCapabilities505

Table 344 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..506

Table 345 - SMI Referenced Properties/Methods for CIM_StorageClientSettingData ..507

Table 346 - SMI Referenced Properties/Methods for CIM_StorageHardwareID...507

Table 347 - SMI Referenced Properties/Methods for CIM_StorageHardwareIDManagementService507

Table 348 - SMI Referenced Properties/Methods for CIM_SystemSpecificCollection ..508

Table 349 - SMI Referenced Properties/Methods for CIM_SystemSpecificCollection ..508

Table 350 - Related Profiles for Storage Server Asymmetry ...509

Table 351 - CIM Elements for Storage Server Asymmetry..519

Table 352 - SMI Referenced Properties/Methods for CIM_AsymmetricAccessibility ..522

Table 353 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (To Top-level ComputerSys-
tem)522

Table 354 - SMI Referenced Properties/Methods for CIM_HostedCollection (Top-Level System to Load
Group)523

Table 355 - SMI Referenced Properties/Methods for CIM_HostedCollection (Top-Level System to Port
Group)523

Table 356 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (SATA Target Port Group)523

Table 357 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (SB Target Port Group)..........524

Table 358 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (SCSI Target Port Group)524

Table 359 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Resource Load
Group aggregating Storage Pools)524

Table 360 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Resource Load
Group aggregating Storage Volumes)525

Table 361 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (iSCSI Target Port Group)525

Table 362 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService...................................525

Table 363 - SMI Referenced Properties/Methods for CIM_StorageProcessorAffinity (StorageResource-
LoadGroup)526

Table 364 - SMI Referenced Properties/Methods for CIM_StorageProcessorAffinity (Target Port Group).........526

Table 365 - SMI Referenced Properties/Methods for CIM_StorageResourceLoadGroup (Load Groups............527

Table 366 - SMI Referenced Properties/Methods for CIM_StorageServerAsymmetryCapabilities527

Table 367 - SMI Referenced Properties/Methods for CIM_TargetPortGroup (Port Groups)528

Table 368 - Related Profiles for Storage Virtualizer...529

Table 369 - CIM Elements for Storage Virtualizer ...538

Table 370 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool Component to
SNIA Technical Position 31

Primordial Pool)541

Table 371 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Shadow).....................................541

Table 372 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System).....................542

Table 373 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Imported Extents to Primor-
dial Pool)542

Table 374 - SMI Referenced Properties/Methods for CIM_Dependency (Systems) ...543

Table 375 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to
System)543

Table 376 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)544

Table 377 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)544

Table 378 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities)545

Table 379 - SMI Referenced Properties/Methods for CIM_LogicalIdentity (Shadow Storage Volume)...............545

Table 380 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)............546

Table 381 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)..............546

Table 382 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Arbitrary LU for All
LUNs View)546

Table 383 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Storage volumes for All
LUNs View)547

Table 384 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint (Shadow)547

Table 385 - SMI Referenced Properties/Methods for CIM_ResourcePoolExtentDependency (PoolExtentDepe-
dency)548

Table 386 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..548

Table 387 - SMI Referenced Properties/Methods for CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)549

Table 388 - SMI Referenced Properties/Methods for CIM_SCSIProtocolController (All LUNs View)549

Table 389 - SMI Referenced Properties/Methods for CIM_StorageElementExtentDependency (ElementExtent-
Dependency)549

Table 390 - SMI Referenced Properties/Methods for CIM_StorageExtent (Imported Extents)550

Table 391 - SMI Referenced Properties/Methods for CIM_StorageVolume (Shadow)..550

Table 392 - SMI Referenced Properties/Methods for CIM_SystemDevice (Shadow StorageVolumes)..............552

Table 393 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIArbitraryLogical-
Unit)552

Table 394 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIProtocolController) 552

Table 395 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageExtent)...............553

Table 396 - SMI Referenced Properties/Methods for CIM_AllocatedResources...553

Table 397 - SMI Referenced Properties/Methods for CIM_RemoteResources ...554

Table 398 - Related Profiles for Volume Composition ...555

Table 399 - CompositionCharacteristics Property ...558

Table 400 - Method Summary ...569

Table 401 - CreateOrModifyCompositeElement ..571

Table 402 - CreateOrModifyCompositeElementFromStoragePool..573

Table 403 - RemoveElementsFromElement..575

Table 404 - ReturnElementToElements...576

Table 405 - GetAvailableElements ..577

Table 406 - GetCompositeElements..578

Table 407 - GetSupportedStripeLengths ...578

Table 408 - GetSupportedStripeLengthRange ..579

Table 409 - GetSupportedStripeDepths...580

Table 410 - GetSupportedStripeDepthRange..580

Table 411 - CIM Elements for Volume Composition..582

Table 412 - SMI Referenced Properties/Methods for CIM_CompositeExtent ...582
32

Table 413 - SMI Referenced Properties/Methods for CIM_CompositeExtentBasedOn (Volume Composition)..583

Table 414 - SMI Referenced Properties/Methods for CIM_ElementCapabilities ...583

Table 415 - SMI Referenced Properties/Methods for CIM_ElementSettingData...584

Table 416 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
the ElementCompositionService)584

Table 417 - SMI Referenced Properties/Methods for CIM_StorageElementCompositionCapabilities584

Table 418 - SMI Referenced Properties/Methods for CIM_StorageElementCompositionService585

Table 419 - SMI Referenced Properties/Methods for CIM_StorageSetting ...586

Table 420 - SMI Referenced Properties/Methods for CIM_StorageVolume..588

Table 421 - Properties for StorageProtectionCapabilities..593

Table 422 - Properties for StorageProtectionSetting ...593

Table 423 - Values for ProtectionControlled ..594

Table 424 - Values for Access...594

Table 425 - Values for InquiryProtection..595

Table 426 - Values for DenyAsCopyTarget ...595

Table 427 - Values for LUNMappingConfigurable ...595

Table 428 - Values for ProtectExpirationSpecified ..595

Table 429 - Values for RemainingProtectionTime ...596

Table 430 - The Protect Method ..603

Table 431 - The ProtectWithEndpoints Method...604

Table 432 - CIM Elements for Storage Element Protection ...606

Table 433 - SMI Referenced Properties/Methods for CIM_ElementCapabilities ...606

Table 434 - SMI Referenced Properties/Methods for CIM_HostedService ...607

Table 435 - SMI Referenced Properties/Methods for CIM_ElementStorageProtectionSettingData607

Table 436 - SMI Referenced Properties/Methods for CIM_StorageProtectionCapabilities607

Table 437 - SMI Referenced Properties/Methods for CIM_StorageProtectionService ..608

Table 438 - SMI Referenced Properties/Methods for CIM_StorageProtectionSetting...608

Table 439 - Related Profiles for Replication Services..609

Table 440 - Key Classes..611

Table 441 - Comparing SyncTypes ...613

Table 442 - CopyStates Values ...627

Table 443 - Indications ..638

Table 444 - Extrinsic Methods for Group Management ...643

Table 445 - Extrinsic Methods for Replication Management ...643

Table 446 - Extrinsic Methods for Getting Supported Capabilities ..644

Table 447 - Selected CreateElementReplica optional parameters ..649

Table 448 - Selected CreateGroupReplica optional parameters ...651

Table 449 - Selected CreateListReplica optional parameters..653

Table 450 - SyncTypes..664

Table 451 - Modes...664

Table 452 - Local or Remote ...664

Table 453 - ReplicationTypes ..664

Table 454 - Features ...666

Table 455 - Group Features...667

Table 456 - Consistency ..670

Table 457 - Operations ..670

Table 458 - Comparison of Similar Operations..672

Table 459 - SettingsDefineState Operations ...673

Table 460 - Thin Provisioning Features...674
SNIA Technical Position 33

Table 461 - Components ...675

Table 462 - Default Consistency..675

Table 463 - Group Persistency ..676

Table 464 - Copy Methodologies...676

Table 465 - Target Element Suppliers ...677

Table 466 - ThinProvisioningPolicy..677

Table 467 - StorageCompressionPolicy ..678

Table 468 - Connection Features ..679

Table 469 - Storage Compression Features..679

Table 470 - Copy Services and Replication Services Methods Mapping ..681

Table 471 - CIM Elements for Replication Services ..682

Table 472 - SMI Referenced Properties/Methods for CIM_AllocatedResources...686

Table 473 - SMI Referenced Properties/Methods for CIM_ElementCapabilities ...687

Table 474 - SMI Referenced Properties/Methods for CIM_GroupSynchronized...687

Table 475 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForProtocolEndpoint)690

Table 476 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForRemoteServiceAccess-
Point)691

Table 477 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)691

Table 478 - SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and
RemoteReplicationCollection)691

Table 479 - SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and
ReplicationGroup)692

Table 480 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)692

Table 481 - SMI Referenced Properties/Methods for CIM_HostedService ...693

Table 482 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)............693

Table 483 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (ProtocolEndpoints to Re-
moteReplicationCollection)693

Table 484 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)..............694

Table 485 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage elements to Re-
moteReplicationCollection)694

Table 486 - SMI Referenced Properties/Methods for CIM_OrderedMemberOfCollection...................................695

Table 487 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint ...695

Table 488 - SMI Referenced Properties/Methods for CIM_RemoteReplicationCollection...................................696

Table 489 - SMI Referenced Properties/Methods for CIM_RemoteResources ...697

Table 490 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint697

Table 491 - SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage..698

Table 492 - SMI Referenced Properties/Methods for CIM_ReplicationEntity ..698

Table 493 - SMI Referenced Properties/Methods for CIM_ReplicationGroup ...699

Table 494 - SMI Referenced Properties/Methods for CIM_ReplicationService ...699

Table 495 - SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities701

Table 496 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData ..704

Table 497 - SMI Referenced Properties/Methods for CIM_SAPAvailableForFileShare708

Table 498 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and RemoteReplicationCollection)708

Table 499 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and ReplicationEntity)708

Table 500 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and ReplicationGroup)709

Table 501 - SMI Referenced Properties/Methods for CIM_SettingsAffectSettings (Between Synchronization-
Aspect and child SynchronizationAspects)709

Table 502 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between ReplicationGroup
34

and SynchronizationAspect)710

Table 503 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between storage object and
SynchronizationAspect)710

Table 504 - SMI Referenced Properties/Methods for CIM_SharedSecret...710

Table 505 - SMI Referenced Properties/Methods for CIM_StorageSynchronized ..711

Table 506 - SMI Referenced Properties/Methods for CIM_SynchronizationAspect ..715

Table 507 - Related Profiles for Volume Composition ...717

Table 508 - CIM Elements for Pools from Volumes...724

Table 509 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume from Pool)......725

Table 510 - SMI Referenced Properties/Methods for CIM_ElementCapabilities ...725

Table 511 - SMI Referenced Properties/Methods for CIM_SystemDevice..726

Table 512 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities726

Table 513 - Related Profiles for Group Masking and Mapping..729

Table 514 - Extrinsic Methods for Masking Group Management...737

Table 515 - Extrinsic Methods for Masking Views Management ...738

Table 516 - CIM Elements for Group Masking and Mapping...744

Table 517 - SMI Referenced Properties/Methods for CIM_AssociatedDeviceMaskingGroup.............................747

Table 518 - SMI Referenced Properties/Methods for CIM_AssociatedInitiatorMaskingGroup............................747

Table 519 - SMI Referenced Properties/Methods for CIM_AssociatedTargetMaskingGroup747

Table 520 - SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege..748

Table 521 - SMI Referenced Properties/Methods for CIM_AuthorizedSubject..748

Table 522 - SMI Referenced Properties/Methods for CIM_AuthorizedTarget ...749

Table 523 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates ControllerCon-
figuirationService and ProtocolController)749

Table 524 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates PrivilegeMan-
agementService and AuthorizedPrivilege)749

Table 525 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHardwa-
reIDManagementService and StorageHardwareID)750

Table 526 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHardwa-
reIDManagementService and SystemSpecificCollection)750

Table 527 - SMI Referenced Properties/Methods for CIM_DeviceMaskingGroup ..750

Table 528 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to ControllerConfigurationService)751

Table 529 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to ProtocolController)751

Table 530 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StorageHardwareID)752

Table 531 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StorageHardwareIDManagementService)752

Table 532 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to SystemSpecificCollection)752

Table 533 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (System to ProtocolController-
MaskingCapabilities)753

Table 534 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ComputerSys-
tem and StorageClientSettingData)753

Table 535 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Port and Stor-
ageClientSettingData)753

Table 536 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ProtocolControl-
ler and StorageClientSettingData)754

Table 537 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates StorageHardware-
ID and StorageClientSettingData)754

Table 538 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities754
SNIA Technical Position 35

Table 539 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingCapabilities755

Table 540 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingService................................758

Table 541 - SMI Referenced Properties/Methods for CIM_HostedCollection..759

Table 542 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
ControllerConfigurationService)760

Table 543 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
PrivilegeManagementService)760

Table 544 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
StorageHardwareIDManagementService)760

Table 545 - SMI Referenced Properties/Methods for CIM_InitiatorMaskingGroup..761

Table 546 - SMI Referenced Properties/Methods for CIM_MemberOfCollection ..761

Table 547 - SMI Referenced Properties/Methods for CIM_PrivilegeManagementService762

Table 548 - SMI Referenced Properties/Methods for CIM_ProtocolController ..762

Table 549 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit ..763

Table 550 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..763

Table 551 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between GroupMasking-
MappingService and MaskingGroup)764

Table 552 - SMI Referenced Properties/Methods for CIM_StorageClientSettingData ..764

Table 553 - SMI Referenced Properties/Methods for CIM_StorageHardwareID...764

Table 554 - SMI Referenced Properties/Methods for CIM_StorageHardwareIDManagementService765

Table 555 - SMI Referenced Properties/Methods for CIM_SystemSpecificCollection ..765

Table 556 - SMI Referenced Properties/Methods for CIM_TargetMaskingGroup...765

Table 557 - SMI Referenced Properties/Methods for CIM_AssociatedPrivilege ...766

Table 558 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to ProtocolController).........766

Table 559 - Related Profiles for Storage Relocation..769

Table 560 - CIM Elements for Storage Relocation ..784

Table 561 - SMI Referenced Properties/Methods for CIM_AffectedJobElement (LogicalDisk to ConcreteJob) .786

Table 562 - SMI Referenced Properties/Methods for CIM_AffectedJobElement (StorageExtent to Concrete-
Job)786

Table 563 - SMI Referenced Properties/Methods for CIM_AffectedJobElement (StoragePool to ConcreteJob)787

Table 564 - SMI Referenced Properties/Methods for CIM_AffectedJobElement (StorageVolume to Concrete-
Job)787

Table 565 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to StoragePool)787

Table 566 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to StorageRelocationService)788

Table 567 - SMI Referenced Properties/Methods for CIM_HostedService (StorageRelocationService to Com-
puterSystem)788

Table 568 - SMI Referenced Properties/Methods for CIM_LogicalDisk ..788

Table 569 - SMI Referenced Properties/Methods for CIM_OwningJobElement (StorageRelocationService to
ConcreteJob)790

Table 570 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)790

Table 571 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)792

Table 572 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial).........794

Table 573 - SMI Referenced Properties/Methods for CIM_StorageExtent (Relocatable)....................................796

Table 574 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete) ...797

Table 575 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial) ...798

Table 576 - SMI Referenced Properties/Methods for CIM_StorageRelocationService799

Table 577 - SMI Referenced Properties/Methods for CIM_StorageVolume..801

Table 578 - Related Profiles for Thin Provisioning...803

Table 579 - CIM Elements for Thin Provisioning ...812
36

Table 580 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from Pool)...........817

Table 581 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or LogicalD-
isk from Pool)817

Table 582 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StorageVolume or LogicalDisk)817

Table 583 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StoragePool)818

Table 584 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to
System)818

Table 585 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
ageConfigurationService)819

Table 586 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
agePool)819

Table 587 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to StorageConfigurationService)819

Table 588 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to concrete StoragePool)820

Table 589 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to primordial StoragePool)820

Table 590 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the nam-
ing capabilities of the StoragePool)820

Table 591 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the nam-
ing capabilities of the StorageVolume or LogicalDisk)821

Table 592 - SMI Referenced Properties/Methods for CIM_ElementSettingData...821

Table 593 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
ConfigurationService)822

Table 594 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
Pool)822

Table 595 - SMI Referenced Properties/Methods for CIM_HostedService ...823

Table 596 - SMI Referenced Properties/Methods for CIM_HostedStoragePool..823

Table 597 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities)824

Table 598 - SMI Referenced Properties/Methods for CIM_LogicalDisk ..824

Table 599 - SMI Referenced Properties/Methods for CIM_OwningJobElement..825

Table 600 - SMI Referenced Properties/Methods for CIM_StorageCapabilities..826

Table 601 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)828

Table 602 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)831

Table 603 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial).........833

Table 604 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService...................................834

Table 605 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete) ...835

Table 606 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty) ...837

Table 607 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial) ...838

Table 608 - SMI Referenced Properties/Methods for CIM_StorageSetting ...839

Table 609 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints..841

Table 610 - SMI Referenced Properties/Methods for CIM_StorageSettingsAssociatedToCapabilities...............843

Table 611 - SMI Referenced Properties/Methods for CIM_StorageSettingsGeneratedFromCapabilities843

Table 612 - SMI Referenced Properties/Methods for CIM_StorageVolume..843

Table 613 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageVolume or Log-
icalDisk)845

Table 614 - Related Profiles for Automated Storage Tiering ...847

Table 615 - Key Classes..848

Table 616 - SupportedFeatures...860
SNIA Technical Position 37

Table 617 - SupportedTierFeatures...860

Table 618 - Extrinsic Methods ...861

Table 619 - CIM Elements for Automated Storage Tiering ..866

Table 620 - SMI Referenced Properties/Methods for CIM_AdvancedStorageSetting ...868

Table 621 - SMI Referenced Properties/Methods for CIM_AssociatedElementTier..870

Table 622 - SMI Referenced Properties/Methods for CIM_AssociatedResourcePool...870

Table 623 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (TierDomain to StorageTier) 870

Table 624 - SMI Referenced Properties/Methods for CIM_ElementCapabilities ...871

Table 625 - SMI Referenced Properties/Methods for CIM_HostedService ...871

Table 626 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StorageExtents
comprising a tier)871

Table 627 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StoragePools com-
prising a tier)872

Table 628 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StorageVolumes
comprising a tier)872

Table 629 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies primordial Storage-
Extents comprising a tier)873

Table 630 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierService and
StorageTier)873

Table 631 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierService and
TierDomain)873

Table 632 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Between Storag-
eTierCapabilities and TierSettingData)874

Table 633 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Between TierService-
Capabilities and TierSettingData)874

Table 634 - SMI Referenced Properties/Methods for CIM_StorageTier ..874

Table 635 - SMI Referenced Properties/Methods for CIM_StorageTierCapabilities ...876

Table 636 - SMI Referenced Properties/Methods for CIM_StorageVolume (Constituent)878

Table 637 - SMI Referenced Properties/Methods for CIM_StorageVolume (Regular) ..879

Table 638 - SMI Referenced Properties/Methods for CIM_SystemComponent (TierDomain to ComputerSys-
tem)881

Table 639 - SMI Referenced Properties/Methods for CIM_TierDomain ..882

Table 640 - SMI Referenced Properties/Methods for CIM_TierService...882

Table 641 - SMI Referenced Properties/Methods for CIM_TierServiceCapabilities ..883

Table 642 - SMI Referenced Properties/Methods for CIM_TierSettingData..886

Table 643 - Related Profiles for Automated Storage Tiering Policy...889

Table 644 - Key Classes..890

Table 645 - SupportedPolicyFeatures ...894

Table 646 - Extrinsic Methods ...894

Table 647 - Parameters for ModifyStorageTierPolicyRule...897

Table 648 - CIM Elements for Automated Storage Tiering Policy ...900

Table 649 - SMI Referenced Properties/Methods for CIM_AdvancedStorageSetting ...902

Table 650 - SMI Referenced Properties/Methods for CIM_AssociatedElementTier..904

Table 651 - SMI Referenced Properties/Methods for CIM_AssociatedResourcePool...904

Table 652 - SMI Referenced Properties/Methods for CIM_AssociatedTierPolicy ...904

Table 653 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (TierDomain to StorageTier) 905

Table 654 - SMI Referenced Properties/Methods for CIM_ElementCapabilities ...905

Table 655 - SMI Referenced Properties/Methods for CIM_ElementSettingData...906

Table 656 - SMI Referenced Properties/Methods for CIM_HostedService ...906

Table 657 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StorageExtents
comprising a tier)906
38

Table 658 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StoragePools com-
prising a tier)907

Table 659 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StorageVolumes
comprising a tier)907

Table 660 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies primordial Storage-
Extents comprising a tier)908

Table 661 - SMI Referenced Properties/Methods for CIM_PolicySetValidityPeriod..908

Table 662 - SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition......................................908

Table 663 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierPolicySer-
vice and TierPolicyRule)909

Table 664 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierService and
StorageTier)909

Table 665 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierService and
TierDomain)910

Table 666 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Between Storag-
eTierCapabilities and TierSettingData)910

Table 667 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Between TierService-
Capabilities and TierSettingData)910

Table 668 - SMI Referenced Properties/Methods for CIM_StorageTier ..911

Table 669 - SMI Referenced Properties/Methods for CIM_StorageTierCapabilities ...912

Table 670 - SMI Referenced Properties/Methods for CIM_StorageVolume (Constituent)914

Table 671 - SMI Referenced Properties/Methods for CIM_StorageVolume (Regular) ..916

Table 672 - SMI Referenced Properties/Methods for CIM_SystemComponent (TierDomain to ComputerSys-
tem)918

Table 673 - SMI Referenced Properties/Methods for CIM_TierDomain ..919

Table 674 - SMI Referenced Properties/Methods for CIM_TierPolicyRule..919

Table 675 - SMI Referenced Properties/Methods for CIM_TierPolicyService ...920

Table 676 - SMI Referenced Properties/Methods for CIM_TierPolicyServiceCapabilities921

Table 677 - SMI Referenced Properties/Methods for CIM_TierPolicySetAppliesToElement925

Table 678 - SMI Referenced Properties/Methods for CIM_TierPolicySettingData ..925

Table 679 - Related Profiles for Storage Pool Diagnostics..929

Table 680 - Test Type Information...931

Table 681 - CIM_StoragePoolDiagnosticTest property requirements ...933

Table 682 - CIM_StoragePoolDiagnosticTest property Information ..933

Table 683 - CIM_StoragePoolDiagnosticServiceCapabilities property requirements..933

Table 684 - CIM_StoragePoolDiagnosticSettingData property requirements..934

Table 685 - OperationalStatus for StoragePool ...947

Table 686 - Operations: CIM_SummaryDiagnostics..951

Table 687 - Operations: CIM_DiagnosticSubTestRecord..951

Table 688 - Operations: CIM_ElementDiagnostics..952

Table 689 - Operations: CIM_LogToLog ...952

Table 690 - CIM Elements for Storage Pool Diagnostics...961

Table 691 - SMI Referenced Properties/Methods for CIM_AvailableDiagnosticService965

Table 692 - SMI Referenced Properties/Methods for CIM_CorrespondingSettingDataRecord (DiagnosticCom-
pletionRecord)965

Table 693 - SMI Referenced Properties/Methods for CIM_CorrespondingSettingDataRecord (DiagnosticSer-
viceRecord)966

Table 694 - SMI Referenced Properties/Methods for CIM_DiagnosticCompletionRecord966

Table 695 - SMI Referenced Properties/Methods for CIM_DiagnosticLog ..967

Table 696 - SMI Referenced Properties/Methods for CIM_DiagnosticLog (Subtest) ..967

Table 697 - SMI Referenced Properties/Methods for CIM_DiagnosticServiceRecord ..968
SNIA Technical Position 39

Table 698 - SMI Referenced Properties/Methods for CIM_DiagnosticSettingDataRecord..................................969

Table 699 - SMI Referenced Properties/Methods for CIM_DiagnosticSubTestRecord (Subtest Log Entry)969

Table 700 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Diagnostic Test Capabilities) .970

Table 701 - SMI Referenced Properties/Methods for CIM_ElementDiagnostics (Summary Test Results)970

Table 702 - SMI Referenced Properties/Methods for CIM_ElementSettingData (DiagnosticSettingData)..........971

Table 703 - SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity..971

Table 704 - SMI Referenced Properties/Methods for CIM_HelpService ...972

Table 705 - SMI Referenced Properties/Methods for CIM_HostedService ...972

Table 706 - SMI Referenced Properties/Methods for CIM_LogManagesRecord ..973

Table 707 - SMI Referenced Properties/Methods for CIM_LogToLog (Log to Subtest Log)973

Table 708 - SMI Referenced Properties/Methods for CIM_RecordAppliesToElement ..973

Table 709 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement...974

Table 710 - SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement.....................................974

Table 711 - SMI Referenced Properties/Methods for CIM_ServiceComponent ..974

Table 712 - SMI Referenced Properties/Methods for CIM_SoftwareIdentity ...975

Table 713 - SMI Referenced Properties/Methods for CIM_StoragePoolDiagnosticServiceCapabilities..............975

Table 714 - SMI Referenced Properties/Methods for CIM_StoragePoolDiagnosticSettingData (Client).............976

Table 715 - SMI Referenced Properties/Methods for CIM_StoragePoolDiagnosticSettingData (Default)...........978

Table 716 - SMI Referenced Properties/Methods for CIM_StoragePoolDiagnosticTest (DiagnosticTest)979

Table 717 - SMI Referenced Properties/Methods for CIM_SummaryDiagnostics (Summary Test Results)980

Table 718 - SMI Referenced Properties/Methods for CIM_UseOfLog...980

Table B.1 Registry of StorageExtent Definitions 983

Table B.2 Example Valid Combinations of Extent Definitions 987

Table B.3 Extent Combinations not defined in this Release of the Standard 987
40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
FOREWORD

The Block Devices part of the Storage Management Technical Specification contains the profiles for devices
that serve block storage. These devices include RAID arrays, Storage Virtualizers, host volume
managers, and disk drives. This part also contains supporting profiles, such as the Block Services
package.

Parts of this Standard

This standard is subdivided in the following parts:

• Storage Management Technical Specification, Part 1 Overview, 1.8.0 Rev 4

• Storage Management Technical Specification, Part 2 Common Architecture, 1.8.0 Rev 4

• Storage Management Technical Specification, Part 3 Common Profiles, 1.8.0 Rev 4

• Storage Management Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4

• Storage Management Technical Specification, Part 5 Filesystems, 1.8.0 Rev 4

• Storage Management Technical Specification, Part 6 Fabric, 1.8.0 Rev 4

• Storage Management Technical Specification, Part 7 Host Elements, 1.8.0 Rev 4

• Storage Management Technical Specification, Part 8 Media Libraries, 1.8.0 Rev 4

SNIA Web Site

Current SNIA practice is to make updates and other information available through their web site at
http://www.snia.org

SNIA Address

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome.
They should be sent via the SNIA Feedback Portal at http://www.snia.org/feedback/ or by mail to the
Storage Networking Industry Association, 4360 ArrowsWest Drive, Colorado Springs, Colorado 80907,
U.S.A.
SNIA Technical Position 41

42

1

2

3

4

5

6

1 Scope

This Technical Specification defines an interface for the secure, extensible, and interoperable
management of a distributed and heterogeneous storage system. This interface uses an object-oriented,
XML-based, messaging-based protocol designed to support the specific requirements of managing
devices and subsystems in this storage environment. Using this protocol, this Technical Specification
describes the information available to a WBEM Client from an SMI-S compliant WBEM Server.
SNIA Technical Position 43

THIS PAGE INTENTIONALLY LEFT BLANK
44

1

2

3

4

5

6

7

8

9

10

11

12

13
2 Normative References

2.1 Overview

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

2.2 Approved references

INCITS 514-2014, Information Technology - SCSI Block Commands - 3 (SBC-3)
http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+514-2014

2.3 References under development

Storage Management Technical Specification, Part 2 Common Architecture, 1.8.0 Rev 4

Storage Management Technical Specification, Part 3 Common Profiles, 1.8.0 Rev 4

DMTF DSP1119 Diagnostics Job Control Profile 1.0.0b
http://www.dmtf.org/sites/default/files/standards/documents/DSP1119_1.0.0b.pdf

DMTF DSP1113 Disk Drive Diagnostics Profile 1.1.0a
http://www.dmtf.org/sites/default/files/standards/documents/DSP1113_1.1.0a.pdf

DMTF DSP1002 Diagnostics Profile 2.1.0a
http://www.dmtf.org/sites/default/files/standards/documents/DSP1002_2.1.0a.pdf

2.4 Other references

DMTF DSP1052 Computer System Profile 1.0.3
http://www.dmtf.org/sites/default/files/standards/documents/DSP1052_1.0.3.pdf

DMTF DSP1054 Indications Profile 1.2.2
http://www.dmtf.org/sites/default/files/standards/documents/DSP1054_1.2.2.pdf

DMTF DSP1010 Record Log Profile 2.0.0
http://www.dmtf.org/sites/default/files/standards/documents/DSP1010_2.0.0.pdf

DMTF DSP1102 Launch in Context Profile 1.0.0
http://www.dmtf.org/sites/default/files/standards/documents/DSP1102_1.0.0_0.pdf

ISO/IEC 14776-452, SCSI Primary Commands - 3 (SPC-3) [ANSI INCITS.351-2005]
SNIA Technical Position 45

46

1

2

3

3 Terms, Definitions, Symbols, Abbreviations, and Conventions

For the purposes of this document, the terms, definitions, symbols, abbreviations, and conventions given
in Storage Management Technical Specification, Part 2 Common Architecture, 1.8.0 Rev 4 apply.
SNIA Technical Position 47

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
STABLE

4 Array Profile

4.1 Description

4.1.1 Synopsis

Profile Name: Array (Autonomous Profile)

Version: 1.7.0

Organization: SNIA

Central Class: ComputerSystem

Scoping Class: ComputerSystem

Table 1 describes the related profiles for Array.

Table 1 - Supported Profiles for Array

Profile Name Organization Version Requirement Description

Access Points SNIA 1.3.0 Optional

Block Server Performance SNIA 1.7.0 Optional

Disk Drive Lite SNIA 1.7.0 Optional

Extent Composition SNIA 1.7.0 Optional

Location SNIA 1.4.0 Optional

Software SNIA 1.4.0 Optional

Copy Services SNIA 1.5.0 Optional Deprecated. Use Replication Services.

Device Credentials SNIA 1.3.0 Optional

Masking and Mapping SNIA 1.8.0 Optional

Group Masking and
Mapping

SNIA 1.8.0 Optional

Disk Sparing SNIA 1.7.0 Optional

Block Services SNIA 1.8.0 Mandatory

CKD Block Services SNIA 1.7.0 Optional Experimental.

Physical Package SNIA 1.5.0 Mandatory

Health SNIA 1.2.0 Mandatory

Multiple Computer System SNIA 1.2.0 Optional

Block Storage Views SNIA 1.7.0 Optional Experimental.

Volume Composition SNIA 1.8.0 Optional Experimental.

Job Control SNIA 1.5.0 Optional

Storage Element
Protection

SNIA 1.7.0 Optional Experimental.

Storage Server Asymmetry SNIA 1.7.0 Optional Experimental.
SNIA Technical Position 49

17

18

19

20

21

22

23

24
4.1.2 Overview

The Array Profile describes RAID array systems. The RAID systems supported by this profile are
standalone and use local disks to store the data. Systems that use external storage or a combination of
local and external storage are “Storage Virtualizers”. Systems that plug into backplanes or are on mother
boards should use 8 Host Hardware RAID Controller Profile in Storage Management Technical Specification,
Part 7 Host Elements, 1.8.0 Rev 4.

The model consists of multiple component profiles and packages. The main component profiles are:

• The Array Profile contains a CIM_ComputerSystems object that represents the array as a whole. It is the top
level object for the profile.

• Block Services Package is the main part of the model. It contains the StorageExtents that represent the
physical storage, StoragePools that gather together the extents and supports allocation and QoS (Quality of
Service) settings, and StorageVolmes that represent the logical devices allocated from the pools.

• Target Ports component profile model the ports (e.g., Fibre Channel or iSCSI) through which the LUNs are
made available to hosts.

Erasure SNIA 1.7.0 Optional Experimental.

Thin Provisioning SNIA 1.7.0 Optional

Replication Services SNIA 1.8.0 Optional

Pools from Volumes SNIA 1.7.0 Optional Experimental.

Automated Storage Tiering SNIA 1.7.0 Optional Experimental.

Automated Storage Tiering
Policy

SNIA 1.7.0 Optional Experimental.

Operational Power SNIA 1.7.0 Optional Experimental.

Launch In Context DMTF 1.0.0 Optional Experimental. See DSP1102, version 1.0.0

FC Target Ports SNIA 1.7.0 Support for at
least one is
mandatory.iSCSI Target Ports SNIA 1.8.0

SAS Target Ports SNIA 1.7.0

SB Target Ports SNIA 1.7.0 Experimental.

FCoE Target Ports SNIA 1.7.0 Experimental.

FC Initiator Ports SNIA 1.7.0 Optional

FCoE Initiator Ports SNIA 1.7.0 Experimental.

iSCSI Initiator Ports SNIA 1.2.0

SB Initiator Ports SNIA 1.7.0 Experimental.

SAS Initiator Ports SNIA 1.7.0

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2

Table 1 - Supported Profiles for Array

Profile Name Organization Version Requirement Description
50

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51
Figure 7: "Array Profile Instance Diagram" is a simplified instance diagram of an array

At the minimum, the Array Profile provides a high level read-only ‘view’ of an array. Clause 5 Block
Services Package includes the basic description of how storage is managed.

The capabilities of the Array implementation are identified in an instance of
CIM_ImplementationCapabilities, which is associated to the top level Array ComputerSystem via
ElementCapabilities. This includes information on the capacity optimization techniques supported by the
Array.

Figure 7 - Array Profile Instance Diagram

ComputerSystem

SCSIProtocolEndpoint

SCSIProtocolController

StorageVolume

SAPAvailableForElement

ProtocolControllerForUnitSystemDevice

One of the Target ports profiles

Block services package

HostedAccessPoint

SCSIProtocolControllerSCSIArbitraryLogicalUnit

SystemDevice

SCSIProtoolControllerForUnit SCSIProtoolControllerForUnit

ImplementationCapabilities

ElementCapabilities
SNIA Technical Position 51

The various component profiles indicated in Figure 8: "Array Package Diagram" cover other areas of
functionality like location, software/firmware versions, and access to the management interfaces of the
array.

The base “Array” Profile only contains the CIM_ComputerSystem object representing the array. This
object is attached to the other component profiles and packages through a set of associations.

The Block Services Package (see 5 Block Services Package) supports configuration of the storage using
a QoS (Quality of Service) model. The model is further extended by the “Extent Composition Profile” (see
13 Extent Composition Profile) to model the details of how the RAID sets are composed. This component
profile supports the detailed configuration of storage by the selection of disk drives and partitions that
make-up the RAID sets.

Target Ports model the array ports that provide block data service to the host systems. These ports shall
be modeled.

The Generic Initiator Ports Profile (see 13 Generic Initiator Ports Profile) and the Disk Drive Lite
component profile (see 10 Disk Drive Lite Profile) are used to model the physical disk drives and how
they are attached to the array system. This part of the model is optional.

Figure 8 - Array Package Diagram

Location

Extent Com position

Disk Drive
Lite

LUN Mapping & Masking S ervice

Copy S ervices

Array Profile

Multiple
Com puter

S ystem

Access P oints

S oftware

Job Control

Block S ervices P ackage

Device Credentials

P hysicalPackage Package

HostedS ervice

HostedService

ComputerSystemP ackage

HostedA ccessP oint

Com ponentCS

B asedOn

ConcreteComponent

P hysicalE lementLocation

InstalledS oftwareIdentity

OwningJobE lement

Target P orts
HostedS ervice

Block S erver P erform ance

In itiator
P orts

Disk S paring

Hosted
A ccess
P oint

Replication
S ervices

Thin P rovisioning

S torage
S erver

Asym m etry

HostedCollection

S torage
E lem ent

Protection

E rasure

HostedCollection

HostedS ervice
52

 Summary

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74
Storage Management Technical Specification, Part 3 Common Profiles, 1.8.0 Rev 4, 25 Multiple Computer
System Profile models multiple controllers in a single array system. The model provides a way to model
failover and other redundant behavior of a multiple controller system. This component profile is optional.

DEPRECATED

Prior to SMI-S 1.3, the Array Profile used the “Copy Services” component profile to model and configure
local and remote snapshots, clones, mirrors, and other array based copying. Until SMI-S 1.7, the Copy
Services Profile was mandatory if Replication Services was implemented. The copy services has been
superseded by the “Replication Services” component profile. This part of the model is optional.

DEPRECATED

The Array Profile uses the “Replication Services” component profile for all replication functions.

Storage Management Technical Specification, Part 3 Common Profiles, 1.8.0 Rev 4 26 Physical Package
Package describes the physical layout of the array and includes product identification information.

4.2 Health and Fault Management

Health and Fault management is described in the referenced component profiles and packages.

4.3 Cascading Considerations

Not defined in this document.

4.4 Methods of the Profile

Not defined in this document.

4.5 Use Cases

4.5.1 Discover the Capacity Optimization Support in an Array

4.5.1.1 Summary

From a list of available Array devices, determine which devices support any capacity optimization
techniques.

4.5.1.2 Basic Course of Events

1) Administrator identifies an available array device.

2) Administrator determines if the array advertises implementation capabilities.

3) System responds with an implementation capabilities.

4) Administrator inspects the capacity optimization techniques supported by the array

4.5.1.3 Alternative Paths

none
SNIA Technical Position 53

Exception Paths

75

76

77

78

79

80
4.5.1.4 Exception Paths

FAILED:

• The Array System does not report implementation capabilities

• The Array System reports implementation capabilities, but reports “none” for supported capacity
optimizations.

4.5.1.5 Triggers

Device selection for provisioning storage for an application.

4.5.1.6 Assumptions

The administrator has a list of candidate array system names for doing provisioning.

4.5.1.7 Preconditions

The systems are available.

4.6 CIM Elements

4.6.1 Element Overview

Table 2 describes the CIM elements for Array.

Table 2 - CIM Elements for Array

Element Name Requirement Description

4.6.2 CIM_ComputerSystem (Top Level System) Mandatory 'Top level' system that represents the whole
array. Associated to RegisteredProfile.

4.6.3 CIM_ElementCapabilities (ImplementationCapabilities to
System)

Conditional Conditional requirement: This is mandatory if
an instance of
CIM_ImplementationCapabilities exists.
Associates the conformant Array
ComputerSystem to the
CIM_ImplementationCapabilities, if supported
by the implementation.

4.6.4 CIM_ImplementationCapabilities
(ImplementationCapabilities)

Optional The capabilities of the profile implementation.

4.6.5 CIM_ProtocolControllerForUnit (Arbitrary LU for All
LUNs View)

Conditional Conditional requirement: Elements that are
mandatory if Masking and Mapping is not
implemented.

4.6.6 CIM_ProtocolControllerForUnit (Storage volumes for All
LUNs View)

Conditional Conditional requirement: Elements that are
mandatory if Masking and Mapping is not
implemented.

4.6.7 CIM_SCSIArbitraryLogicalUnit (Arbitrary LU) Optional A SCSI Logical Unit that exists only for
management of the array.

4.6.8 CIM_SCSIProtocolController (All LUNs View) Conditional Conditional requirement: Elements that are
mandatory if Masking and Mapping is not
implemented.

4.6.9 CIM_SystemDevice (System to
SCSIArbitraryLogicalUnit)

Conditional Conditional requirement: Elements that are
mandatory if SCSIArbitraryLogicalUnit is
instantiated. This association links
SCSIArbitraryLogicalUnit to the scoping
system.
54

 Preconditions

81

82

83

84

85

86
87

88
4.6.2 CIM_ComputerSystem (Top Level System)

Created By: Static

4.6.10 CIM_SystemDevice (System to
SCSIProtocolController)

Conditional Conditional requirement: Elements that are
mandatory if Masking and Mapping is not
implemented. This association links
SCSIProtocolController to the scoping system.

SELECT * FROM CIM_InstCreation WHERE SourceInstance
ISA CIM_ComputerSystem

Mandatory Addition of a new array instance.

SELECT * FROM CIM_InstDeletion WHERE SourceInstance
ISA CIM_ComputerSystem

Mandatory Deletion of an array instance.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::OperationalStatus <>
PreviousInstance.CIM_ComputerSystem::OperationalStatus

Mandatory CQL -Change of Status of a computer system.
PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::ElementName <>
PreviousInstance.CIM_ComputerSystem::ElementName

Optional CQL -Change of ElementName of a computer
system. PreviousInstance is optional, but may
be supplied by an implementation of the
Profile.

SELECT * FROM CIM_AlertIndication WHERE OwningEntity
= 'SNIA' AND MessageID=’Core12'

Conditional Experimental. If hardware is capable of
supporting, indicates that a DiskDrive has
failed.

SELECT * FROM CIM_AlertIndication WHERE OwningEntity
= 'SNIA' AND MessageID=’Core20’

Conditional Experimental. If hardware is capable of
supporting, indicates that a DiskDrive has
been returned to service or has been replaced.

SELECT * FROM CIM_AlertIndication WHERE OwningEntity
= 'SNIA' AND MessageID=’Core13'

Conditional Experimental. If hardware is capable of
supporting, indicates that a Fan has failed.

SELECT * FROM CIM_AlertIndication WHERE OwningEntity
= 'SNIA' AND MessageID=’Core21’

Conditional Experimental. If hardware is capable of
supporting, indicates that a Fan has been
returned to service or has been replaced.

SELECT * FROM CIM_AlertIndication WHERE OwningEntity
= 'SNIA' AND MessageID=’Core14'

Conditional Experimental. If hardware is capable of
supporting, indicates that a PowerSupply has
failed.

SELECT * FROM CIM_AlertIndication WHERE OwningEntity
= 'SNIA' AND MessageID=’Core22’

Conditional Experimental. If hardware is capable of
supporting, indicates that a PowerSupply has
been returned to service or has been replaced.

SELECT * FROM CIM_AlertIndication WHERE OwningEntity
= 'SNIA' AND MessageID=’Core23’

Conditional Experimental. If hardware is capable of
supporting, indicates that a Controller has
failed.

SELECT * FROM CIM_AlertIndication WHERE OwningEntity
= 'SNIA' AND MessageID=’Core24’

Conditional Experimental. If hardware is capable of
supporting, indicates that a Controller has
been returned to service or has been replaced.

SELECT * FROM CIM_AlertIndication WHERE OwningEntity
= ‘SNIA’ AND MessageID=’DRM38’

Mandatory Experimental. A StorageVolume has
degraded.

SELECT * FROM CIM_AlertIndication WHERE OwningEntity
= ‘SNIA’ AND MessageID=’DRM39’

Mandatory Experimental. A StorageVolume has failed.

SELECT * FROM CIM_AlertIndication WHERE OwningEntity
= ‘SNIA’ AND MessageID=’DRM40’

Mandatory Experimental. A StorageVolume has returned
to normal service.

Table 2 - CIM Elements for Array

Element Name Requirement Description
SNIA Technical Position 55

Preconditions

89

90

91

92

93

94

95

96

97
98

99

100

101
Modified By: Static

Deleted By: Static

Requirement: Mandatory

Shall be associated to RegisteredProfile using ElementConformsToProfile association. The
RegisteredProfile instance shall have RegisteredName set to 'Array', RegisteredOrganization set to
'SNIA', and RegisteredVersion set to '1.7.0'.

Table 3 describes class CIM_ComputerSystem (Top Level System).

4.6.3 CIM_ElementCapabilities (ImplementationCapabilities to System)

Associates the conformant Array ComputerSystem to the CIM_ImplementationCapabilities supported by
the implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: This is mandatory if an instance of CIM_ImplementationCapabilities

exists.

Table 4 describes class CIM_ElementCapabilities (ImplementationCapabilities to System).

4.6.4 CIM_ImplementationCapabilities (ImplementationCapabilities)

The capabilities (features) of the profile implementation.

Table 3 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory Unique identifier for the array. E.g., IP address, FQDN or DNS name.

ElementName Mandatory User friendly name.

OtherIdentifyingInfo C Mandatory May be used to provide additional information about this array.

IdentifyingDescriptions C Mandatory Conditional Requirement: Mandatory if OtherIdentifyingInfo is provided.

OperationalStatus Mandatory Overall status of the array.

NameFormat Mandatory Format for Name property.

Dedicated Mandatory Indicates that this computer system is dedicated to operation as a storage
array.

PrimaryOwnerContact M Optional Contact details for owner of the array.

PrimaryOwnerName M Optional Owner of the array.

Table 4 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to
System)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The ImplementationCapabilities.

ManagedElement Mandatory The conformant Array ComputerSystem that has
ImplementationCapabilities.
56

 Preconditions

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 5 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

4.6.5 CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 6 describes class CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View).

4.6.6 CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 5 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapabil-
ities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the implementation capability of an
implementation.

ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.

SupportedCapacityOptimizations Mandatory This array of strings lists the capacity optimization techniques
that are supported by the implementation. Valid string values are
"none" | "SNIA:Thin Provisioning" | "SNIA:Data Compression" |
"SNIA:Data Deduplication".

SupportedViews Mandatory This array of strings lists the view classes that are supported by
the implementation. Valid string values are "none" |
"SNIA:VolumeView" | "SNIA:DiskDriveView" |
"SNIA:ExposedView" | "SNIA:MaskingMappingView" |
"SNIA:MappingProtocolControllerView" |
"SNIA:StoragePoolView" | "SNIA:ReplicaPairView" .

Table 6 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs
View)

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be formatted as
unseparated uppercase hexadecimal digits, with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as exposed
through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI Arbitrary logical unit.
SNIA Technical Position 57

Preconditions

118

119

120

121

122

123

124
125
126

127

128

129

130

131

132
Table 7 describes class CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View).

4.6.7 CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 8 describes class CIM_SCSIArbitraryLogicalUnit (Arbitrary LU).

4.6.8 CIM_SCSIProtocolController (All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 9 describes class CIM_SCSIProtocolController (All LUNs View).

Table 7 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Storage volumes for All
LUNs View)

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be formatted as
unseparated uppercase hexadecimal digits, with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as exposed
through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI logical unit (for example, a Block Services
StorageVolume).

Table 8 - SMI Referenced Properties/Methods for CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Mandatory User-friendly name.

Name Mandatory

OperationalStatus Mandatory

Table 9 - SMI Referenced Properties/Methods for CIM_SCSIProtocolController (All LUNs View)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory
58

 Preconditions

133

134
135
136

137

138

139

140

141

142
4.6.9 CIM_SystemDevice (System to SCSIArbitraryLogicalUnit)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if SCSIArbitraryLogicalUnit is instantiated.

Table 10 describes class CIM_SystemDevice (System to SCSIArbitraryLogicalUnit).

4.6.10 CIM_SystemDevice (System to SCSIProtocolController)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: This is mandatory if an instance of CIM_ImplementationCapabilities exists.

Table 11 describes class CIM_SystemDevice (System to SCSIProtocolController).

STABLE

CreationClassName Mandatory

DeviceID Mandatory

Table 10 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIArbitraryLogicalUnit)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 11 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIProtocolController)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 9 - SMI Referenced Properties/Methods for CIM_SCSIProtocolController (All LUNs View)

Properties Flags Requirement Description & Notes
SNIA Technical Position 59

Preconditions
60

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
STABLE

5 Block Services Package

5.1 Description

5.1.1 Synopsis

Profile Name: Block Services (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: CIM_StoragePool (Primordial)

Scoping Class: ComputerSystem

Related Profiles: Table 12 describes the supported profiles for Block Services.

5.1.2 Overview

Many devices and applications provide their storage capacity to external devices and applications (block
consumers) through block-based I/O. This component profile defines a standard expression of existing
storage capacity, the assignment of capacity to StoragePools, and allocation of capacity to be used by
external devices or applications.

A block is:

• The unit in which data is stored and retrieved on disk and tape devices.

• A unit of application data from a single information category that is transferred within a single sequence.

Table 12 - Supported Profiles for Block Services

Profile Name Organization Version Requirement Description

Job Control SNIA 1.5.0 Optional

Extent Composition SNIA 1.7.0 Optional

Storage Relocation SNIA 1.7.0 Optional Experimental.

Pools from Volumes SNIA 1.7.0 Optional Experimental.

Storage Pool Diagnositcs SNIA 1.8.0 Optional Experimental.
SNIA Technical Position 61

General

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62
5.1.3 Storage Capacity States

Figure 9 illustrates the state of a block of storage.

Each block of capacity within a storage device or application has a state. StorageVolumes and
LogicalDisks, the storage elements described in this section, are distinct groupings of blocks. An
unconfigured storage device or application may not have its capacity organized into concrete
StoragePools. All blocks within that unconfigured device or application start in an unassigned state. Once
a block is a member of a concrete StoragePool, storage capacity can be assigned. Once a block is a
member of a storage element, like a StorageVolume or LogicalDisk, the storage capacity has been
allocated for use by a block consumer. Once a block is visible to one or more block consumers, that
capacity is exposed.

5.1.4 StoragePools

5.1.4.1 General

A StoragePool is a storage element; its storage capacity has a given set of capabilities. Those
‘StorageCapabilities’ indicate the 'Quality of Service' requirements that can be applied to objects created
from the StoragePool.

A StoragePool is a mandatory part of modeling disk storage systems that support the Block Services
package. However, user manipulation of StoragePools is optional and may not be supported by all disk
storage systems. This profile defines the support required to expose functions for creating and modifying
StoragePools.

StoragePools are scoped relative to the ComputerSystem (indicated by the HostedStoragePool
association). Objects created from a StoragePool have the same Computer System scope.

Child objects (e.g., StorageVolumes, LogicalDisks, or StoragePools) created from a StoragePool are
linked back to the parent StoragePool using an AllocatedFromStoragePool association.

There are two properties of StoragePools that describe the size of the ‘underlying’ storage:

• TotalManagedStorage describes the total storage in the StoragePool.

Figure 9 - Storage Capacity State

Unassigned Assigned

Allocated Exposed

Create concrete Pool

create storage element

Make
externally
visible

Start

End
62

 Primordial StoragePool

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83
• RemainingManagedStorage describes the storage currently remaining in the StoragePool.

The Usage property indicates if a storage pool is reserved for use by the array itself; or if the storage pool
is reserved for certain operations such as "Reserved for Local Replication Services".

5.1.4.2 Primordial StoragePool

A primordial StoragePool contains local and/or imported storage that is managed by the system. A
primordial StoragePool, by definition, shall never be allocated from any other StoragePool of that system.
At least one primordial StoragePool shall always exist on the block storage system.

The storage capacity is drawn directly or indirectly from a primordial StoragePool to create concrete
StoragePools. StorageVolumes and LogicalDisks are allocated from concrete StoragePools.

The sum of TotalManagedSpace attributes for all primordial StoragePools shall be equal to the total size
of the managed storage capacity of the storage system.

The sum of RemainingManagedSpace attributes for all primordial StoragePools shall be used to
determine the amount of capacity of the block storage system that is not assigned to concrete
StoragePools.

The primordial property shall be true for primordial StoragePools.

5.1.4.3 Concrete StoragePool

A concrete StoragePool is a type of StoragePool. This concrete StoragePool is the only type of
StoragePool created or modified by behaviors described in this package. A concrete StoragePool
subdivides the storage capacity available in a block server to enable creation or modification of
StorageVolumes and LogicalDisks. Concrete StoragePools can be used to assign capacity based on such
factors as QoS, cost per megabyte, or ownership of storage. A concrete StoragePool may aggregate the
capacity of one or many RAID groups or RAID ranks. A RAID group or rank may be created when the
StorageVolume or LogicalDisk is created.

5.1.5 Blocks, Metadata, and Capacity Reported

This component profile uses the term metadata to signify the capacity drawn for the creation of stripes,
data copies, and similar items. The capacity removed for such constructs when creating storage
elements, like StoragePools, StorageVolumes, and LogicalDisks, is reported in the difference between
the capacity of the parent StoragePool and the capacity of the child storage element allocated from that
parent. The TotalManagedSpace property represents the capacity that may be used to create or expand
child storage elements. The RemainingManagedSpace property represents capacity left to create a new
storage element or expand an existing storage element. One may use this profile to calculate capacity
used for metadata.

There is likely to be a difference between a) the capacity calculated by adding up the capacity of all the
disks, as reported by the manufacturers, or by adding up the LUNs consumed by a block server, as
reported by the block server that exposes them, and b) the capacity that can be used to create other
storage organizations or constructs from this capacity, like StoragePools, StorageVolumes, and
LogicalDisks. This difference in capacity can be used for disk formatting, for example. The difference in
the capacity of the primordial StoragePool and the capacity used to produce the primordial StoragePool is
not reported through this component profile.
SNIA Technical Position 63

General

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100
5.1.6 StoragePool Management Instance Diagram

Figure 10 shows an instance diagram for StoragePool manipulation.

5.1.7 StoragePool, StorageVolume and LogicalDisk Manipulation

5.1.7.1 General

StorageVolumes are allocations of storage capacity that shall be exposed from a system through an
external interface. In the CIM class hierarchy, they are a subclass of a StorageExtent. In SCSI terms,
they are logical units.

LogicalDisks are the manifestations of the consumption of storage capacity on a general purpose
computer, i.e., a host, as revealed by the operating system or a Volume Manager. In the CIM class
hierarchy, they are also a subclass of a StorageExtent. LogicalDisks are a mandatory part of modeling
host-based StorageVolume managers.

StorageVolumes and LogicalDisks are consumable storage capacity. These storage elements are the
only StorageExtents available to consumers of the block service and a block device.

However, creation or modification of StorageVolumes or LogicalDisks from StoragePools is optional and
may not be supported by a given disk storage system. This component profile defines the support
mandatory if the storage system exposes functions for creating StorageVolumes from StoragePools.

The Usage property indicates if a volume or a logical disk is reserved for a special purpose. For example,
a volume may be reserved for use by the array itself ("Reserved by the ComputerSystem"), or a volume

Figure 10 - StoragePool Manipulation Instance Diagram

StorageVolume

DurableName:
VPD pg 83 ID

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

ComputerSystem

HostedStoragePool

StorageCapabilities

CreateSetting()

ElementCapabilities

AllocatedFromStoragePool

StorageSettingWithHints

SystemDevice

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

DeleteStoragePool()

HostedService

StorageConfigurationCapabilities

ElementCapabilites

StorageSetting

ElementSettingData

StorageSettingsGeneratedFromCapabilities

AllocatedFromStoragePool

StorageSettingWithHints

StorageSettingsAssociatedToCapabilities
64

 General

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142
may have been “set aside” for use by the Migration Services, in which case the usage property of the
volume is set to " Reserved by Migration Services".

Figure 11 illustrates a situation where there are two StoragePools present in an implementation. The top
most StoragePool supports the same capabilities as is declared for the entire implementation. The bottom
most StoragePool supports the same capabilities as expressed by a different
StorageConfigurationCapabilities instance, but with an expanded set of capabilities. For example, the
implementation may generally support the creation of StoragePools from StoragePools, but the bottom
most StoragePool in the diagram does not.

Some implementations may impose conditions on when a StorageVolume may be deleted by a user. One
example of this is that the storage device may implement a rule that StorageVolumes may only be deleted
in the reverse order of creation. Under this rule, all StorageVolumes except the last one created would be
marked as not being able to be deleted. Some conditions where a StorgeVolume can not be deleted may
be related to the Usage property value of the StorageVolume. However this is determined by the
implementation.

To enable clients to know which volumes may be deleted, a new property, CanDelete, has been added to
StorageVolume class. If StorageVolume.CanDelete is null or set to true, then the client shall be able to
delete the volume, subject to any additional constraints that may be defined in the profiles that would
otherwise prevent the volume from being deleted. If StorageVolume.CanDelete is set to false, then any
client attempt to delete the volume shall be denied (failed) by the implementation, even if there are no
constraints on that volume.

In the context of this profile, the value of CanDelete shall be determined by the implementation and shall
not be modifiable by the client. The reason is that there are implementation-specific rules that clients are
not allowed to change, even outside the SMI-S.

Figure 11 - Capabilities Specific to a StoragePool

StorageVolume

DurableName:
VPD pg 83 ID

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

ComputerSystem

HostedStoragePool

StorageCapabilities

CreateSetting()

ElementCapabilities

AllocatedFromStoragePool

SystemDevice

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

DeleteStoragePool()

HostedService

StorageConfigurationCapabilities

Least Common Set

ElementCapabilites

StorageSetting

ElementSettingData

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

ElementCapabilities

StorageCapabilities

CreateSetting()

ElementCapabilities

StorageConfigurationCapabilities

LCS plus pool spec. cap.

ElementCapabilities
SNIA Technical Position 65

StoragePool Manipulation Methods

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177
The value of CanDelete shall be set or cleared dynamically. For example, in the Pools from Volumes
case, if a volume that is contributing capacity to a pool is actively in use, it can not be deleted; however,
if the same volume that is no longer contributing capacity to a pool can be deleted. In other words, the
expectation is that the value of CanDelete shall change dynamically.

5.1.7.2 StoragePool Manipulation Methods

The StorageConfigurationService, in conjunction with the capacity grouping concept of a StoragePool,
allows SMI-S clients to configure StoragePools within block storage systems without specific knowledge
about the block storage system configuration. The service has the following StoragePool manipulation
methods:

• CreateOrModifyStoragePool: Create a StoragePool with a set of capabilities defined by the input
StorageSetting, with possible sources being other StoragePool(s) or StorageExtents. Or modify a
StoragePool to increase or decrease its capacity.

• DeleteStoragePool: Delete a StoragePool and return the freed-up storage to the underlying entities.

5.1.7.3 Storage Element Manipulation Methods

The StorageConfigurationService allows SMI-S clients to configure block storage systems with
StorageVolumes (ex. LUNs) without specific knowledge about the storage system capacity. The service
has the following methods for storage element manipulation:

• CreateOrModifyElementFromStoragePool: Create StorageVolume or LogicalDisk, possibly with a specific
StorageSetting, from a source StoragePool. Also modify a StorageVolume or LogicalDisk to increase or
decrease its capacity.

• CreateElementsFromStoragePools: Create one or more StorageVolumes or LogicalDisks in a single method
call, possibly with a specific StorageSetting, from StoragePools.

• CreateOrModifyElementFromElements: Create a StorageVolume or LogicalDisk using ComponentExtents of
a parent and source StoragePool. Also alter the set of member StorageExtents of a StorageVolume or
LogicalDisk or change the consumption of an existing set of member StorageExtents.

• ReturnToStoragePool: Return an element previously created with CreateOrModifyElementFromStoragePool
to the originating StoragePool.

• ReturnElementsToStoragePool: In a single method call, return one or more elements previously created with
CreateOrModifyElementFromStoragePool or CreateElementsFromStoragePools to the originating
StoragePool.

• To locate Pools, Volumes, or Logical Disks based on their current usage, use the method
StorageConfigurationService.GetElementsBasedOnUsage.

5.1.7.4 Storage Capability Methods

The StorageCapabilities instances provide the ability to create and modify settings for use in
StorageVolume creation using the following methods (part of the StorageCapabilities class):

• CreateSetting: Creates a setting consistent with the StorageCapabilities, may be modified before use in
creating a StoragePool, StorageVolume, or LogicalDisk.

• GetSupportedStripeLengths and GetSupportedStripeLengthRange: Returns the possible stripe lengths for
that capability

• GetSupportedStripeDepths and GetSupportedStripeDepthRange: Returns the possible stripe depths for that
capability

• GetSupportedParityLayouts: Returns the possible parity layouts, rotated or non-rotated, for that capability.
66

 Storage Element Size Retrieval

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217
See 5.4.3 for details on the associations from Setting to Capabilities.

5.1.7.5 Storage Element Size Retrieval

The StoragePool instances provide the ability to retrieve the possible sizes for the StorageVolume or
LogicalDisk creation or modification given a StorageSetting as a goal:

• GetSupportedSizes: Returns a list of discrete sizes, given a goal. Also can return the discontiguous capacity
in the StoragePool not yet assigned to a concrete StoragePool or allocated to a storage element.

• GetSupportedSizeRange: Returns the range of possible sizes, given a goal.

• GetAvailableExtents: Returns an array of StorageExtent references that matches a given goal and are
components of the StoragePool and are not already members of an existing consumable storage element,
child StoragePool, StorageVolume, or LogicalDisk.

5.1.8 Declaring Storage Configuration Options

If no StorageConfigurationService is present, then the implementation offers no standard configuration
capability (see section 5.1.5 "Blocks, Metadata, and Capacity Reported"). If the implementation includes
an instance of StorageConfigurationService, it shall also instantiate exactly one
StorageConfigurationCapabilities instance associated to the service, referred to as the Global
StorageConfigurationCapabilities. The global StorageConfigurationCapabilities shall identify the
capabilities of the implementation unless overridden by other provisions. For example, SMI-S does not
allow creation of StorageVolumes (or LogicalDisks) from Primordial StoragePools. So, even if the
StorageConfigurationCapabilities indicates that creation of StorageVolumes are supported, this is
overridden by the SMI-S rule that StorageVolumes (or LogicalDisks) shall not be created from Primordial
Pools.

The Global StorageConfigurationCapabilities defines the overall capabilities that are supported by the
implementation. This instance of StorageConfigurationService shall represent the methods and
capabilities of the entire implementation. The Global StorageConfigurationService instance shall state
what operation can be done at some time on some set of StoragePools, even if the implementation does
not permit some of these operations for some subset of all StoragePools. For example, if create volume is
allowed for some StoragePool, then the Global instance shall advise that the create volume operation is
supported.

Each individual StoragePool may limit these capabilities using another instance of the
StorageConfigurationCapabilities associated to that StoragePool via ElementCapabilities. This instance
of StorageConfigurationCapabilities represents what configuration operations are permitted for that
StoragePool. The StoragePool specific instance of StorageConfigurationCapabilities shall not be
associated to the StorageConfigurationService also. If no StorageConfigurationCapabilities are
instantiated for a StoragePool, the client can assume that the Global StorageConfigurationCapabilities
apply.

Table 13 defines how the SupportedSynchronousActions and SupportedAsynchonousActions array
values map to methods in the StorageConfigurationService class. The presence of an ‘Action’ from Table
13 in the SupportedSynchronousActions array indicates that the associated ‘SCS Method’ does not
produce a Job as a side-effect. Likewise, the presence of an ‘Action’ from Table 13 in the
SupportAsynchronousActions array indicates that the associated ‘SCS Method’ may produce a Job as a
side-effect and a client may use the Job to monitor the progress of the work being done. If an ‘Action”
may be present in both arrays, the implementation may or may not produce a Job as a side effect.

When a StorageConfigurationCapabilities is associated to a StoragePool, the application of the capability
is in the context of the StoragePool to which the capabilities are associated. Table 13 also gives the
specific meanings of a supported actions in the context of the associated pool (“Pool x”).
SNIA Technical Position 67

Storage Element Size Retrieval

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

The SupportedStorageElementTypes array declares what type of storage element may be created or
modified by this implementation. For example, support of the StoragePool methods
(CreateOrModifyStoragePool and DeleteStoragePool) implies support of creation or modification of
storage elements of type StoragePool.

When a StorageConfigurationCapabilities are associated to a StoragePool, the valid values of properties
differ between Concrete StoragePools and Primordial StoragePools. The valid values and their
interpretation are summarized in Table 14.

Table 13 - Mapping: Supported Actions to Methods

Action Associated to “Pool x” Meaning SCS Method

2 “Storage Pool Creation”,
4 “Storage Pool Modification”

“Pool x” may be used as the InPools
parameter of CreateOrModifyStoragePool

CreateOrModifyStoragePool

3 “Storage Pool Deletion“ “Pool x” may be used as the Pool parameter of
DeleteStoragePool

DeleteStoragePool

5 “Storage Element Creation“,
7 “Storage Element Modification“

“Pool x” may be used as the InPool parameter
of CreateOrModifyElementFromStoragePool

CreateOrModifyElementFromStorageP
ool

6 “Storage Element Return“ No meaning specified. ReturnToStoragePool

12 “Storage Element from Element

Creation“
A Storage Element may be created from
StorageExtents that are components of "Pool
x" (the StorageExtents have a
ConcreteComponent or
AssociatedComponentExtent association to
"Pool x").

CreateOrModifyElementFromElements

13 “Storage Element From Element

Modification“
"Pool x" may be used for Storage Element
modification using
CreateOrModifyElementFromElements. "Pool
x" would be TheElement parameter of the
method call.

14 "Element Usage Modification" No meaning specified. RequestUsageChange

15 "StoragePool Usage Modification" “Pool x” may be used as the TheElement
parameter of RequestUsageChange

22 “Multiple Storage Element Creation” “Pool x” may be used as the InPool parameter
of CreateElementsFromStoragePools

CreateElementsFromStoragePools

23 “Multiple Storage Element Return” No meaning specified. ReturnElementsToStoragePool

Table 14 - Valid Values for StorageConfigurationCapabilities associated to a Pool

ConfigurationCapabilities
Property

Valid Values for Primordial
Pools

Valid Values for Concrete Pools

SupportedStorageElementTypes none “2” (StorageVolume) or “4” (LogicalDisk)

Experimental: If Thin Provisioning is supported then
the list also includes: "5"
(ThinlyProvisionedStorageVolume), "6"
(ThinlyProvisionedLogicalDisk), "7"
(ThinlyProvisionedAllocatedStoragePool) , "8"
(ThinlyProvisionedQuotaStoragePool) or "9"
(ThinlyProvisionedLimitlessStoragePool)
68

 Storage Element Size Retrieval

233

234

235
The arrays SupportedStorageElementUsage and SupportedStoragePoolUsage express what usage
values apply to the storage elements types. That is, the storage element shall have one of the stated
usages.

The arrays ClientSettableElementUsage and ClientSettablePoolUsage express what usage values may
be manipulated by SMI-S Clients. That is, only storage elements of the given type may have their usage
change changed.

The SupportedStoragePoolFeatures array declares what StoragePool behavior is supported, as shown in
Table 15.

SupportedStoragePoolFeatures "2" (InExtents) or "3" (Single InPool)

NOTE: This is in reference to creation of
pools from the Primordial Pool.

"2" (InExtents), "3" (Single InPool), "5" (Storage
Pool QoS Change), "6" (Storage Pool Capacity
Expansion) or "7" (Storage Pool Capacity
Reduction)

NOTE: The first two values is in reference to
creation of pools from the Concrete Pool. The
second three are in reference to the associated pool
(e.g., expansion of the pool associated to this
capabilities).

SupportedStorageElementFeatures none "3" (StorageVolume Creation) or "8" (LogicalDisk
Creation)

SupportedSynchronousActions "2" (Storage Pool Creation), "12"
(Storage Element from Element
Creation) or "15" (StoragePool Usage
Modification)

"2" (Storage Pool Creation), "3" (Storage Pool
Deletion), "4" (Storage Pool Modification), "5"
(Storage Element Creation), "12" (Storage Element
from Element Creation), "13" (Storage Element from
Element Modification) or 15" (StoragePool Usage
Modification), “22” (Multiple Storage Element
Creation), “23” (Multiple Storage Element Return),
“24” (Storage Element from Multiple Pools Creation)

SupportedAsynchronousActions "2" (Storage Pool Creation), "12"
(Storage Element from Element
Creation) or "15" (StoragePool Usage
Modification)

"2" (Storage Pool Creation), "3" (Storage Pool
Deletion), "4" (Storage Pool Modification), "5"
(Storage Element Creation), "12" (Storage Element
from Element Creation), "13" (Storage Element from
Element Modification) or 15" (StoragePool Usage
Modification), “22” (Multiple Storage Element
Creation), “23” (Multiple Storage Element Return),
“24” (Storage Element from Multiple Pools Creation)

SupportedStorageElementUsage none none

ClientSettableElementUsage none none

SupportedStoragePoolUsage any any

ClientSettablePoolUsage any any

Table 15 - SupportedStoragePoolFeatures Array

Supported StoragePool Behavior Explanation

2 “InExtents” A StoragePool may be created from StorageExtents.

3 “Single InPools”, 4 “Multiple InPools" A StoragePool may be the source of capacity for
StoragePool creation or modification, i.e., concrete
StoragePools may be created from other StoragePools.

Table 14 - Valid Values for StorageConfigurationCapabilities associated to a Pool

ConfigurationCapabilities
Property

Valid Values for Primordial
Pools

Valid Values for Concrete Pools
SNIA Technical Position 69

Storage Element Size Retrieval

236

237

238

239

240

241

242

243

244

245

246

247
EXPERIMENTAL

Support for 3 “Single InPools” is fully defined in this specification, but 4 “Multiple InPools” is not fully
defined and is considered experimental.

EXPERIMENTAL

The SupportedStorageElementFeatures array declares which special features the configuration methods
support, shown in Table 16.

EXPERIMENTAL

Support for 6 “Single InPools” is fully defined in this specification, but 7 “Multiple InPools” is not fully
defined and is considered experimental.

EXPERIMENTAL

The SupportedStoragePoolFeatures array indicates which storage elements may be manipulated by SMI-
S Clients and thereby which elements can be modified in the ways expressed by these features.

5 "StoragePool QoS Change" A new setting may be used to modify the quality of service
of a StoragePool.

6 "StoragePool Capacity Expansion" A StoragePool may be expanded

7 "StoragePool Capacity Reduction" A StoragePool may be shrunk. This operation may be
destructive

Table 16 - SupportedStoragePoolFeatures Array

Supported Special Features Explanation

3 "StorageVolume Creation", 5 "StorageVolume
Modification"

The SMI-S implementation can create or modify
StorageVolumes respectively.

8 "LogicalDisk Creation", 9 "LogicalDisk Modification" The SMI-S implementation can create or modify
LogicalDisks respectively.

6 "Single InPool", 7 "Multiple InPools" If a SMI-S implementation supports the creation or
modification of storage elements, then the implementation
shall support this creation or modification of concrete
StoragePools from either a single StoragePool only or
from multiple input StoragePools.

11 "Storage Element QoS Change", 12 "Storage Element
Capacity Expansion", 13 "Storage Element Capacity
Reduction

The SMI-S implementation can change the quality of
service, grow the capacity of a StorageVolume or
LogicalDisk, and shrink the capacity of a StorageVolume
or LogicalDisk respectively.

3 "StorageVolume Creation", 5 "StorageVolume
Modification"

The SMI-S implementation can create or modify
StorageVolumes respectively.

Table 15 - SupportedStoragePoolFeatures Array

Supported StoragePool Behavior Explanation
70

 Storage Element Size Retrieval

248

249

250

251
5.1.9 StorageVolume Creation Instance Diagram

Figure 12 shows an instance diagram from StorageVolume creation.

5.1.10 Capacity Management

Capacity characteristics of storage systems vary greatly in cost and performance. Storage capacity may
need to be partitioned. StoragePools provide a means to aggregate this storage according to
characteristics determined by the storage administrator or by the factory when the storage system is
assembled.

A StoragePool is an aggregation of storage suitable for configuration and allocation or “provisioning”. A
StoragePool may be preformatted into a form (such as a RAID group) that makes StorageVolume
creation easier.

StoragePools can be drawn from a StoragePool; the result is indicated with the
AllocatedFromStoragePool association).

A StoragePool has a set of capabilities held in the StorageCapabilities class. These capabilities reflect
the configuration parameters that are possible for elements created from this StoragePool. The
StorageCapabilities define, in terms common across all storage system implementation, which
characteristics an administrator can expect from the storage capacity. These capabilities are expressed
in ranges. The storage implementation can delineate the capabilities and define the ranges of these
capabilities, as appropriate. Some implementations may require several narrowly defined capabilities,
while others may be more flexible.

The capabilities expressed by the storage system can change over time. The number of primordial
StoragePools can also change over time.

These storage capabilities are given the scope of the storage system when they are associated to the
StorageConfiguratonService or the scope of a single StoragePool when associated to same. The
capabilities expressed at the service scope are equal to the union of all primordial StoragePool
capabilities. The capabilities can also be given the scope of a concrete StoragePool.

Figure 12 - StorageVolume Creation Instance Diagram

StorageVolume

DurableName:
VPD pg 83 ID

StoragePool

GetSupportedSizes()

GetSupportedSizeRange()

AllocatedFromStoragePool

ComputerSystem

HostedStoragePool

StorageCapabilities

CreateSetting()

ElementCapabilities

AllocatedFromStoragePool

StorageSetting

SystemDevice

StorageConfigurationService

CreateOrModifyElementFrom StoragePool()

ReturnToStoragePool()

HostedService

StorageConfigurationCapabilities

ElementCapabilitesElementSettingData
SNIA Technical Position 71

Storage Element Size Retrieval

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268
The storage administrator has the choice of any capability expressed by the storage system. The
administrator should use this opportunity to partition the capacity. Once storage elements are drawn from
the StoragePool, the administrator can be assured that the elements produced will have the capabilities
previous defined.

The model allows for automation of the allocation process. An automaton can use the capabilities
properties to search across subsystems for storage providing desired capabilities and then create
StoragePools and/or storage elements as necessary. Inventories may be made of the capacity by
capabilities.

The model also provides a means by which some common characteristics of all available storage systems
can be inventoried and managed. Note that the storage system will differ in other significant ways, and
these characteristics can also be the basis for capacity pooling decisions. A sample configuration is
illustrated in Figure 13.

See Storage Management Technical Specification, Part 3 Common Profiles, 1.8.0 Rev 4 Section 23 Job Control
Profile for details on the usage of the StorageConfigurationJob, AssociatedStorageConfigurationJob, and
OwningJobElement associations.

The definition of storage capabilities intentionally avoids vendor specific details of StorageVolume
configuration such as RAID types. Although RAID types imply performance and availability levels, these
levels cannot be easily compared between vendor implementation—particularly in comparisons with
reliability of non-RAID storage (i.e., certain virtualization appliances). There are capabilities of reliability
and availability other than data redundancy. The StorageSetting class is provided by clients to describe
the desired configuration of the allocated storage. In general, the types of parameters exposed and
controlled via the StorageCapabilities/StorageSetting classes are:

• NSPOF (No Single Point of Failure). Indicates whether the StoragePool can support storage configured with
No Single Points of Failure within the storage system. This parameter does not include the path from the
system to the host.

Figure 13 - Storage Configuration

Cluster

StorageSystem

StorageConfigurationService

ConcreteJob

StoragePool

StorageVolume

AffectedJobElement

OwningJobElement

AffectedJobElement

Describes range of
capabilities of Pools/Volumes
that can be created
with the Service

StorageCapabilities

Element
Capabilities

HostedService
72

 Storage Element Size Retrieval

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309
• Data Redundancy. Describes the number of complete copies of data maintained. Examples include RAID5
where one copy is maintained and mirroring where two or more copies are maintained.

• Package Redundancy. Describes how many physical components (packages), such as disk drives, can fail
without data loss (including a spare, but not more than a single global spare). Examples include RAID5 with a
Package Redundancy of 1, RAID6 with 2, RAID6 with 2 global (to the system) spares would be 3.

• ExtentStripeLength. Describes the number of underlying StorageExtents across which data is striped in the
common striping-based storage organizations. Also the number of 'members' or 'columns'. For non-striped
organizations (e.g., mirror or JBOD), the ExtentStripeLength shall be 1.

• UserDataStripeDepth. Describes the number of bytes forming a stripe in common striping-based storage
organizations. The stripe is defined as the size of the portion of a stripe that lies on one StorageExtent.
ExtentStripeLength times UserDataStripeDepth yields the size of one stripe of user data.

• ParityLayout. Specifies whether a parity-based storage organization is using rotated or non-rotated parity.

Package Redundancy and Data Redundancy values associated to RAID levels are indicated in Table 17.

5.1.11 Mapping of RAID levels to Data Redundancy and Package Redundancy

Table 17 reflects available definitions of RAID levels.

It is the nature of RAID technology that even though RAID levels are the same, the storage service
provided could differ, depending on the storage device implementations. Expressing the storage service
level provided in end-user terms relieves the SMI-S Client and end-user from having to know what RAID
Levels mean for a particular implementation. Instead, RAID level defines storage provided in storage-
level terms. If a single storage device implements RAID levels that have the same package redundancy

Table 17 - RAID Mapping

RAID Level Package
Redundancy

Data
Redundancy

StorageExtent
Stripe
Length

User Data
Stripe Depth

Parity
Layout

JBOD 0 1 1 NULL NULL

0 (Striping) 0 1 2 to N1

1. The character ‘N’ in the StorageExtent Stripe Length column represents the variable for the
total number of StorageExtents.

Vendor Dependent NULL

1 1 2 to N2

2. The character ‘N’ in the Data Redundancy column represents the number of complete copies
of data.

1 NULL NULL

10 1 2 to N 2 to N Vendor Dependent NULL

0+1 1 2 to N 2 to N Vendor Dependent NULL

3 or 4 1 1 3 to N Vendor Dependent 1

4DP 2 1 4 to N Vendor Dependent 1

5 (3/5)3

3. ‘3/5’ indicate RAID5 implementations that are sometimes called RAID5.

1 1 3 to N Vendor Dependent 2

6, 5DP4

4. ‘DP’ is double parity.

2 1 3 to N Vendor Dependent 2

15 2 2 to N 3 to N Vendor Dependent 2

50 1 1 3 to N Vendor Dependent 2

51 2 2 to N 3 to N Vendor Dependent 2
SNIA Technical Position 73

Storage Element Size Retrieval

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332
and data redundancy, the implementor should have the SMI-S Client differentiate via
StorageSettingsWithHints. Additionally, the SMI-S Provider author can predefine StorageCapabilities that
match best practice RAID Levels, including differentiation with StorageSettingWithHints when the
StorageVolume or LogicalDisk exists. In this case, the ElementName property is used to correlate
between the capability and device documentation. Alternatively, the capability may be expressed in
broader ranges for more flexible storage systems.

StorageSetting instances whose "ChangableType" property is “0”, “Fixed - Not Changeable”, (identifying
the StorageSettings which represent certain non-changeable sets of preset storage property data,
describing "fixed", or pre-defined Settings, corresponding to preset RAID levels), the Element name
should contain a string value from a comprehensive list of well-known RAID configuration names. The
ElementName string value should be the name of the RAID level, from this list, which most closely
describes the storage characteristics of the StorageSetting in question. This list of RAID level strings
includes, but is not limited to: "JBOD", "RAID0", "RAID1", "RAID0+1","RAID01E"," RAID10", RAID3",
RAID4", "RAID4DP", "RAID5", "RAID3/5", "RAID5DP", "RAID6", "RAID15", "RAID50", "RAID51". In
addition, the "Description" property of the pre-defined StorageSettings should (optionally) contain similar
RAID level information in a more free-form text format, including vendor-specific and/or value-added
annotations, for example: "RAID3, with spares", or "RAID5, 7D + 1P".

5.1.12 Storage Setting Associations to Storage Capabilities

A Storage Setting instance can be associated to its parent StorageCapabilities instance through either
the StorageSettingsAssociatedToCapabilities or StorageSettingsGeneratedFromCapabilities association
instances. The nature of the associated setting is different depending on the association instance used.

A Storage Setting associated via a StorageSettingsAssociatedToCapabilities instance shall not be
modifiable by the client (ChangeableType = 0 “Fixed - Not Changeable”). These types of settings are
used to define the possible configurations of StoragePools, StorageVolumes or LogicalDisks where the
number of possibilities are small because the capabilities of the device itself are likewise limited. When
an instance of a Capability class is created as a side effect of creating a concrete StoragePool, this type
of Storage Setting may also be created or an existing Storage Setting associated to this new Capabilities
instance as well. A client can use the StorageSettingsAssociatedToCapabilities association to find the
default goal for the Capabilities instance, using the DefaultSetting property. There shall be one default
per combination of a StoragePool instance, associated StorageCapabilities instances, and associated
StorageSetting instances.

A Storage Setting associated via a StorageSettingsGeneratedFromCapabilities instance may be modified
by a client (ChangeableType = 1 “Changeable - Transient” or Changeable = 2 “Changeable - Persistent”).
When a Setting is created from a Capabilities instance, it is transient (e.g., ChangeableType = 1), i.e., the
Setting instance may not remain for long. This Setting may be removed from the CIMOM after reboots or
after a set period of time. The client should create and use the Setting as soon as possible. Alternatively,
some implementations will allow the client to request that the Setting be retained. This request is made
by changing the ChangeableSettingType to 3 “Changeable - Persistent”. SMI-S does not define
normative behavior for the changing of the ChangeableType property.

5.1.13 The Usage Property

The intended usage of storage elements and storage pools is specified in the Usage property of these
components. For the most part, the usage of these components is 2 "Unrestricted". However, a system
manager and/or a client may decide that certain storage elements are to be set aside for a specific
application. For example, a number of volumes are created for the sole purpose of being used for
Migration Services. In this case, the volumes are created using a storage setting with the
StorageElementInitialUsage of "Reserved by Migration Services". Alternatively, a client may request an
"Unrestricted" volume to be converted to "Reserved by Migration Services" by invoking the method
StorageConfigurationService.RequestUsageChange. The Provider shall honor the request if the client
has access to the storage element and the requested change is valid. The property ClientSettableUsage
indicates what usage values are valid for a given component.
74

 Storage Element Size Retrieval

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353
The Usage property may not be NULL. If a client tries to utilize a storage element that is reserved for a
restricted usage, the operation may fail because the supplied element can not be used for this purpose or
as a target for the operation.

By default, storage elements are created with the 2 "Unrestricted" value for their Usage property. To
specify a different value for the Usage property, set the appropriate StorageExtentInitialUsage or
StoragePoolInitialUsage of the applicable StorageSetting before creating the storage element.
Subsequently, the Usage property can be modified by calling the
StorageConfigurationService.RequestUsageChange method.

If the Usage property is set to 1 “Other”, the companion property OtherUsageDescription shall be used to
indicate a component’s usage that is not covered by the usage value map. The Usage and
OtherUsageDescription properties are maintained by the Provider. Restricted values may already exist
for static elements that pre-exist when the Provider is discovered.

The Usage and OtherUsageDescription property values may change as a side effect of other method
calls, e.g. a StorageVolume that may have been a replica target candidate at one time, may no longer be
a replica target candidate once it is active as a replica target.

Storage elements that support modifying the Usage property will also have a property called
ClientSettableUsage. This property indicates which usage values may be manipulated by a client using
the method StorageConfigurationService.RequestUsageChange.

Using the method StorageConfigurationService.GetElementsBasedOnUsage, clients are able to retrieve
storage elements and storage pools based on their current usage values. For example, a client can
retrieve all the volumes that are candidate to be used as a Local Replica Target. Using the same method
StorageConfigurationService.GetElementsBasedOnUsage with the criteria parameter set to 2 "Available
Only", clients are able to retrieve the available (i.e., not in use) storage elements and storage pools
based on their current usage value.

Some methods change the usage of a storage element. For example, a client supplies a volume to be
used as a target in the call to the method CreateReplica.

Table 18 describes some of the representative values of the Usage property (storage element refers to a
StorageVolume, LogicalDisk, or StoragePool):

5.1.14 Read-Only Model Requirements

This package defines classes and behavior to express the assignment and allocation of storage capacity
and the mechanism for configuring the storage capacity. The expression of the assignment and allocation
of storage capacity through the StoragePool, StorageVolume, LogicalDisk and related associations is
mandatory. An implementation may also offer the configuration of one or more classes of storage
elements. The expression of the support for the configuration of storage is through the instantiation of the

Table 18 - Meaning of Usage values

Usage Value Description

Reserved by the ComputerSystem The storage element is used by the array itself for firmware, storage
processor software, etc.

Reserved for Local Replication Services The storage element is designated for activities related to the
CopyServices. For example, SNAP cache.

Local Replica Target The storage element is suitable to be used as replica target.

Element Component The StorageVolume or LogicalDisk is now acting as a
StorageExtent. In this case, the storage element no longer appears
in the list of these element types. Use the method
GetElementsBasedOnUsage to locate such storage elements.
SNIA Technical Position 75

General

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399
StorageConfigurationService and its associated Global StorageConfigurationCapabilities. If an instance
of the StorageConfigurationService class is not provided, then a client can assume that no configuration
operations are supported. An implementation shall not provide an instance of the
StorageConfigurationService if none of the extrinsic methods of the service are supported.

If the implementation is only supporting read-only information about the capacity assignment and
allocation but does not offer modification of the capacity configuration, then that implementation is said
be a read-only implementation. In such a model, only classes listed in Table 19 are required. Classes not
explicitly listed are not required for read-only implementations.

5.1.15 StorageExtent Conservation

5.1.15.1 General

StorageExtent Conservation is the construct where the remaining capacity after the partial use of a
StorageExtent is itself represented as a StorageExtent, based on the antecedent StorageExtent. Note
that the StorageExtent class itself does not report the amount of capacity that is used by another
StorageExtent that draws capacity from it. In order to calculate the remaining space from a StorageExtent
model without StorageExtent Conservation, the client would have to calculate the existence of remaining
capacity through finding unused ranges of blocks as expressed by the StorageExtent’s BasedOn
associations.

This notion allows a client to use those remaining StorageExtents to determine the physical components
like disk drives and network ports that are associated to this remaining space in order to pick the
StorageExtent best suiting its needs for, for example, storage network redundancy or performance
history.

5.1.15.2 Requirements for the General use of StorageExtents

The general use of StorageExtents, which is optional for this component profile, is subject to the following
requirements:

• Allocating capacity from a StoragePool shall not reduce the total size of the StoragePool.

• A given StorageExtent instance shall not be a component of more than one StoragePool. However, an given
block may be accounted for in the range of blocks represented by more than one StorageExtent instance. In
other words, a given block may be associated to more than one StoragePool.

• The use of all or some of the capacity of an StorageExtent directly, by passing the reference to the
StorageExtent in a method call, or indirectly, by passing the size of the desired storage element, shall result
in the creation of new StorageExtents that are components of the new StorageVolume or LogicalDisk.

• Any remaining capacity from the StorageExtent shall be represented by a new ComponentExtent of the
source StoragePool that is based on the partitioned StorageExtent. This StorageExtent is called a remaining
StorageExtent.

Table 19 - Classes Required In Read-Only Implementation

Required Classes Reason for Requirement

StoragePool, StorageVolume and/or LogicalDisk,
HostedStoragePool and AllocatedFromStoragePool

Reporting of unassigned, assigned, and allocated
capacity

StorageCapabilities and ElementCapabilities Reporting of storage pool capabilities

StorageSetting and ElementSettingData used is
associated to StorageVolume and LogicalDisk

Reporting of the capabilities of existing StorageVolumes
and LogicalDisks

SystemDevice Reporting the system to which a StorageVolume or
LogicalDisk is scoped
76

 The Three Steps of StorageExtent Conservation

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429
1) If the Size requested is smaller than the total consumable size of the StorageExtents or StoragePools,
then these resources are partially used. In this case, the model shall reflect what capacity was used and
what capacity remains of the StorageExtents or StoragePools passed as arguments to CreateOrModi-
fyStoragePool and CreateOrModifyElementFromElements methods.

2) Once the capacity represented by a remaining StorageExtent is used to assign or allocate capacity, the
remaining StorageExtent either shrinks in size or is removed from the model. A remaining StorageExtent
shall not be molded to have other StorageExtents based on it.

• A StorageExtent that was split or partially used may be made whole by the deletion of the storage element
whose creation or modification gave rise to the partial use of the StorageExtent in the first place.

Figure 14: "StorageExtent Conservation - Step 1", Figure 15: "StorageExtent Conservation - Step 2",
and Figure 16: "StorageExtent Conservation - Step 3" illustrate the use of StorageExtents to represent
the partitioning of a StorageExtent’s capacity. An implementation of this component profile may also
implement 13 Extent Composition Profile. Extent Conservation requires the instantiation of additional
ComponentExtents that represent remaining space. These ComponentExtents are in addition to those
modeled by the Extent Composition Profile. Available StorageExtents, including remaining space
StorageExtents, which meet specific goal requirements, are found using the GetAvailableExtents method
of the StoragePool.

The modeling of remaining StorageExtents is not within the scope of the Extent Composition Profile. The
modeling of free/unused extents is defined only in 5.1.15 StorageExtent Conservation.

Support of the GetAvailableExtents and CreateOrModifyElementFromElements methods are not required
by the Block Services package nor 13 Extent Composition Profile. An implementation may support the
representation of StorageVolume or LogicalDisk structure through 13 Extent Composition Profile but not
support these methods.

If an implementation supports the GetAvailableExtents and CreateOrModifyElementFromElements
methods and the Block Services Package, then it shall also implement 13 Extent Composition Profile.
See 5.4.3. Additionally, the implementation shall implement either both methods (if it implements one of
the methods) or neither method.

The most virtualized Storage Extents are those that have no dependent storage extents that are either
StorageVolumes or LogicalDisks. There are three associations that may represent the most virtualized
storage components of a StoragePool:

• ConcreteComponent

• AssociatedComponentExtent

• AssociatedRemainingExtent.

If there are StorageExtents associated to a StoragePool via ConcreteComponent, these StorageExtents
shall also be associated to the same StoragePool via AssociatedComponentExtent or
AssociatedRemainingExtent. The set of instances associated to this StoragePool via
ConcreteComponent shall equal the union of the sets of StorageExtents associated to the same
StoragePool via AssociatedComponentExtent and AssociatedRemainingExtent. The subset of
AssociatedRemainingExtent StorageExtents represents remaining capacity, as defined in preceding
paragraphs. These StorageExtents are remaining StorageExtents. The subset of
AssociatedComponentExtent StorageExtents represents capacity that has not yet been allocated, is
allocated in part, or is allocated in its entirety.

5.1.15.3 The Three Steps of StorageExtent Conservation

Figure 14: "StorageExtent Conservation - Step 1", Figure 15: "StorageExtent Conservation - Step 2",
and Figure 16: "StorageExtent Conservation - Step 3" show how StorageExtents are partitioned to
represent the partial usage of the capacity in the construction of a concrete StoragePool and a concrete
SNIA Technical Position 77

The Three Steps of StorageExtent Conservation

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461
StorageVolume. For the purposes of illustration all the numbers in the figures are expressed in blocks
even though some of the class properties are in blocks and others are in bytes. The solid line box around
the elements in the diagram groups those classes that are defined in 13 Extent Composition Profile.

The initial state in Figure 14 starts with a primordial StoragePool that is realized by a primordial
StorageExtent. This StorageExtent is part of the initial capacity of the device or added to the device in a
process defined outside of this component profile. The process of assigning capacity to a StoragePool
and allocating capacity to a StorageVolume or LogicalDisk is defined inside of this component profile. To
simplify the diagram, the StoragePool has only one ComponentExtent box that represents many
StorageExtents. The “SUM_” prefix indicates that the size of the StorageExtents are a summation. Both
the StoragePool and StorageExtent start with 1000 blocks of storage capacity.

A concrete StoragePool is drawn from the primordial StoragePool in step 2, shown in Figure 15. Figure
15: "StorageExtent Conservation - Step 2" groups the instances modeled using 13 Extent Composition

Profile with a dark box. The concrete StoragePool takes only half the capacity of the parent StoragePool.
In this particular example, the metadata required by the implementation is written to the storage after this
step. Another StorageExtent is created to represent the remaining capacity of the primordial StoragePool
that was not used in the creation of the concrete StoragePool. ConsumableBlocks remain constant after
the creation of the StorageExtent as a representation of the space actually available for use is other
storage elements that are based on the StorageExtent. The remaining space StorageExtent can be used
for the creation of other StorageVolumes or Logical Devices. If GetAvailableExtents were called on the
primordial StoragePool at this point, a reference to the remaining StorageExtent shall be returned. A
reference to the original primordial StorageExtent shall not be returned because the StorageExtent is
entirely allocated.

Figure 14 - StorageExtent Conservation - Step 1

Primordial:
StoragePool

Primordial:
StorageExtent

SUM_ConsumableBlocks = 1000
SUM_NumberOfBlocks = 1000

AssociatedComponentExtent

RemainingManagedSpace = 1000
TotalManagedSpace = 1000
78

 The Three Steps of StorageExtent Conservation

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

Figure 16 shows a StorageVolume creation. Figure 16: "StorageExtent Conservation - Step 3" groups
the instances modeled using 13 Extent Composition Profile with a dark box. This particular
implementation draws storage capacity for metadata (for its own house-keeping) during the creation of
the StorageVolume. Not shown is the case where the metadata is drawn from capacity during the creation
of the concrete StoragePool. A RAID1 stripe is written over three StorageExtents. These StorageExtents
are likely to be disk drives. Again, a remaining StorageExtent is created to represent the capacity of the
parent concrete StoragePool that is not used in the creation of the StorageVolume. A call to the concrete
StoragePool’s GetAvailableExtents method yields a reference to the remaining StorageExtent.

Figure 15 - StorageExtent Conservation - Step 2

AssociatedComponentExtent

BasedOn

AssociatedComponentExtent

BasedOn

AllocatedFromStoragePool
SpaceConsumed = 500

AssociatedRemainingExtent

SUM_ConsumableBlocks = 500
SUM_NumberOfBlocks = 500

Remaining:
StorageExtent (Remaining)

BasedOn

SUM_ConsumableBlocks = 500
SUM_NumberOfBlocks = 500

Concrete:
StorageExtent (Intermediate)

ConsumableBlocks = 250
NumberOfBlocks = 250

Concrete:
CompositeExtent

(Composite Pool Component)

Primordial:
StoragePool

RemainingManagedSpace = 500
TotalManagedSpace = 1000

RemainingManagedSpace = 250
TotalManagedSpace = 250

Concrete:
StoragePool

Primordial:
StorageExtent

SUM_ConsumableBlocks = 1000
SUM_NumberOfBlocks = 1000
SNIA Technical Position 79

The Three Steps of StorageExtent Conservation

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

In all cases, the TotalManagedSpace and RemainingSpace attributes reflect the total capacity and the
capacity that can be drawn from a StoragePool, respectively. In Figure 16, the metadata is drawn from
the capacity in the creation of the storage element.

• The capacity drawn by the metadata from the parent StoragePool is reflected by the sum of associated
AllocatedFromStoragePool.SpaceConsumed minus the StoragePool.TotalManagedSpace of the child
StoragePool.

• The capacity drawn by the metadata from each StorageVolume or LogicalDisk is reflected by
SpaceConsumed minus NumberOfBlocks times BlockSize.

Figure 16 - StorageExtent Conservation - Step 3

AssociatedComponentExtent

AllocatedFromStoragePool
SpaceConsumed = 30

BasedOn

BasedOn

AllocatedFromStoragePool
SpaceConsumed = 500

AssociatedRemainingExtent

AssociatedRemainingExtent

BasedOn

BasedOn

SUM_ConsumableBlocks = 220
SUM_NumberOfBlocks = 220

Remaining:
StorageExtent (Remaining)

ConsumableBlocks = 250
NumberOfBlocks = 250

Concrete:
CompositeStorageExtent

(Composite Pool Component)

SUM_ConsumableBlocks = 1000
SUM_NumberOfBlocks = 1000

SUM_ConsumableBlocks = 500
SUM_NumberOfBlocks = 500

Remaining:
StorageExtent (Remaining)

Primordial:
StoragePool

RemainingManagedSpace = 500
TotalManagedSpace = 1000

BasedOn

Primordial:
StorageExtent

AssociatedComponentExtent

SUM_ConsumableBlocks = 500
SUM_NumberOfBlocks = 500

Concrete:
StorageExtent (Intermediate)

NumberOfBlocks = 30

StorageVolume

ConcretePool:
StoragePooll

RemainingManagedSpace = 220
TotalManagedSpace = 250
80

 Conformant Implementations

527

528

529

530

531

532

533

534

535

536
5.1.16 Formulas For Calculating Capacity

5.1.16.1 Conformant Implementations

These formulas define calculations that shall be valid in a conformant implementation:

• For StoragePools with StorageVolumes that do not share storage capacity
(StoragePool.ElementsShareSpace set to false or null) the RemainingManagedSpace plus
AllocatedFromStoragePool.SpaceConsumed from all of the StorageVolumes, LogicalDisks, and
StoragePools allocated from the StoragePool shall equal TotalManagedSpace.

NOTE Elements allocated from StoragePools used for delta replicas (snapshots) usually share storage capacity.

• A parent StoragePool’s TotalManagedSpace equals RemainingManagedSpace plus the sum of all related
AllocatedFromStoragePool SpaceConsumed.

• If 13 Extent Composition Profile is implemented:

1) The StoragePool’s TotalManagedSpace shall be equal to the sum of all the AssociatedComponentEx-
tent StorageExtent’s BlockSize times ConsumableBlocks minus the metadata space (Storage-
Pool.ReservedSpace) required by the StoragePool.

2) Using the BasedOn association from the StoragePool’s component StorageExtents (found using Con-
creteComponent or AssociatedComponentExtent, or AssociatedRemainingExtent), the sum of the
Dependent StorageExtent’s NumberOfBlocks shall be equal to the ConsumableBlocks of the Antecedent
StorageExtent.

3) The StoragePool's RemainingManagedSpace shall be equal to the sum of BlockSize times Consum-
ableBlocks for the union of the following sets of StorageExtents:

a) The set of StorageExtents associated to the StoragePool via AssociatedComponentExtent where
each StorageExtent does not participate in an Antecedent relationship via one or more BasedOn
associated with either a StorageVolume or a LogicalDisk.

b) The set of StorageExtents associated to the StoragePool via AssociatedRemainingExtent.

EXPERIMENTAL

5.1.16.2 Capacity Usage for Compressed Volumes

If a fully provisioned volume is created with compression enabled, the nominal capacity is allocated by
the block server. And before the data is written onto the disk extent of the volume, it will be compressed
in memory first, then the data will be stored onto the extent allocated by the block server.

If a thin provisioned volume is created with compression enabled, a smaller value (referred to here as the
initial reserve capacity) is allocated. And before the data is written onto the disk extent of the volume, it
will be compressed in memory first, then new extents will be allocated by the block server according to
the capacity after compression and the data will be stored onto the newly allocated extents. The capacity
consumption report is the same as the mechanism in thin provisioning profile.

EXPERIMENTAL

5.1.17 Storage Element Manipulation

The StorageConfigurationService class contains methods to allow creation, modification and deletion of
StorageVolumes or LogicalDisks. The capabilities of a StorageConfigurationService or StoragePool to
provide storage are indicated using the StorageCapabilities class. This class allows the Service or
SNIA Technical Position 81

Capacity Usage for Compressed Volumes

537

538

539

540

541

542

543

544

545
StoragePool to advertise its capabilities (using implementation independent attributes) and a client to set
the attributes it desires.

The primordial pool contains storage available to the storage system from physical devices or external
sources. The storage in the primordial pool may not be all the same. The CIM_DiskDrive class contains
properties that reflect these differences (DiskType, FormFactor, InterconnectType, InterconnectSpeed,
RPM, and Encryption). Together these properties define a quality of service (QOS) for disk storage.
Properties in CIM_StorageCapabilities are used to determine if these properties are supported and the
range of values supported. The CIM_StorageSetting class has the disk QOS properties to allow selection
and provisioning based on these properties. Pools and Volumes that are provisioned from storage with a
single disk QOS shall inherit the disk QOS and reflect that in their CIM_StorageSetting object.

The concept of “hints” is included. Hints allow a client to provide general requirements to the system as to
how it expects to use the storage. Hints allow a client to provide extra information to “tune” a
StorageVolume or LogicalDisk. If a client chooses to supply these hints when creating a StorageVolume
or LogicalDisk, the StorageSystem can either use the hints to determine a matching configuration or
ignore them.

When creating a StorageVolume or LogicalDisk, a reference to an instance of StorageSetting is passed
as a parameter to the StorageConfigurationService.CreateOrModifyElementFromStoragePool,
CreateElementsFromStoragePools, or CreateOrModifyElementFromElements methods. This reference
provides a goal for that element.

The current ‘service level’ being achieved is reported via the StorageVolume or LogicalDisk class itself.
For example, data redundancy reported in the Setting associated to the storage element may be different
from the data redundancy reported in the storage element itself. This difference indicates that a copy of
the data is no longer available.

StorageVolumes or LogicalDisks are created from StoragePools via a StorageConfigurationService’s
CreateOrModifyElementFromStoragePool(), CreateElementsFromStoragePools() methods. A
StorageVolume creation operation takes time, and a Client needs to be aware that the operation is not
complete until the StorageVoume.OperationalStatus is OK. A Client may also monitor the progress of the
operation using the ConcreteJob class and its properties.

The name of a StorageVolume, LogicalDisk, or StoragePool can be changed. The existence of the
EnabledLogicalElementCapabilities instance associated to the storage element indicates that the storage
element can be named. If ElementNameEditSupported is set to TRUE, then the ElementName of the
associated storage element name can be modified. The MaxElementNameLen property indicates the
maximum supported ElementName length, and the ElementNameMask property provides the regular
expression that indicates the name limits; see Table 26, “CIM Elements for Block Services” for details for
this property.

Since the ElementNameMask can describe the maximum length of the ElementName, any length defined
in the regexp is in addition to the restriction defined in MaxElementNameLen (causing the smaller value
to be the maximum length).

The SupportedElementNameCodeSet property of the ImplementationCapabilities instance (associated to
top-level ComputerSystem) indicates the supported code set for the ElementName.

To determine if the implementation supports supplying the ElementName during creation of a storage
element and to determine the supported methods to modify the ElementName of existing storage
elements, invoke the method StorageConfigurationCapabilities.GetElementNameCapabilities -- see
section 5.4.5.1.
82

 Feature Description

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573
EXPERIMENTAL

5.1.18 Storage Compression support in Block Services

5.1.18.1 Feature Description

Storage compression is an optional feature of Block Services. It may be applied to any element that can
hold data that may be compressed. That is, it may be applied to a storage volume or logical disk. This
may include thinly provisioned storage volumes or logical disks.

If the CIM_StorageConfigurationService has been implemented a client may determine whether or not an
implementation supports storage compression by inspecting the instance of the CIM_StorageCapabilities
associated to the CIM_StorageConfigurationService. If compression is supported for an element, there
shall be an entry in the SupportedCompressionRates array property, and it shall not contain the value “1”
(None). The entry shall contain any or all of “2” (High), “3” (Medium), “4” (Low) and/or “5” (Implementation
Decides).

5.1.18.2 Specifying Storage Compression on Volume Creation

A client may request that a storage volume that it is creating be compressed by the CompressionElement
property of the Goal parameter of CreateOrModifyElementFromStoragePool (or
CreateOrModifyElementsFromStoragePool). If the implementation allows it (see
CIM_StorageCapabilities.SupportedCompressionRates) the client may also specify the compression rate
to be used in the CompressionRate property of the Goal parameter.

If the CompressionRate property (See CIM_StorageSetting) is set to “1” (None), the volume is not
compressed. If the SupportedCompressionRates include “2” (High), “3” (Medium) or “4” (Low), the client
may select one of these in the CompressionRate property of the Goal parameter. The provider
implementation determines the algorithm to use for each of these (it is implementation specific).

Once a volume has been created, a client may determine that the volume is compressed by inspecting
the IsCompressed property in the CIM_StorageVolume (or CIM_LogicalDisk) instance that represents the
volume. If supported the implementation may also specify the compression rate used in the
CompressionRate property of the volume

5.1.18.3 StoragePools that support Compressed Elements

A client can determine if a StoragePool will support compressed elements by inspecting the
StorageCapabilities associated to the pool. If compression is supported, the
SupportedCompressionRates property shall be populated and shall not contain the value “1” (None). The
property shall contain any or all of “2” (High), “3” (Medium), “4” (Low) and/or “5” (Implementation
Decides).

5.1.18.4 StoragePools that support Compression

A client can determine if per-StoragePool compression is supported by inspecting the StorageCapabilities
associated to the pool. If compression is supported, the corresponding SupportedCompressionRates
property shall be populated and shall not contain the value “1” (None). The property shall contain any or
all of “2” (High), “3” (Medium), “4” (Low) and/or “5” (Implementation Decides).

Whether or not compression is active on the pool shall be determined by examining the StoragePool
CompressionActive property. If it is true, the StoragePool is compressed. The CompresionRate and
CompressionState shall determine the current rate and state, respectively. The actual compression
savings shall be determined by examining the CompressionPercent property.

EXPERIMENTAL
SNIA Technical Position 83

StoragePools that support Compression

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610
5.2 Health and Fault Management Considerations

5.2.1 Overview

The extrinsic methods should produce Errors (instances of CIM_Error) instead of some of the failure
return codes. CIM errors include parameter errors, hardware efforts, and time-out errors. See Storage
Management Technical Specification, Part 3 Common Profiles, 1.8.0 Rev 4 22 Health Package for details.

EXPERIMENTAL

The standard messages specific to this profile are listed in Table 20. See Storage Management Technical
Specification, Part 2 Common Architecture, 1.8.0 Rev 4 8 Standard Messages for a description of standard
messages and the list of all standard messages.

EXPERIMENTAL

5.2.2 StoragePool OperationalStatus

The StoragePool.OperationalStatus is required. The StoragePool.OperationalStatus contains the overall
status of the storage pool, summarized in Table 21.

Table 20 - Standard Messages for Block Services Package

Message ID Message Name

MP17 Invalid property combination during instance creation or modification

DRM19 Stolen capacity

DRM20 Invalid extent passed

DRM21 Invalid deletion attempted

Table 21 - OperationalStatus for StoragePool

Primary
OperationalStatus

Subsidiary
OperationalStatus

Description

2 “OK” The storage pool is operational

2 “OK” 19 "Relocating” The storage pool is operational, but is undergoing relocation

3 "Degraded" The storage pool is operational, but at a lower quality of service
than requested

3 "Degraded" 19 "Relocating” The storage pool is operational, but at a lower quality of service
due to a relocation operation

6 "Error" The storage pool is in error

15 "Dormant" The storage pool is not operational

15 "Dormant" 19 "Relocating” The storage pool is not operational due to a relocation operation
84

 StoragePools that support Compression

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644
EXPERIMENTAL

In addition, if the implementation includes the Storage Pool Diagnostic Profile, the
StoragePool.OperationalStatus expands to contain the overall status of the storage pool, as summarized
in Table 22.

EXPERIMENTAL

The OperationalStatus of a pool, particularly the primary OperationalStatus, provides basic information
about the health of a storage pool. It will tell a client the general condition of the storage pool, but it does
not explain why the storage pool has the condition.

As a general guideline, the storage pool OperationalStatus could be caused by the following situations:

• OK

• The pool is operational and functional with no reason to be concerned

• Degraded

The pool is operational and functional, but operations are degraded for one of the following reasons:

• its performance is degraded due to interference from system workloads

• Its performance is degraded due to conditions with related elements (e.g., disk drives, back-end ports, etc.)

• It is operating with a package or data redundancy that is below expectations

• It is operating with reduced redundancy in disk access

Table 22 - OperationalStatus for StoragePool

Primary
OperationalStatus

Subsidiary
OperationalStatus

Description

2 “OK” The storage pool is operational

2 “OK” 19 "Relocating” The storage pool is operational, but is undergoing relocation

3 "Degraded" The storage pool is operational, but at a lower quality of service
than requested

3 "Degraded" 19 "Relocating” The storage pool is operational, but at a lower quality of service
due to a relocation operation

5 “Predictive Failure” Storage pool is functioning normally but is predicting a failure in the
near future

6 "Error" The storage pool is in error

11 "In Service" Testing in progress on the storage pool
RAID group being rebuilt

15 "Dormant" The storage pool is not operational

15 "Dormant" 19 "Relocating” The storage pool is not operational due to a relocation operation
SNIA Technical Position 85

StoragePools that support Compression

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665
• Predictive Failure

The pool is operational and functional, but the pool is in danger of failing for one of the following reasons:

• One or more disk drive components are predicting failure

• The pool capacity running low

• Error

The pool is not operational or functional for one of the following reasons:

• One or more component disk drives have failure

• A component storage extent has a failure

• Back end ports have failed

• A disk drive fan is not working

• A power supply for disk drives is not working

• In Service

The pool is temporarily indisposed. It may be operational and functional, but the pool is undergoing interfering
processing for one of the following reasons:

• The storage pool is relocating

• A RAID group in the pool is being rebuilt

• An diagnostic test is being performed on the pool or its component elements

• Dormant

The pool is temporarily not operational and functionalD for one of the following reasons:

• The storage pool is being relocated

With any of these conditions, the reason for the condition may be any of the ones mentioned in this list or it may be
due to some vendor specific reason.

5.2.3 StorageVolume OperationalStatus

The StorageVolume.OperationalStatus contains the overall status of the volume, summarized in Table 23.

Table 23 - OperationalStatus for StorageVolume

Primary
OperationalStatus

Subsidiary
OperationalStatus

Description

2 “OK” The storage volume is operational

2 “OK” 19 "Relocating The storage volume is operational, but is undergoing relocation

3 "Degraded" The storage volume is operational, but at a lower quality of service than
requested

3 "Degraded" 19 "Relocating The storage volume is operational, but at a lower quality of service due to a
relocation operation

6 "Error" The storage volume is in error

8 "Starting" The storage volume is starting

15 "Dormant" The storage volume is not operational

15 "Dormant" 19 "Relocating The storage volume is not operational due to a relocation operation
86

 CreateSetting

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681
5.2.4 LogicalDisk OperationalStatus

The LogicalDisk.OperationalStatus contains the overall status of the logical disk, summarized in Table 24.

5.3 Cascading Considerations

Not defined in this document.

5.4 Methods of this Profile

5.4.1 Extrinsic Methods on StorageCapabilities

5.4.1.1 CreateSetting

CreateSetting is a method in StorageCapabilities and is invoked in the context of a specific
StorageCapabilities instance.

uint32 CreateSetting(
[In] uint16 SettingType,
[Out] CIM_StorageSetting REF NewSetting)

This method on the StorageCapabilities class is used to create a StorageSetting using the
StorageCapabilities as a template. The purpose of this method is to create a StorageSetting that is
associated directly with the StorageCapabilities on which this method is invoked and has properties set in
line with those StorageCapabilities. The contract defined by the StorageCapabilities shall constrain the
StorageSetting used as the Goal.

The StorageCapabilities associated with the StoragePool define what types of storage can be allocated.
The client shall determine what subset of the parent StoragePool capabilities to use, albeit a primordial
StoragePool or a concrete StoragePool. The StorageSetting provided to the StoragePool creation method
defines what measure of capabilities are desired for the following storage allocation. First, the client
retrieves a StorageSetting or creates and optionally modifies an existing StorageSetting. If no
satisfactory StorageSetting exists, then the client uses this method to create a StorageSetting.

The client has the option to have a StorageSetting generated with the default capabilities from the
StorageCapabilities. If a '2' (“Default”) is passed for the Setting Type parameter, the Max, Goal, and Min
setting attributes are set to the default values of the parent StorageCapabilities. Otherwise, with using ‘3’
(“Goal”), the new StorageSetting attributes are set to the related attributes of the parent
StorageCapabilities, e.g., Min to Min and Max to Max. The method CreateSetting should return a unique

Table 24 - OperationalStatus for LogicalDisk

Primary
OperationalStatus

Subsidiary
OperationalStatus

Description

2 “OK” The logical disk is operational

2 “OK” 19 "Relocating The logical disk is operational, but is undergoing relocation

3 "Degraded" The logical disk is operational, but at a lower quality of service than
requested

3 "Degraded" 19 "Relocating The logical disk is operational, but at a lower quality of service due
to a relocation operation

6 "Error" The logical disk is in error

8 "Starting" The logical disk is starting

15 "Dormant" The logical disk is not operational

15 "Dormant" 19 "Relocating The logical disk is not operational due to a relocation operation
SNIA Technical Position 87

Getting Stripe Length

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715
instance of StorageSetting so that the ModifyInstance operation by one client shall not impact another
client’s instance of StorageSetting. This type of StorageSetting, newly created or already existing, is
associated to the StorageCapabilities via the GeneratedStorageSetting association.

Only a StorageSetting created in this manner may be modified or deleted by the client. The client uses
the NewSetting parameter to set the new StorageSetting to the values desired (using ModifyInstance or
SetProperties intrinsic methods).

The implementation shall not generate a Setting whose values fall outside of the range of the parent
Capabilities.

The StorageSetting cannot be used to create storage that is more capable than the parent
StorageCapabilities. The ModifyInstance and SetProperties CIM Operations shall fail when the Setting
has a Max value greater (or a Min value less) than the parent StorageCapabilities.

If the storage device supports hints, then the new StorageSetting contains the default hint values for the
parent StorageCapabilities. The client can use these values as a starting point for hint modification (using
intrinsic methods).

StorageSetting instances associated with StorageVolume or LogicalDisk shall not be modified or deleted
directly.

Once this type of StorageSetting is used as the Goal for the creation or modification of a StoragePool, the
Goal setting properties are copied into a new StorageCapabilities instance. The new StorageCapabilities
instance is associated to the newly created or modified StoragePool. If the StoragePool was modified,
then the previous StorageCapabilities shall be removed. The new StorageCapabilities instance,
associated with the new StoragePool, should describe the parameters used in its creation or modification.

Once this type of StorageSetting is used as the Goal for the creation or modification of a StorageVolume
or LogicalDisk, the Goal StorageSetting shall be duplicated, with the exception of the instance keys. The
duplicate Setting is associated to the newly created or modified StoragePool, StorageVolume, or
LogicalDisk. The generated Setting may be removed thereafter. The new StorageSetting instance,
associated with the new storage element, should describe the parameters used in its creation or
modification.

The set of methods defined in 5.4.1.2, 5.4.1.3, and 5.4.1.4 can be implemented to allow a client to be
more specific about the configuration of the stripe length, stripe depth, and parity in a Setting. Thereby
the client can get specific RAID levels or quality of service characteristics.

The stripe length, stripe depth, and party extrinsic methods may be supported. These methods may be
supported in the content of one capabilities and not in another within the same implementation.
Sometimes the block striping is done as part of the creation of the concrete StoragePool, and sometimes
the block striping is done as part of the creation of a StorageVolume or LogicalDisk. There may be
implementations that allow striping to be done in both steps.

A client may use StorageSettingHints to imply desired striping (or other) characteristics are desired. The
striping and parity methods and properties may be used in combination with hints. The hints express a
ranking of preference. While the striping and parity methods and properties are much more explicit. When
the hints and the stripe and parity Settings properties are used in combination, the striping and parity
properties of the Setting are also considered hints, and the implementation may still create or modify the
StoragePool or storage element using its best effort.

This specification does not define how the ranking of hints relates to the exact nature of the StoragePool
or storage element created or the nature of their modification.

5.4.1.2 Getting Stripe Length

uint32 GetSupportedStripeLengths(
[Out] unint16 StripeLengths[])
88

 Getting Stripe Depth

716

717

718

719

720

721

722
This method is used to report discrete ExtentStripeLengths for StorageVolume, LogicalDisk, or
StoragePool creation. Some systems may support only discrete stripe lengths.

uint32 GetSupportedStripeLengthRange(
[Out] uint16 MinimumStripeLength,
[Out] uint16 MaximumStripeLength,
[Out] uint32 StripeLengthDivisor)

This method is used to report a range of possible ExtentStripeLengths for StorageVolume, LogicalDisk, or
StoragePool creation. Some systems may support only a range of sizes. This method reports the
continuum of discrete sizes between the minimum and maximum as defined by intervals of the divisor
(e.g., if given a min of 10 and a max of 50, the discrete values would be 20, 30, 40, and 50).

Either method may be supported. Return codes are:

• 0, “Method completed OK”, means success.

• 1, “Method not supported”,

• 2, “Choices not available for this Capability.” Although the method may be supported by Capabilities in this
implementation, it is not supported for this Capability. Usually, this return code indicates that the stripe length
has already been set in the parent StoragePool and may not be changed.

• 3, “Use [GetSupportedStripeLengths|GetSupportStripeLengthRange] instead”. This return code tells the
client that this stripe method is not supported, but the other stripe method is supported.

5.4.1.3 Getting Stripe Depth

uint32 GetSupportedStripeDepths(
[Out] uint64 StripeDepths)

This method is used to report discrete UserDataStripeDepths for StorageVolume, LogicalDisk, and
StoragePool creation. Some systems may support only discrete depth byte sizes.

uint32 GetSupportStripeDepthRange(
[Out] uint64 MinimumStripeDepth,
[Out] uint64 MaximumStripeDepth,
[Out] uint64 StripeDepthDivisor

This method is used to report a range of possible UserDataStripeDepths for StorageVolume, LogicalDisk,
or StoragePool creation. Some systems may support only a range of sizes. The method reports the
continuum of discrete sizes between the minimum and maximum as defined by intervals of the devisor
(e.g., if given a min of 10 and a max of 50, the discrete values would be 20, 30, 40, and 50).

Either method may be supported. Return codes are:

• 0, “Method completed OK”, means success.

• 1, “Method not supported”

• 2, “Use [GetSupportedStripeDepths | GetSupportStripeDepthRange] instead”. This return code tells the client
that this stripe method is not supported, but the other stripe method is supported.

• 3, “Choices not available for this Capability”. Although the method may be supported by Capabilities in this
implementation, it is not supported for this Capability. Usually, this return code indicates that the stripe depth
has already been set in the parent StoragePool and may not be changed.

5.4.1.4 Getting Parity

uint32 GetSupportedParityLayouts(
[Out] ParityLayout[])

This method is used to return the type of parity, non-rotated or rotated, that the capability supports.
SNIA Technical Position 89

The RAID characteristics of the new or modified StoragePool

723

724

725

726

727

728
Return codes:

• 0, “Method completed OK” means success.

• 1, “Method not supported”

• 2. “Choice not available for this Capability.” Although the method may be supported by Capabilities in this
implementation, it is not supported for this Capability. Usually, this return code indicates that the parity has
already been set in the parent StoragePool and may not be changed.

5.4.2 Intrinsic Methods on StorageSetting

The following Intrinsic write methods are supported on StorageSetting:

• DeleteInstance

• ModifyInstance

5.4.3 Extrinsic Methods on StorageConfiguration

5.4.3.1 The RAID characteristics of the new or modified StoragePool

This design supports the implementation choice of the application of RAID striping during either the
creation or modification of a StoragePool, StorageVolume, or LogicalDisk. Generally, without the
implementation of 13 Extent Composition Profile, a client cannot determine the storage elements that are
used to represent the RAID striping without at least one StorageVolume or LogicalDisk. Even if the
component profile is supported, the client can make this determination only after each of the supported
element types are created.

Once each of the storage element types are created, the client can use the StorageExtents on which the
storage element is based to determine the RAID striping type applied. The RAID group is represented by
a CompositeStorageExtent instance.

If the ExtentStripeLength property is not supported by an implementation, this design does not provide for
interoperable behavior in the creation or modification of StoragePools, StorageVolumes, or LogicalDisks
to provide reference to member StorageExtents.

5.4.3.2 Element Naming

Several methods allow a client to 1) specify a name for the storage element that is being created or 2)
change the name of a storage element being modified.

If the implementation supports the naming of storage elements, then the ElementName property reports
the name assigned to the storage element. If the implementation creates a name even when the client
does not specify one, then this element contains that system defined name. If the implementation does
not create a name for the storage element when the client does not specify a name, then this property
should be null. If the implementation does not support the naming of elements and the client provides a
value in the ElementName parameter of one of the following methods that specify an ElementName
parameter, then the implementation shall reject the method call.

5.4.3.3 CreateOrModifyStoragePool

uint32 CreateOrModifyStoragePool(
[In] string ElementName
[Out] CIM_ConcreteJob ref Job,
[In] CIM_StorageSetting ref Goal,
[In,out] Uint64 Size,
[In] string InPools[],
[In] string InExtents[],
[Out] CIM_StoragePool ref Pool);
90

 The CreateOrModifyStoragePool method and the primordial StoragePool

729

730

731

732

733

734

735

736
737
738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762
This method is used to create a StoragePool from either a source StoragePool or a list of StorageExtents.
Any required associations (such as HostedStoragePool) are created in addition to the instance of
StoragePool. The parameters are as follows:

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter.

• Goal: This is the Service Level that the StoragePool is expected to provide. This may be a null value in which
case a default setting is used.

• Size: As an input this shall be the desired size of the StoragePool. It may be null, in which case all passed in
capacity (as specified by InExtents and InPools) shall be used to create the pool. If it is not possible to create
a StoragePool of at least the desired size, a return code of “Size not supported” shall be returned with size
set to the nearest supported size.

• InPools[]: This is an array of strings containing Object references (see 4.11.5 of DMTF DSP0200 CIM
Operations over HTTP for format) to source StoragePools.

• InExtents[]: This is an array of strings containing Object references (see 4.11.5 of DMTF DSP0200 CIM
Operations over HTTP for format) to source StorageExtents. An array of source StoragePools or an array of
source StorageExtents or both can be defined. See 5.1.15.

• TheElement: If the method completes without creating a Job, then the TheElement is the storage element
that is created. Otherwise, TheElement may or may not be Null. When the TheElement is NULL, then the
storage element created can be determined by using the Job model.

5.4.3.4 The CreateOrModifyStoragePool method and the primordial StoragePool

A client may pass a reference to a primordial StoragePool in order to be explicit in indicating from which
primordial StoragePool a concrete StoragePool needs to be created. If no StoragePool references are
passed in the creation of a StorageVolume or LogicalDisk, the implementation shall determine the parent
StoragePool based on the Goal and the Size.

A client may also pass a reference to a primordial StoragePool to express from what reserve to draw
capacity if the capacity needed is greater than the total capacity represented by the input StoragePools
and StorageExtents. Any capacity request, using the Size parameter, not satisfied by the referenced
StoragePools and StorageExtents is drawn from the primordial StoragePool referenced. If no primordial
StoragePool reference is passed and the capacity requested is greater than the referenced StoragePools
and StorageExtents, then the method shall fail with the “Size not supported” return code. The use of a
primordial StoragePool reference in this manner is not recommended, but the behavior is retained to
maintain backward compatibility. The client should align the size requested to what can be satisfied by
the concrete StoragePools and StorageExtents referenced.

A client should pass only concrete StoragePools when creating a StoragePool from several
StoragePools.

5.4.3.5 DeleteStoragePool

 uint32 DeleteStoragePool(
[Out] CIM_ConcreteJob ref Job,
[in] CIM_StoragePool ref Pool);

This method allows a client to delete a previously created StoragePool. All associations to the deleted
StoragePool are also removed as part of the action. In addition, the RemainingManagedStorage of the
associated parent primordial StoragePool will change accordingly.

NOTE This method will be denied (“Failed”) if there are any AllocatedFromStoragePool associations where the deleted
StoragePool is the Antecedent.
SNIA Technical Position 91

CreateOrModifyElementFromStoragePool

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799
800

801

802

803
804
805
806

807

808
5.4.3.6 CreateOrModifyElementFromStoragePool

 uint32 CreateOrModifyElementFromStoragePool (
[In,
string ElementName
 Values {“StorageVolume”, “StorageExtent”,
 “LogicalDisk”, “FullyProvisionedStorageVolume”},
 ValueMap{“2”,”3”, “4”, “7” }]
Uint16 ElementType;
[Out] CIM_ConcreteJob ref Job,
[In] CIM_StorageSetting ref Goal,
[In, Out] Uint64 Size,
[In] CIM_StoragePool ref InPool,
[In, Out] CIM_LogicalElement ref TheElement);

This method allows an element of a type specified by the enumeration ElementType to be created from
the input StoragePool. The parameters are:

• ElementType: This enumeration specifies what type of object to create.

The version of the standard recognizes: “2” (StorageVolume) or “4” (LogicalDisk)

If Thin provisioning is supported, then the standard also recognizes: “5” (ThinlyProvisionedStorageVolume)
or "6” (ThinlyProvisionedLogicalDisk).

With ElementType of "2" for StorageVolume, implementation decides whether the created StorageVolume
would be thinly or fully provisioned. To request a fully provisioned StorageVolume, use "7" for the
ElementType, or “8” for fully provisioned LogicalDisk.

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter. See Storage Management Technical Specification, Part 3 Common Profiles,
1.8.0 Rev 4 23 Job Control Profile.

• Goal: This is the Service Level that the element is expected to provide. The Setting shall be a subset of the
Capabilities available from the parent StoragePool. Goal may be a null value, in which case the default
Setting for the StoragePool is used.

EXPERIMENTAL

This may include setting the CompressedElement property of the Goal for requesting storage compression
or setting the disk related properties (e.g., DiskType or InterconnectType) for provisioning by disk.

EXPERIMENTAL

• Size: As an input this shall be the desired size of the element. It may be null, in which case all passed in
capacity (as specified by InPool) shall be used to create the element. If it is not possible to create an element
of at least the desired size, a return code of “Size not supported” shall be returned with size set to the nearest
supported size.

• InPool: This shall contain the reference to the source StoragePool.

• TheElement:

• As Input: If the TheElement parameter is not null, then this method shall attempt to modify the reference
element. Otherwise, this method shall attempt to create a new element.

• As Output: If the method completes without creating a Job, then the TheElement is the storage element that
is created. Otherwise, TheElement may be NULL. When the TheElement is NULL, the storage element that
is created can be determined by using the Job model.
92

 CreateOrModifyAnyElementFromStoragePool

809

810

811

812

813

814

815

816

817

818

819

820
821

822

823

824
825
826
827

828

829

830

831

832

833

834

835

836

837

838

839

840

841
842

843

844

845

846

847

848

849
EXPERIMENTAL

5.4.3.7 CreateOrModifyAnyElementFromStoragePool

uint32 CreateOrModifyAnyElementFromStoragePool (

[In,

string ElementName

Values {“StorageVolume”, “StorageExtent

“LogicalDisk”, “FullyProvisionedStorageVolume”},

ValueMap{“2”,”3”, “4”, “7” }]

Uint16 ElementType;

[Out] CIM_ConcreteJob ref Job,

[In] CIM_StorageSetting ref Goal,

[In, Out] Uint64 Size,

[In] CIM_StoragePool ref InPool,

[In, Out] CIM_LogicalElement ref TheElement,

[In] CIM_StorageExtent REF InElements[],

[In] uint16 CompositeType,

[In] uint32 NumberOfMembers);

This method is an extension of CreateOrModifyElementFromStoragePool that supports composite
typeelements. In addition to all the parameters in the same order as
CreateOrModifyElementFromStoragePool, this method requires following parameters:

• InElements[]: The elements from which to create the composite element. Any value indicates composite
volume operation. When this parameter is NULL & if Size more than supported regular volume size is
supplied or NumberOfMembers is specified then composite volume is recommended. Else regular volume
will be created. Once the elements are combined, they will be removed from the model and replaced with a
single element. For some instrumentation, this may be one of the InElements, so in effect, all but one are
removed. If a single composite volume is provided in InElements, then it is considered as dissolve request
and the composite volume will be dissolved into individual storage volumes.

• CompositeType: If specified, it indicates creation of composite volume with specified type of composite
element. Possible values are Concatenate, Stripe, Concatenate + Stripe, Vendor specific.

• NumberOfMembers: If specified, it indicates to create a composite volume with the specified number of
composite volume (meta) members. If not specified, implementation may decide the number of members if
necessary.

EXPERIMENTAL

5.4.3.8 CreateElementsFromStoragePools

 uint32 CreateElementsFromStoragePools (

 [In] string ElementNames[]

 [In] uint16 ElementType;

 [In] uint64 ElementCount,

 [Out] CIM_ConcreteJob ref Job,

 [In] CIM_SettingData ref Goal,

 [In, Out] Uint64 Size,

 [In] CIM_StoragePool REF InPools[],
SNIA Technical Position 93

CreateOrModifyElementFromElements

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884
 [Out] CIM_LogicalElement ref TheElements[]);

This method allows elements of a type specified by the enumeration ElementType to be created from the
input StoragePool. The parameters are:

• ElementNames: One or more user relevant names. The first entry is assigned to the first created element, the
second entry is assigned to the second element, and so on. If the number of entries in the ElementNames
array is not equal to the ElementCount, the method shall return an error. If ElementNames is null, system
assigns the element names.

• ElementType: This enumeration specifies what type of object to create. For example, “2” to create
StorageVolumes -- implementation decides thinly or fully provisioned, “5” to create thinly provisioned
StorageVolumes, or “7” to create fully provisioned StorageVolumes.

• ElementCount: Count of elements to create.

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter. See Storage Management Technical Specification, Part 3 Common Profiles,
1.8.0 Rev 4 23 Job Control Profile.

• Goal: This is the Service Level that the element is expected to provide. The Setting shall be a subset of the
Capabilities available from the parent StoragePool. Goal may be a null value, in which case the default
Settings for the StoragePools is used.

• Size: As an input this shall be the desired size of the element. It may be null, in which case all passed in
capacity (as specified by InElements) shall be used to create the element. If it is not possible to create an
element of at least the desired size, a return code of “Size not supported” shall be returned with size set to
the nearest supported size.

• InPools: This array contains references to the source StoragePools. If not specified, system locates the
appropriate StoragePools if the property StorageConfigurationCapabilities.AutomaticPoolSelectionAllowed is
true.

• TheElements: If the method completes without creating a Job, then the TheElements are the storage
elements that are created successfully. Otherwise, TheElements may be NULL. When the TheElements are
NULL, the storage elements that are created can be determined by using the Job model.

Notes: If a job was created, there will be AffectedJobElement associations between the Job and each
created elements. The number of the AffectedJobElement associations is the number of the elements
created successfully.

If the method completes without creating a Job, references to the created elements are returned in the
TheElements parameter. If the number of elements created is less than the number of elements
requested, the return value of the method shall be 4098.

Generally, there will be one instance creation indication for each element created. However, some
implementations may treat the entire request as one transaction and only generate one instance creation
indication for all the elements created.

5.4.3.9 CreateOrModifyElementFromElements

uint32 CreateOrModifyElementFromElements(
[In,
 Values {“Storage Volume”, “Storage Pool”,
 “Logical Disk”},
 ValueMap{”2”,”4”, “5”}]
unit16 ElementType,
[In, Out] CIM_ConcreteJob REF Job,
[In] CIM_ManagedElement REF Goal,
94

 ReturnToStoragePool

885

886

887

888

889
890
891
892
893
894
895
896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929
[In, Out] unit64 Size,
[In] CIM_StorageExtent REF InElements[],
[In, Out] CIM_LogicalElement REF TheElement);

The parameters are:

• ElementType: This enumeration specifies the type of object to create.

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter. See Storage Management Technical Specification, Part 3 Common Profiles,
1.8.0 Rev 4 23 Job Control Profile.

• Goal: This is the Service Level that the element is expected to provide. The Setting shall be a subset of the
Capabilities available from the parent StoragePool. Goal may be a null value, in which case the default
Setting for the StoragePool is used.

• Size: As an input, this is the desired size of the element. If it is not possible to create a StorageVolume of the
desired size, a return code of “Size not supported” is returned with size set to the nearest supported size.

• InElements: References to the StorageExtents to be used for the storage element creation or modification.
The referenced StorageExtents shall be ComponentExtents of a single StoragePool, a parent of new or
existing storage element. The parent StoragePool shall be a direct parent or an indirect parent, a
grandparent, of the storage element. The InElements parameter of the
CreateOrModifyElementFromElements() parameter is used to provide new StorageExtents to be used for this
storage element. Therefore, the use of the parameter in the reduction of capacity for TheElement is invalid.

• TheElement:

• As Input: If the TheElement parameter is not null, then this method shall attempt to modify the reference
element. Otherwise, this method shall attempt to create a new element.

• As Output: If the method completes without creating a Job, then the TheElement is the storage element that
is created. Otherwise, TheElement may be NULL. When the TheElement is NULL, the storage element
created can be determined by using the Job model.

5.4.3.10 ReturnToStoragePool

 uint32 ReturnToStoragePool (
[Out] CIM_ConcreteJob ref Job,
[In] CIM_LogicalElement ref TheElement);

This method allows a client to delete a previously created element such as a StorageVolume.

If TheElement is a StorageVolume and StorageVolume.CanDelete is set to false, then
ReturnToStoragePool shall fail and shall return an error code of 6 (“In Use”) or 4 ("Failed").

5.4.3.11 ReturnElementsToStoragePool

uint32 ReturnElementsToStoragePool (

 [In] uint16 Options,

 [Out] CIM_ConcreteJob ref Job,

 [In] CIM_LogicalElement ref TheElements[]);

This method allows a client to delete a previously created elements such as StorageVolumes. The
parameters are:

• Options: This enumeration specifies what should happen if non-existent element is supplied. A value of “2”
requests the method to continue to delete the remaining elements that exist. A value of “3” requests the
method to return an error. If null, the method deletes the elements that do exist (same as “2”).
SNIA Technical Position 95

RequestUsageChange

930

931

932

933
934
935

936

937

938

939
940

941

942
943
944
945
946
947
948
949
950
951
952
953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968
• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter. See Storage Management Technical Specification, Part 3 Common Profiles,
1.8.0 Rev 4 23 Job Control Profile.

• TheElements: An array containing the elements to be deleted.

5.4.3.12 RequestUsageChange

5.4.3.12.1 Overview

uint32 RequestUsageChange (
[In,
 ValueMap { "2", "3" },
 Values { "Set", "Modify \"Other\" description only"
}]
uint16 Operation,
[In] uint16 UsageValue,
[In[string OtherUsageDescription,
[Out] CIM_ConcreteJob ref Job,
[In] CIM_LogicalElement ref TheElement);

The parameters are:

• Operation: This specification defines the usage of the 2 “Set” value for the parameters, which means to set
the Usage to one of the possible usage values. This parameter is required.

• UsageValue: The usage value possible for the type of storage element, whose reference is passed to this
method. This parameter is required.

• OtherUsageDescription: Not defined this specification. This parameter is not required.

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter. See Storage Management Technical Specification, Part 3 Common Profiles,
1.8.0 Rev 4 23 Job Control Profile.

• TheElement: This requirement parameter contains a reference to the storage element whose usage is to be
changed.

If the storage element can not be changed to the requested usage because it is invalid to do so, then the
implementation shall return an invalid parameter error.

5.4.3.12.2 Return Values

Each method has this set of defined return codes:

 ValueMap {“0”, “1”, “2”, “3”, “4”, “5”, “6”, “..”, “4096”,”4097”},

 Values {“Job completed with no error”, “Not Supported”, “Unknown”,
“Timeout”,“Failed”, “Invalid Parameter”, “In Use”,
“DMTF Reserved”, “Method parameters checked - job
started”, “Size not supported”}]

Only the following return codes shall be supported:

• 0 - “Job completed with no error”
The method has completed immediately with no errors (and with no asynchronous execution required).

• 1 - “Not Supported”
This method is not supported at this time.

• 3 - “Timeout” or 4 - “Failed”
The provider has problems accessing the hardware (or other implementation-specific reasons)‘. The provider
should return a standard message communicating the nature of the value rather than returning this code.
96

 GetElementsBasedOnUsage

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004
• 5 - “Invalid Parameter”
One or more of the parameters are invalid (invalid object paths, for instance). The provider should return a
standard message, communicating which parameters are invalid and why, rather then returning this code.

• 6 - "In Use"
The storage element is used for the basis for another storage element. For example, a client request that a
StoragePool be deleted, but that StoragePool is the basis for another storage element. This return code may
also indicate that the deletion of the specified storage element is not permitted because it is being used for
another reason. This reason may be that the StoragePool on which this method is called does not permit this
action. The reason may also be that the implementation does not allow this action for proprietary reasons.

• 4096 - “Method parameters checked - job started”
The method parameters have been checked, and the method is being executed asynchronously.

• 4097 - “Size not supported”
For a Create/Modify method, the requested size is not supported. The Size parameter and the size of the
storage element is set to the nearest supported and larger size.). Only the methods that create or modify
storage elements, other than their usage, shall return this code.

A vendor shall not extend the Value map to express vendor specific error situations not catered for by the
standard messages.

5.4.3.13 GetElementsBasedOnUsage

5.4.3.13.1 Overview

uint GetElementsBasedOnUsage(
[In,
 ValueMap { "2", "3", "4", "5")
 Values { "StorageVolume","StorageExtent",
"StoragePool", "Logical Disk",}]
uint16 ElementType,
[In] uint16 Usage,
[In,
 ValueMap { "2", "3", "4" },
 Values { All","Available Only", "In Use Only" }]
uint16 Criterion,
[In] CIM_StoragePool ref ThePool,
[Out] CIM_ManagedSystemElement ref TheElements[]);

All input parameters are required. The parameters are:

• ElementType: This enumeration specifies the type of object to create.

• UsageValue: The usage value possible for the type of storage element as indicated by the ElementType
parameter.

• Criterion: Specifies whether to retrieve all elements - 2 “All”, available elements only - 3 “Available Only”, or
the elements that are in use - 4 “In Use Only”.

• ThePool: Limits the search for the elements that satisfy the criteria in this StoragePool only. If null, all
appropriate storage pools shall be included in the search.

• TheElements: Contains the array of references found to the storage element instances retrieved.

5.4.3.13.2 Return Values

This method returns the following statuses:

• 0 - “Completed with No Error”:
The method has completed immediately with no errors
SNIA Technical Position 97

General

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048
• 1 - “Not Supported”
This method is not supported at this time.

• 3 - “Timeout” or 4 - “Failed”
The provider has problems accessing the hardware (or other implementation-specific reasons)‘. The provider
should return a standard message communicating the nature of the value rather than returning this code.

• 5 - “Invalid Parameter”
One or more of the parameters are invalid (invalid object paths, for instance). The provider should return a
standard message, communicating which parameters are invalid and why, rather then returning this code.

5.4.4 Extrinsic Methods on StoragePool

5.4.4.1 General

The Extrinsic methods on StoragePool return sizes in units of bytes. These methods, each described in
this section, are:

• GetSupportedSizes

• GetSupportedSizeRange

• GetAvailableExtents

5.4.4.2 GetSupportedSizes

uint32 GetSupportedSizes(
[In] uint16 ElementType,
[In] CIM_StorageSetting ref Goal,
[Out] uint64 Sizes[]);

The parameters are:

• ElementType: This enumeration specifies what type of object to create.

• Goal: The Service Level the element is expected to provide. The setting shall be a subset of the Capabilities
available from the parent StoragePool. Goal may be a null value, in which case the default Setting for the
StoragePool shall be used by the implementation.

• Sizes: An array containing all the possible sizes of an element in a creation or modification operation.

For a given Goal, this method returns discrete possible sizes of child elements, e.g., StoragePool,
StorageVolume or LogicalDisk, that can be created or modified using capacity from the StoragePool. If
the Goal is not supplied, the default Setting for the StoragePool shall be used by the implementation. This
method is used to return the sizes of contiguous ranges of blocks of the pool that can be used individually
or in combination with other extents to create or modify storage pool or storage elements. For example,
an implementation can use this method to return the sizes of disks, imported extents, or remaining
extents that can be used in the storage assignment operation. This method is also useful if the possible
sizes do not differ by a fixed size and thus cannot be reported by the GetSupportedSizeRange method. A
summation in this case is the integer resulting from the addition any of the elements. The summations of
the possible sizes shall not be returned from this method. The implementation should return the sizes of
unassigned or remaining component extents that are appropriate for that Goal.

For example, if the returned sizes in gigabytes are {10, 15, 17, 21}, the summations include {25, 27, 31,
32, 36, 63}. It is the responsibility of the client to calculate the summations.

Any one of the returned sizes or any one of the summations of the returns shall be acceptable by the
implementation as a possible size for a supported storage assignment using the element type and goal. If
the size of unassigned or remaining storage extents is repeated in this set of storage extents, the
repetition of size shall be reflected in the sizes returned. It is necessary to duplicate sizes so that the
client can calculate the summations.
98

 GetSupportedSizeRange

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062
1063
1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081
If the implementation supports zero size StoragePools (aka an "empty" storage pool) or StorageVolumes,
the returned Sizes parameter will have an entry with the value of 0. For example, if the
GetSupportedSizes method is called with ElementType set to StoragePool, and an array of Sizes
containing [0, 20, 22, 25] is returned, it indicates it is possible to create a 0 size (i.e. an empty)
StoragePool, as well as other StoragePool sizes – namely 20, 22, and 25.

5.4.4.3 GetSupportedSizeRange

5.4.4.3.1 Overview

uint32 GetSupportedSizeRange(
[In] uint16 ElementType,
[In] CIM_StorageSetting ref Goal,
[Out] uint64 MinimumVolumeSize,
[Out] uint64 MaximumVolumeSize,
[Out] uint64 VolumeSizeDivisor);

• ElementType: This enumeration specifies what type of object to create.

• Goal: The service level the element is expected to provide. The Setting shall be a subset of the Capabilities
available from the parent StoragePool. Goal may be a null value, in which case the default Setting for the
StoragePool shall be used by the implementation.

• MinimumVolumeSize: The minimum size an element can take on either as a creation or modification operation.

• MaximumVolumeSize: The maximum size an element can take on either as a creation of modification operation

• VolumeSizeDivisor: The value used to determine sizes between MinimumVolumeSize and
MaximumVolumeSize.

This method is used to determine the possible sizes of child element, e.g., StoragePool, LogicalDisk, and
StorageVolume, that can be created or modified using capacity drawn from the StoragePool. This method
is useful when the number of possible sizes is so voluminous that reporting each discrete size would be
impractical. This method reports the continuum of discrete sizes between the minimum and maximum
size as defined by intervals of the divisor.

The range of possible values between the values reported by MinimumVolumeSize and
MaximumVolumeSize shall be defined as:

• next integer value greater than MinimumVolumeSize that is divisible by VolumeSizeDivisor

• next integer value less than MaximumVolumeSize that is divisible by VolumeSizeDivisor,

• and every integer in between these integers that is divisible by VolumeSizeDivisor.

The possible values returned from this method shall include the MinimumVolumeSize,
MaximumVolumeSize, and the range of values in between. Neither the MinimumVolumeSize nor the
MaximumVolumeSize are required to be divisible by the VolumeSizeDivisor. For example, if given a
MinimumVolumeSize of 10, a MaximumVolumeSize of 50, and VolumeSizeDivisor of 10, the possible size
values would be 10, 20, 30, 40, and 50.

A client can calculate the discrete sizes by calculating the ceiling of the MinimumVolumeSize or the floor
MaximumVolumeSize, then using one of these calculated values and the VolumeSizeDivisor to determine
the discrete possible values within the range.

For example, given

MinimumVolumeSize = 35 GB
MaximumVolumeSize = 225 GB
VolumeSizeDivisor = 10 GB
SNIA Technical Position 99

GetSupportedSizeRange

1082

1083

1084

1085

1086

1087

1088

1089

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116
1117
1118
1119
ceiling(35/10) = 4
floor(225/10) = 22

 the next possible size after the minimum, 35, is 4 * VolumeSizeDivisor, or 40 GB.
 the next possible size after that is 5 * VolumeSizeDivisor, or 50 GB.
 the next possible size before the maximum, 225, is 22 * VolumeSizeDivisor, or 220 GB.

sizes = {35, 40, 50, 60 ... 210, 220, 225}

Any one of the returned sizes shall be acceptable by the implementation as a possible size for a
supported storage assignment using the element type and goal. The result size of the storage assignment
or allocation may be greater than the size requested by the client. The result size should be greater than
or equal to the requested size. The result size should be less than the next size greater than requested
size that is divisible by the VolumeSizeDivisor.

It is not required that there be a relationship between the sizes returned from this method and the
component extent sizes of the implementation as report by implementing the Extent Composition.

Both or either method may be supported by a storage subsystem, either as a decision made at
implementation time or as a variable that depends on the state of the StoragePool. For example, when a
StoragePool is first created allowing for possible sizes to be in 1024-byte blocks, the
GetSupportedSizeRange method should be used to report possible sizes. This example StoragePool
does not relocate blocks to avoid fragmentation of the capacity. As StorageVolumes or LogicalDisks are
drawn from and returned to the StoragePool, the capacity becomes fragmented. In this case, the
GetSupportedSizes method should be used to report the non-continuous regions of capacity that may be
used for element creation. There are storage systems that can allocate the StorageVolume or LogicalDisk
only in whole disks that need not be of uniform size; such storage systems support only the
GetSupportedSizes method.

Both methods may be supported at the same time and may report different values when discontiguous
and contiguous capacity is present in the StoragePool. In this case, the GetSupportSizes method is used
to report the fragments of available capacity. The remaining contiguous capacity is reported as the
largest element size possible. The GetSupportSizeRange is used to report element sizes that may be
drawn from the contiguous capacity.

If there is no notion of continuity as being a stable state of the system, e.g., capacity is continuously and
automatically being defragmented, the GetSupportSizeRange method should be used.

If the implementation supports zero size StoragePools (aka an "empty" storage pool) or StorageVolumes,
the returned MinimumVolumeSize parameter will have the value of 0.

5.4.4.3.2 Return Values

Each method has this set of return codes:

ValueMap {"0", "1", "2"},

Values {"Method completed OK", "Method not supported", "Use <the other method
name> instead"}]

If the methods do not complete successfully, then either the methods are not supported or the other
method should be used. The GetSupportSizes method can notify the SMI-S client that it should use the
GetSupportSizeRanges instead; the GetSupportedSizeRange method can notify the SMI-S client that it
should use the GetSupportedSizes method instead.
100

 GetAvailableExtents

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

1159

1160

1161

1162
5.4.4.4 GetAvailableExtents

5.4.4.4.1 Overview

uint32 GetAvailableExtents(
[In] CIM_StorageSetting REF Goal,
[Out] CIM_StorageExtent REF AvailableExtents[]);

This method is used to retrieve the available StorageExtents—ComponentExtents of the StoragePool—
that do not form the basis for StorageVolumes and LogicalDisks allocated from the StoragePool. If a
NULL is passed for a Goal, then all the available ComponentExtents of the StoragePool are returned.

The StorageExtent references returned from this method refer to a subset of the StorageExtents
associated to the StoragePool via ConcreteComponent, AssociatedComponentExtent, and
AssociatedRemainingExtent. The StorageExtents referenced by the output of this method may not equal
the set of Component StorageExtents because of any of the following reasons:

• The excluded StorageExtents may not be used with the Goal.

• The excluded StorageExtents may not be used for vendor-specific reasons.

• The excluded StorageExtents may not be used because of a usage restriction.

To get the available StorageExtents intended for a specific use, supply the Goal with the applicable
properties set to the appropriate values -- sample properties are: StorageExtentInitialUsage,
StoragePoolInitialUsage, ThinProvisionedPoolType, etc.

 Table 25 shows possible combinations for the values that can be supplied to get the available extents for
the intended use.

Note, the returned extents may be a subclass of StorageExtent -- for example, StorageVolume.
StorageVolumes can be used to create storage pools according to the “Pools from Volumes” profile.

Table 25 - Values for applicable Goal properties

Intended Use StorageExtent
InitialUsage

StoragePool
InitialUsage

ThinProvisioned
PoolType

Note

To create (or expand) an Unrestricted
StoragePool for Fully Provisioned
StorageVolumes

NULL (or 2) 2 NULL

To create (or expand) Unrestricted
StoragePool for Thinly Provisioned
StorageVolumes

NULL (or 2) 2 7 ThinlyProvisionedAlloca
tedStoragePool

(Pools from Volumes)

To create (or expand) an Unrestricted
StoragePool for Fully Provisioned
StorageVolumes

14 2 NULL Returns available
StorageVolumes to use
to create such
StoragePool.

(Pools from Volumes)

To create (or expand) an Unrestricted
StoragePool for Thinly Provisioned
StorageVolumes

14 2 7 ThinlyProvisionedAlloca
tedStoragePool

Returns available
StorageVolumes to use
to create such
StoragePool.

(Pools from Volumes)

To create (or expand) a Delta Replica
StoragePool

19 4 NULL Returns available
StorageVolumes to use
to create such
StoragePool.
SNIA Technical Position 101

Storage Element Modification

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187
1188
1189
1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200
This method is designed as a companion for the CreateOrModifyElementFromElements method. A client
may fetch the StoragePool’s available ComponentExtents and attempt to call
CreateOrModifyElementFromElement, or the client may use this method and have the agent provide the
available StorageExtents. However, note it is possible that even though a StorageExtent may appear to
be available from the implementation’s model, the implementation may not allow the StorageExtent to be
used for vendor specific reasons.

5.4.4.4.2 Return Values

Each method has this set of defined return codes:

 ValueMap {“0”, “1”, “2”, “3”, “4”, “5”},

 Values {“Job completed with no error”, “Not Supported”, “Unknown”,
“Timeout”, “Failed”, “Invalid Parameter”}]

• 0 - “Job completed with no error”
The method completes immediately with no errors (and with no asynchronous execution required)

• 1 - “Not Supported”
The implementation does not support the method.

• 5 - “Invalid Parameter”
One of the method parameters is incorrect (for instance invalid object paths).

• 3 - “Timeout” or 4 - “Failed”
The provider had problems accessing the hardware, or there were implementation-specific problems.

5.4.4.5 Storage Element Modification

Concrete StoragePools may be expanded, shrunk, or have their quality of service (QoS) changed (the
Goal parameter) by a client.

This package does not define how primordial StoragePools are modified (if they can be modified) within a
particular implementation.

The current capacity of a StoragePool is the value of the TotalManagedSpace property.

StorageVolumes and LogicalDisks may be expanded, shrunk, or have their quality of service (QoS)
changed (the Goal parameter) by a client.

The current capacity of the StorageVolume, LogicalDisk, or StorageExtent is the ConsumableBlocks
times the BlockSize.

Storage elements are StoragePools, StorageVolumes, and LogicalDisks.

Return values are:

(Pools from Volumes)

To create (or expand) a StoragePool for
Local Replica Targets

20 6 NULL Returns available
StorageVolumes to use
to create such
StoragePool.

(Pools from Volumes)

To create (or expand) a StoragePool for
Remote Replica Targets

21 7 NULL Returns available
StorageVolumes to use
to create such
StoragePool.

Table 25 - Values for applicable Goal properties

Intended Use StorageExtent
InitialUsage

StoragePool
InitialUsage

ThinProvisioned
PoolType

Note
102

 Storage Element Modification

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221
1222
1223
1224
1225
1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245
• 5 "StoragePool QoS Change,” 6 "StoragePool Capacity Expansion,” 7 "StoragePool Capacity Reduction"

Within SupportedStoragePoolFeatures array within the StorageConfigurationCapabilities instance, indicates
the types of StoragePool modification allowed.

• 11 "Storage Element QoS Change, 12 "Storage Element Capacity Expansion", and 13 "Storage Element
Capacity Reduction"

Within the SupportedStorageElementFeatures array within the StorageConfigurationCapabilities instance,
indicates the types of StorageVolume and LogicalDisk modifications allowed.

An implementation may support one or more of these options. If the implementation supports capacity
expansion or capacity reduction options and the QoS change option, then it shall support the capacity
change and the QoS change simultaneously in the modification of a given storage element.

A client can determine the resultant usable capacity to which a storage element may be changed by using
the GetSupportedSizes() and GetSupportedSizeRange() methods on the parent StoragePool. These
methods provide the possible storage capacity for new storage elements and for the modification of
existing storage elements given a QoS goal. To obtain a size to use for storage element modification, the
client simply select a size returned from the GetSupportedSizes() method or a size within the range
returned from GetSupportedSizeRange() method.

Generally, the attempted StoragePool modification shall be characterized as a storage capacity
expansion if the new capacity (the Size parameter) is greater than the current value of the
TotalManagedSpace property of the StoragePool to be modified. Likewise, the attempted StoragePool
modification shall be characterized as a storage capacity reduction if the desired new capacity (the Size
parameter) is less than the current value of the TotalManagedSpace property of the StoragePool to be
modified.

Generally, the attempted StorageVolume or LogicalDisk modification shall be characterized as a storage
capacity expansion if the new capacity (the Size parameter) is greater than its current capacity. Likewise,
the attempted StorageVolume or LogicalDisk modification shall be characterized as a storage capacity
reduction if the desired new capacity (the Size parameter) is less than its current capacity.

A storage element may also be modified by providing the references to component StorageExtents. The
list candidate component StorageExtents shall be provided through the execution of the
GetAvailableExtents() method on the parent StoragePool. For example, the SMI-S Client determines
which StorageExtents to use from the returned list based on their performance characteristics or their
relationship to network ports or primordial storage.

A StoragePool's capacity may be expandable by providing the references to existing component
StorageExtents of the StoragePool and additional references to component StorageExtents. A
StoragePool's capacity may be reducible by providing references to some, but not all, of the current
component StorageExtents of the StoragePool. If the summary of the capacity of the referenced input
StorageExtents is greater than the TotalManagedSpace of the StoragePool, then this action shall be
characterized as a capacity expansion. If this summary is less than the TotalManagedSpace of the
StoragePool, then this action shall be characterized as capacity reduction.

A StorageVolume's or LogicalDisk's capacity may be expandable by providing references to additional
component StorageExtents of the parent StoragePool. The capacity of a StorageVolume or LogicalDisk
shall not be reducible by providing references to StorageExtents.

The capacity of storage elements that have only one member StorageExtent can only be reduced by
passing a reference to the existing member and specifying a capacity, using the Size parameter, that is
smaller than the current size of the storage element.

The specified Size parameter (in bytes), along with the specification of member StorageExtents, indicates
how much of the provided StorageExtents is to be used for the storage element. The specified size
SNIA Technical Position 103

GetElementNameCapabilities

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290
represents the desired consumable capacity of the storage element. The capacity of the StorageExtent
may be equal to either the capacity drawn in its creation from a parent StorageExtent or StoragePool or to
the capacity that may be drawn from it in the creation of a dependent storage element. No direct
comparison may be made by the client between the desired capacity and the capacity of the
StorageExtents.

If the capacity desired is equal to the capacity of the storage element and the QoS is not altered, then the
implementation shall return no error and start no job.

If the capacity requested is larger than is consumable given a QoS (new or existing) from the referenced
StorageExtents or StoragePools, then that capacity shall be drawn from the parent primordial
StoragePool. The effect of passing a capacity less than the current capacity of the storage element shall
be to make available or free the capacity in the member StorageExtents to the difference between the
current capacity of the storage element and the new capacity of the storage element. The amount of
capacity freed depends on the virtualization (e.g., RAID method) employed in the previous configuration
of the storage element. An invalid parameter error shall be produced if the capacity in bytes passed is
less than the current capacity but greater than then the capacity realizable from the StorageExtents
referenced given a QoS. The size of a StorageExtent is the NumberOfBlocks times the BlockSize. The
capacity of the StorageExtents references can be calculated; it is the sum of the sizes of all
StorageExtents.

The number of StorageExtents desired, including existing and additional StorageExtents, for a
StorageElement minus the PackageRedundancy shall be equal to the ExtentStripeLength times the
DataRedundancy specified in the existing QoS goal. 13 Extent Composition Profile defines how to
determine the number of primordial StorageExtents used.

The quality of service (QoS) of a storage element may be modified. Generally, a QoS change indicates a
reorganization of computing resources to meet the new requirements—either additional or fewer
computing resources are used.

If the QoS is being modified, then clients may not be able to determine if desired size of the storage
element constitutes an expansion or reduction, as specified previously. Such a modification shall be non-
destructive to the data stored.

The QoS of a StoragePool shall not be changeable if that StoragePool has children storage elements.
However, the package redundancy of parental StoragePools may be changed by changing the number of
spare StorageExtents. See 11 Disk Sparing Profile.

In the totality of this design, a SMI-S Client may change one of the following:

• The QoS,

• The Size (capacity)

• The Size and the member StorageExtents

• Only the member StorageExtents.

A SMI-S Client may not change the QoS and the member StorageExtents. There is no mechanism for a
SMI-S Client to determine the quorum of StorageExtents for a given QoS if ExtentStripeLength is not
provided.

5.4.5 Extrinsic Methods on StorageConfigurationCapabilities

5.4.5.1 GetElementNameCapabilities

This method indicates if ElementName can be specified as a part of invoking an appropriate method of
StorageConfigurationService to create a new element. Additionally, the returned data includes the
methods that can be used to modify the ElementName of existing storage elements.
104

 GetElementNameCapabilities

1291

1292

1293

1294
1295

1296

1297

1298

1299

1300

1301
1302
1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320
 uint32 GetElementNameCapabilities(

 [IN,

 ValueMap { "2", "3", "4", "5", "6", "7", "..", "0x8000.." },

 Values { "StorageVolume", "StorageExtent",

 "LogicalDisk", "ThinlyProvisionedStorageVolume",

 "ThinlyProvisionedLogicalDisk", StoragePool",

 "DMTF Reserved", "Vendor Specific" }]

 uint16 ElementType,

 [IN] CIM_ManagedElement REF Goal,

 [IN] CIM_StoragePool REF InPool,

 [OUT,

 ValueMap { "2", "3", "4", "5", "..", "32768..65535" },

 Values { "ElementName can be supplied during creation",

 "ElementName can be modified with InvokeMethod",

 "ElementName can be modified with ModifyInstance",

 "ElementName can be modified with SetProperty",

 "DMTF Reserved", "Vendor Specific" }]

 uint16 SupportedFeatures[],

 [OUT] uint16 MaxElementNameLen,

 [OUT] string ElementNameMask);

The parameters are:

• ElementType: (required) This enumeration specifies the type of object.

• Goal: This optional parameter is a reference to an instance of the StorageSetting class. The StorageSetting
properties such as StorageExtentInitialUsage, StoragePoolInitialUsage, and ThinProvisionedPoolType
provide additional information (subtype) about the ElementType -- for example, elements reserved as “Delta
Replica Target” or storage pools to be used as “ThinlyProvisionedAllocatedStoragePool”. If the Goal is not
supplied, the returned naming convention applies to any nameable ElementType supported by the
implementation.

• InPool: This optional parameter is a reference to the storage pool where the element is intended to be
allocated from. If the InPool is not supplied, the returned naming convention does not account for the pool
that is used to allocate space for the Element.

• SupportedFeatures: This OUT parameter is an array indicating what methods can accept the element name
for creation or modification of a storage element. For example, the value of "ElementName can be supplied
during creation" indicates the method such as CreateOrModifyElementFromStoragePool accepts the
ElementName when creating a new StorageVolume. An empty array indicates ElementNaming for
ElementType is not supported.

• MaxElementNameLen: This OUT parameter specifies the maximum supported ElementName length.

• ElementNameMask: This OUT parameter expresses the restrictions on ElementName. The mask is
expressed as a regular expression. See DMTF standard ABNF with the Management Profile Specification
Usage Guide, Annex C for the regular expression syntax permitted. Since the ElementNameMask can
describe the maximum length of the ElementName, any length defined in the regexp is in addition to the
restriction defined in MaxElementNameLen (causing the smaller value to be the maximum length). If NULL, it
indicates no restrictions on the ElementName.

NOTE The Goal and InPool parameters refer to the same references that will be supplied to the methods such as
CreateOrModifyElementFromStoragePool, CreateOrModifyStoragePool, etc.
SNIA Technical Position 105

GetElementNameCapabilities

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330
1331

1332

1333

1334

1335

1336

1337

1338

1339
NOTE The returned data is based on the ElementType and the supplied Goal and/or the InPool parameters. If the Goal is not
supplied, the returned naming convention applies to any nameable ElementType supported by the implementation. If the InPool is
not supplied, the returned naming convention does not account for the pool that is used to allocate space for the Element.

The method returns the following statuses:

• 0 - “Completed with No Error”:
The method has completed immediately with no errors

• 1 - “Not Supported”
This method is not supported at this time.

• 3 - “Timeout” or 4 - “Failed”

• 5 - “Invalid Parameter”
One or more of the parameters are invalid (invalid object paths, for instance).

5.5 Use Cases

5.5.1 Representative Instance Diagram

Figure 17 shows the classes and associations needed to model a single StoragePool with two
StorageVolumes.

Figure 17 - Representative Block Service Instance Diagram

SystemDevice

Single controller

ComputerSystem

Pool owned by one controller,
redundant access through the
other

StoragePool

HostedStoragePool

AllocatedFromStoragePool

Current state of volume

StorageSetting

Element
Setting

Element
Capabilities

Optional extension to publish
'hints' from the client for
 optimization

StorageSettingWithHints

SystemDevice

HostedService

ElementCapabilities

Describes range of
capabilities of the Service

StorageCapabilities

Element
Setting

AllocatedFromStoragePool

Describes range of
capabilities of the Pool

StorageCapabilities

StorageConfigurationService

LUN

StorageVolume

StorageVolume

LUN
106

 GetElementNameCapabilities

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382
5.5.2 Goals and Settings

A implementation may persist the properties of the Setting as they were when the Setting was used to
perform a configuration operation. However, the implementation may also construct the Setting given the
current quality of service provided. An implementation of this package should retain the properties of the
Setting as they were when the Setting was used as a Goal. For example, a client requests a package
redundancy 2, the implementation is restarted and therefore cannot retrieve; the implementation sets this
value to the current value of 1. Unless the client maintained the state of Setting as well, it will not be able
to detect the difference between the initial Setting state and the current state for package redundancy, in
the StorageVolume or LogicalDisk, for example.

If a client specifies a goal asking for no single point of failure, the implementation shall return an error if
the system is not capable of supporting that goal. However, if a client specifies that single points of failure
are allowed, the implementation may return storage that has potential single points of failure or it may
return storage that has no single points of failure. In other words, the system may return a storage that is
more capable than what the client has asked for.

A client may request more data redundancy and package redundancy than what is required for the
particular RAID level. An implementation may provide more of these redundancies than is required for its
RAID levels. If allowed, the client request of additional data redundancy indicates that additional copies
of the data are requested. If allowed, the client request of additional package redundancy results in
additional drives, for example, being assigned to this storage element. The redundant package may be
overassigned (e.g., assigned as extra packages for more than one storage element), or it may be
dedicated. See 11 Disk Sparing Profile for details on modeling the sparing functionality itself. In other
words, these Goal properties can be used to assign additional copies of the data and redundancy at
creation or modification time of a StoragePool, StorageVolume, or LogicalDisk.

5.5.3 Representative StoragePool Creation Example

Figure 18 shows the initial state of the block storage system, a single primordial StoragePool that
advertises its capabilities. The GetSupportedSizes() and GetSupportedSizeRange() methods determine
what sizes of StoragePools can be created from the primordial StoragePool, given a goal StorageSetting.
Alternatively, if the StoragePool is to be created from StorageExtents, GetAvailableExtents() obtains a
list of available ComponentExtents of the StoragePool that also match the Goal.

Figure 18 - StoragePool Creation - Initial State

ComputerSystem

dedicated[x]

StorageCapabilities

CreateSetting()

ElementCapabilities

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

HostedService

HostedPool

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()
SNIA Technical Position 107

GetElementNameCapabilities

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429
Next, (Figure 19: "StoragePool Creation - Step 1") the client uses the CreateSetting method on the
StorageCapabilities instance to create an instance of a StorageSetting. This Setting object can be altered
as desired. If the block storage system supports StorageSettingWithHints, an instance of this subclass is
created rather than the StorageSetting superclass. Alternatively, the client can use one of the predefined
StorageSetting instances. Pre-existing Settings can be located by using the
StorageSettingsAssociatedToCapabilities association for factory or pre-defined settings or by using the
StorageSettingsGeneratedFromCapabilities class, where the StorageSetting.ChangeableType = “2”
(“Changeable - Persistent”); these Settings have been generated but were modified to persist.

Once this generated Setting has been altered as required or, alternatively, a pre-defined Setting used,
the Goal Setting is passed as an argument to the CreateOrModifyStoragePool method in the
StorageConfigurationService. (Shown in Figure 20: "StoragePool Creation - Step 2").

Figure 19 - StoragePool Creation - Step 1

Figure 20 - StoragePool Creation - Step 2

ComputerSystem

dedicated[x]

ElementCapabilities

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

HostedService

HostedPool

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

FixedSetting:
StorageSetting

StorageSettingsAssociatedToCapabilities

StorageCapabilities

CreateSetting()

ComputerSystem

dedicated[x]

StorageCapabilities

CreateSetting()

ElementCapabilities

StorageConfigurationService

CreateOrModifyStoragePool(NewSetting | FixedSetting)
CreateOrModifyElementFromElements(NewSetting | FixedSetting)

HostedService

NewSetting:
StorageSetting

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

HostedPool

StorageSettingGeneratedFromCapabilities

FixedSetting:
StorageSetting

StorageSettingAssociatedToCapabilities
108

 GetElementNameCapabilities

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469
Alternatively, the client can create the StoragePool by passing the Goal, the desired ComponentExtents,
and a “Pool” ElementType to CreateOrModifyElementFromElement. If a Size is passed as well, the size
shall be equal to or less than the consumable size (in blocks) of the desired ComponentExtents. The list
of available StorageExtents is best retrieved using the GetAvailableExtents() method. If the Size is less
than the desired StorageExtents by less than the smallest StorageExtent passed, then one of the
StorageExtents is partitioned into used and free parts. See 5.1.15.

The StoragePool is then created, as shown in Figure 21: "StoragePool Creation - Step 3". If the
generated Setting was used as the Goal, then this temporary StorageSetting is replaced with an
equivalent object linked to the new StoragePool with ElementCapabilities. .

5.5.4 Representative example of StorageVolume or LogicalDisk Creation

Similarly to StoragePools, a client chooses a suitable source StoragePool by referencing the
StorageCapabilities objects and using the GetSupportedSizes() and GetSupportSizeRange() methods,
given a goal Setting. Alternatively, a client can retrieve the available ComponentExtents of the
StoragePool, given a goal StorageSetting, with the GetAvailableExtents() methods. The client may create
a StorageVolume or LogicalDisk by specifying a size, source StorageExtents, or a combination, as shown
in Figure 22: "StorageVolume Creation - Initial State".

Figure 21 - StoragePool Creation - Step 3

ComputerSystem

dedicated[x]

StorageCapabilities

CreateSetting()

ElementCapabilities

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

HostedService

NewPool:
StoragePool ElementCapabilities

NewCapability:
StorageCapabilities

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvaillableExtents()

HostedPool

AllocatedFromStoragePool
SNIA Technical Position 109

GetElementNameCapabilities

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499
Once a suitable StoragePool is found, a StorageSetting instance can be created using the CreateSetting
method on the StorageCapabilities object. See Figure 23: "StorageVolume Creation - Step 1". If a
suitable StorageSetting already exists, it can be used instead. Pre-existing Settings can be located by
using the StorageSettingsAssociatedToCapabilities association, for factory or pre-defined settings, or by
using the StorageSettingsGeneratedFromCapabilities where the StorageSetting.ChageableType = “2”
(“Changeable - Persistent”); these Settings have been generated but were modified to persist, as
illustrated in Figure 23: "StorageVolume Creation - Step 1". Another Setting already associated to a
storage element can be used as a goal, but it shall not be modifiable.

If a new Setting is created, it is linked back to the originating StorageCapabilities object until it is used as
an argument in a StorageConfiguration method. See Figure 24: "StorageVolume Creation - Step 2".
Alternatively, the client can create the StorageVolume or LogicalDisk, for example, by passing the Goal,
the desired ComponentExtents, and a ElementType to CreateOrModifyElementFromElement. If a Size is
passed as well, the size shall be equal to or less than the consumable size (in blocks) of the desired
ComponentExtents. The list of available StorageExtents is best retrieved using the GetAvailableExtents()

Figure 22 - StorageVolume Creation - Initial State

Figure 23 - StorageVolume Creation - Step 1

ComputerSystem

dedicated[x]

StorageConfigurationService

CreateOrModifyElementFromStoragePool()
CreateOrModifyElementFromElements()

HostedService

StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

HostedPool

ElementCapabilities
StorageCapabilities

CreateSetting()

HostedService

FixedSetting:
StorageSetting

StorageCapabilities

CreateSetting()

StorageConfigurationService

CreateOrModifyElementFromStoragePool()
CreateOrModifyElementFromElements()

StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

ComputerSystem

dedicated[x]

HostedPool

ElementCapabilities

StorageSettingAssociatedToCapabilities
110

 GetElementNameCapabilities

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514
method. If the Size is less than the desired StorageExtents by a size less than smallest StorageExtent
passed, then one of the StorageExtents is partitioned into used and free parts. See 5.1.15.

Once the StorageVolume has been created, the new or existing Setting is associated to the new storage
element using the ElementSettingData association. The new Setting and the Goal setting may not be the
very same instance. The client cannot assume that the instances are the same instance. See Figure 25:
"StorageVolume Creation - Step 3".

Figure 24 - StorageVolume Creation - Step 2

ComputerSystem

dedicated[x]

StorageConfigurationService

CreateOrModifyElementFromStoragePool(NewSetting | FixedSetting)
CreateOrModifyElementFromElements(NewSetting | FixedSetting)

HostedService

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

StoragePool

HostedPool

ElementCapabilities

StorageCapabilities

CreateSetting()

NewSetting:
StorageSetting

StorageSettingsGeneratedFromCapabilities

FixedSetting:
StorageSetting

StorageSettingsAssociatedToCapabilities
SNIA Technical Position 111

GetElementNameCapabilities

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541
5.6 CIM Elements

5.6.1 Element Summary

Table 26 describes the CIM elements for Block Services.

Figure 25 - StorageVolume Creation - Step 3

Table 26 - CIM Elements for Block Services

Element Name Requirement Description

5.6.2 CIM_AllocatedFromStoragePool (Pool from Pool) Mandatory AllocatedFromStoragePool.

5.6.3 CIM_AllocatedFromStoragePool (Volume or
LogicalDisk from Pool)

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from
Storage Virtualizer - StorageVolume is mandatory
or Referenced from Host Hardware RAID Controller
- StorageVolume is mandatory.
AllocatedFromStoragePool.

5.6.4 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to StorageVolume or
LogicalDisk)

Optional Expressed the ability for the element to be named
or have its state changed.

5.6.5 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to StoragePool)

Optional Expressed the ability for the element to be named
or have its state changed.

5.6.6 CIM_ElementCapabilities
(ImplementationCapabilities to System)

Optional Experimental. Associates the conformant Array
ComputerSystem to the
CIM_ImplementationCapabilities supported by the
implementation.

ComputerSystem

dedicated[x]

StorageConfigurationService

CreateOrModifyElementFromStoragePool()
CreateOrModifyElementFromElements()

HostedService

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()
GetAvailableExtents()

HostedPool

ElementCapabilities
StorageCapabilities

CreateSetting()

NewSetting:
StorageSetting

NewVolume:
StorageVolume

AllocatedFromStoragePool

ElementSettingData
112

 GetElementNameCapabilities

1542

1543

1544

1545
5.6.7 CIM_ElementCapabilities (StorageCapabilities to
StorageConfigurationService)

Optional Associates StorageCapabilities with
StorageConfigurationService. This
StorageCapabilities shall represent the capabilities
of the entire implementation.

5.6.8 CIM_ElementCapabilities (StorageCapabilities to
StoragePool)

Mandatory Associates StorageCapabilities with StoragePool.
This StorageCapabilities shall represent the
capabilities of the StoragePool to which it is
associated.

5.6.9 CIM_ElementCapabilities
(StorageConfigurationCapabilities to
StorageConfigurationService)

Mandatory Associates StorageConfigurationCapabilities with
StorageConfigurationService.

5.6.10 CIM_ElementCapabilities
(StorageConfigurationCapabilities to concrete
StoragePool)

Optional Associates StorageConfigurationCapabilities with
StoragePool.

5.6.11 CIM_ElementCapabilities
(StorageConfigurationCapabilities to primordial
StoragePool)

Optional Associates StorageConfigurationCapabilities with
StoragePool.

5.6.12 CIM_ElementCapabilities (Used to declare the
naming capabilities of the StoragePool)

Optional Deprecated. Associates
EnabledLogicalElementCapabilities with
StorageConfigurationService.

5.6.13 CIM_ElementCapabilities (Used to declare the
naming capabilities of the StorageVolume or LogicalDisk)

Optional Associates EnabledLogicalElementCapabilities
with StorageConfigurationService.

5.6.14 CIM_ElementSettingData Mandatory

5.6.15 CIM_EnabledLogicalElementCapabilities (For
StorageConfigurationService)

Optional Deprecated. This class is used to express the
naming and possible requested state change
possibilities for storage elements.

5.6.16 CIM_EnabledLogicalElementCapabilities (For
StoragePool)

Optional This class is used to express the naming and
possible requested state change possibilities for
storage pools.

5.6.17 CIM_HostedService Conditional Conditional requirement: Support for
StorageConfigurationService.

5.6.18 CIM_HostedStoragePool Mandatory

5.6.19 CIM_ImplementationCapabilities
(ImplementationCapabilities)

Optional Experimental. The capabilities of the profile
implementation.

5.6.20 CIM_LogicalDisk Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. A
LogicalDisk is allocated from a concrete
StoragePool.

5.6.21 CIM_OwningJobElement Conditional Conditional requirement: Support for Job Control
profile.

5.6.22 CIM_StorageCapabilities Mandatory

5.6.23 CIM_StorageConfigurationCapabilities (Concrete) Conditional Conditional requirement: Support for the Storage
Relocation profile.

5.6.24 CIM_StorageConfigurationCapabilities (Global) Conditional Conditional requirement: Support for
StorageConfigurationService.

5.6.25 CIM_StorageConfigurationCapabilities (Primordial) Conditional Conditional requirement: Support for the Storage
Relocation profile.

Table 26 - CIM Elements for Block Services

Element Name Requirement Description
SNIA Technical Position 113

GetElementNameCapabilities

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561
5.6.26 CIM_StorageConfigurationService Optional

5.6.27 CIM_StoragePool (Concrete) Mandatory The concrete StoragePool. A concrete StoragePool
shall be allocated from another StoragePool. It shall
be used for allocating StorageVolumes and
LogicalDisks as well as other concrete
StoragePools.

5.6.28 CIM_StoragePool (Empty) Optional An empty StoragePool is a special case of a
StoragePool (Concrete or Primordial) where the
StoragePool contains no capacity.

5.6.29 CIM_StoragePool (Primordial) Mandatory The primordial StoragePool. It is created by the
provider and cannot be deleted or modified. It
cannot be used to allocate any storage element
other than concrete StoragePools.

5.6.30 CIM_StorageSetting Mandatory

5.6.31 CIM_StorageSettingWithHints Optional

5.6.32 CIM_StorageSettingsAssociatedToCapabilities Optional This class associates the StorageCapabilities with
the preset setting. Any StorageSetting instance
associated with this association shall work,
unmodified, to create a storage element. The
preset settings should not change overtime and
represent possible settings for storage elements
are set of design time rather than runtime. All
StorageSetting instances linked with this
association shall have a ChangeableType of "0"
("Fixed - Not Changeable").

5.6.33 CIM_StorageSettingsGeneratedFromCapabilities Conditional Conditional requirement: Support for
StorageConfigurationService. This class associates
the StorageCapabilities with the StorageSetting
generated from it via the CreateSetting method.
StorageSettings instances generated in this
manner, as identified with this association, may be
removed from the model at any time by the
implementation if the ChangeableType of the
associated setting is set to "2" ("Changeable -
Transient"). All StorageSettings associated with this
class shall be changeable, ChangeableType is "2"
or "3". Some implementations may permit the
modification of the ChangeableType property itself
on StorageSetting instances associated via this
class. Provided this is allowed, a client may change
the ChangeableType to "3" ("Changeable -
Persistent") to have this setting retained either after
generation of the instance or after its modification
by the client. The DefaultSetting property of the
StorageSetting instances linked with this
association is meaningless.

Table 26 - CIM Elements for Block Services

Element Name Requirement Description
114

 GetElementNameCapabilities

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572
5.6.34 CIM_StorageVolume Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from
Storage Virtualizer - StorageVolume is mandatory
or Referenced from Host Hardware RAID Controller
- StorageVolume is mandatory. Representation of a
virtual disk (for SCSI, a logical unit). A
StorageVolume is allocated from a concrete
StoragePool. See the "Standard Formats for
Logical Unit Names" section in the Storage
Management Technical Specification, Part 2
Common Architecture, 1.8.0 Rev 4 for details on
how to set Name, NameFormat, and
NameNamespace properties.

5.6.35 CIM_SystemDevice (System to StorageVolume or
LogicalDisk)

Mandatory Associates top level system from Array, Virtualizer,
to StorageVolume or LogicalDisk.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Creation/Deletion of StoragePool.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Deletion of StoragePool.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from
Storage Virtualizer - StorageVolume is mandatory
or Referenced from Host Hardware RAID Controller
- StorageVolume is mandatory. Creation of
StorageVolume, if the StorageVolume storage
element is implemented.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from
Storage Virtualizer - StorageVolume is mandatory
or Referenced from Host Hardware RAID Controller
- StorageVolume is mandatory. Deletion of
StorageVolume, if the StorageVolume storage
element is implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::OperationalStatus
<>
PreviousInstance.CIM_StorageVolume::OperationalStatu
s

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from
Storage Virtualizer - StorageVolume is mandatory
or Referenced from Host Hardware RAID Controller
- StorageVolume is mandatory. CQL -Change of
status of a Storage Volume, if Storage Volume is
implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::ElementName <>
PreviousInstance.CIM_StorageVolume::ElementName

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from
Storage Virtualizer - StorageVolume is mandatory
or Referenced from Host Hardware RAID Controller
- StorageVolume is mandatory. CQL -Change of
ElementName of a Storage Volume, if Storage
Volume is implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::NumberOfBlocks
<>
PreviousInstance.CIM_StorageVolume::NumberOfBlocks

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from
Storage Virtualizer - StorageVolume is mandatory
or Referenced from Host Hardware RAID Controller
- StorageVolume is mandatory. CQL -Change of
NumberOfBlocks of a Storage Volume, if Storage
Volume is implemented.

Table 26 - CIM Elements for Block Services

Element Name Requirement Description
SNIA Technical Position 115

GetElementNameCapabilities

1573

1574

1575

1576

1577

1578

1579

1580

1581
5.6.2 CIM_AllocatedFromStoragePool (Pool from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. Creation
of LogicalDisk, if the LogicalDisk storage element is
implemented.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. Deletion
of LogicalDisk, if the LogicalDisk storage element is
implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::OperationalStatus <>
PreviousInstance.CIM_LogicalDisk::OperationalStatus

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. CQL -
Change of status of LogicalDisk, if LogicalDisk is
implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StoragePool AND
SourceInstance.CIM_StoragePool::TotalManagedSpace
<>
PreviousInstance.CIM_StoragePool::TotalManagedSpace

Mandatory CQL -Change of TotalManagedSpace.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StoragePool AND
SourceInstance.CIM_StoragePool::ElementName <>
PreviousInstance.CIM_StoragePool::ElementName

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from
Storage Virtualizer - StorageVolume is mandatory
or Referenced from Host Hardware RAID Controller
- StorageVolume is mandatory. CQL -Change of
ElementName of a Storage Pool, if Storage Pool is
implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StoragePool AND
SourceInstance.CIM_StoragePool::RemainingManagedS
pace <>
PreviousInstance.CIM_StoragePool::RemainingManaged
Space

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from
Storage Virtualizer - StorageVolume is mandatory
or Referenced from Host Hardware RAID Controller
- StorageVolume is mandatory. CQL -Change of
RemainingManagedSpace of a Storage Pool, if
Storage Pool is implemented.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM28'

Mandatory Experimental. Indication that capacity is running
low.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM29'

Mandatory Experimental. Indication that capacity is has run
out.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM30'

Mandatory Experimental. Indication that capacity condition has
been cleared.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = ‘SNIA’ AND MessageID=’DRM38’

Mandatory Experimental. A LogicalDisk has degraded.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = ‘SNIA’ AND MessageID=’DRM39’

Mandatory Experimental. A LogicalDisk has failed.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = ‘SNIA’ AND MessageID=’DRM40’

Mandatory Experimental. A LogicalDisk has returned to normal
service.

Table 26 - CIM Elements for Block Services

Element Name Requirement Description
116

 GetElementNameCapabilities

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599
Table 27 describes class CIM_AllocatedFromStoragePool (Pool from Pool).

5.6.3 CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced from Host Hardware RAID Controller -
StorageVolume is mandatory.

Table 28 describes class CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool).

5.6.4 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or Logi-
calDisk)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 29 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageVolume or LogicalDisk).

5.6.5 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool)

Created By: Static

Modified By: Static

Table 27 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory Antecedent references the parent pool from
which the dependent pool is allocated.

Dependent Mandatory

Table 28 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or LogicalDisk
from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory

Dependent Mandatory

Table 29 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StorageVolume or LogicalDisk)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory A Storage Volume or Logical Disk.
SNIA Technical Position 117

GetElementNameCapabilities

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640
1641
Deleted By: Static

Requirement: Optional

Table 30 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool).

5.6.6 CIM_ElementCapabilities (ImplementationCapabilities to System)

Experimental. Associates the conformant Array ComputerSystem to the CIM_ImplementationCapabilities
supported by the implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 31 describes class CIM_ElementCapabilities (ImplementationCapabilities to System).

5.6.7 CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 32 describes class CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService).

Table 30 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object
(CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StoragePool Enabled Capabilities" that is
associated with a storage pool.

ManagedElement Mandatory A reference to an instance of a StoragePool.

Table 31 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to
System)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The ImplementationCapabilities.

ManagedElement Mandatory The conformant Array ComputerSystem that has
ImplementationCapabilities.

Table 32 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
ageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.
118

 GetElementNameCapabilities

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686
5.6.8 CIM_ElementCapabilities (StorageCapabilities to StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 33 describes class CIM_ElementCapabilities (StorageCapabilities to StoragePool).

5.6.9 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 34 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to
StorageConfigurationService).

5.6.10 CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 35 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete
StoragePool).

Table 33 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
agePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 34 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabil-
ities to StorageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 35 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabil-
ities to concrete StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.
SNIA Technical Position 119

GetElementNameCapabilities

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732
5.6.11 CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 36 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial
StoragePool).

5.6.12 CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool)

Deprecated. Associates EnabledLogicalElementCapabilities with StorageConfigurationService. This is for
identifying the capability to provide an element name for storage pools.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 37 describes class CIM_ElementCapabilities (Used to declare the naming capabilities of the
StoragePool).

5.6.13 CIM_ElementCapabilities (Used to declare the naming capabilities of the StorageVolume or
LogicalDisk)

Associates EnabledLogicalElementCapabilities with StorageConfigurationService. This is for identifying
the capability to provide an element name for storage volumes or logical disks.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 36 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabil-
ities to primordial StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 37 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming
capabilities of the StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object (CIM_EnabledLogicalElementCapabilities)
with an ElementName of "StoragePool Enabled Capabilities" that
is associated with an instance of StorageConfigurationService.

ManagedElement Mandatory A reference to an instance of CIM_StorageConfigurationService.
120

 GetElementNameCapabilities

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776
Table 38 describes class CIM_ElementCapabilities (Used to declare the naming capabilities of the
StorageVolume or LogicalDisk).

5.6.14 CIM_ElementSettingData

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 39 describes class CIM_ElementSettingData.

5.6.15 CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService)

Deprecated.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 38 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming
capabilities of the StorageVolume or LogicalDisk)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object (CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StorageVolume Enabled Capabilities" or "LogicalDisk
Enabled Capabilities" that is associated with an instance of
StorageConfigurationService.

ManagedElement Mandatory A reference to an instance of CIM_StorageConfigurationService.

Table 39 - SMI Referenced Properties/Methods for CIM_ElementSettingData

Properties Flags Requirement Description & Notes

IsDefault Mandatory An enumerated integer indicating that the referenced setting is a default
setting for the element, or that this information is unknown. Value shall be
0,1 or 2 (Unknown or Is Default or Is Not Default).

IsCurrent Mandatory An enumerated integer indicating that the referenced setting is currently
being used in the operation of the element, or that this information is
unknown. Value shall be 0,1 or 2 (Unknown or Is Default or Is Not Default).

ManagedElement Mandatory StorageVolume or LogicalDisk.

SettingData Mandatory The StorageSetting or StorageSettingWithHints that is associated with the
Storage Volume or Logical Disk.
SNIA Technical Position 121

GetElementNameCapabilities

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821
Table 40 describes class CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService).

5.6.16 CIM_EnabledLogicalElementCapabilities (For StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 41 describes class CIM_EnabledLogicalElementCapabilities (For StoragePool).

5.6.17 CIM_HostedService

Created By: Static

Table 40 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
ConfigurationService)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For this usage of the capabilities this should include one of the
following three values:

StoragePool Enabled Capabilities

StorageVolume Enabled Capabilities

LogicalDisk Enabled Capabilities.

ElementNameEditSupported Mandatory Denotes whether a storage element can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See
MOF for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and
format for the element name. See MOF for details.

RequestedStatesSupported Optional Expresses the states to which this element may be changed using
the RequestStateChange method. If this property, it may be
assumed that the state may not be changed.

Table 41 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
Pool)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For this usage of the capabilities this should be 'StoragePool
Enabled Capabilities'.

ElementNameEditSupported Mandatory Denotes whether a storage element can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See
MOF for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and
format for the element name. See MOF for details.

RequestedStatesSupported Optional Expresses the states to which this element may be changed using
the RequestStateChange method. If this property, it may be
assumed that the state may not be changed.
122

 GetElementNameCapabilities

1822

1823

1824

1825

1826

1827

1828
1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865
Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 42 describes class CIM_HostedService.

5.6.18 CIM_HostedStoragePool

Requirement: Mandatory

Table 43 describes class CIM_HostedStoragePool.

5.6.19 CIM_ImplementationCapabilities (ImplementationCapabilities)

Experimental. The capabilities (features) of the profile implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 44 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

5.6.20 CIM_LogicalDisk

Created By: Static

Table 42 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting computer system.

Dependent Mandatory The storage configuration service hosted on the computer system.

Table 43 - SMI Referenced Properties/Methods for CIM_HostedStoragePool

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The reference to the hosting computer system.

PartComponent Mandatory The reference to the hosted storage pool.

Table 44 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the implementation capability of an
implementation.

ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.

SupportedElementNameC
odeSet

Optional This property indicates the supported code set for the ElementName
-- for example, "Single Byte ASCII", "UTF-8", "ISO 8859-1", etc. See
MOF for details.
SNIA Technical Position 123

GetElementNameCapabilities

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892
1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903
1904

1905

1906

1907

1908

1909
Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Volume Management - LogicalDisk is mandatory.

Table 45 describes class CIM_LogicalDisk.

Table 45 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name Mandatory OS Device Name.

NameFormat Mandatory This shall be "12" (OS Device Name).

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or
Starting or Dormant). In addition, the secondary
OperationalStatus may be 19 (Relocating) with 2|3|15
(OK or Degraded or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the
parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRedundancy Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Conditional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall
contain 'SNIA:Allocated'.

NumExtentsMigrating Optional Experimental. The number of Extents in the process of
migrating for this logical disk when the logical disk
relocation is on going.

IsCompressed Optional Experimental. IsCompressed identifies whether or not
compression is being applied to the volume. When set to
"true" the data is compressed. When set to "false" the
data is not compressed.
124

 GetElementNameCapabilities

1910
1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954
5.6.21 CIM_OwningJobElement

Conditional on support for Job Control profile.

Requirement: Support for Job Control profile.

Table 46 describes class CIM_OwningJobElement.

5.6.22 CIM_StorageCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 47 describes class CIM_StorageCapabilities.

CompressionRate Optional Experimental. CompressionRate identifies whether or
not compression is being applied to the volume and at
what rate. The possible values are '1' (None), '2' (High),
'3' (Medium) or '4' (Low).

CompressionState Optional Experimental. CompressionState indicates whether the
compression is '2' (pending), '3' (initializing), '4' (in
progress) or '5' (completed). If compression is not
supported (CompressionRate='1') for the volume, the
CompressionState shall be '1' (Not Applicable).

Table 46 - SMI Referenced Properties/Methods for CIM_OwningJobElement

Properties Flags Requirement Description & Notes

OwnedElement Mandatory

OwningElement Mandatory

Table 47 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of Capabilities.
In addition, the user-friendly name can be used as a
index property for a search or query. (Note:
ElementName does not have to be unique within a
namespace) If the capabilities are fixed, then this
property should be used as a means for the client
application to correlate between capabilities and device
documentation.

ElementType Mandatory Enumeration indicating the type of instance to which
this StorageCapabilities applies. Shall be either 5 or 6
(StoragePool or StorageConfigurationService).

NoSinglePointOfFailure Mandatory Indicates whether or not the associated instance
supports no single point of failure. Values are: FALSE =
does not support no single point of failure, and TRUE =
supports no single point of failure.

Table 45 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes
SNIA Technical Position 125

GetElementNameCapabilities

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000
NoSinglePointOfFailureDefault Mandatory Indicates the default value for the
NoSinglePointOfFailure property.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of
complete copies of data that can be maintained.
Examples would be RAID 5 where 1 copy is maintained
and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number
of complete copies of data that can be maintained.
Examples would be RAID 5 where 1 copy is maintained
and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

DataRedundancyDefault Mandatory DataRedundancyDefault describes the default number
of complete copies of data that can be maintained.
Examples would be RAID 5 where 1 copy is maintained
and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum
number of spindles or logical devices that can be used.
Package redundancy describes how many disk
spindles or logical devices can fail without data loss
including, at most, one spare. Examples would be
RAID5 with a Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum
number of spindles or logical devices that can be used.
Package redundancy describes how many disk
spindles or logical devices can fail without data loss
including, at most, one spare. Examples would be
RAID5 with a Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

PackageRedundancyDefault Mandatory PackageRedundancyDefault describes the default
number of spindles or logical devices that can be used.
Package redundancy describes how many disk
spindles or logical devices can fail without data loss
including, at most, one spare. Examples would be
RAID5 with a Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

ExtentStripeLengthDefault Optional Describes what the default stripe length, the number of
members or columns, a storage element will have when
created or modified using this capability. A NULL means
that the setting of stripe length is not supported at all or
not supported at this level of storage element allocation
or assignment.

ParityLayoutDefault Optional ParityLayoutDefault describes what the default parity a
storage element will have when created or modified
using this capability. A NULL means that the setting of
the parity is not supported at all or is not supported at
this level of storage element allocation or assignment.

UserDataStripeDepthDefault Optional UserDataStripeDepthDefault describes what the
number of bytes forming a stripe that a storage element
will have when created or modified using this capability.
A NULL means that the setting of stripe depth is not
supported at all or not supported at this level of storage
element allocation or assignment.

Table 47 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes
126

 GetElementNameCapabilities

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045
5.6.23 CIM_StorageConfigurationCapabilities (Concrete)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for the Storage Relocation profile.

AvailableDiskType Optional Experimental. Enumeration indicating the type of
DiskDrives which may be available. (0)Unknown,
(1)Other, (2)Hard Disk Drive, (3)Solid State Drive,
(4)Hybrid.

AvailableFormFactorType Optional Experimental. Enumeration indicating the drive physical
size which may be available. (0)Unknown, (1)Other,
(2)Not Reported, (3)5.25 inch, (4)3.5 inch, (5)2.5 inch,
(6)1.8 inch".

AvailableInterconnectType Optional Experimental. Enumeration indicating the type of disk
interconnections which may be available. (0)Unknown,
(1)other, (2)SAS, (3)SATA, (4)SAS/SATA, (5)FC,
(6)SOP.

AvailableInterconnectSpeed Optional Experimental. The speed of disk interconnections which
are be available. Values are in bits/second.

AvailableRPM Optional Experimental. The rotational speed of disk media which
are be available. Values are in rotations per minute.
SSD devices shall report 0".

Encryption Optional Experimental. This property reflects support of the
encryption feature implemented by some disk drives.

SupportedCompressionRates Optional Experimental. SupportedCompressionRates identifies
the compression rates that are supported by the
implementation, "including '1' (None). If '1' (None) is
specified, then no other rate may be identified. If '1'
(None) is not specified, then the values recognized are
'2' (High), '3' (Medium), '4' (Low) and/or '5'
(Implementation Decides).

CreateSetting() Conditional Conditional requirement: Support for
StorageConfigurationService. Generate a setting to use
as a goal for creating or modifying storage elements.

GetSupportedStripeLengths() Optional List the possible discrete stripe lengths supported at
this time of this method's execution.

GetSupportedStripeLengthRange() Optional List the possible stripe length ranges supported at the
time of this method's execution.

GetSupportedParityLayouts() Optional List the possible parity layouts supported at the time of
this method's execution.

GetSupportedStripeDepths() Optional List the possible stripe depths supported at the time of
this method's execution.

GetSupportedStripeDepthRange() Optional List the possible stripe depth ranges supported at the
time of this method's execution.

Table 47 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes
SNIA Technical Position 127

GetElementNameCapabilities

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090
Table 48 describes class CIM_StorageConfigurationCapabilities (Concrete).

Table 48 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requireme
nt

Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePoolFeatures Optional Lists what StorageConfigurationService functionalities are
implemented. Matches 2|3|5|6|7 (InExtents or Single InPool
or Storage Pool QoS Change or Storage Pool Capacity
Expansion or Storage Pool Capacity Reduction).

SupportedSynchronousActions Conditional Conditional requirement: Support for the Storage Relocation
profile. Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "3" (Storage Pool Deletion), "4"
(Storage Pool Modification), "5" (Storage Element Creation),
"12" (Storage Element from Element Creation), "13"
(Storage Element from Element Modification) or "15"
(StoragePool Usage Modification) or "17" (StorageVolume
To StoragePool Relocation) or "18" (StoragePool To
StoragePool Relocation) or "19" (StorageVolume To
StorageExtent Relocation) or "20" (StoragePool To
StorageExtent Relocation) or "21" (LogicalDisk To
StorageExtent Relocation) or "22" (Multiple Storage
Element Creation) or "23" (Multiple Storage Element
Return) or "24" (Storage Element from Multiple Pools
Creation) or "25"(CompositeVolume Creation) or "26"
(CompositeVolume Return) or "27"(CompositeVolume
Modification) or "28" (CompositeVolume Dissolve).

SupportedStorageElementTypes Mandatory Lists the type of storage elements that are supported by this
implementation. This version of the standard recognizes '2'
(StorageVolume) or '4' (LogicalDisk).

If thin provisioning is supported, then the following
additional ElementTypes are recognized: "5"
(ThinlyProvisionedStorageVolume), "6"
(ThinlyProvisionedLogicalDisk), "7"
(ThinlyProvisionedAllocatedStoragePool), "8"
(ThinlyProvisionedQuotaStoragePool) or "9"
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchronousActions Conditional Conditional requirement: Support for the Storage Relocation
profile. Lists what actions, invoked through
StorageConfigurationService methods, may produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "3" (Storage Pool Deletion), "4"
(Storage Pool Modification), "5" (Storage Element Creation),
"12" (Storage Element from Element Creation), "13"
(Storage Element from Element Modification) or "15"
(StoragePool Usage Modification) or "17" (StorageVolume
To StoragePool Relocation) or "18" (StoragePool To
StoragePool Relocation) or "19" (StorageVolume To
StorageExtent Relocation) or "20" (StoragePool To
StorageExtent Relocation) or "21" (LogicalDisk To
StorageExtent Relocation) or "22" (Multiple Storage
Element Creation) or "23" (Multiple Storage Element
Return) or "24" (Storage Element from Multiple Pools
Creation) or "25"(CompositeVolume Creation) or "26"
(CompositeVolume Return) or "27"(CompositeVolume
Modification) or "28" (CompositeVolume Dissolve)..
128

 GetElementNameCapabilities

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133
2134
5.6.24 CIM_StorageConfigurationCapabilities (Global)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

SupportedStorageElementFeatures Conditional Conditional requirement: Support for the Storage Relocation
profile. Lists actions supported through the invocation of
StorageConfigurationService.CreateOrModifyElementFrom
StoragePool(). Matches 3|8|14|15|16|17|18|19|20|21
(StorageVolume Creation or LogicalDisk Creation or
StorageVolume To StoragePool Relocation or StoragePool
To StoragePool Relocation or StorageVolume To
StorageExtent Relocation or StoragePool To StorageExtent
Relocation LogicalDisk To StorageExtent Relocation or
CompositeVolume Creation or CompositeVolume
Modification or CompositeVolume Dissolve).

SupportedStorageElementUsage Optional Indicates the intended usage or any restrictions that may
have been imposed on supported storage elements.

ClientSettableElementUsage Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of client-settable
elements.

SupportedStoragePoolUsage Conditional Conditional requirement: Support for the Storage Relocation
profile. Indicates the intended usage or any restrictions that
may have been imposed on storage pools.

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage Relocation
profile. Indicates the intended usage or any restrictions that
may have been imposed on the usage of a client-settable
storage pool.

MaximumElementCreateCount Optional Indicates the maximum number of elements that can be
specified to be created in a single method call. If 0 or null,
there is no limit.

MaximumElementDeleteCount Conditional Conditional requirement: Support for the Storage Relocation
profile. Indicates the maximum number of elements that can
be deleted in a single method call. If 0 or null, there is no
limit.

MultipleElementCreateFeatures Optional Enumeration indicating features offered by the multiple
element create method. "2" (Single instance creation
indication).

MultipleElementDeleteFeatures Optional Enumeration indicating features offered by the multiple
element delete method. "2" (Continue on nonexistent
element) or "3" (Return error on nonexistent element).

GetElementNameCapabilities() Optional This method indicates if ElementName can be specified as
a part of invoking an appropriate method of
StorageConfigurationService to create a new element.
Additionally, the returned data includes the methods that
can be used to modify the ElementName of existing storage
elements.

Table 48 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requireme
nt

Description & Notes
SNIA Technical Position 129

GetElementNameCapabilities

2135

2136

2137

2138

2139

2140
2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180
Table 49 describes class CIM_StorageConfigurationCapabilities (Global).

Table 49 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePoolFeatures Optional Lists what StorageConfigurationService functionalities are
implemented. Matches 2|3|5|6|7 (InExtents or Single
InPool or Storage Pool QoS Change or Storage Pool
Capacity Expansion or Storage Pool Capacity Reduction).

SupportedSynchronousActions Conditional Conditional requirement: Support for the Storage
Relocation profile. Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs.

SupportedStorageElementTypes Mandatory Lists the type of storage elements that are supported by
this implementation. This version of the standard
recognizes '2' (StorageVolume) or '4' (LogicalDisk).

If thin provisioning is supported, then the following
additional ElementTypes are recognized: "5"
(ThinlyProvisionedStorageVolume), "6"
(ThinlyProvisionedLogicalDisk), "7"
(ThinlyProvisionedAllocatedStoragePool), "8"
(ThinlyProvisionedQuotaStoragePool) or "9"
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchronousActions Conditional Conditional requirement: Support for the Storage
Relocation profile. Lists what actions, invoked through
StorageConfigurationService methods, may produce
Concrete jobs.

SupportedStorageElementFeatures Conditional Conditional requirement: Support for the Storage
Relocation profile. Lists actions supported through the
invocation of
StorageConfigurationService.CreateOrModifyElementFro
mStoragePool(). Matches
3|5|8|9|11|12|13|14|15|16|17|18|19|20|21 (StorageVolume
Creation or StorageVolume Modification or LogicalDisk
Creation or LogicalDisk Modification or Storage Element
QoS Change or Storage Element Capacity Expansion or
Storage Element Capacity Reduction or StorageVolume To
StoragePool Relocation or StoragePool To StoragePool
Relocation or StorageVolume To StorageExtent Relocation
or 'StoragePool To StorageExtent Relocation or
LogicalDisk To StorageExtent Relocation or
CompositeVolume Creation or CompositeVolume
Modification or CompositeVolume Dissolve).

SupportedStorageElementUsage Optional Indicates the intended usage or any restrictions that may
have been imposed on supported storage elements.

ClientSettableElementUsage Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of client-settable
elements.

SupportedStoragePoolUsage Conditional Conditional requirement: Support for the Storage
Relocation profile. Indicates the intended usage or any
restrictions that may have been imposed on storage pools.
130

 GetElementNameCapabilities

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203
2204

2205

2206

2207

2208

2209

2210

2211
2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225
5.6.25 CIM_StorageConfigurationCapabilities (Primordial)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for the Storage Relocation profile.

Table 50 describes class CIM_StorageConfigurationCapabilities (Primordial).

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage
Relocation profile. Indicates the intended usage or any
restrictions that may have been imposed on the usage of a
client-settable storage pool.

MaximumElementCreateCount Optional Indicates the maximum number of elements that can be
specified to be created in a single method call. If 0 or null,
there is no limit.

MaximumElementDeleteCount Conditional Conditional requirement: Support for the Storage
Relocation profile. Indicates the maximum number of
elements that can be deleted in a single method call. If 0
or null, there is no limit.

MultipleElementCreateFeatures Optional Enumeration indicating features offered by the multiple
element create method. "2" (Single instance creation
indication).

MultipleElementDeleteFeatures Optional Enumeration indicating features offered by the multiple
element delete method. "2" (Continue on nonexistent
element) or "3" (Return error on nonexistent element).

AutomaticPoolSelectionAllowed Optional If true, it indicates the implementation selects appropriate
pools based on other supplied parameters to create
elements. For example, based on supplied Goal.

GetElementNameCapabilities() Optional This method indicates if ElementName can be specified as
a part of invoking an appropriate method of
StorageConfigurationService to create a new element.
Additionally, the returned data includes the methods that
can be used to modify the ElementName of existing
storage elements.

Table 50 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePoolFeatures Optional Lists what StorageConfigurationService functionalities are
implemented. Matches 2|3 (InExtents or Single InPool).

Table 49 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes
SNIA Technical Position 131

GetElementNameCapabilities

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270
SupportedSynchronousActions Conditional Conditional requirement: Support for the Storage Relocation
profile. Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "12" (Storage Element from Element
Creation) or "15" (StoragePool Usage Modification) or "17"
(StorageVolume To StoragePool Relocation) or "18"
(StoragePool To StoragePool Relocation) or "19"
(StorageVolume To StorageExtent Relocation) or "20"
(StoragePool To StorageExtent Relocation) or "21"
(LogicalDisk To StorageExtent Relocation).

SupportedStorageElementTypes Optional Lists the type of storage elements that are supported by this
implementation.

If thin provisioning is supported, the ElementTypes may
include 7 (ThinlyProvisionedAllocatedStoragePool), 8
(ThinlyProvisionedQuotaStoragePool), or 9
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchronousActions Conditional Conditional requirement: Support for the Storage Relocation
profile. Lists what actions, invoked through
StorageConfigurationService methods, may produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "12" (Storage Element from Element
Creation) or "15" (StoragePool Usage Modification) or "17"
(StorageVolume To StoragePool Relocation) or "18"
(StoragePool To StoragePool Relocation) or "19"
(StorageVolume To StorageExtent Relocation) or "20"
(StoragePool To StorageExtent Relocation) or "21"
(LogicalDisk To StorageExtent Relocation) or "22" (Multiple
Storage Element Creation) or "23" (Multiple Storage Element
Return) or "24" (Storage Element from Multiple Pools
Creation).

SupportedStorageElementFeatures Conditional Conditional requirement: Support for the Storage Relocation
profile. Lists actions supported through the invocation of
StorageConfigurationService.CreateOrModifyElementFromSt
oragePool(). This version of the standard does not recognize
any values for this property. For Primordial pools, this shall
not contain 3 (StorageVolume Creation), 5 (StorageVolume
Modification), 8 (LogicalDisk Creation) or 9 (LogicalDisk
Modification) or 14 (StorageVolume To StoragePool
Relocation) or 15 (StoragePool To StoragePool Relocation)
or 16 (StorageVolume To StorageExtent Relocation) or 17
(StoragePool To StorageExtent Relocation) or 18
(LogicalDisk To StorageExtent Relocation) or 19
(CompositeVolume Creation) or 20 (CompositeVolume
Modification) or 21 (CompositeVolume Dissolve).

SupportedStorageElementUsage Optional For Primordial StorageConfigurationCapabilities, this shall be
NULL.

ClientSettableElementUsage Optional For Primordial StorageConfigurationCapabilities, this shall be
NULL.

SupportedStoragePoolUsage Conditional Conditional requirement: Support for the Storage Relocation
profile. Indicates the intended usage or any restrictions that
may have been imposed on storage pools.

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage Relocation
profile. Indicates the intended usage or any restrictions that
may have been imposed on the usage of a client-settable
storage pool.

Table 50 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)

Properties Flags Requirement Description & Notes
132

 GetElementNameCapabilities

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284
2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313
5.6.26 CIM_StorageConfigurationService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 51 describes class CIM_StorageConfigurationService.

5.6.27 CIM_StoragePool (Concrete)

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Mandatory

Table 51 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

CreateOrModifyStoragePool() Optional Create (or modify) a StoragePool. A job may be created
as well.

DeleteStoragePool() Optional Start a job to delete a StoragePool.

CreateOrModifyElementFromStoragePool() Mandatory Create or modify a storage element. A job may be created
as well.

CreateElementsFromStoragePools() Optional Experimental. Create one or more storage elements. A
job may be created as well.

CreateOrModifyElementFromElements() Optional Create or modify a storage element using component
StorageExtents of the Pool. A job may be created as well.

ReturnToStoragePool() Mandatory Release the capacity represented by this storage element
back to the Pool.

ReturnElementsToStoragePool() Optional Experimental. Release the capacity represented by one or
more storage elements back to the Pool.

RequestUsageChange() Optional Allows a client to change the Usage for the element.

GetElementsBasedOnUsage() Optional Allows a client to retrieve elements for a specialized
Usage.

CreateorModifyAnyElementFromStoragePo
ol()

Optional This method is an extension of
CreateOrModifyElementFromStoragePool that supports
composite type elements.
SNIA Technical Position 133

GetElementNameCapabilities

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358
Table 52 describes class CIM_StoragePool (Concrete).

Table 52 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes

Primordial Mandatory Shall be false.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies this
Pool.

OperationalStatus Mandatory Value shall be 2|3|6|15 (OK or Degraded or Error or Dormant). In
addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

TotalManagedSpace Mandatory

RemainingManagedSpace Mandatory

Usage Mandatory The specialized usage intended for this element. May not be
NULL.

OtherUsageDescription Conditional Set when Usage value is 1 "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

CapacityInMigratingSource Optional Experimental. The total capacity of extents migrating out from
this storage pool.

CapacityInMigratingTarget Optional Experimental. The total capacity of extents migrating into this
storage pool.

ElementsShareSpace Optional If true, it indicates elements allocated from the storage pool are
sharing space from the storage pool. For example, multiple
snapshots "allocated" from a storage pool, point to the same
blocks of the storage pool. As another example, elements
utilizing de-duplication technology refer to a shared copy of the
data stored in the storage pool.

ReservedSpace Optional The amount of capacity used by the storage pool to store
information about the configuration of the storage pool. The
space is not included in the TotalManagedSpace of the storage
pool.

CompressionActive Optional Experimental. Indicates if the pool is compressed.

CompressionPercent Optional Experimental. Indicates amount of compression on the pool.

CompressionRate Optional Experimental. CompressionRate identifies whether or not
compression is being applied to the pool and at what rate.

CompressionState Optional Experimental. The CompressionState indicates whether the
compression is pending, initializing, in progress or completed.

DedupActive Optional Experimental. Indicates if deduplication is active for this pool.

DedupPercent Optional Experimental. Deduplication percentage of the pool.

GetSupportedSizes() Conditional Conditional requirement: Support for
StorageConfigurationService. List the discrete storage element
sizes that can be created or expanded from this Pool.
134

 GetElementNameCapabilities

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368
2369

2370

2371

2372

2373

2374

2375

2376

2377

2378
2379

2380

2381

2382

2383

2384

2385
2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403
5.6.28 CIM_StoragePool (Empty)

An empty StoragePool is a special case of a StoragePool where the StoragePool contains no capacity. All
properties are supported as defined for the StoragePool (Concrete or Primordial), except that the empty
StoragePool has TotalManagedSpace=0.

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Optional

Table 53 describes class CIM_StoragePool (Empty).

GetSupportedSizeRange() Conditional Conditional requirement: Support for
StorageConfigurationService. List the size ranges for storage
element that can be created or expanded from this Pool.

GetAvailableExtents() Optional List the StorageExtents from this Pool that may be used to
create or expand a storage element. The StorageExtents may
not already be in use as supporting capacity for existing storage
element.

Table 53 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty)

Properties Flags Requirement Description & Notes

Primordial Mandatory This may be either true or false. That is, both concrete and primordial
StoragePools may be empty.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|15 (OK or Degraded or Error or Dormant). In
addition, the secondary OperationalStatus may be 19 (Relocating)
with 2|3|15 (OK or Degraded or Dormant).

TotalManagedSpace Mandatory This shall be 0 for an empty StoragePool.

RemainingManagedSpace Mandatory

Usage Optional

OtherUsageDescription Conditional Set when Usage is set to 1 “Other”

ClientSettableUsage Optional

CapacityInMigratingSource Optional Experimental. The total capacity of extents migrating out from this
storage pool.

CapacityInMigratingTarget Optional Experimental. The total capacity of extents migrating into this storage
pool.

CompressionActive Optional Experimental. Indicates if the pool is compressed

CompressionPercent Optional Experimental. Indicates amount of compression on the pool.

CompressionRate Optional Experimental. CompressionRate identifies whether or not
compression is being applied to the pool and at what rate.

Table 52 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes
SNIA Technical Position 135

GetElementNameCapabilities

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447
5.6.29 CIM_StoragePool (Primordial)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 54 describes class CIM_StoragePool (Primordial).

CompressionState Optional Experimental. The CompressionState indicates whether the
compression is pending, initializing, in progress or completed.

DedupActive Optional Experimental. Indicates if deduplication is active for this pool.

DedupPercent Optional Experimental. Deduplication percentage of the pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService.

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService.

GetAvailableExtents() Optional

Table 54 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes

Primordial Mandatory Shall be true.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies this Pool.

OperationalStatus Mandatory Value shall be 2|3|6|15 (OK or Degraded or Error or Dormant). In
addition, the secondary OperationalStatus may be 19 (Relocating)
with 2|3|15 (OK or Degraded or Dormant).

TotalManagedSpace Mandatory

RemainingManagedSpace Mandatory

Usage Mandatory The specialized usage intended for this element. May not be NULL.

OtherUsageDescription Conditional Set when Usage value is 1 "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

CapacityInMigratingSource Optional Experimental. The total capacity of extents migrating out from this
storage pool.

CapacityInMigratingTarget Optional Experimental. The total capacity of extents migrating into this storage
pool.

ReservedSpace Optional The amount of capacity used by the storage pool to store information
about the configuration of the storage pool. The space is not included
in the TotalManagedSpace of the storage pool.

CompressionActive Optional Experimental. Indicates if the pool is compressed

CompressionPercent Optional Experimental. Indicates amount of compression on the pool.

Table 53 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty)

Properties Flags Requirement Description & Notes
136

 GetElementNameCapabilities

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492
5.6.30 CIM_StorageSetting

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 55 describes class CIM_StorageSetting.

CompressionRate Optional Experimental. CompressionRate identifies whether or not
compression is being applied to the pool and at what rate.

CompressionState Optional Experimental. The CompressionState indicates whether the
compression is pending, initializing, in progress or completed.

DedupActive Optional Experimental. Indicates if deduplication is active for this pool.

DedupPercent Optional Experimental. Deduplication percentage of the pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService.
List the discrete storage element sizes that can be created or
expanded from this Pool.

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService.
List the size ranges for storage element that can be created or
expanded from this Pool.

GetAvailableExtents() Optional List the StorageExtents from this Pool that may be used to create or
expand a storage element. The StorageExtents may not already be in
use as supporting capacity for existing storage element.

Table 55 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In addition,
the user-friendly name can be used as a index property for a search
of query. (Note: Name does not have to be unique within a
namespace.).

NoSinglePointOfFailure Mandatory Indicates the desired value for No Single Point of Failure. Possible
values are false = single point of failure, and true = no single point of
failure.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete
copies of data to be maintained. Examples would be RAID 5 where
1 copy is maintained and RAID 1 where 2 or more copies are
maintained. Possible values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete
copies of data to be maintained. Examples would be RAID 5 where
1 copy is maintained and RAID 1 where 2 or more copies are
maintained. Possible values are 1 to n.

DataRedundancyGoal Mandatory

Table 54 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes
SNIA Technical Position 137

GetElementNameCapabilities

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537
PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of
spindles or logical devices to be used. Package redundancy
describes how many disk spindles or logical devices can fail without
data loss including, at most, one spare. Examples would be RAID5
with a Package Redundancy of 1, RAID6 with 2. Possible values are
0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of
spindles or logical devices to be used. Package redundancy
describes how many disk spindles or logical devices can fail without
data loss including, at most, one spare. Examples would be RAID5
with a Package Redundancy of 1, RAID6 with 2. Possible values are
0 to n.

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional ExtentStripeLength describes the desired stripe length goal.

ExtentStripeLengthMin Optional ExtentStripeLengthMin describes the minimum acceptable stripe
length.

ExtentStripeLengthMax Optional ExtentStripeLengthMax describes the maximum acceptable stripe
length.

ParityLayout Optional ParityLayout describes the desired parity layout. The value may be
1 or 2 (Non-rotated Parity or Rotated Parity).

UserDataStripeDepth Optional UserDataStripeDepth describes the desired stripe depth.

UserDataStripeDepthMin Optional UserDataStripeDepthMin describes the minimum acceptable stripe
depth.

UserDataStripeDepthMax Optional UserDataStripeDepthMax describes the maximum acceptable stripe
depth.

ChangeableType Mandatory This property informs a client if the setting can be modified. It also
tells the client how long this setting is expected to remain in the
model. If the implementation allows it, the client can use the property
to request that the setting's existence be not transient.

StorageExtentInitialUsage Optional The Usage value to be used when creating a new storage element.

StoragePoolInitialUsage Optional The Usage value to be used when creating a new storage pool.

DiskType Optional Experimental. Enumeration indicating the type of DiskDrive wanted.
(0)Dont care, (1)Other, (2)Hard Disk Drive, (3)Solid State Drive,
(4)Hybrid.

InterconnectType Optional Experimental. Enumeration indicating the type of disk
interconnection wanted.”.

InterconnectSpeed Optional Experimental. The speed of disk interconnection wanted in bits/
second. Value of 0 means don’t care.

FormFactor Optional Experimental. Enumeration indicating the physical size of drive
wanted.

RPM Optional Experimental. The rotational speed of disk media wanted. A value of
0xffffffff means don’t care. A value of 0 specifies a SSD drive.

Encryption Optional Experimental. This property reflects support of the encryption
feature wanted.

PortType Optional Experimental.

Table 55 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes
138

 GetElementNameCapabilities

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555
5.6.31 CIM_StorageSettingWithHints

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 56 describes class CIM_StorageSettingWithHints.

CompressionRate Optional Experimental. CompressionRate Indicates the desired compression
for a storage element. The possible values are '1' (None), '2' (High),
'3' (Medium), '4' (Low) or '5' (Implementation Decides).

CompressedElement Optional Experimental. CompressedElement property indicates whether or
not compression of the element is being requested. When set to
true, compression is being requested. When set to false,
compression is not being requested.

Table 56 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In
addition, the user-friendly name can be used as a index
property for a search of query. (Note: Name does not have to be
unique within a namespace.).

NoSinglePointOfFailure Mandatory

DataRedundancyMin Mandatory

DataRedundancyMax Mandatory

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory

PackageRedundancyMax Mandatory

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional

ExtentStripeLengthMin Optional

ExtentStripeLengthMax Optional

ParityLayout Optional

UserDataStripeDepth Optional

UserDataStripeDepthMin Optional

UserDataStripeDepthMax Optional

StorageExtentInitialUsage Optional

StoragePoolInitialUsage Optional

Table 55 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes
SNIA Technical Position 139

GetElementNameCapabilities
5.6.32 CIM_StorageSettingsAssociatedToCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 57 describes class CIM_StorageSettingsAssociatedToCapabilities.

DataAvailabilityHint Mandatory This hint is an indication from a client of the importance placed
on data availability. Values are 0=Don't Care to 10=Very
Important.

AccessRandomnessHint Mandatory This hint is an indication from a client of the randomness of
accesses. Values are 0=Entirely Sequential to 10=Entirely
Random.

AccessDirectionHint Mandatory This hint is an indication from a client of the direction of
accesses. Values are 0=Entirely Read to 10=Entirely Write.

AccessSizeHint Mandatory This hint is an indication from a client of the optimal access
sizes. Several sizes can be specified. Units("Megabytes").

AccessLatencyHint Mandatory This hint is an indication from a client how important access
latency is.` Values are 0=Don't Care to 10=Very Important.

AccessBandwidthWeight Mandatory This hint is an indication from a client of bandwidth prioritization.
Values are 0=Don't Care to 10=Very Important.

StorageCostHint Mandatory This hint is an indication of the importance the client places on
the cost of storage. Values are 0=Don't Care to 10=Very
Important. A StorageVolume provider might choose to place
data on low cost or high cost drives based on this parameter.

StorageEfficiencyHint Mandatory This hint is an indication of the importance placed on storage
efficiency by the client. Values are 0=Don't Care to 10=Very
Important. A StorageVolume provider might choose different
RAID levels based on this hint.

ChangeableType Mandatory

Table 57 - SMI Referenced Properties/Methods for CIM_StorageSettingsAssociatedToCapabilities

Properties Flags Requirement Description & Notes

DefaultSetting Mandatory This boolean designates the setting that will be used if the CreateSetting()
method is called with providing the NewSetting parameter. However, some
implementations may require that the NewSetting parameter be non null.
There may be only one default setting per the combination of
StorageCapabilities and associated StoragePool as associated through
ElementCapabilities.

Dependent Mandatory The StorageSetting reference.

Antecedent Mandatory The StorageCapabilities reference.

Table 56 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints

Properties Flags Requirement Description & Notes
140

 GetElementNameCapabilities
5.6.33 CIM_StorageSettingsGeneratedFromCapabilities

Created By: Extrinsic: CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 58 describes class CIM_StorageSettingsGeneratedFromCapabilities.

5.6.34 CIM_StorageVolume

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced from Host Hardware RAID Controller -
StorageVolume is mandatory.

Table 59 describes class CIM_StorageVolume.

Table 58 - SMI Referenced Properties/Methods for CIM_StorageSettingsGeneratedFromCapabilities

Properties Flags Requirement Description & Notes

Dependent Mandatory The StorageSetting reference.

Antecedent Mandatory The StorageCapabilities reference.

Table 59 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name CD Mandatory Identifier for this volume; based of datapath
standards such as SCSI or ATAPI.

OtherIdentifyingInfo CD Optional Additional correlatable names.

IdentifyingDescriptions Conditional. Conditional Requirement: Mandatory if
OtherIdentifyingInfo is provided.
SNIA Technical Position 141

GetElementNameCapabilities
NameFormat Mandatory The type of identifier in the Name property. The valid
values for StorageVolumes are:

1 (Other)

2 (VPD83NAA6)

3 (VPD83NAA5)

4 (VPD83Type2)

5 (VPD83Type1)

6 (VPD83Type0)

7 (SNVM)

8 (NodeWWN)

9 (NAA)

10 (EUI64)

11 (T10VID).

NameNamespace Mandatory The namespace that defines uniqueness for the
NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or
Starting or Dormant). In addition, the secondary
OperationalStatus may be 19 (Relocating) with
2|3|15 (OK or Degraded or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the
parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRedundancy Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Mandatory The specialized usage intended for this element.

OtherUsageDescription Conditional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall
contain 'SNIA:Allocated'.

CanDelete Optional Experimental. Indicates if the volume is able to be
deleted by a client application.

NumExtentsMigrating Optional Experimental. The number of Extents in the process
of migrating for this storage volume when the volume
relocation is on going.

Table 59 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes
142

 GetElementNameCapabilities
5.6.35 CIM_SystemDevice (System to StorageVolume or LogicalDisk)

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Mandatory

Table 60 describes class CIM_SystemDevice (System to StorageVolume or LogicalDisk).

STABLE

IsCompressed Optional Experimental. IsCompressed identifies whether or
not compression is being applied to the volume.
When set to "true" the data is compressed. When set
to "false" the data is not compressed.

CompressionRate Optional Experimental. CompressionRate identifies whether
or not compression is being applied to the volume
and at what rate. The possible values are '1' (None),
'2' (High), '3' (Medium) or '4' (Low).

CompressionState Optional Experimental. CompressionState indicates whether
the compression is '2' (pending), '3' (initializing), '4'
(in progress) or '5' (completed). If compression is not
supported (CompressionRate='1') for the volume, the
CompressionState shall be '1' (Not Applicable).

Table 60 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageVolume or Logi-
calDisk)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 59 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes
SNIA Technical Position 143

GetElementNameCapabilities
144

1

2

3

4

5

6

7

8

9

10
EXPERIMENTAL

6 Block Storage Views Profile

6.1 Description

6.1.1 Synopsis

Profile Name: Block Storage Views (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: ViewCapabilities

Scoping Class: ComputerSystem

Related Profiles: Table 61 describes the related profiles for Block Storage Views.

6.1.2 Overview

This Profile specifies View Classes for the Array, Storage Virtualizer, Host Hardware RAID Controller and
Volume Management Profiles.

The view classes provide an optimization of retrieval of information provided by multiple (associated)
instances in a Profile. There is no support for update of view classes instances. Update of a view class
instance can only be accomplished by updating the base class instances from which the view is derived.

Table 61 - Supported Profiles for Block Storage Views

Profile Name Organization Version Requirement Description

Block Services SNIA 1.8.0 Conditional Conditional requirement: Required if the array
property
CIM_ViewCapabilities.SupportedViews
contains the string "SNIA:VolumeView" (and the
Block Service Package is implemented).

Block Server Performance SNIA 1.7.0 Conditional

Disk Drive Lite SNIA 1.7.0 Conditional Conditional requirement: Required if the array
property
CIM_ViewCapabilities.SupportedViews
contains the string "SNIA:DiskDriveView" (and
the Disk Drive Lite Profile is implemented).

Masking and Mapping SNIA 1.8.0 Conditional

Extent Composition SNIA 1.7.0 Conditional Conditional requirement: Required if the array
property
CIM_ViewCapabilities.SupportedViews
contains the string "SNIA:VolumeView" and
Extent Composition is implemented.

Replication Services SNIA 1.8.0 Conditional Conditional requirement: Required if the array
property
CIM_ViewCapabilities.SupportedViews
contains the string "SNIA:ReplicaPairlView"
(and the Replication Services Profile is
implemented).
SNIA Technical Position 145

Goals that View Classes are intended to address are

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48
6.1.3 Goals of View Classes

6.1.3.1 Goals that View Classes are intended to address are

• Get more data in one call to CIM Server.

The CIM model for arrays and Storage Virtualizers involve a lot of classes and associations. The objective is to
allow discovery of the array model using View Classes with a reduction in the number of association traversals
required.

• Allow providers to optimize the Request.

In many cases, the data represented by a View Class is actually kept (and returned) by a device as one entity.
When the "normalized" CIM model is traversed many calls are made to retrieve that one entity. The provider
takes the data from the one entity and carves it up for each CIM request. In many cases this involves retrieving
the same entity multiple times. The objective is to allow a Provider to return the single entity in one SMI-S
request (for data that is typically kept together by the device).

• Do more things in one call to CIM Server.

An example would be retrieval or discovery of model information with fewer calls. However, this goal also
extends to updating the CIM model (e.g., configuration actions). The View Classes are NOT intended to help in
the latter case. However, View Classes should facilitate access to underlying classes in support of
configuration operations.

It is important to note that the View Classes were based directly on experiences relating to the scalability and
performance of SMI-S real-world implementations. The focus is on improving performance in large
configurations (e.g. thousands of volumes and thousands of disk drives).

6.1.4 Specific Requirements and Objectives of View Classes

6.1.4.1 Pre-defined View Classes

In order to gain the desired performance advantage, it is felt that view classes would have to be pre-
defined (in SMI-S) to allow provider optimization of the requested information.

• Enable Associator Calls to View Class instances.

It should be possible to retrieve a View Class by an associators call to the class.

However, it is desired that the association should be clearly distinguished from existing associations on the
base classes.

• Enable Associator Calls from View Class instances.

It should be possible to get related classes (e.g., base classes) from the View Class by using associator calls.

Again, the associations used should be clearly distinguished from existing associations on the base classes.

6.1.4.2 Specific Views requested

• Getting asset information

• Mix of StorageVolume with LUN Mapping & Masking

• Getting port information (with endpoints) or ports & volumes

• Hardware ID & StorageVolumes

• Disk drive view

• Volumes & Settings
146

 Support Life Cycle Indications on View Classes

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65
• Extent Composition

• Privilege Hierarchy

• Hardware ID <-> StorageVolume

Most of these requests are addressed by this Profile.

• Allow View Classes to be used where other classes are used.

This certainly includes "read" intrinsics and as parameters of Extrinsics

However, at this time "Write" intrinsic support is deferred and use in Extrinsics (as IN or OUT parameters) is not
covered in this release of SMI-S.

6.1.4.3 Support Life Cycle Indications on View Classes

This requirement is being deferred for considered in a future release of SMI-S.

6.1.5 Class Diagram for Block Storage Views View Classes

Figure 26: "Class diagram for managed element Block Storage View Classes" illustrates the class
diagram for view classes that cover managed elements.

Figure 26 - Class diagram for managed element Block Storage View Classes

CIM_ManagedElement

CIM_ViewCapabilities

CIM_VolumeView

CIM_Capabilities CIM_StoragePoolView

CIM_MappingProtocolControllerView

CIM_ReplicaPairView

CIM_LogicalDeviceView

DiskDriveView

CIM_DiskDriveView

CIM_View
SNIA Technical Position 147

Support Life Cycle Indications on View Classes

66

67

68

69

70

71

72

73
The view classes that represent managed elements (e.g., VolumeView and DiskDriveView) inherit from
CIM_View. CIM_StoragePoolView inherits directly from CIM_View, while the other managed element view
classes (e.g., VolumeView and DiskDriveView) are subclassed from CIM_LogicalDeviceView. The
ViewCapabilities inherits from CIM_Capabilities.

Figure 27: "Class diagram for view associations" shows the class diagram for view associations.

There are five types of associations defined in Figure 27: "Class diagram for view associations":

• CIM_ElementView - This associates a managed element view to the base instances from which it is derived

• Bridge Associations - These are associations that bridge between the view of the model and related
instances in the normalized model. CIM_AllocatedFromStoragePoolView, CIM_BasedOnView,
CIM_ProtocolControllerForUnitView, CIM_ConcreteComponentView, CIM_ExtentComponentView,
CIM_ContainerView and CIM_ElementStatisticalDataView are examples of bridge associations

Figure 27 - Class diagram for view associations

CIM_SystemDeviceView

CIM_MaskingMappingExposedDeviceView CIM_MaskingMappingViewCIM_Dependency

CIM_ContainerView

CIM_ConcreteComponentView

CIM_BasedOnView

CIM_AllocatedFromStoragePoolViewView

CIM_ProtocolControllerForUnitView

CIM_ElementView

CIM_HostedStoragePoolView

CIM_AbstractComponent

CIM_AbstractProtocolControllerForDevice

CIM_AbstractElementAllocatedFromPool

CIM_AbstractElementStatisticalData

CIM_ElementStatisticalDataView

CIM_ExtentComponentView

CIM_AbstractBasedOn

CIM_DriveComponentViewView

CIM_AllocatedFromStoragePoolView

CIM_ViewOnSystem
148

 View Class Capabilities

74

75

76

77

78

79

80

81

82
• Scoping Associations - These are special cases of bridge associations. They association a view instance with
the scoping system in the normalized model. CIM_SystemDeviceView and CIM_HostedStoragePoolView are
examples of scoping associations.

• Short cut Associations - These are go between two (or more) classes in the normalized model. The
normalized model is a more complicated network of associations. The short cut associations reduce the
association traversals needed to get between the normalized class instances. The
CIM_MaskingMappingExposedDeviceView and the MaskingMappingView are examples of short cut
associations.

• View Associations - These are associations between two views. These allow discovery by traversing view
classes. CIM_AllocatedFromStoragePoolViewView and CIM_DriveComponentViewView are examples of
view associations.

6.1.6 Implementation

6.1.6.1 View Class Capabilities

The implementation shall identify which view classes are implemented using a set of conditions. The
model for determining whether or not the Block Storage Views Profile is supported and which views are
supported is illustrated in Figure 28: "Block Storage View Class Capabilities".

First a client may determine whether or not a profile implementation has implemented any view classes
by looking for a RegisteredProfile with a RegisteredName of “Block Storage Views”. If this
RegisteredProfile exists then the profile supports some number of view classes.

Next a client would be able to determine which view classes are supported by an implementation by
following the ElementConformsToProfile to the top level system and then following the
ElementCapabilities from that system to the CIM_ViewCapabilities instance. There shall be one instance
of the CIM_ViewCapabilities class if the profile supports the Block Storage Views Profile. The
CIM_ViewCapabilities instance shall have an array of strings that identify the view classes that are
supported. For example, if the SupportedViews array includes the “SNIA:VolumeView” string, then the
VolumeView class shall be supported.

Figure 28 - Block Storage View Class Capabilities

ComputerSystem:
Top level SystemRegisteredProfile

RegisteredName = Arrayش￼Storage Virtualizer

RegisteredProfile

RegisteredName =
Block Storage Views ViewCapabilities

SupportedViews[] = SNIA:VolumeViewس￼
SNIA:DiskDriveViewس￼

SNIA:MaskingMappingExposedDeviceViewس￼
SNIA:MaskingMappingViewس￼

SNIA:MappingProtocolControllerViewس￼
SNIA:StoragePoolViewس￼SNIA:ReplicaPairView

ElementConformsToProfile

ElementCapabiliities

ReferencedProfile
SNIA Technical Position 149

Storage Volume Views

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105
6.1.6.2 Storage Volume Views

6.1.6.2.1 CIM_VolumeView and related associations

Figure 29: "VolumeView and related associations" illustrates the CIM_VolumeView and related
associations.

The VolumeView is composed of information drawn from the following base classes:

• StorageVolume (or LogicalDisk)

• StorageSetting

• AllocatedFromStoragePool

• StoragePool

The keys for the VolumeView are the StorageVolume and StoragePool keys from the base StorageVolume
and StoragePool instances. There will be one instance of VolumeView for each instance of
StorageVolume if the StorageVolume is allocated from one StoragePool. If a StorageVolume is allocated
from multiple StoragePools (e.g., Composite Volumes), there will be one instance of StorageVolume for
each StoragePool from which the StorageVolume is allocated.

The information drawn from the AllocatedFromStoragePool association is the SpaceConsumed property.
The properties from all other base classes shall be supported, but may be null.

Figure 29 - VolumeView and related associations

CompositeStorageExtent

StorageVolume
(or LogicalDisk)

BasedOn

StoragePool

AllocatedFromStoragePool

BlockStorageStatisticalData

ElementSettingData

StorageSetting

VolumeView

SVSystemCreationClassName
SVSystemName

SVCreationClassName
SVDeviceID

SVName
SVNameFormat
SVExtentStatus[]

SVOperationalStatus[]
SVBlockSize

SVNumberOfBlocks
SVConsumableBlocks

SVIsBasedOnUnderlyingRedundancy
SVNoSinglePointOfFailure

SVDataRedundancy
SVPackageRedundancy

SVDeltaReservation
SSInstanceID

SSElementName
SSNoSinglePointOfFailure
SSDataRedundancyMin
SSDataRedundancyMax
SSDataRedundancyGoal

SSPackageRedundancyMin
SSPackageRedundancyMax
SSPackageRedundancyGoal

SSChangeableType
AFSPSpaceConsumed

SPInstanceID
SPPoolID

ComputerSystem:
(referencing profile)

SystemDeviceView

AllocatedFromStoragePoolView

BasedOnView

SystemDevice

ElementView

ElementStatisticalData

ElementStatisticalDataView
150

 Disk Drive Views

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121
6.1.6.2.2 Mandatory, Conditional and Optional Properties of VolumeView

Properties that are mandatory in the mandatory base classes are mandatory in the VolumeView class.
Properties that are Conditional in the base classes are conditional in the VolumeView class. Properties
that are mandatory in optional (base) classes (CompositeExtent) are "conditional" in the VolumeView. If
an optional base class is not supported by the referencing profile (e.g., Array) implementation, these
properties of those classes shall be present, but shall be null.

Properties in the base classes that are optional in the base class are optional in the VolumeView.

The CIM_VolumeView includes the SVCanDelete and SVIsComposite properties which are picked up
from the CanDelete and SVIsComposite properties of CIM_StorageVolume.

6.1.6.2.3 Associations on VolumeView

The VolumeView is "read only." Access to base class instances on which the view is based can be
updated (e.g., StorageVolume and StorageSetting) from the CIM_VolumeView instance by accessing the
base instances via the ElementView association.

In addition to the VolumeView there are four associations that support association traversal to (or from)
instances of the VolumeView:

• SystemDeviceView

From the scoping CIM_ComputerSystem instance a client will be able to find the VolumeView instances
associated to the ComputerSystem via the SystemDeviceView association. This will return the
VolumeViews that correspond to the StorageVolumes (or LogicalDisks) that would be found via
association traversal from the ComputerSystem to the StorageVolumes (or LogicalDisks) via the
SystemDevice association.

• AllocatedFromStoragePoolView

From the VolumeView instance, the client can find the StoragePool instance by following the
AllocatedFromStoragePoolView association. Note that for one VolumeView instance, there may be one or
more StoragePools (that is, for Composite Volumes that draw from multiple StoragePools, there would be
multiple VolumeView instances that represent the composite volume).

• BasedOnView

From the VolumeView instance, the client can find the StorageExtent(s) on which the StorageVolume (or
LogicalDisk) is based by following the BasedOnView.

Similarly, from a “top level” StorageExtent instance, a client can find the VolumeView instance(s) that are
based on that StorageExtent.

• ElementStatisticalDataView

From the VolumeView instance, the client can find the BlockStorageStatisticalData instance for the
StorageVolume or LogicalDisk of the VolumeView by following the ElementStatisticalDataView
association.

6.1.6.3 Disk Drive Views

6.1.6.3.1 Overview

Figure 30: "DiskDriveView and related associations" illustrates the DiskDriveView class and related
associations.
SNIA Technical Position 151

Disk Drive Views

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159
The DiskDriveView is composed of information drawn from the following base classes:

• StorageExtent

• DiskDrive

• PhysicalPackage

• SoftwareIdentity (conditional)

• LogicalPort (Optional)

Figure 30 - DiskDriveView and related associations

Concrete
StorageExtent

Primordial= false

StorageExtent

Primordial= true
(See Disk Drive Lite)

DiskDrive

(See Disk Drive Lite)

PhysicalPackage

(See Disk Drive Lite)

MediaPresent

Realizes

Basedon

SoftwareIdentitty

(See Disk Drive Lite)

ElementSoftwareIdentity

StoragePool

(See Block Services)

ConcreteComponent

PhysicalPackage
(System)

(See Physical Package)

Container

DiskDriveView

SECreationClassName
SESystemCreationClassName

SESystemName
SEDeviceID
SEBlockSize

SENumberOfBlocks
SEConsumableBlocks

SEExtentStatus[]
SEOperationalStatus[]

DDCreationClassName
DDSystemCreationClassName

DDSystemName
DDDeviceID

DDName
DDOperationalStatus[]
DDLocationIndicator

PPCreationClassName
PPTag

PPManufacturer
PPModel

SIInstanceID
SIVersionString

ConcreteComponentView

ElementView

BasedonView

ContainerView

BlockStorageStatisticalData

(See Block Server Performance)

ElementStatisticalData

ElementStatisticalDataView

ComputerSystem

(See referencing profile)

SystemDeviceView
152

 Disk Drive Views

160

161

162

163

164
The keys for the DiskDriveView are the keys of the DiskDrive base class. There will be one instance of
CIM_DiskDriveView for each instance of a Disk Drive (primordial).

6.1.6.3.2 Mandatory, Conditional and Optional Properties of DiskDriveView

The properties from base classes shall be supported, but may be null. Properties that are mandatory in
mandatory base classes are mandatory in the DiskDriveView class. Properties that are conditional in a
base class are conditional in the DiskDriveView class. Properties that are mandatory in optional (base)
classes (BlockStorageStatisticalData and SoftwareIdentity) are also "conditional" in the DiskDriveView. If
an optional base class is not supported by the referencing profile (e.g., Array) implementation, these
properties of those classes shall be present but shall be null.

Properties in the base classes that are optional in the base class are optional in the DiskDriveView.

The DiskDriveView includes an optional array property (LPPortType) to hold the PortTypes for the target
ports for the DiskDrive.

6.1.6.3.3 Associations on DiskDriveView

The DiskDriveView is "read only." In order to support update of information in the DiskDriveView instance,
it would be necessary to update the class instances on which it is based. An association ElementView is
provided to the DiskDrive instance.

The ElementView association is only provided to base instances that can be modified.

In addition to the DiskDriveView there are 5 associations that support association traversal to (or from)
instances of the DiskDriveView:

• ConcreteComponentView (mandatory if the DiskDriveView is implemented)

From a primordial StoragePool instance a client will be able to find the DiskDriveViews associated to the
StoragePool via the ConcreteComponentView. This will return the DiskDriveView instances that
correspond to the Disk Drive StorageExtents that would be found via association traversal from the
StoragePool to the StorageExtents via ConcreteComponent association.

Similarly, if the client has a DiskDriveView instance, the client can find the primordial StoragePool to
which the drive is assigned by following the ConcreteComponentView association from the DiskDriveView
instance to the StoragePool instance for the StoragePool that contains the Disk Drive StorageExtent.

• ContainerView (mandatory if the DiskDriveView is implemented)

From a system chassis (or other higher level physical package) instance a client will be able to find the
DiskDriveViews associated to the PhysicalPackage instance via the ContainerView. This will return the
DiskDriveView instances that correspond to the Disk Drive PhysicalPackage that would be found via
association traversal from the system PhysicalPackage to the Disk Drive PhysicalPackage via Container
association.

Similarly, if the client has a DiskDriveView instance, the client can find the higher level system
PhysicalPackage instance in which the drive resides by following the ContainerView association from the
DiskDriveView instance to the PhysicalPackage instance for the higher level system physical package
that contains the Disk Drive physical package.

• BasedOnView (mandatory if the DiskDriveView and Extent Composition are implemented)

From a concrete StorageExtent (e.g., CompositeExtent) instance from Extent Composition a client will be
able to find the DiskDriveViews associated to the StorageExtent instance via the BasedOnView. This will
return the DiskDriveView instances that correspond to the Disk Drive StorageExtent that would be found
via association traversal from a "most antecedent" concrete StorageExtent to the Disk Drive
StorageExtent via BasedOn association.
SNIA Technical Position 153

Masking and Mapping Views

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202
Similarly, if the client has a DiskDriveView instance, the client can find concrete StorageExtent
instance(s) that is (are) based on the drive by following the BasedOnView association from the
DiskDriveView instance to the StorageExtent instance(s) for the concrete storage extent(s) that is (are)
based on the Disk Drive storage extent.

• SystemDeviceView (mandatory if the DiskDriveView is implemented)

From the ComputerSystem of the referencing profile a client will be able to find the DiskDriveViews
associated to the ComputerSystem via the SystemDeviceView. This will return the DiskDriveViews that
correspond to the DiskDrive instances that would be found via association traversal from the
ComputerSystem to the DiskDrive instances via SystemDevice.

Similarly, if the client has a DiskDriveView instance, the client can find the owning ComputerSystem by
following the SystemDeviceView association from the DiskDriveView instance to the ComputerSystem
instance for the ComputerSystem that scopes the DiskDrive instances.

• ElementStatisticalDataView

From the DiskDriveView instance, the client can find the BlockStorageStatisticalData instance for the Disk
Drive StorageExtent of the DiskDriveView by following the ElementStatisticalDataView association.

6.1.6.4 Masking and Mapping Views

6.1.6.4.1 The MaskingMappingExposedDeviceView Association

Figure 31: "MaskingMappingExposedDeviceView Association" illustrates the
MaskingMappingExposedDeviceView Association.

The MaskingMappingExposedDeviceView association is composed of information drawn from the
following base classes:

Figure 31 - MaskingMappingExposedDeviceView Association

ComputerSystem:

(See referencing profile)

LogicalPort

(See Target Ports Profiles)

StorageVolume

(See Bllock Services)

CIM_MaskingMappingExposedDeviceView
SPCDeviceID

PCFUDeviceNumber
PCFUDeviceAccess

SystemDevice

SystemDevice

SCSIProtocolEndPoint

(See Masking and Mapping)

SCSIProtocolController

(See Masking and Mapping)

SAPAvailable
ForElement

ProtocolController
ForUnit

DeviceSAPImplementation
154

 Masking and Mapping Views

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231
• SCSIProtocolController

• SAPAvailableForElement

• ProtocolControllerForUnit

The keys for the MaskingMappingExposedDeviceView are the references to the LogicalDevice (a
StorageVolume) and the reference to the SCSIProtocolEndpoint. There will be one instance of
MaskingMappingExposedDeviceView for each unique combination of StorageVolume and
SCSIProtocolEndpoint through which the volume is exposed (in a Masking and Mapping model).

Mandatory, Conditional and Optional Properties of CIM_MaskingMappingExposedDeviceView
Association

In addition to the references to StorageVolume and the SCSIProtocolEndpoint the
MaskingMappingExposedDeviceView association also carries the DeviceID of the SCSIProtocolController
and the DeviceNumber and DeviceAccess properties from the ProtocolControllerForUnit association.

The MaskingMappingExposedDeviceView is "read only." It would be used to do association traversal from
StorageVolumes to SCSIProtocolEndpoints that expose the Volumes.

6.1.6.4.2 MaskingMappingView Association

Figure 32: "MaskingMappingView Association" illustrates the MaskingMappingView Association.

Figure 32 - MaskingMappingView Association

ComputerSystem:

(See referencing profile)

LogicalPort

(See Target Ports profiles)

LogicalDevice

(See Masking and Mapping)

SystemDevice

SystemDevice

SCSIProtocolEndPoint

(See Target Ports Profile)

SCSIProtocolController

(See Masking and Mapping)

SAPAvailable
ForElement

ProtocolController
ForUnit

DeviceSAPImplementation

AuthorizedPrivilege

(See Masking and Mapping)

StorageHardwareID

(See Masking and Mapping)

AuthorizedSubject

AuthorizedTarget

MaskingMappingView

SHIDStorageID
SHIDIDType
LDDeviceID

SPEPSystemCreationClassName
SPEPCreationClassName

SPEPSystemName
SPEPName
SPEPRole

APInstanceID
APPrivilegeGranted

APActivities[]
APElementName

SPCSystemCreationClassName
SPCCreationClassName

SPCSystemName
SPCDeviceID

PCFUDeviceNumber
PCFUDeviceAccess

The MaskingMapping view class is a three‐way association
SNIA Technical Position 155

Masking and Mapping Views

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249
The MaskingMappingView association is a three way association that is composed of information drawn
from the following base classes:

• StorageHardwareID

• AuthorizedPrivilege

• SCSIProtocolController

• SCSIProtocolEndpoint

• ProtocolControllerForUnit

• LogicalDevice

The keys for the MaskingMappingView are the SHID reference, the SCSIProtocolEndpoint reference and
the LogicalDevice reference. There will be one instance of MaskingMappingView for each unique
combination of Storage Hardware ID (e.g., host), LogicalDeivce (e.g., StorageVolume) and
SCSIProtocolEndpoint (e.g., LogicalPort).

Mandatory, Conditional and Optional Properties of MaskingMappingView Association

In addition to the references to StorageHardwareID, LogicalDevice and the SCSIProtocolEndpoint the
MaskingMappingView association also carries their properties and the AuthorizedPrivilege properties,
DeviceID of the SCSIProtocolController and the DeviceNumber and DeviceAccess properties from the
ProtocolControllerForUnit association. Also, for the convenience to clients, identifying properties from the
LogicalDevice, StorageHardwareID and SCSIProtocolEndpoint are also pulled into the
MaskingMappingView. This allows a client to enumerate the MaskingMappingView association and get
the identifiers for the endpoints in the association.

The MaskingMappingView is "read only." It would be used to do associate the StorageHardwareIDs,
StorageVolumes to SCSIProtocolEndpoints.
156

 Masking and Mapping Views

250

251

252

253

254

255

256

257

258

259

260

261
6.1.6.4.3 MappingProtocolControllerView

Figure 33 illustrates the elements involved in supporting the MappingProtocolControllerView.

The MappingProtocolControllerView is composed of information drawn from the following base classes:

• LogicalPort

• ProtocolEndpoint

• ProtocolController

• AuthorizedPrivilege

• StorageHardwareID

The keys for the MappingProtocolControllerView are the keys of the ProtocolEndpoint, ProtocolController
and StorageHardwareID base classes. There will be one instance of MappingProtocolControllerView for
each unique combination of those keys.

Figure 33 - The MappingProtocolControllerView

ComputerSystem:

(See referencing profile)

LogicalPort

(See Target Ports Profiles)

LogicalDevice

(See Masking and Mapping)

SystemDevice

SystemDevice

ProtocolEndPoint

(See Target Ports Profiles)

ProtocolController

(See Masking and Mapping)

SAPAvailable
ForElement

ProtocolController
ForUnit

DeviceSAPImplementation

AuthorizedPrivilege

(See Masking and Mapping)

StorageHardwareID

(See Masking and Mapping)

AuthorizedSubject

AuthorizedTarget

MappingProtocolControllerView

PCSystemCreationClassName
PCCreationClassName

PCSystemName
PCDeviceID

SHIDInstanceID
SHIDStorageID

SHIDIDType
PEPSystemCreationClassName

PEPCreationClassName
PEPSystemName

PEPName
PEPProtocolIFType

PEPOtherTypeDescription
APInstanceID

APPrivilegeGranted
APActivities[]

APElementName
LPSystemCreationClassName

LPCreationClassName
LPSystemName

LPDeviceID
LPOperationalStatus
LPUsageRestriction

LPPortType

ElementView

ElementView

ProtocolControllerForUnitView
PCFUDeviceNumber
PCFUDeviceAccess

The Mapping Protocol Controller view class is Logical Device View

ElementView (Optional)

SystemDeviceView
SNIA Technical Position 157

Masking and Mapping Views

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276
Mandatory, Conditional and Optional Properties of MappingProtocolControllerView

The properties from base classes shall be supported, but may be null. Properties that are mandatory in
mandatory base classes are mandatory in the MappingProtocolControllerView class. Properties that are
conditional in a base class are conditional in the MappingProtocolControllerView class.

Properties in the base classes that are optional in the base class are optional in the
MappingProtocolControllerView.

6.1.6.4.4 Associations on MappingProtocolControllerView

The CIM_MappingProtocolControllerView is "read only." In order to support update of information in the
MappingProtocolControllerView instance, it would be necessary to update the class instances on which it
is based. An association ElementView is provided to the CIM_StorageHardwareID, CIM_LogicalPort and
CIM_ProtocolEndpoint instances.

NOTE The ElementView association is only provided to base instances that can be modified.

In addition to the MappingProtocolControllerView there are 2 associations that support association
traversal to (or from) instances of the MappingProtocolControllerView:

6.1.6.4.4.1 ProtocolControllerForUnitView (mandatory if the MappingProtocolControllerView is
implemented)

From a MappingProtocolControllerView instance a client will be able to find the CIM_LogicalDevices
associated to the MappingProtocolControllerView (ProtocolController) via the
ProtocolControllerForUnitView. This will return the LogicalDevice instances that correspond to the
ProtocolController of the MappingProtocolControllerView that would be found via association traversal
from the ProtocolController to the LogicalDevices via CIM_ProtocolControllerForUnit association.

6.1.6.4.4.2 SystemDeviceView (mandatory if the MappingProtocolControllerView is implemented)

From the CIM_ComputerSystem of the referencing profile a client will be able to find the
MappingProtocolControllerViews associated to the ComputerSystem via the SystemDeviceView. This will
return the MappingProtocolControllerViews that correspond to the CIM_ProtocolController instances that
would be found via association traversal from the ComputerSystem to the CIM_ProtocolController
instances via CIM_SystemDevice.

Similarly, if the client has a MappingProtocolControllerView instance, the client can find the scoping
ComputerSystem by following the SystemDeviceView association from the
MappingProtocolControllerView instance to the CIM_ComputerSystem instance for the ComputerSystem
that scopes the CIM_ProtocolController instances.
158

 Storage Pool Views

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316
6.1.6.5 Storage Pool Views

6.1.6.5.1 StoragePoolView Elements

Figure 34 illustrates the elements involved in supporting the StoragePoolView.

The StoragePoolView is composed of information drawn from the following base classes:

• StoragePool

• StorageCapabilities

• StorageConfigurationCapabilities (Optional)

• AllocatedFromStoragePool

The keys for the StoragePoolView are the keys of the StoragePool base class. There will be one instance
of StoragePoolView for each instance of a StoragePool.

Figure 34 - The StoragePoolView

StorageVolume
(or LogicalDisk)

(See Block Services)

StoragePool

(See Block Services)

AllocatedFromStoragePool

ElementCapabilities

StorageCapabilities

(See Block Services)

VolumeViewComputerSystem:

(See referencing profile)

SystemDeviceView

AllocatedFromStoragePoolView

SystemDevice

ElementView
Parent: StoragePool

(See Block Services)

AllocatedFromStoragePool

StoragePoolView

SPInstanceID
SPElementName

SPPoolID
SPTotalManagedSpace

SPRemainingManagedSpace
SPPrimordial
SCInstanceID

SCElementName
SCElementType

SCPackageRedundancyDefault
SCPackageRedundancyMin
SCPackageRedundancyMax
SCDataRedundancyDefault

SCDataRedundancyMin
SCDataRedundancyMax
AFSPSpaceConsumed

SCCInstanceID
SCCElementName

StoragePoolView

AllocatedFromStoragePoolViewView

AllocatedFromStoragePoolViewView

ElementView

AllocatedFromStoragePoolView

StorageConfigurationCapabilities

(See Block Services)

ElementCapabilities

DiskDriveView

StorageExtent

Primordial=true
(See Disk Drive Lite)

ConcreteComponent

ExtentComponentView
DriveComponentViewView

HostedStoragePoolView

AllocatedFromStoragePoolView
SNIA Technical Position 159

Storage Pool Views

317

318

319

320

321

322

323
6.1.6.5.2 Mandatory, Conditional and Optional Properties of StoragePoolView

The properties from base classes shall be supported, but may be null. Properties that are mandatory in
mandatory base classes are mandatory in the StoragePoolView class. Properties that are conditional in a
base class are conditional in the StoragePoolView class. Properties that are mandatory in optional (base)
classes (e.g., StorageConfigurationCapabilities) are "conditional" in the StoragePoolView. If an optional
base class is not supported by the implementation, these properties of those classes shall be present but
shall be null.

Properties in the base classes that are optional in the base class are optional in the StoragePoolView.

6.1.6.5.3 Associations on StoragePoolView

6.1.6.5.3.1 Overview

The StoragePoolView is "read only." In order to support update of information in the StoragePoolView
instance, it would be necessary to update the class instances on which it is based. An association
ElementView is provided to the CIM_StoragePool instance.

NOTE The ElementView association is only provided to base instances that can be modified.

In addition to the StoragePoolView there are 7 associations that support association traversal to (or from)
instances of the StoragePoolView:

6.1.6.5.3.2 AllocatedFromStoragePoolView (StoragePoolView to StoragePool)

This association is mandatory if the StoragePoolView is implemented.

From a StoragePoolView instance, the client can find the parent StoragePool to which the pool is
allocated from by following the AllocatedFromStoragePoolView association from the StoragePoolView
instance to the CIM_StoragePool instance for the StoragePool.

Similarly, if the client has a CIM_StoragePool instance a client will be able to find the StoragePoolViews
that are allocated from the StoragePool via the AllocatedFromStoragePoolView. This will return the
StoragePoolView instances that correspond to the StoragePools that would be found via association
traversal from the StoragePool to the StoragePool via the CIM_AllocatedFromStoragePool association.

6.1.6.5.3.3 AllocatedFromStoragePoolView (Volume to StoragePoolView)

This association is mandatory if the StoragePoolView is implemented.

From a CIM_StorageVolume (or CIM_LogicalDisk) instance, the client can find the StoragePoolView that
the volume is allocated from by following the AllocatedFromStoragePoolView association from the CIM
class (StorageVolume or LogicalDisk) to the appropriate StoragePoolView instance that corresponds to
the CIM_StoragePool instance the volume is allocated from.

Similarly, if the client has a StoragePoolView instance, the client will be able to find the
CIM_StorageVolumes (or CIM_LogicalDisks) that are allocated from that StoragePoolView by following
the AllocatedFromStoragePoolView association.

6.1.6.5.3.4 AllocatedFromStoragePoolViewView (VolumeView to StoragePoolView)

This association is mandatory if the StoragePoolView and the VolumeView are implemented.

From a VolumeView instance, the client can find the StoragePoolView that the volume is allocated from
by following the AllocatedFromStoragePoolViewView association from the VolumeView instance to the
appropriate StoragePoolView instance that corresponds to the CIM_StoragePool instance the volume is
allocated from.

Similarly, if the client has a StoragePoolView instance, the client will be able to find the VolumeViews for
volumes that are allocated from that StoragePoolView by following the
AllocatedFromStoragePoolViewView association.
160

 Storage Pool Views

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365
6.1.6.5.3.5 AllocatedFromStoragePoolViewView (StoragePoolView to StoragePoolView)

This association is mandatory if the StoragePoolView is implemented.

From a StoragePoolView instance, the client can find the parent StoragePoolView to which the pool is
allocated from by following the AllocatedFromStoragePoolViewView association from the
StoragePoolView instance to the StoragePoolView instance for the parent StoragePool.

Similarly, if the client has a StoragePoolView instance a client will be able to find the StoragePoolViews
that are allocated from the StoragePool via the AllocatedFromStoragePoolViewView. This will return the
StoragePoolView instances that correspond to the StoragePools that would be found via association
traversal from the StoragePool to the StoragePool via the CIM_AllocatedFromStoragePool association.

6.1.6.5.3.6 HostedStoragePoolView

This is mandatory if the StoragePoolView is implemented.

From the owning CIM_ComputerSystem a client will be able to find the StoragePoolViews associated to
the ComputerSystem via the HostedStoragePoolView. This will return the StoragePoolViews that
correspond to the CIM_StoragePool instances that would be found via association traversal from the
ComputerSystem to the CIM_StoragePool instances via CIM_HostedStoragePool.

Similarly, if the client has a StoragePoolView instance, the client can find the owning ComputerSystem by
following the HostedStoragePoolView association from the StoragePoolView instance to the
CIM_ComputerSystem instance for the ComputerSystem that scopes the CIM_StoragePool instances.

6.1.6.5.3.7 ExtentComponentView

This is mandatory if the StoragePoolView is implemented.

From a StoragePoolView instance, the client can find the pool component CIM_StorageExtent instances
for the extents that form the pool via the ExtentComponentView. This will return the StorageExtents that
correspond to the StoragePoolView instances that would be found via association traversal from the
CIM_StoragePool instance to CIM_StorageExtent instances via CIM_ConcreteComponent.

Similarly, if the client has a CIM_StorageExtent instance, the client can find the StoragePoolView by
following the ExtentComponentView association from the CIM_StorageExtent instance to the
StoragePoolView instance for the storage pool that has the CIM_StorageExtent as a pool component.

6.1.6.5.3.8 DriveComponentViewView

This association is mandatory if the StoragePoolView and the DiskDriveView are implemented.

From a StoragePoolView instance, the client will be able to find the DiskDriveViews for drives that are
components of that StoragePoolView by following the DriveComponentViewView association.

Similarly, if the client has a DiskDriveView instance, the client can find the StoragePoolView that the drive
is a component of by following the DriveComponentViewView association from the DiskDriveView
instance to the appropriate StoragePoolView instance that corresponds to the CIM_StoragePool instance
the drive is a component of.
SNIA Technical Position 161

Replication Views

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400
6.1.6.6 Replication Views

6.1.6.6.1 ReplicaPairView

Figure 35 illustrates the elements involved in supporting the ReplicaPairView.

The ReplicaPairView is composed of information drawn from the following base classes:

• StorageVolume (or LogicalDisk) for the Target

• StorageVolume (or LogicalDisk) for the Source

• StorageSynchronized

The keys for the ReplicaPairView are the keys of the target StorageVolume (or LogicalDisk) base class.
There will be one instance of ReplicaPairView for each instance of a target StorageVolume (or
LogicalDisk).

6.1.6.6.2 Mandatory, Conditional and Optional Properties of ReplicaPairView

The properties from base classes shall be supported, but may be null. Properties that are mandatory in
mandatory base classes are mandatory in the ReplicaPairView class. Properties that are conditional in a
base class are conditional in the ReplicaPairView class.

Properties in the base classes that are optional in the base class are optional in the ReplicaPairView.

6.1.6.6.3 Associations on ReplicaPairView

6.1.6.6.3.1 Overview

The ReplicaPairView is "read only." In order to support update of information in the ReplicaPairView
instance, it would be necessary to update the class instances on which it is based. An association
ElementView is provided to the CIM_StorageVolume instances (both source and target).

NOTE The ElementView association is only provided to base instances that can be modified.

In addition to the ReplicaPairView there is only one association that support association traversal to (or
from) instances of the ReplicaPairView:

Figure 35 - The ReplicaPairView

T arge t : S to rageVo lum e
(o r Log ica lD isk)

(See Block Se rvices)

R ep l icaPa irView

SVSo u rceSystem C reatio n C lassN am e
SVSo u rceSystem N am e

SVSo u rceC rea tio n C lassN am e
SVSo u rceD ev ice ID

SVSourceN am e
SVSourceN am eF orm a t
SVSourceExten tSta tus[]

SVSourceO pera t iona lSta tus[]
SVSourceBlockSize

SVSourceN um berO fB locks
SVSourceC onsum ab leB locks

SSW henSynced
SSSyncM a in ta ined

SSC opyT ype
SSSyncSta te

SSC opyPrio rity
SSSyncT ype

SSM ode
SSProgressSta tus

SVT arg etSystem C reatio n C lassN am e
SVT arg etSystem N am e

SVT arg etC rea tio n C lassN am e
SVT arg etD ev ice ID

SVT arge tN am e
SVT argetN am eF orm a t
SVT arge tExten tSta tus[]

SVT arge tO pera t iona lSta tus[]
SVT arge tB lockSize

SVT arge tN um berO fB locks
SVT arge tC onsum ab leB locks

C om pu te rSystem :

(See re fe rencing p ro f ile)

System D ev iceViewSystem D evice

Elem en tView

Source : S to rageVo lum e
(o r Log ica lD isk)

(See Block Se rvices)

Sto rag eSyn ch ro n ized

Elem en tView
162

 Replication Views

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422
6.1.6.6.3.2 SystemDeviceView (ReplicaPairViews)

This is mandatory if the ReplicaPairView is implemented.

From the CIM_ComputerSystem of the referencing profile a client will be able to find the
ReplicaPairViews associated to the ComputerSystem via the SystemDeviceView. This will return the
ReplicaPairView instances that correspond to the CIM_StorageVolume (CIM_LogicalDisk) instances of
target volumes that would be found via association traversal from the ComputerSystem to the
CIM_StorageVolume (or CIM_LogicalDisk) instances via CIM_SystemDevice.

Similarly, if the client has a ReplicaPairView instance, the client can find the owning ComputerSystem by
following the SystemDeviceView association from the ReplicaPairView instance to the
CIM_ComputerSystem instance for the ComputerSystem that scopes the CIM_StorageVolume
(CIM_LogicalDisk) instances.

6.2 Health and Fault Management Consideration

Health and Fault Management considerations are defined in terms of the base classes (no View Classes).
However, it should be noted that OperationalStatus of view classes shall be the same as the
OperationalStatus of the underlying CIM classes on which the view classes are defined.

6.3 Cascading Considerations

Not defined in this document.

6.4 Methods of the Profile

6.4.1 Extrinsic Methods of the Profile

Not defined in this document.

6.4.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

View classes are modified by creating, deleting and modifying the base classes from which they are
derived. The property values of View classes are derived from the property values of associated classes.
This profile does not specify the means to modify, create, or delete those classes. The base class
instances may be accessed from the view class instances via association traversal through the
ElementView association.
SNIA Technical Position 163

Discovery of the Volumes on an Array

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457
6.5 Client Considerations and Recipes

6.5.1 Use Cases

6.5.1.1 Discovery of the Volumes on an Array

Table 62 identifies the elements of the use case to discover the volumes on an Array.

6.5.1.2 Discovery of the Disk Drives in a Primordial Pool

Table 63 identifies the elements of the use case to discover the Disk Drives in a Primordial Pool.

Table 62 - Discovery of the Volumes on an Array

Use Case Element Description

Summary Given an Array ComputerSystem, find the volumes (and their relevant information) on the
system

Basic Course of Events 1. Find the top level system of an array (using ElementConformsToProfile)
2. Find the related Volumes (on that system, using SystemDeviceView)
3. Locate the Component ComputerSystems (using ComponentCS)
4. Find the related Volumes on each of those systems (using SystemDeviceView)

Alternative Paths None

Exception Paths None

Triggers Need to build or refresh a topology database for an Array

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile and
ViewCapabilities.SupportedViews contains “SNIA:VolumeView”.

Postconditions Administrator has all Volumes, their Settings and what Pools they are allocated from.

Table 63 - Discovery of the Disk Drives in a Primordial Pool

Use Case Element Description

Summary Given an Array Primordial Pool, find the Disk Drives (and their information) that are its
components

Basic Course of Events 1. Find the related Disk Drives (in that pool, using ConcreteComponentView)

Alternative Paths 1a. Find all the disk drives on the system (using SystemDeviceView)

Exception Paths None

Triggers Need to build or refresh the Drive topology database for an Array

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile and
ViewCapabilities.SupportedViews contains “SNIA:DiskDriveView”.

Postconditions Administrator has all DiskDrives and related information (scoped by the Pool or System)
164

 Discover Volumes exposed on a (Target) Port

458

459

460

461

462

463
6.5.1.3 Discover Volumes exposed on a (Target) Port

Table 64 identifies the elements of the use case to Discover Volumes exposed on a (Target) Port.

6.5.1.4 Discover (target port) redundancy for a Volume

Table 65 identifies the elements of the use case to discover (target port) redundancy for a Volume.

6.5.1.5 Discover Volumes exposed to a Host Port

Table 66 identifies the elements of the use case to discover Volumes exposed to a Host Port.

Table 64 - Discover Volumes exposed on a (Target) Port

Use Case Element Description

Summary Given an Array target port, find the volumes that are exposed through that port

Basic Course of Events 1. Find the ProtocolEndpoint(s) associated to the Port (using DSI)2. Find the related
Volumes (on that system, using MaskingMappingExposedDeviceView)

Alternative Paths None

Exception Paths None

Triggers Determine Volumes accessible through a port on an Array

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile and
ViewCapabilities.SupportedViews contains “SNIA:MaskingMappingExposedDeviceView”.

Postconditions Administrator has all Volumes that depend on the port for access.

Table 65 - Discover (target port) redundancy for a Volume

Use Case Element Description

Summary Given an Array volume, find the target ports through which it can be accessed.

Basic Course of Events 1. Find the ProtocolEndpoints that support the volume (using
MaskingMappingExposedDeviceView)
2. Find the related target Ports (using DSI)

Alternative Paths None

Exception Paths None

Triggers Need to determine what target ports are available for accessing a volume

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile and
ViewCapabilities.SupportedViews contains “SNIA:MaskingMappingExposedDeviceView”.

Postconditions Administrator has the ports through which the volume may be accessed.

Table 66 - Discover Volumes exposed to a Host Port

Use Case Element Description

Summary Given an host port (Storage HardwareID), find the volumes that are mapped to that host
port

Basic Course of Events 1. Find the Volumes mapped to the host port (MaskingMappingView)

Alternative Paths None
SNIA Technical Position 165

Discover the Mapping information for an array

464

465

466

467

468

469
6.5.1.6 Discover the Mapping information for an array

Table 67 identifies the elements of the use case to discover the Mapping information for an array.

6.5.1.7 Discover the Pool topology for an array

Table 68 identifies the elements of the use case to discover the Pool topology for an array.

Exception Paths None

Triggers Need to build or refresh a topology database for host access to Array volumes

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile and
ViewCapabilities.SupportedViews contains “SNIA:MappingMaskingView”.

Postconditions Administrator has all Volumes that are mapped to the host port.

Table 67 - Discover Mapping information for an array

Use Case Element Description

Summary Given an Array ComputerSystem, find the masking and mapping information.

Basic Course of Events 1. Find the target ports and host ports that are connected (Using SystemDeviceView to
MappingProtocolControllerView)
2. Find the Volumes for a ProtocolController (using ProtocolControllerForUnitView)

Alternative Paths None

Exception Paths None

Triggers Need to build or refresh a topology database for masking and mapping information for an
Array.

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile and
ViewCapabilities.SupportedViews contains “SNIA:MappingProtocolControllerView”.

Postconditions Administrator has all the Masking and Mapping information.

Table 68 - Discover the Pool topology for an array

Use Case Element Description

Summary Given an Array ComputerSystem, find the Pools on the system

Basic Course of Events 1. Find the Pools and their capabilities for the system (Using HostedPoolView)

Alternative Paths None

Exception Paths None

Triggers Need to build or refresh a topology database for pools in an Array.

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile and
ViewCapabilities.SupportedViews contains “SNIA:StoragePoolView”.

Postconditions Administrator has all the Pools and their capabilities information.

Table 66 - Discover Volumes exposed to a Host Port

Use Case Element Description
166

 Discover the Replica Pairs for an array

470

471

472

473
6.5.1.8 Discover the Replica Pairs for an array

Table 69 identifies the elements of the use case to discover the Replica Pairs for an array.

6.5.2 Recipes

Not defined in this document.

6.6 CIM Elements

6.6.1 Element Summary

Table 70 describes the CIM elements for Block Storage Views.

Table 69 - Discover the Replica Pairs for an array

Use Case Element Description

Summary Given an Array ComputerSystem, find the Replica Pairs on the system

Basic Course of Events 1. Find the volume pairs for pairs on the array (Using SystemDeviceView to
ReplicaPairView)

Alternative Paths None

Exception Paths None

Triggers Need to build or refresh a topology database for Replicas in an Array.

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile and
ViewCapabilities.SupportedViews contains “SNIA:ReplicaPairView”.

Postconditions Administrator has all the Replicas that are defined in the Array.

Table 70 - CIM Elements for Block Storage Views

Element Name Requirement Description

6.6.2 CIM_AllocatedFromStoragePoolView
(StoragePoolView to StoragePool)

Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:StoragePoolView" (and the Block Service
Package is implemented).

This associates a CIM_StoragePoolView instance to a
CIM_StoragePool instance. This is required if the
CIM_StoragePoolView is implemented.

6.6.3 CIM_AllocatedFromStoragePoolView (Volume to
StoragePoolView)

Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:StoragePoolView" (and the Block Service
Package is implemented).

This associates a CIM_StorageVolume (or
CIM_LogicalDisk) instance to a
CIM_StoragePoolView. This is required if the
CIM_StoragePoolView is implemented.

6.6.4 CIM_AllocatedFromStoragePoolView (VolumeView
to StoragePool)

Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:VolumeView" (and the Block Service
Package is implemented).

This associates a CIM_VolumeView instance to a
CIM_StoragePool. This is required if the
CIM_VolumeView is implemented.
SNIA Technical Position 167

Discover the Replica Pairs for an array

474

475

476

477

478

479
6.6.5 CIM_AllocatedFromStoragePoolViewView
(PoolView to PoolView)

Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:StoragePoolView" (and the Block Service
Package is implemented).

This associates a CIM_StoragePoolView instance to
its parent CIM_StoragePoolView instance that it is
allocated from.

6.6.6 CIM_AllocatedFromStoragePoolViewView
(VolumeView to PoolView)

Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
strings "SNIA:StoragePoolView" and
"SNIA:VolumeView" (and the Block Service Package is
implemented).

This associates a CIM_VolumeView instance to a
CIM_StoragePoolView instance that volume is
allocated from.

6.6.7 CIM_BasedOnView (ExtentOnDriveExtent) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:DiskDriveView" and Extent Composition
is implemented.

This associates a concrete CIM_StorageExtent
instance to a CIM_DiskDriveView instance. This is
required if the CIM_DiskDriveView and
ExtentComposition are implemented.

6.6.8 CIM_BasedOnView (VolumeOnExtent) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:VolumeView" and Extent Composition is
implemented.

This associates a CIM_VolumeView instance to a base
CIM_StorageExtent instance on which the volume is
based. This is required if the CIM_VolumeView and
ExtentComposition are implemented.

6.6.9 CIM_ConcreteComponentView Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:DiskDriveView" (and the Disk Drive Lite
Profile is implemented).

The CIM_ConcreteComponentView associates the
CIM_DiskDriveView instance to the primordial
StoragePool to which the disk drive StorageExtent is
assigned. This is required if the CIM_DiskDriveView is
implemented.

6.6.10 CIM_ContainerView Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:DiskDriveView" (and the Disk Drive Lite
Profile is implemented).

The CIM_ContainerView associates the
CIM_DiskDriveView instance to the higher level
physical package (e.g., System physical package) that
contains the physical package of the disk drive. This is
required if the CIM_DiskDriveView is implemented.

Table 70 - CIM Elements for Block Storage Views

Element Name Requirement Description
168

 Discover the Replica Pairs for an array
6.6.11 CIM_DiskDriveView Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:DiskDriveView" (and the Disk Drive Lite
Profile is implemented).

The CIM_DiskDriveView instance represents a Disk
Drive and its associated information. This is required if
CIM_ViewCapabilities.SupportedViews includes
"SNIA:DiskDriveView".

6.6.12 CIM_DriveComponentViewView Conditional Conditional requirement: Required if the array
property CIM_ViewCapabilities.SupportedViews
contains the string "SNIA:StoragePoolView" and
"SNIA:DiskDriveView" (and the Disk Drive Lite Profile
is implemented).

This associates a CIM_StoragePoolView instance to a
CIM_DiskDriveView instance that is a component of
the StoragePool.

6.6.13 CIM_ElementCapabilities (View Capabilities) Mandatory Associates the top level ComputerSystem to the
CIM_ViewCapabilities supported by the
implementation.

6.6.14 CIM_ElementStatisticalDataView (DiskDriveView) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:DiskDriveView",
CIM_BlockStatisticsCapabilities.ElementTypesSupport
ed contains "10" and Block Server Performance is
implemented.

This associates a CIM_DiskDriveView instance to the
CIM_BlockStorageStatisticalData instance for the Disk
Drive. This is required if the CIM_DiskDriveView and
the Block Server Performance Profile are
implemented.

6.6.15 CIM_ElementStatisticalDataView (VolumeView) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:VolumeView",
CIM_BlockStatisticsCapabilities.ElementTypesSupport
ed contains "8" and Block Server Performance is
implemented.

This associates a CIM_VolumeView instance to the
CIM_BlockStorageStatisticalData instance for the
StorageVolume (or LogicalDisk). This is required if the
CIM_VolumeView and the Block Server Performance
Profile are implemented.

6.6.16 CIM_ElementView (DiskDrive) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:DiskDriveView" (and the Disk Drive Lite
Profile is implemented).

This associates a CIM_DiskDriveView instance to a
base CIM_DiskDrive instance that can be modified.
This is required if the CIM_DiskDriveView is
implemented.

Table 70 - CIM Elements for Block Storage Views

Element Name Requirement Description
SNIA Technical Position 169

Discover the Replica Pairs for an array
6.6.17 CIM_ElementView (StorageSetting) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:VolumeView" (and the Block Service
Package is implemented).

This associates a CIM_VolumeView class instance to
a base CIM_StorageSetting class instance that can be
modified. This is required if the CIM_VolumeView is
implemented.

6.6.18 CIM_ElementView (Volume) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:VolumeView" (and the Block Service
Package is implemented).

This associates a CIM_VolumeView instance to a base
CIM_StorageVolume (or CIM_LogicalDisk) instance
that can be modified. This is required if the
CIM_VolumeView is implemented.

6.6.19 CIM_ExtentComponentView Conditional Conditional requirement: Required if the array
property CIM_ViewCapabilities.SupportedViews
contains the string "SNIA:StoragePoolView" (and the
Block Service Package is implemented).

This associates a CIM_StoragePoolView instance to a
CIM_StorageExtent instance that is a component of
the StoragePool.

6.6.20 CIM_HostedStoragePoolView Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:StoragePoolView" (and the Block Service
Package is implemented).

This associates a CIM_StoragePoolView instance to
the CIM_ComputerSystem instance that hosts the
underlying StoragePool.

6.6.21 CIM_MappingProtocolControllerView Conditional Conditional requirement: Required if the array
property CIM_ViewCapabilities.SupportedViews
contains the string
"SNIA:MappingProtocolControllerView" (and the
Masking and Mapping Profile is implemented).

The CIM_MappingProtocolControllerView represents
the unique pairing of Host Ports and TargetPorts as
represented by a ProtocolController in the Masking
and Mapping profile of a block storage profile. This is
required if the CIM_ViewCapabilities.SupportedViews
includes "SNIA:MappingProtocolControllerView".

6.6.22 CIM_MaskingMappingExposedDeviceView Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:MaskingMappingExposedDeviceView"
(and the Masking and Mapping Profile is
implemented).

This view associates a Target SCSIProtocolEndpoint
and a LogicalDevice (e.g., StorageVolume). This is
required if the CIM_ViewCapabilities.SupportedViews
includes
"SNIA:MaskingMappingExposedDeviceView".

Table 70 - CIM Elements for Block Storage Views

Element Name Requirement Description
170

 Discover the Replica Pairs for an array
6.6.23 CIM_MaskingMappingView Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:MaskingMappingView" (and the Masking
and Mapping Profile is implemented).

This three way association associates a
CIM_LogicalDevice, CIM_StorageHardwareID and
CIM_SCSIProtocolEndpoint instances to each other
and derived from the Masking and Mapping profile
model. This is required if
CIM_ViewCapabilities.SupportedViews contains
"SNIA:MaskingMappingView".

6.6.24 CIM_ProtocolControllerForUnitView Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:MappingProtocolControllerView" (and the
Masking and Mapping Profile is implemented).
Associates an instance of
MappingProtocolControllerView to a LogicalDevice.

6.6.25 CIM_ReplicaPairView Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:ReplicaPairlView" (and the Copy Services
Profile is implemented). A view that combines a source
and target volume and the StorageSynchronized
between them.

6.6.26 CIM_StoragePoolView Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:StoragePoolView" (and the Block Service
Package is implemented). A view that combines
StoragePool information with the StorageCapabilities
and StorageConfigurationCapabilities for the
StoragePool, as well as SpaceConsumed on its parent
pool.

6.6.27 CIM_SystemDeviceView (DiskDriveViews) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:DiskDriveView" (and the Disk Drive Lite
Profile is implemented).

This association links CIM_DiskDriveView instances to
the scoping system. This is required if the
CIM_DiskDriveView is implemented.

6.6.28 CIM_SystemDeviceView
(MappingProtocolControllerViews)

Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:MappingProtocolControllerView" (and the
Masking and Mapping Profile is implemented).

This association links
CIM_MappingProtocolControllerView instances to the
scoping system. This is required if the
CIM_MappingProtocolControllerView is implemented.

6.6.29 CIM_SystemDeviceView (ReplicaPairViews) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:ReplicaPairlView" (and the Copy Services
Profile is implemented).

This association links CIM_ReplicaPairView instances
to the scoping system. This is required if the
CIM_ReplicaPairView is implemented.

Table 70 - CIM Elements for Block Storage Views

Element Name Requirement Description
SNIA Technical Position 171

Discover the Replica Pairs for an array
6.6.2 CIM_AllocatedFromStoragePoolView (StoragePoolView to StoragePool)

The CIM_AllocatedFromStoragePoolView instance is a view that is derived from the
CIM_AllocatedFromStoragePool association between two StoragePools. Note that if the StoragePoolView
is allocated from multiple StoragePools there will be multiple AllocatedFromStoragePoolView instances
for the StoragePool. The CIM_AllocatedFromStoragePoolView is subclassed from
CIM_AbstractElementAllocatedFromPool.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:StoragePoolView" (and the Block Service Package is implemented).

Table 71 describes class CIM_AllocatedFromStoragePoolView (StoragePoolView to StoragePool).

6.6.30 CIM_SystemDeviceView (VolumeViews) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:VolumeView" (and the Block Service
Package is implemented).

This association links CIM_VolumeView instances to
the scoping system. This is required if the
CIM_VolumeView is implemented.

6.6.31 CIM_ViewCapabilities Mandatory The CIM_ViewCapabilities identifies the capabilities of
the implementation of view classes.

6.6.32 CIM_VolumeView Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:VolumeView" (and the Block Service
Package is implemented).

The CIM_VolumeView represents the storage
(LogicalDisks or StorageVolumes) of a block storage
profile. This is required if the
CIM_ViewCapabilities.SupportedViews includes
"SNIA:VolumeView".

Table 71 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolView (StoragePoolView
to StoragePool)

Properties Flags Requirement Description & Notes

AFSPSpaceConsumed Mandatory The space consumed from the StoragePool by the StoragePoolView. This
value is the same as the AllocatedFromStoragePool.SpaceConsumed
value for the base CIM_StoragePool on the antecedent StoragePool.

Antecedent Mandatory The parent(s) StoragePool(s) from which the StoragePoolView is
allocated.

Dependent Mandatory The CIM_StorageVolume or CIM_LogicalDisk instance that is allocated
from the StoragePoolView. There is only one CIM_StorageVolume (or
CIM_LogicalDisk) instance for the combined StorageVolume (or
LogicalDisk) - StoragePool pair.

Table 70 - CIM Elements for Block Storage Views

Element Name Requirement Description
172

 Discover the Replica Pairs for an array

480

481
482
483

484

485

486

487

488
6.6.3 CIM_AllocatedFromStoragePoolView (Volume to StoragePoolView)

The CIM_AllocatedFromStoragePoolView instance is a view that is derived from the
CIM_AllocatedFromStoragePool association between the StorageVolume or LogicalDisk (of the
CIM_StorageVolume or CIM_LogicalDisk) and the StoragePoolView from which the StorageVolume (or
LogicalDisk) is allocated. Note that if the StorageVolume (or LogicalDisk) is allocated from multiple
StoragePools there will be multiple AllocatedFromStoragePoolView instances for the StorageVolume (or
LogicalDisk). The CIM_AllocatedFromStoragePoolView is subclassed from
CIM_AbstractElementAllocatedFromPool.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:StoragePoolView" (and the Block Service Package is implemented).

Table 72 describes class CIM_AllocatedFromStoragePoolView (Volume to StoragePoolView).

6.6.4 CIM_AllocatedFromStoragePoolView (VolumeView to StoragePool)

The CIM_AllocatedFromStoragePoolView instance is a view that is derived from the
CIM_AllocatedFromStoragePool association between the StorageVolume or LogicalDisk (of the
CIM_VolumeView) and the StoragePool from which the StorageVolume (or LogicalDisk is allocated. Note
that if the StorageVolume (or LogicalDisk) is allocated from multiple StoragePools there will be multiple
AllocatedFromStoragePoolView instances for the StorageVolume (or LogicalDisk). The
CIM_AllocatedFromStoragePoolView is subclassed from CIM_AbstractElementAllocatedFromPool.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:VolumeView" (and the Block Service Package is implemented).

Table 72 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolView (Volume to Stor-
agePoolView)

Properties Flags Requirement Description & Notes

AFSPSpaceConsumed Mandatory The space consumed from the StoragePoolView by the StorageVolume (or
LogicalDisk). This value is the same as the
AllocatedFromStoragePool.SpaceConsumed value for the base
CIM_StorageVolume on the antecedent StoragePool.

Antecedent Mandatory A StoragePoolView from which the StorageVolume (or LogicalDisk) is
allocated.

Dependent Mandatory The CIM_StorageVolume or CIM_LogicalDisk instance that is allocated
from the StoragePoolView. There is only one CIM_StorageVolume (or
CIM_LogicalDisk) instance for the combined StorageVolume (or
LogicalDisk) - StoragePool pair.
SNIA Technical Position 173

Discover the Replica Pairs for an array

489

490

491
492
493
494
495

496

497

498

499

500

501

502

503
504
505
506
507

508
Table 73 describes class CIM_AllocatedFromStoragePoolView (VolumeView to StoragePool).

6.6.5 CIM_AllocatedFromStoragePoolViewView (PoolView to PoolView)

This CIM_AllocatedFromStoragePoolViewView is an association between a CIM_StoragePoolView
instances and the CIM_StoragePoolView instance that they are allocated from. The
CIM_AllocatedFromStoragePoolViewView is subclassed from CIM_AbstractElementAllocatedFromPool.

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:StoragePoolView" (and the Block Service Package is implemented).

Table 74 describes class CIM_AllocatedFromStoragePoolViewView (PoolView to PoolView).

6.6.6 CIM_AllocatedFromStoragePoolViewView (VolumeView to PoolView)

This CIM_AllocatedFromStoragePoolViewView is an association between a CIM_VolumeView instances
and the CIM_StoragePoolView instance that the Volume is allocated from. The
CIM_AllocatedFromStoragePoolViewView is subclassed from CIM_AbstractElementAllocatedFromPool.

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the strings
"SNIA:StoragePoolView" and "SNIA:VolumeView" (and the Block Service Package is implemented).

Table 73 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolView (VolumeView to
StoragePool)

Properties Flags Requirement Description & Notes

AFSPSpaceConsumed Mandatory The space consumed from the StoragePool by the StorageVolume (or
LogicalDisk). This value is the same as the
AllocatedFromStoragePool.SpaceConsumed value for the base
CIM_StorageVolume on the antecedent StoragePool.

Antecedent Mandatory A StoragePool from which the StorageVolume of the CIM_VolumeView is
allocated.

Dependent Mandatory The CIM_VolumeView instance that is allocated from the StoragePool.
There is only one VolumeView instance for the combined StorageVolume
(or LogicalDisk) - StoragePool pair.

Table 74 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolViewView (PoolView to
PoolView)

Properties Flags Requirement Description & Notes

AFSPSpaceConsumed Mandatory The space consumed from the StoragePoolView by the StoragePoolView.
This value is the same as the
AllocatedFromStoragePool.SpaceConsumed value for the base
CIM_StoragePool on the antecedent StoragePool.

Dependent Mandatory The StoragePoolView instance that is allocated from the parent pool.

Antecedent Mandatory The StoragePoolView instance for a parent StoragePool.
174

 Discover the Replica Pairs for an array

509

510

511

512

513

514

515
516
517

518

519

520

521

522
523
524

525

526
Table 75 describes class CIM_AllocatedFromStoragePoolViewView (VolumeView to PoolView).

6.6.7 CIM_BasedOnView (ExtentOnDriveExtent)

The CIM_BasedOnView instance is a view that is derived from CIM_BasedOn between a concrete
CIM_StorageExtent instance and the primordial CIM_StorageExtent under it. The CIM_BaseOnView is
subclassed from CIM_AbstractBasedOn.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:DiskDriveView" and Extent Composition is implemented.

Table 76 describes class CIM_BasedOnView (ExtentOnDriveExtent).

6.6.8 CIM_BasedOnView (VolumeOnExtent)

The CIM_BasedOnView instance is a view that is derived from CIM_BasedOn between the
CIM_StorageVolume instance and the first CIM_StorageExtent it is based on. The CIM_BaseOnView is
subclassed from CIM_AbstractBasedOn.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:VolumeView" and Extent Composition is implemented.

Table 75 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolViewView (VolumeView
to PoolView)

Properties Flags Requirement Description & Notes

AFSPSpaceConsumed Mandatory The space consumed from the StoragePoolView by the VolumeView. This
value is the same as the AllocatedFromStoragePool.SpaceConsumed
value for the base CIM_StorageVolume (or CIM_LogicalDisk) on the
antecedent StoragePool.

Dependent Mandatory The VolumeView instance that is allocated from the pool.

Antecedent Mandatory The StoragePoolView instance for a parent StoragePool.

Table 76 - SMI Referenced Properties/Methods for CIM_BasedOnView (ExtentOnDriveExtent)

Properties Flags Requirement Description & Notes

StartingAddress Optional This is derived from the BasedOn.StartingAddress.

EndingAddress Optional This is derived from the BasedOn.EndingAddress.

OrderIndex Optional When the association is used in a concatenation composition, indicates
the order in which the extents (and thus their block ranges) are
concatenated.

Antecedent Mandatory The CIM_DiskDriveView on which a concrete StorageExtent is based.

Dependent Mandatory The CIM_StorageExtent instance that is dependent on the
CIM_DiskDriveView.
SNIA Technical Position 175

Discover the Replica Pairs for an array

527

528

529
530

531

532

533

534

535

536

537

538
539

540

541

542

543

544
Table 77 describes class CIM_BasedOnView (VolumeOnExtent).

6.6.9 CIM_ConcreteComponentView

The CIM_ConcreteComponentView instance is a view that is derived from the CIM_ConcreteComponent
between the base CIM_StorageExtent of the Disk Drive and its primordial CIM_StoragePool. The
CIM_ConcreteComponentView is subclassed from CIM_AbstractComponent.

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:DiskDriveView" (and the Disk Drive Lite Profile is implemented).

Table 78 describes class CIM_ConcreteComponentView.

6.6.10 CIM_ContainerView

The CIM_ContainerView instance is a view that is derived from the CIM_Container between the base
CIM_PhysicalPackage of the Disk Drive and the CIM_PhysicalPackage of the ComputerSystem. The
CIM_ContainerView is subclassed from CIM_AbstractComponent.

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:DiskDriveView" (and the Disk Drive Lite Profile is implemented).

Table 77 - SMI Referenced Properties/Methods for CIM_BasedOnView (VolumeOnExtent)

Properties Flags Requirement Description & Notes

StartingAddress Optional This is derived from the BasedOn.StartingAddress.

EndingAddress Optional This is derived from the BasedOn.EndingAddress.

OrderIndex Optional When the association is used in a concatenation composition, indicates
the order in which the extents (and thus their block ranges) are
concatenated.

Antecedent Mandatory The lower level StorageExtent on which the CIM_VolumeView
StorageVolume is based.

Dependent Mandatory The CIM_VolumeView instance.

Table 78 - SMI Referenced Properties/Methods for CIM_ConcreteComponentView

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The CIM_StoragePool to which the StorageExtent of the Disk Drive is
assigned.

PartComponent Mandatory A CIM_DiskDriveView instance that is assigned to the StoragePool.
176

 Discover the Replica Pairs for an array

545

546

547
548

549

550

551

552

553

554

555

556
557

558

559

560

561

562
Table 79 describes class CIM_ContainerView.

6.6.11 CIM_DiskDriveView

The CIM_DiskDriveView instance is a view that is derived from CIM_StorageExtent, CIM_MediaPresent,
CIM_DiskDrive, CIM_Realizes, CIM_PhysicalPackage, CIM_ElementSoftwareIdentity and
CIM_SoftwareIdentity. The CIM_DiskDriveView is subclassed from CIM_View.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:DiskDriveView" (and the Disk Drive Lite Profile is implemented).

Table 80 describes class CIM_DiskDriveView.

Table 79 - SMI Referenced Properties/Methods for CIM_ContainerView

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The CIM_PhysicalPackage for the ComputerSystem instance that groups
the CIM_PhysicalPackage of the Disk Drive.

PartComponent Mandatory A CIM_DiskDriveView instance that includes CIM_PhysicalPackage
information for the CIM_DiskDrive.

Table 80 - SMI Referenced Properties/Methods for CIM_DiskDriveView

Properties Flags Requirement Description & Notes

SESystemCreationClassName Mandatory The SystemCreationClassName for the StorageExtent of the Disk
Drive as reported in the underlying primordial StorageExtent
instance for the Disk Drive.

SESystemName Mandatory The SystemName for the StorageExtent of the Disk Drive as
reported in the underlying primordial StorageExtent instance for
the Disk Drive.

SECreationClassName Mandatory The CreationClassName for the StorageExtent of the Disk Drive
as reported in the underlying primordial StorageExtent instance
for the Disk Drive.

SEDeviceID Mandatory The DeviceID for the StorageExtent of the Disk Drive as reported
in the underlying primordial StorageExtent instance for the Disk
Drive.

SEBlockSize Mandatory The BlockSize for the StorageExtent of the Disk Drive as reported
in the underlying primordial StorageExtent instance for the Disk
Drive.

SENumberOfBlocks Mandatory The NumberOfBlocks for the StorageExtent of the Disk Drive as
reported in the underlying primordial StorageExtent instance for
the Disk Drive.

SEConsumableBlocks Mandatory The ConsumableBlocks for the StorageExtent of the Disk Drive as
reported in the underlying primordial StorageExtent instance for
the Disk Drive.

SEExtentStatus Mandatory The ExtentStatus for the StorageExtent of the Disk Drive as
reported in the underlying primordial StorageExtent instance for
the Disk Drive.
SNIA Technical Position 177

Discover the Replica Pairs for an array

563

564

565
566

567

568

569

570

571

572
SEOperationalStatus Mandatory The OperationalStatus for the StorageExtent of the Disk Drive as
reported in the underlying primordial StorageExtent instance for
the Disk Drive.

DDSystemCreationClassName Mandatory The SystemCreationClassName for the Disk Drive as reported in
the underlying DiskDrive instance.

DDSystemName Mandatory The SystemName for the Disk Drive as reported in the underlying
DiskDrive instance.

DDCreationClassName Mandatory The CreationClassName for the Disk Drive as reported in the
underlying DiskDrive instance.

DDDeviceID Mandatory The DeviceID for the Disk Drive as reported in the underlying
DiskDrive instance.

DDDiskType Optional The DiskType for the Disk Drive as reported in the underlying
DiskDrive instance.

DDFormFactor Optional The FormFactor for the Disk Drive as reported in the underlying
DiskDrive instance.

DDEncryption Optional The Encryption for the Disk Drive as reported in the underlying
DiskDrive instance.

DDLocationIndicator Optional The LocationIndicator for the Disk Drive as reported in the
underlying DiskDrive instance.

DDName Mandatory The Name for the Disk Drive as reported in the underlying
DiskDrive instance.

DDOperationalStatus Mandatory The OperationalStatus for the Disk Drive as reported in the
underlying DiskDrive instance.

PPCreationClassName Mandatory The CreationClassName for the PhysicalPackage of the Disk
Drive as reported in the underlying PhysicalPackage instance for
the Disk Drive.

PPTag Mandatory The Tag for the PhysicalPackage of the Disk Drive as reported in
the underlying PhysicalPackage instance for the Disk Drive.

PPManufacturer Mandatory The Manufacturer for the PhysicalPackage of the Disk Drive as
reported in the underlying PhysicalPackage instance for the Disk
Drive.

PPModel Mandatory The Model for the PhysicalPackage of the Disk Drive as reported
in the underlying PhysicalPackage instance for the Disk Drive.

SIInstanceID Mandatory The InstanceID for the SoftwareIdentity of the Disk Drive as
reported in the underlying SoftwareIdentity instance for the Disk
Drive.

SIVersionString Mandatory The VersionString for the SoftwareIdentity of the Disk Drive as
reported in the underlying SoftwareIdentity instance for the Disk
Drive.

PPSerialNumber Optional The SerialNumber for the PhysicalPackage of the Disk Drive as
reported in the underlying PhysicalPackage instance for the Disk
Drive.

PPPartNumber Optional The PartNumber for the PhysicalPackage of the Disk Drive as
reported in the underlying PhysicalPackage instance for the Disk
Drive.

Table 80 - SMI Referenced Properties/Methods for CIM_DiskDriveView

Properties Flags Requirement Description & Notes
178

 Discover the Replica Pairs for an array

573

574
575

576

577
6.6.12 CIM_DriveComponentViewView

The CIM_DriveComponentViewView is an association between a CIM_StoragePoolView instances and
the CIM_DiskDriveView instances for Disk Drives of the StoragePool. The
CIM_DriveComponentViewView is subclassed from CIM_AbstractComponent.

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:StoragePoolView" and "SNIA:DiskDriveView" (and the Disk Drive Lite Profile is implemented).

Table 81 describes class CIM_DriveComponentViewView.

6.6.13 CIM_ElementCapabilities (View Capabilities)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 82 describes class CIM_ElementCapabilities (View Capabilities).

SIManufacturer Optional The Manufacturer for the SoftwareIdentity of the Disk Drive as
reported in the underlying SoftwareIdentity instance for the Disk
Drive.

SIBuildNumber Optional The BuildNumber for the SoftwareIdentity of the Disk Drive as
reported in the underlying SoftwareIdentity instance for the Disk
Drive.

SIMajorVersion Optional The MajorVersion for the SoftwareIdentity of the Disk Drive as
reported in the underlying SoftwareIdentity instance for the Disk
Drive.

SIRevisionNumber Optional The RevisionNumber for the SoftwareIdentity of the Disk Drive as
reported in the underlying SoftwareIdentity instance for the Disk
Drive.

SIMinorVersion Optional The MinorVersion for the SoftwareIdentity of the Disk Drive as
reported in the underlying SoftwareIdentity instance for the Disk
Drive.

LPPortType Optional This is an array property that contains the PortTypes for the target
ports that may be used to access the disk drive.

Table 81 - SMI Referenced Properties/Methods for CIM_DriveComponentViewView

Properties Flags Requirement Description & Notes

PartComponent Mandatory The DiskDriveView instance.

GroupComponent Mandatory The StoragePoolView instance for a primordial StoragePool.

Table 82 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (View Capabilities)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The ViewCapabilities.

ManagedElement Mandatory The top level ComputerSystem that has the ViewCapabilities.

Table 80 - SMI Referenced Properties/Methods for CIM_DiskDriveView

Properties Flags Requirement Description & Notes
SNIA Technical Position 179

Discover the Replica Pairs for an array

578

579

580

581

582

583

584

585

586
587

588

589

590

591

592

593

594

595

596
597
598
6.6.14 CIM_ElementStatisticalDataView (DiskDriveView)

The CIM_ElementStatisticalDataView is an association between a CIM_DiskDriveView instance and the
CIM_BlockStorageStatisticalData instance for the DiskDrive. The CIM_ElementStatisticalDataView is
subclassed from CIM_AbstractElementStatisticalData.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:DiskDriveView", CIM_BlockStatisticsCapabilities.ElementTypesSupported contains "10" and Block
Server Performance is implemented.

Table 83 describes class CIM_ElementStatisticalDataView (DiskDriveView).

6.6.15 CIM_ElementStatisticalDataView (VolumeView)

The CIM_ElementStatisticalDataView is an association between a CIM_VolumeView instance and the
CIM_BlockStorageStatisticalData instance for the StorageVolume (or LogicalDisk). The
CIM_ElementStatisticalDataView is subclassed from CIM_AbstractElementStatisticalData.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:VolumeView", CIM_BlockStatisticsCapabilities.ElementTypesSupported contains "8" and Block
Server Performance is implemented.

Table 84 describes class CIM_ElementStatisticalDataView (VolumeView).

6.6.16 CIM_ElementView (DiskDrive)

The CIM_ElementView instance is an association between a CIM_DiskDriveView instance and a base
CIM_DiskDrive instance on which the view is based. This association is provided to accommodate update
operations on the base CIM_DiskDrive instances, since the properties cannot be updated in the view
class. The CIM_ElementView is subclassed from CIM_Dependency.

Created By: External

Table 83 - SMI Referenced Properties/Methods for CIM_ElementStatisticalDataView (DiskDriveView)

Properties Flags Requirement Description & Notes

Stats Mandatory The CIM_BlockStorageStatisticalData instance for the DiskDrive
(StorageExtent) instance.

ManagedElement Mandatory The CIM_DiskDriveView instance that has the
CIM_BlockStorageStatisticalData instance.

Table 84 - SMI Referenced Properties/Methods for CIM_ElementStatisticalDataView (VolumeView)

Properties Flags Requirement Description & Notes

Stats Mandatory The CIM_BlockStorageStatisticalData instance for the StorageVolume (or
LogicalDisk) instance.

ManagedElement Mandatory The CIM_VolumeView instance that has the
CIM_BlockStorageStatisticalDatainstance.
180

 Discover the Replica Pairs for an array

599

600

601

602

603

604

605

606

607
608
609

610

611

612

613

614

615

616

617
618
619
620

621

622

623

624

625
Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:DiskDriveView" (and the Disk Drive Lite Profile is implemented).

Table 85 describes class CIM_ElementView (DiskDrive).

6.6.17 CIM_ElementView (StorageSetting)

The CIM_ElementView instance is an association between the CIM_VolumeView and the
CIM_StorageSetting instance for the base StorageVolume (or LogicalDisk) on which the view is based.
This association is provided to accommodate update operations on the CIM_StorageSetting instance
(e.g., ModifyInstance), since the properties cannot be updated in the view class. The CIM_ElementView
is subclassed from CIM_Dependency.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:VolumeView" (and the Block Service Package is implemented).

Table 86 describes class CIM_ElementView (StorageSetting).

6.6.18 CIM_ElementView (Volume)

The CIM_ElementView instance is an association between a CIM_VolumeView instance and a base
CIM_StorageVolume (or CIM_LogicalDisk) instance on which the view is based. This association is
provided to accommodate update operations on the base CIM_StorageVolume (or CIM_LogicalDisk)
instances, since the properties cannot be updated in the view class. The CIM_ElementView is subclassed
from CIM_Dependency.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:VolumeView" (and the Block Service Package is implemented).

Table 85 - SMI Referenced Properties/Methods for CIM_ElementView (DiskDrive)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The base CIM_DiskDrive instance on which the CIM_DiskDriveView
instance is based.

Dependent Mandatory The CIM_DiskDriveView instance that is based on the CIM_DiskDrive
instance.

Table 86 - SMI Referenced Properties/Methods for CIM_ElementView (StorageSetting)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The base CIM_StorageSetting instance on which the CIM_VolumeView
instance is based.

Dependent Mandatory The CIM_VolumeView instance that is based on the CIM_StorageSetting
instance.
SNIA Technical Position 181

Discover the Replica Pairs for an array

626

627

628
629
630
631

632

633

634

635

636

637

638

639
640

641

642

643

644

645
646
Table 87 describes class CIM_ElementView (Volume).

6.6.19 CIM_ExtentComponentView

The CIM_ExtentComponentView is an association between a CIM_StoragePoolView instances and the
CIM_StorageExtent instances for the StoragePool. The CIM_ExtentComponentView is subclassed from
CIM_AbstractComponent.

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:StoragePoolView" (and the Block Service Package is implemented).

Table 88 describes class CIM_ExtentComponentView.

6.6.20 CIM_HostedStoragePoolView

The CIM_HostedStoragePoolView is an association between a CIM_StoragePoolView instances and the
CIM_ComputerSystem instance for the StoragePool. The CIM_HostedStoragePoolView is subclassed
from CIM_ScopedView.

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:StoragePoolView" (and the Block Service Package is implemented).

Table 89 describes class CIM_HostedStoragePoolView.

6.6.21 CIM_MappingProtocolControllerView

The CIM_MappingProtocolControllerView instance is a view that is derived from CIM_ProtocolController,
CIM_StorageHardwareID, CIM_AuthorizedPrivilege, CIM_ProtocolEndPoint and CIM_LogicalPort, and
their associations. The CIM_MappingProtocolControllerView is subclassed from CIM_View.

Created By: External

Modified By: External

Deleted By: External

Table 87 - SMI Referenced Properties/Methods for CIM_ElementView (Volume)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The base CIM_StorageVolume (or CIM_LogicalDisk) instance on which
the CIM_VolumeView instance is based.

Dependent Mandatory The CIM_VolumeView instance that is based on the CIM_StorageVolume
(or CIM_LogicalDisk) instance.

Table 88 - SMI Referenced Properties/Methods for CIM_ExtentComponentView

Properties Flags Requirement Description & Notes

PartComponent Mandatory A reference to a StorageExtent.

GroupComponent Mandatory A reference to a StoragePoolView instance that contains the Extent.

Table 89 - SMI Referenced Properties/Methods for CIM_HostedStoragePoolView

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The reference to the hosting computer system.

PartComponent Mandatory The reference to the hosted storage pool view.
182

 Discover the Replica Pairs for an array

647

648

649

650

651
652
653

654

655

656

657

658

659
Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:MappingProtocolControllerView" (and the Masking and Mapping Profile is implemented).

Table 90 describes class CIM_MappingProtocolControllerView.

Table 90 - SMI Referenced Properties/Methods for CIM_MappingProtocolControllerView

Properties Flags Requirement Description & Notes

PCSystemCreationClassName Mandatory The SystemCreationClassName as reported in the underlying
ProtocolController.

PCCreationClassName Mandatory The CreationClassName as reported in the underlying
ProtocolController.

PCSystemName Mandatory The SystemName as reported in the underlying
ProtocolController.

PCDeviceID Mandatory The DeviceID as reported in the underlying ProtocolController.

SHIDInstanceID Mandatory The InstanceID as reported in the underlying
StorageHardwareID.

SHIDStorageID N Mandatory The StorageID as reported in the underlying StorageHardwareID.

SHIDIDType Mandatory The IDType as reported in the underlying StorageHardwareID.

PEPSystemCreationClassName Mandatory The SystemCreationClassName as reported in the underlying
ProtocolEndpoint.

PEPCreationClassName Mandatory The CreationClassName as reported in the underlying
ProtocolEndpoint.

PEPSystemName Mandatory The SystemName as reported in the underlying
ProtocolEndpoint.

PEPName Mandatory The Name as reported in the underlying ProtocolEndpoint.

PEPProtocolIFType Mandatory The ProtocolIFType as reported in the underlying
ProtocolEndpoint.

PEPOtherTypeDescription Mandatory The OtherTypeDescription as reported in the underlying
ProtocolEndpoint.

PEPRole Mandatory The Role as reported in the underlying ProtocolEndpoint.

PEPConnectionType Mandatory The ConnectionType as reported in the underlying
ProtocolEndpoint.

APInstanceID Mandatory The InstanceID as reported in the underlying AuthorizedPrivilege.

APPrivilegeGranted Mandatory The PrivilegeGranted as reported in the underlying
AuthorizedPrivilege.

APActivities[] Mandatory The Activities[] as reported in the underlying AuthorizedPrivilege.

APElementName Optional The ElementName as reported in the underlying
AuthorizedPrivilege.

LPSystemCreationClassName N Mandatory The SystemCreationClassName as reported in the underlying
LogicalPort. This may be NULL if the underlying LogicalPort is an
Ethernet Port.

LPCreationClassName N Mandatory The CreationClassName as reported in the underlying
LogicalPort. This may be NULL if the underlying LogicalPort is an
Ethernet Port.

LPSystemName N Mandatory The SystemName as reported in the underlying LogicalPort. This
may be NULL if the underlying LogicalPort is an Ethernet Port.
SNIA Technical Position 183

Discover the Replica Pairs for an array

660

661
662
663

664

665

666

667

668

669
6.6.22 CIM_MaskingMappingExposedDeviceView

The CIM_MaskingMappingExposedDeviceView instance is a view that is derived from
CIM_SAPAvailableForElement, CIM_SCSIProtocolController and CIM_ProtocolControllerForUnit. The
CIM_MaskingMappingExposedDeviceView is not subclassed from anything.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:MaskingMappingExposedDeviceView" (and the Masking and Mapping Profile is implemented).

Table 91 describes class CIM_MaskingMappingExposedDeviceView.

LPDeviceID N Mandatory The DeviceID as reported in the underlying LogicalPort. This may
be NULL if the underlying LogicalPort is an Ethernet Port.

LPOperationalStatus N Mandatory The OperationalStatus as reported in the underlying LogicalPort.
This may be NULL if the underlying LogicalPort is an Ethernet
Port.

LPUsageRestriction N Mandatory The UsageRestriction as reported in the underlying LogicalPort.
This may be NULL if the underlying LogicalPort is an Ethernet
Port.

LPPortType N Mandatory The PortType as reported in the underlying LogicalPort. This may
be NULL if the underlying LogicalPort is an Ethernet Port.

Table 91 - SMI Referenced Properties/Methods for CIM_MaskingMappingExposedDeviceView

Properties Flags Requirement Description & Notes

SPCSystemCreationClassName Mandatory The SystemCreationClassName for the
SCSIProtocolController used with the underlying
SCSIProtocolController instance for the
SCSIProtocolEndpoint and StorageVolume.

SPCSystemName Mandatory The SystemName for the SCSIProtocolController used with
the underlying SCSIProtocolController instance for the
SCSIProtocolEndpoint and StorageVolume.

SPCCreationClassName Mandatory The CreationClassName for the SCSIProtocolController used
with the underlying SCSIProtocolController instance for the
SCSIProtocolEndpoint and StorageVolume.

SPCDeviceID Mandatory The DeviceID for the SCSIProtocolController used with the
underlying SCSIProtocolController instance for the
SCSIProtocolEndpoint and StorageVolume.

PCFUDeviceNumber Mandatory The DeviceNumber (LUN) for the StorageVolume when
accessed through the SCSIProtocolEndpoint as reported in
the underlying ProtocolControllerForUnit instance for the
StorageVolume.

PCFUDeviceAccess Mandatory The DeviceAccess value for the StorageVolume when
accessed through the SCSIProtocolEndpoint as reported in
the underlying ProtocolControllerForUnit instance for the
StorageVolume.

Table 90 - SMI Referenced Properties/Methods for CIM_MappingProtocolControllerView

Properties Flags Requirement Description & Notes
184

 Discover the Replica Pairs for an array

670

671
672
673

674

675

676

677

678

679
6.6.23 CIM_MaskingMappingView

The CIM_MaskingMappingView instance is a view that is derived from CIM_StorageHardwareID,
CIM_AuthorizedSubject, CIM_AuthorizedPrivilege, CIM_AuthorizedTarget, CIM_SCSIProtocolController,
CIM_SAPAvailableForElement, CIM_SCSIProtocolEndpoint, CIM_ProtocolControllerForUnit and
CIM_LogicalDevice. The CIM_MaskingMappingView is not subclassed from anything.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:MaskingMappingView" (and the Masking and Mapping Profile is implemented).

Table 92 describes class CIM_MaskingMappingView.

ProtocolEndpoint Mandatory The Target ProtocolEndpoint through which the LogicalDevice
is exposed.

LogicalDevice Mandatory The LogicalDevice (e.g., StorageVolume) that is exposed
through the Target ProtocolEndpoint.

Table 92 - SMI Referenced Properties/Methods for CIM_MaskingMappingView

Properties Flags Requirement Description & Notes

SHIDStorageID Mandatory The StorageID from the referenced CIM_StorageHardwareID
instance.

SHIDIDType Mandatory The IDType from the referenced CIM_StorageHardwareID
instance.

LDDeviceID Mandatory The DeviceID from the referenced CIM_LogicalDevice
instance.

SPEPSystemCreationClassName Mandatory The SystemCreationClassName from the referenced
CIM_SCSIProtocolEndpoint instance.

SPEPCreationClassName Mandatory The CreationClassName from the referenced
CIM_SCSIProtocolEndpoint instance.

SPEPSystemName Mandatory The SystemName from the referenced
CIM_SCSIProtocolEndpoint instance.

SPEPName Mandatory The Name from the referenced CIM_SCSIProtocolEndpoint
instance.

SPEPRole Mandatory The Role from the referenced CIM_SCSIProtocolEndpoint
instance.

APInstanceID Mandatory The InstanceID of the CIM_AuthorizedPrivilege instance.

APPrivilegeGranted Mandatory The PrivilegeGranted of the CIM_AuthorizedPrivilege instance.

APActivities Mandatory The Activities array of the CIM_AuthorizedPrivilege instance.

APElementName Optional The ElementName of the CIM_AuthorizedPrivilege instance.

SPCSystemCreationClassName Mandatory The SystemCreationClassName of the
CIM_SCSIProtocolController instance.

Table 91 - SMI Referenced Properties/Methods for CIM_MaskingMappingExposedDeviceView

Properties Flags Requirement Description & Notes
SNIA Technical Position 185

Discover the Replica Pairs for an array

680

681
682
683
684

685

686

687

688

689
690

691

692
6.6.24 CIM_ProtocolControllerForUnitView

The CIM_ProtocolControllerForUnitView instance is a view that associates a
MappingProtocolControllerView and a LogicalDevice. It is derived from the underlying
ProtocolControllerForUnit association between the underlying ProtocolController and the LogicalDevice.
Note that if the LogicalDevice is associated to multiple ProtocolControllers the DeviceNumber (LU
Number) may differ for each MappingProtocolControllerView instance.

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:MappingProtocolControllerView" (and the Masking and Mapping Profile is implemented).

Table 93 describes class CIM_ProtocolControllerForUnitView.

6.6.25 CIM_ReplicaPairView

The CIM_ReplicaView instance is a view that is derived from a source and target CIM_StorageVolume (or
CIM_LogicalDisk) and a CIM_StorageSynchronized association between them.

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:ReplicaPairlView" (and the Copy Services Profile is implemented).

SPCCreationClassName Mandatory The CreationClassName of the CIM_SCSIProtocolController
instance.

SPCSystemName Mandatory The SystemName of the CIM_SCSIProtocolController
instance.

SPCDeviceID Mandatory The DeviceID of the CIM_SCSIProtocolController instance.

PCFUDeviceNumber Mandatory The DeviceNumber (LUN) of the
CIM_ProtocolControllerForUnit association instance.

PCFUDeviceAccess Mandatory The DeviceAccess value of the CIM_ProtocolControllerForUnit
association instance.

StorageHardwareID Mandatory The CIM_StorageHardwareID instance that is associated to the
CIM_LogicalDevice and CIM_ProtocolEndpoint instances.

LogicalDevice Mandatory The CIM_LogicalDevice instance that is associated to the
CIM_StorageHardwareID and CIM_ProtocolEndpoint
instances.

ProtocolEndpoint Mandatory The CIM_ProtocolEndpoint instance that is associated to the
CIM_StorageHardwareID and CIM_LogicalDevice instances.

Table 93 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnitView

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory The DeviceNumber as reported in the underlying
ProtocolControllerForUnit.

PCFUDeviceAccess Mandatory The DeviceAccess as reported in the underlying
ProtocolControllerForUnit.

Antecedent Mandatory The MappingProtocolControllerView Instance.

Dependent Mandatory The Storage Volume.

Table 92 - SMI Referenced Properties/Methods for CIM_MaskingMappingView

Properties Flags Requirement Description & Notes
186

 Discover the Replica Pairs for an array

693
 Table 94 describes class CIM_ReplicaPairView.

Table 94 - SMI Referenced Properties/Methods for CIM_ReplicaPairView

Properties Flags Requirement Description & Notes

SVSourceSystemCreationClassName Mandatory The SystemCreationClassName as reported in
the underlying source StorageVolume (or
LogicalDisk).

SVSourceSystemName Mandatory The SystemName as reported in the underlying
source StorageVolume (or LogicalDisk).

SVSourceCreationClassName Mandatory The CreationClassName as reported in the
underlying source StorageVolume (or
LogicalDisk).

SVSourceDeviceID Mandatory An opaque identifier of the underlying source
StorageVolume (or LogicalDisk).

SVSourceName Mandatory The identifier for the underlying source
StorageVolume (or LogicalDisk).

SVSourceNameFormat Mandatory The format of the identifier for the underlying
source StorageVolume (or LogicalDisk).

SVSourceNameNamespace Mandatory The NameNamespace for the StorageVolume as
reported in the underlying source StorageVolume
instance.

SVSourceExtentStatus Mandatory The ExtentStatus as reported in the underlying
source StorageVolume (or LogicalDisk).

SVSourceOperationalStatus Mandatory The OperationalStatus as reported in the
underlying source StorageVolume (or
LogicalDisk).

SVSourceBlockSize Mandatory The BlockSize as reported in the underlying
source StorageVolume (or LogicalDisk).

SVSourceNumberOfBlocks Mandatory The number of blocks that make up the volume as
reported in the underlying source StorageVolume
(or LogicalDisk).

SVSourceConsumableBlocks Mandatory The number of usable blocks in the volume as
reported in the underlying source StorageVolume
(or LogicalDisk).

SVSourcePrimordial Mandatory This shall be Primordial='false'.

SVSourceIsBasedOnUnderlyingRedundancy Mandatory Whether or not redundancy is supported for the
volume as reported in the underlying source
StorageVolume (or LogicalDisk).

SVSourceNoSinglePointOfFailure Mandatory Whether or not NoSinglePointOfFailure is
supported for the volume as reported in the
underlying source StorageVolume (or
LogicalDisk).

SVSourceDataRedundancy Mandatory The DataRedundancy supported by the volume
as reported in the underlying source
StorageVolume (or LogicalDisk).

SVSourcePackageRedundancy Mandatory The PackageRedundancy supported by the
volume as reported in the underlying source
StorageVolume (or LogicalDisk).
SNIA Technical Position 187

Discover the Replica Pairs for an array
SVSourceDeltaReservation Mandatory The DeltaReservation supported by the volume as
reported in the underlying source StorageVolume
(or LogicalDisk).

SVSourceExtentDiscriminator Mandatory The ExtentDiscriminator as reported in the
underlying source StorageVolume (or
LogicalDisk).

SVSourceOtherIdentifyingInfo Optional Other identifiers for the StorageVolume (or
LogicalDisk) as reported in the underlying source
StorageVolume (or LogicalDisk).

SVSourceIdentifyingDescriptions Conditional The description of the other identifiers for the
StorageVolume (or LogicalDisk) as reported in the
underlying source StorageVolume (or
LogicalDisk). Required if
SVSourceOtherIdentifyingInfo has been provided.

SVSourceElementName Optional The user friendly name for the underlying source
StorageVolume (or LogicalDisk).

SVSourceUsage Optional The Usage supported by the volume as reported
in the underlying source StorageVolume (or
LogicalDisk).

SVSourceOtherUsageDescription Conditional The OtherUsageDescription supported by the
volume as reported in the underlying source
StorageVolume (or LogicalDisk).

SVSourceClientSettableUsage Optional The ClientSettableUsage supported by the
volume as reported in the underlying source
StorageVolume (or LogicalDisk).

SSWhenSynced Mandatory The WhenSynced as reported in the underlying
StorageSynchronized association between the
source and target StorageVolumes (or
LogicalDisks).

SSSyncMaintained Mandatory The SyncMaintained as reported in the underlying
StorageSynchronized association between the
source and target StorageVolumes (or
LogicalDisks).

SSCopyType Mandatory The CopyType as reported in the underlying
StorageSynchronized association between the
source and target StorageVolumes (or
LogicalDisks).

SSSyncState Mandatory The SyncState as reported in the underlying
StorageSynchronized association between the
source and target StorageVolumes (or
LogicalDisks).

SSCopyPriority Mandatory The CopyPriority as reported in the underlying
StorageSynchronized association between the
source and target StorageVolumes (or
LogicalDisks).

SSSyncType Mandatory The SyncType as reported in the underlying
StorageSynchronized association between the
source and target StorageVolumes (or
LogicalDisks).

Table 94 - SMI Referenced Properties/Methods for CIM_ReplicaPairView

Properties Flags Requirement Description & Notes
188

 Discover the Replica Pairs for an array

694

695
696

697

698
SSMode Mandatory The Mode as reported in the underlying
StorageSynchronized association between the
source and target StorageVolumes (or
LogicalDisks).

SSProgressStatus Mandatory The ProgressStatus as reported in the underlying
StorageSynchronized association between the
source and target StorageVolumes (or
LogicalDisks).

SVTargetSystemCreationClassName Mandatory The SystemCreationClassName as reported in
the underlying target StorageVolume (or
LogicalDisk).

SVTargetSystemName Mandatory The SystemName as reported in the underlying
target StorageVolume (or LogicalDisk).

SVTargetCreationClassName Mandatory The CreationClassName as reported in the
underlying target StorageVolume (or LogicalDisk).

SVTargetDeviceID Mandatory An opaque identifier of the underlying target
StorageVolume (or LogicalDisk).

SVTargetName Mandatory The identifier for the underlying target
StorageVolume (or LogicalDisk).

SVTargetNameFormat Mandatory The format of the identifier for the underlying
target StorageVolume (or LogicalDisk).

SVTargetNameNamespace Mandatory The NameNamespace for the StorageVolume as
reported in the underlying target StorageVolume
instance.

SVTargetExtentStatus Mandatory The ExtentStatus as reported in the underlying
target StorageVolume (or LogicalDisk).

SVTargetOperationalStatus Mandatory The OperationalStatus as reported in the
underlying target StorageVolume (or LogicalDisk).

SVTargetBlockSize Mandatory The BlockSize as reported in the underlying target
StorageVolume (or LogicalDisk).

SVTargetNumberOfBlocks Mandatory The number of blocks that make up the volume as
reported in the underlying target StorageVolume
(or LogicalDisk).

SVTargetConsumableBlocks Mandatory The number of usable blocks in the volume as
reported in the underlying target StorageVolume
(or LogicalDisk).

SVTargetPrimordial Mandatory This shall be Primordial='false'.

SVTargetIsBasedOnUnderlyingRedundancy Mandatory Whether or not redundancy is supported for the
volume as reported in the underlying target
StorageVolume (or LogicalDisk).

SVTargetNoSinglePointOfFailure Mandatory Whether or not NoSinglePointOfFailure is
supported for the volume as reported in the
underlying target StorageVolume (or LogicalDisk).

SVTargetDataRedundancy Mandatory The DataRedundancy supported by the volume
as reported in the underlying target
StorageVolume (or LogicalDisk).

Table 94 - SMI Referenced Properties/Methods for CIM_ReplicaPairView

Properties Flags Requirement Description & Notes
SNIA Technical Position 189

Discover the Replica Pairs for an array

699
6.6.26 CIM_StoragePoolView

The CIM_StoragePoolView is a view that is derived from CIM_StoragePool, CIM_StorageCapabilities,
CIM_StorageConfigurationCapabilities, as well as the SpaceConsumed data from the
CIM_AllocatedFromStoragePool (to its parent pool).

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:StoragePoolView" (and the Block Service Package is implemented).

Table 95 describes class CIM_StoragePoolView.

SVTargetPackageRedundancy Mandatory The PackageRedundancy supported by the
volume as reported in the underlying target
StorageVolume (or LogicalDisk).

SVTargetDeltaReservation Mandatory The DeltaReservation supported by the volume as
reported in the underlying target StorageVolume
(or LogicalDisk).

SVTargetExtentDiscriminator Mandatory The ExtentDiscriminator as reported in the
underlying target StorageVolume (or LogicalDisk).

SVTargetOtherIdentifyingInfo Optional Other identifiers for the StorageVolume (or
LogicalDisk) as reported in the underlying target
StorageVolume (or LogicalDisk).

SVTargetIdentifyingDescriptions Conditional The description of the other identifiers for the
StorageVolume (or LogicalDisk) as reported in the
underlying target StorageVolume (or LogicalDisk).
Required if SVTargetOtherIdentifyingInfo was
provided.

SVTargetElementName Optional The user friendly name for the underlying target
StorageVolume (or LogicalDisk).

SVTargetUsage Optional The Usage supported by the volume as reported
in the underlying target StorageVolume (or
LogicalDisk).

SVTargetOtherUsageDescription Conditional The OtherUsageDescription supported by the
volume as reported in the underlying target
StorageVolume (or LogicalDisk).

SVTargetClientSettableUsage Optional The ClientSettableUsage supported by the
volume as reported in the underlying target
StorageVolume (or LogicalDisk).

Table 95 - SMI Referenced Properties/Methods for CIM_StoragePoolView

Properties Flags Requirement Description & Notes

SPInstanceID Mandatory The InstanceID as reported in the underlying
StoragePool.

SPElementName Optional The ElementName as reported in the underlying
StoragePool.

SPPoolID Mandatory The PoolID as reported in the underlying
StoragePool.

SPRemainingManagedSpace Mandatory The RemainingManagedSpace as reported in the
underlying StoragePool.

Table 94 - SMI Referenced Properties/Methods for CIM_ReplicaPairView

Properties Flags Requirement Description & Notes
190

 Discover the Replica Pairs for an array

700

701

702

703

704

705

706

707

708

709
SPTotalManagedSpace Mandatory The TotalManagedSpace as reported in the
underlying StoragePool.

SPPrimordial Mandatory The Primordial property as reported in the
underlying StoragePool.

SPUsage Optional The Usage property as reported in the underlying
StoragePool.

SPOtherUsageDescription Conditional The OtherUsageDescription as reported in the
underlying StoragePool. Shall be set when
SPUsage is used.

SPClientSettableUsage Optional The ClientSettableUsage as reported in the
underlying StoragePool.

SCInstanceID Mandatory The InstanceID as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCElementName Mandatory The ElementName as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCElementType Mandatory The ElementType as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCNoSinglePointOfFailure Mandatory The NoSinglePointOfFailure as reported in the
underlying StorageCapabilities associated to the
StoragePool.

SCNoSinglePointOfFailureDefault Mandatory The NoSinglePointOfFailureDefault as reported in
the underlying StorageCapabilities associated to the
StoragePool.

SCPackageRedundancyDefault Mandatory The PackageRedundancyDefault as reported in the
underlying StorageCapabilities associated to the
StoragePool.

SCPackageRedundancyMin Mandatory The PackageRedundancyMin as reported in the
underlying StorageCapabilities associated to the
StoragePool.

SCPackageRedundancyMax Mandatory The PackageRedundancyMax as reported in the
underlying StorageCapabilities associated to the
StoragePool.

SCDataRedundancyDefault Mandatory The DataRedundancyDefault as reported in the
underlying StorageCapabilities associated to the
StoragePool.

SCDataRedundancyMin Mandatory The DataRedundancyMin as reported in the
underlying StorageCapabilities associated to the
StoragePool.

SCDataRedundancyMax Mandatory The DataRedundancyMax as reported in the
underlying StorageCapabilities associated to the
StoragePool.

SCExtentStripeLengthDefault Optional The ExtentStripeLengthDefault as reported in the
underlying StorageCapabilities associated to the
StoragePool.

SCParityLayoutDefault Optional The ParityLayoutDefault as reported in the
underlying StorageCapabilities associated to the
StoragePool.

Table 95 - SMI Referenced Properties/Methods for CIM_StoragePoolView

Properties Flags Requirement Description & Notes
SNIA Technical Position 191

Discover the Replica Pairs for an array

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727
6.6.27 CIM_SystemDeviceView (DiskDriveViews)

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:DiskDriveView" (and the Disk Drive Lite Profile is implemented).

SCUserDataStripeDepthDefault Optional The UserDataStripeDepthDefault as reported in the
underlying StorageCapabilities associated to the
StoragePool.

AFSPSpaceConsumed Mandatory The SpaceConsumed as reported in the underlying
AllocatedFromStoragePool to this pool's parent
pool.

SCCInstanceID N Mandatory The InstanceID as reported in the underlying
StorageConfigurationCapabilities (if any) associated
to the StoragePool.

SCCElementName N Mandatory The ElementName as reported in the underlying
StorageConfigurationCapabilities (if any) associated
to the StoragePool.

SCCSupportedStoragePoolFeatures Mandatory The SupportedStoragePoolFeatures as reported in
the underlying StorageConfigurationCapabilities (if
any) associated to the StoragePool.

SCCSupportedStorageElementTypes Mandatory The SupportedStorageElementTypes as reported in
the underlying StorageConfigurationCapabilities (if
any) associated to the StoragePool.

SCCSupportedStorageElementFeatures Mandatory The SupportedStorageElementFeatures as reported
in the underlying StorageConfigurationCapabilities
(if any) associated to the StoragePool.

SCCSupportedSynchronousActions Optional The SupportedSynchronousActions as reported in
the underlying StorageConfigurationCapabilities (if
any) associated to the StoragePool.

SCCSupportedAsynchronousActions Optional The SupportedAsynchronousActions as reported in
the underlying StorageConfigurationCapabilities (if
any) associated to the StoragePool.

SCCSupportedStorageElementUsage Optional The SupportedStorageElementUsage as reported in
the underlying StorageConfigurationCapabilities (if
any) associated to the StoragePool.

SCCClientSettableElementUsage Optional The ClientSettableElementUsage as reported in the
underlying StorageConfigurationCapabilities (if any)
associated to the StoragePool.

SCCSupportedStoragePoolUsage Optional The SupportedStoragePoolUsage as reported in the
underlying StorageConfigurationCapabilities (if any)
associated to the StoragePool.

SCCClientSettablePoolUsage Optional The ClientSettablePoolUsage as reported in the
underlying StorageConfigurationCapabilities (if any)
associated to the StoragePool.

Table 95 - SMI Referenced Properties/Methods for CIM_StoragePoolView

Properties Flags Requirement Description & Notes
192

 Discover the Replica Pairs for an array

728

729
730

731

732

733

734

735

736

737
738

739

740

741

742

743

744
Table 96 describes class CIM_SystemDeviceView (DiskDriveViews).

6.6.28 CIM_SystemDeviceView (MappingProtocolControllerViews)

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:MappingProtocolControllerView" (and the Masking and Mapping Profile is implemented).

Table 97 describes class CIM_SystemDeviceView (MappingProtocolControllerViews).

6.6.29 CIM_SystemDeviceView (ReplicaPairViews)

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:ReplicaPairlView" (and the Copy Services Profile is implemented).

Table 98 describes class CIM_SystemDeviceView (ReplicaPairViews).

6.6.30 CIM_SystemDeviceView (VolumeViews)

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:VolumeView" (and the Block Service Package is implemented).

Table 96 - SMI Referenced Properties/Methods for CIM_SystemDeviceView (DiskDriveViews)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this DiskDriveView instance.

PartComponent Mandatory The CIM_DiskDriveView instance that is a device on the computer system.

Table 97 - SMI Referenced Properties/Methods for CIM_SystemDeviceView (MappingProtocolController-
Views)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this MappingProtocolControllerView
instance.

PartComponent Mandatory The CIM_MappingProtocolControllerView instance that is a device on the
computer system.

Table 98 - SMI Referenced Properties/Methods for CIM_SystemDeviceView (ReplicaPairViews)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this ReplicaPairView instance.

PartComponent Mandatory The CIM_ReplicaPairView instance that is a device on the computer
system.
SNIA Technical Position 193

Discover the Replica Pairs for an array
Table 99 describes class CIM_SystemDeviceView (VolumeViews).

6.6.31 CIM_ViewCapabilities

The CIM_ViewCapabilities instance defines the capabilities of an implementation support for CIM_ view
classes. The CIM_ViewCapabilities is subclassed from CIM_Capabilities.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 100 describes class CIM_ViewCapabilities.

6.6.32 CIM_VolumeView

The CIM_VolumeView instance is a view that is derived from CIM_StorageVolume,
CIM_ElementSettingData, CIM_StorageSetting, CIM_AllocatedFromStoragePool and CIM_StoragePool.
The CIM_VolumeView is subclassed from CIM_View.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:VolumeView" (and the Block Service Package is implemented).

Table 99 - SMI Referenced Properties/Methods for CIM_SystemDeviceView (VolumeViews)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this VolumeView instance.

PartComponent Mandatory The CIM_VolumeView instance that is a device on the computer system.

Table 100 - SMI Referenced Properties/Methods for CIM_ViewCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the view class capability of an implementation.

ElementName Optional A provider supplied user-Friendly Name for this CIM_ViewCapabilities
element.

SupportedViews Mandatory This array of strings lists the view classes that are supported by the
implementation. Valid string values are "SNIA:VolumeView" |
"SNIA:DiskDriveView" | "SNIA:MaskingMappingExposedDeviceView" |
"SNIA:MaskingMappingView"|"SNIA:MappingProtocolControllerView" |
"SNIA:StoragePoolView" |"SNIA:ReplicaPairView"
194

 Discover the Replica Pairs for an array

745

746
747
748

749

750
Table 101 describes class CIM_VolumeView.

Table 101 - SMI Referenced Properties/Methods for CIM_VolumeView

Properties Flags Requirement Description & Notes

SVSystemCreationClassName Mandatory The SystemCreationClassName for the underlying
StorageVolume (or LogicalDisk).

SVSystemName Mandatory The SystemName for the underlying StorageVolume (or
LogicalDisk).

SVCreationClassName Mandatory The CreationClassName for the underlying StorageVolume
(or LogicalDisk).

SVDeviceID Mandatory An opaque identifier of the underlying StorageVolume (or
LogicalDisk).

SVName Mandatory The identifier for the underlying StorageVolume (or
LogicalDisk).

SVNameFormat Mandatory The format of the identifier for the underlying
StorageVolume (or LogicalDisk).

SVNameNamespace Mandatory The NameNamespace for the StorageVolume as reported
in the underlying StorageVolume instance.

SVExtentStatus Mandatory The ExtentStatus as reported in the underlying
StorageVolume (or LogicalDisk).

SVOperationalStatus Mandatory The OperationalStatus as reported in the underlying
StorageVolume (or LogicalDisk).

SVBlockSize Mandatory

SVNumberOfBlocks Mandatory The number of blocks that make up the volume as reported
in the underlying StorageVolume (or LogicalDisk).

SVConsumableBlocks Mandatory The number of usable blocks in the volume as reported in
the underlying StorageVolume (or LogicalDisk).

SVIsBasedOnUnderlyingRedundancy Mandatory Whether or not redundancy is supported for the volume as
reported in the underlying StorageVolume (or LogicalDisk).

SVNoSinglePointOfFailure Mandatory Whether or not NoSinglePointOfFailure is supported for the
volume as reported in the underlying StorageVolume (or
LogicalDisk).

SVDataRedundancy Mandatory The DataRedundancy supported by the volume as reported
in the underlying StorageVolume (or LogicalDisk).

SVPackageRedundancy Mandatory The PackageRedundancy supported by the volume as
reported in the underlying StorageVolume (or LogicalDisk).

SVDeltaReservation Mandatory The DeltaReservation supported by the volume as reported
in the underlying StorageVolume (or LogicalDisk).

SVPrimordial Mandatory

SVExtentDiscriminator Mandatory

SSInstanceID Mandatory The InstanceID of the StorageSetting for the volume as
reported in its underlying StorageSetting.

SSElementName Mandatory The ElementName of the StorageSetting for the volume as
reported in its underlying StorageSetting.

SSNoSinglePointOfFailure Mandatory Whether or not NoSinglePointOfFailure was requested in
the StorageSetting for the volume as reported in its
underlying StorageSetting.
SNIA Technical Position 195

Discover the Replica Pairs for an array

751

752

753

SSDataRedundancyMin Mandatory The DataRedundancyMin value supported by the

StorageSetting for the volume as reported in its underlying
StorageSetting.

SSDataRedundancyMax Mandatory The DataRedundancyMax value supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSDataRedundancyGoal Mandatory The DataRedundancyGoal supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSPackageRedundancyMin Mandatory The PackageRedundancyMin value supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSPackageRedundancyMax Mandatory The PackageRedundancyMax value supported by the
StorageSetting for the volume as reported in the underlying
StorageSetting.

SSPackageRedundancyGoal Mandatory The PackageRedundancyGoal supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSChangeableType Mandatory The ChangeableType defined for the StorageSetting for the
volume as reported in the underlying StorageSetting.

AFSPSpaceConsumed Mandatory The SpaceConsumed from the StoragePool by the volume
as reported in its underlying AllocatedFromStoragePool
association to the StoragePool.

SPInstanceID Mandatory The InstanceID of the StoragePool for the volume as
reported in the underlying StoragePool.

SPPoolID Mandatory The PoolID of the StoragePool for the volume as reported
in the underlying StoragePool.

SVOtherIdentifyingInfo Optional Other identifiers for the StorageVolume (or LogicalDisk) as
reported in the underlying StorageVolume (or LogicalDisk).

SVIdentifyingDescriptions Conditional The description of the other identifiers for the
StorageVolume (or LogicalDisk) as reported in the
underlying StorageVolume (or LogicalDisk). Required if
SVOtherIdentifyingInfo was provided.

SVElementName Optional The user friendly name for the underlying StorageVolume
(or LogicalDisk).

SVUsage Optional The Usage supported by the volume as reported in the
underlying StorageVolume (or LogicalDisk).

SVOtherUsageDescription Conditonal The OtherUsageDescription supported by the volume as
reported in the underlying StorageVolume (or LogicalDisk).

SVClientSettableUsage Optional The ClientSettableUsage supported by the volume as
reported in the underlying StorageVolume (or LogicalDisk).

SVCanDelete Optional The CanDelete supported by the volume as reported in the
underlying StorageVolume.

SVIsComposite Optional The IsComposite supported by the volume as reported in
the underlying StorageVolume.

SSExtentStripeLength Optional The ExtentStripeLength value supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

Table 101 - SMI Referenced Properties/Methods for CIM_VolumeView

Properties Flags Requirement Description & Notes
196

 Discover the Replica Pairs for an array
EXPERIMENTAL

SSExtentStripeLengthMin Optional The ExtentStripeLengthMin value supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSExtentStripeLengthMax Optional The ExtentStripeLengthMax supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSParityLayout Optional The ParityLayout defined by the StorageSetting for the
volume as reported in its underlying StorageSetting.

SSUserDataStripeDepth Optional The UserDataStripeDepth value supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSUserDataStripeDepthMin Optional The UserDataStripeDepthMin value supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSUserDataStripeDepthMax Optional The UserDataStripeDepthMax value supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSStorageExtentInitialUsage Optional The StorageExtentInitialUsage value supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSStoragePoolInitialUsage Optional

Table 101 - SMI Referenced Properties/Methods for CIM_VolumeView

Properties Flags Requirement Description & Notes
SNIA Technical Position 197

Discover the Replica Pairs for an array
198

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19
20
STABLE

7 Block Server Performance Profile

7.1 Description

7.1.1 Synopsis

Profile Name: Block Server Performance (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: BlockStatisticsService

Scoping Class: ComputerSystem

Related Profiles: Table 102 describes the related profiles for Block Server Performance.

NOTE Each of these profiles is mandatory if the element in question is to be metered. For example, in order to keep statistics on
Disk Drives, it will be necessary for Disk Drives to be modeled.

7.1.2 Overview

The Block Server Performance Profile defines classes and methods for managing performance
information in block servers (e.g., Arrays and Storage Virtualizers). Not all of the objects for which
statistics are defined apply to all these profiles. In these cases, the profile would not support the statistics
for the object that does not apply to it.

NOTE Performance analysis is broader than just Arrays and Storage Virtualizers. Complete analysis requires performance
information from hosts and fabric. These are (or will be) addressed separately as part of the appropriate profiles.

One of the key SRM disciplines for managing block servers (e.g., arrays) is Performance Management.
Currently, there are no common statistics defined that can be used to manage multiple vendor arrays from

Table 102 - Supported Profiles for Block Server Performance

Profile Name Organization Version Requirement Description

Multiple Computer System SNIA 1.2.0 Optional

Extent Composition SNIA 1.7.0 Optional

SPI Target Ports SNIA 1.4.0 Optional

FC Target Ports SNIA 1.7.0 Optional

iSCSI Target Ports SNIA 1.8.0 Optional

DA Target Ports SNIA 1.4.0 Optional

SPI Initiator Ports SNIA 1.4.0 Optional

FC Initiator Ports SNIA 1.7.0 Optional

iSCSI Initiator Ports SNIA 1.2.0 Optional

Disk Drive Lite SNIA 1.7.0 Optional

Replication Services SNIA 1.8.0 Optional

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2
SNIA Technical Position 199

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58
a performance perspective. Some of the key tasks commonly performed in the discipline of Performance
Management are:

• Performance Capacity Planning,

• Performance Problem Isolation,

• Peak Window Analysis,

• Block server Workload Analysis,

• Block server Performance Tuning.

In order to manage performance, a number of processes need to be in place:

• Ability to measure the performance and saturation points of components within the storage network. This
profile describes the first increment of measurement, that of the storage system. Examples of this include:

Read and Write I/O counts for a LUN or a disk,

Number of Read and Write I/Os per second for a LUN or a disk,

Number of blocks transferred per unit time,

Cache hit ratios.

Both specific measurements and methods to make these measurements available to SRM applications
will be part of this profile.

• Ability to understand the relationship of facilities within the storage network and their relationship to the actual
application: This is provided by mapping functions which are described in this specification. Mapping
functions are listed within the specification today. As new objects (like cache which is currently not defined)
and new relationships between objects are defined, these parts of this specification will have to be upgraded.

• Ability to understand the status and configuration of the storage network components: There is some level of
this information within the SMI specification today, and there are expected future improvements to this area
that will be in future releases. Examples of this include:

• Cache status on or off for read or write cache,

• How much Cache is installed,

• Storage Volume (LUN) status, normal or degraded,

• Cache configuration parameters,

• LUN status,

• Error counts on a port.

Methods to be able to tune the configuration of a storage network component. This would include setting
RAID levels, setting stripe widths, setting cache tunable parameters, etc. This is an area for future
development. Given that there is a wide diversity of storage architectures, this may be an area where SMI
provides a framework and vendors supply the custom extensions required for their systems.

Performance Management is optimized when all four components are in place. Performance
Measurement is the key deliverable that is the focus of this profile.
200

59

60

61

62

63
64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90
Block storage devices usually have one or more of the following elements:

• Block Server (top level ComputerSystem),

• I/O Ports (e.g., FCPorts),

• Front-end Ports,

• Back-end Ports,

NOTE Port Statistics in block servers need to be coordinated with Port statistics in the Fabric Profile by applications. A mapping
between fabric statistics and block server statistics is identified in 7.6.5.

• Individual Controllers (ComponentCS),

• Front-end controller(s) (ComponentCS),

• Back-end controller(s) (ComponentCS),

• Exported Elements (e.g., Volumes or Logical Disks),

• Imported Elements (e.g., Extents with ConcreteComponent association to Pools),

• Disk Drives.

In order to monitor and manage these components, it is necessary to identify performance counters for
each of the above elements in the block server and externalize an interface to obtain these counters at
some SRM-determined periodicity. An SRM product will also need to be able to associate these counters
to the appropriate block server elements as defined in the appropriate SMI-S profiles in order to complete
the full picture of the performance analysis (e.g., what disks are part of this LUN and what other LUNs
have portions on this disk).

The function of this profile is to support the aforementioned SRM applications.

The Block Server Performance Profile augments the profiles and component profiles for Arrays and
Storage Virtualizers Profiles. Instead of being an isolated profile, it adds modeling constructs to existing
profiles. Together these enhancements make up the Block Server Performance Profile (as would be
registered in the Server Profile as a RegisteredProfile).

EXPERIMENTAL

7.1.3 Profile Variations

This profile has evolved over time to include a number of variations. Client applications can inspect the
CIM_BlockStatisticsCapabilites instance associated to the CIM_BlockStatisticsService instance to
determine the variations supported by an implementation. The profile variations are:

• Basic versus Advanced

Basic support defines a “least common” set of counters that are to be supported by implementations. The
Advanced support covers a more comprehensive set of counters, but may not be supported by all
implementations. The capabilities of an implementation are advertised in its instance of
CIM_BlockStatisticsCapabilites.

• Specific combinations of element types supported

Support for this profile only requires support for any one of the element types defined in the profile. More
meaningful support would support for key elements. The specific combinations supported by an
implementation are advertised in its instance of CIM_BlockStatisticsCapabilites.
SNIA Technical Position 201

• Rated data support

Some implementations may support “rated data”. Instead of just providing counters, such implementations will
provide rates (e.g., counters per second). The support for rated data is advertised in its instance of
CIM_BlockStatisticsCapabilites.

For more information on how these variations are advertised in the CIM_BlockStatisticsCapabilities, see
7.2.2.

EXPERIMENTAL

EXPERIMENTAL

7.1.4 Performance Data Rate

Depending on the capabilities of the implementation, clients can directly retrieve the rate performance
data, for example, for a given start and end time, the number of Read and Write I/Os per second.

See the BlockStatisticsCapabilities.RateElementTypesSupported property.

EXPERIMENTAL

7.2 Implementation

7.2.1 Performance Additions Overview

Figure 36 provides an overview of the model (independent of profiles). The new classes added by the
Block Server Performance Profile are the shaded grey boxes.
202

91
92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135
 Figure 36 - Block Server Performance Profile Summary Instance Diagram

Server Profile

ComputerSystem

FCPort

StorageVolume

BlockStorageStatisticalData

InstanceID
ElementType=2

StatisticTime
TotalIOs

KBytesTransferred

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=6

StatisticTime
TotalIOs

KBytesTransferred

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=8

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs
WriteIOs

ElementStatisticalData

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

MemberOfCollection

MemberOfCollection

HostedCollection

ComputerSystem ComputerSystem

ComponentCS

StorageExtent:
RAID Rank

StoragePool

AllocatedFromStoragePool

ConcreteComponent
BlockStorageStatisticalData

InstanceID
ElementType=9

StatisticTime
TotalIOs

KBytesTransferred

ElementStatisticalData

BlockStorageStatisticalData

ElementType=5

BlockStorageStatisticalData

ElementType=3

ElementStatisticalData

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=10

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs

StorageExtent

ElementStatisticalData

DiskDrive

MediaPresent

BasedOn

BlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()
CreateManifestCollection()

AddOrModifyManifest()
RemoveManifest()

HostedService
BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]
ClockTickInterval

SupportedFeatures[]

ElementCapabilities

RegisteredProfile

RegisteredName=
Block Server Performance

RegisteredProfile
RequiredProfile

ElementConformsToProfile
SNIA Technical Position 203

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151
NOTE The properties listed for the statistics classes are the mandatory properties for "Basic metrics" support. Optional Properties
and mandatory advanced support properties are not listed in order to save space in the diagram. Optional properties can be found
in 7.7 "CIM Elements".

What Figure 36 shows is a single instance of StatisticsCollection for the entire profile. This is the anchor
point from which all statistics being kept by the profile can be found. Block statistics are defined as a
BlockStorageStatisticalData class, instances of which hold the statistics for particular elements (e.g.,
StorageVolumes, ComputerSystems, Ports, Extents and Disk Drives). The type of element is recorded in
the instance of BlockStorageStatisticalData in the ElementType property.

All the statistics instances are related to the elements they meter via the ElementStatisticalData
association (e.g., BlockStorageStatisticalData for a StorageVolume can be found from the Volume by
traversing the ElementStatisticalData association).

All the statistics instances kept in the profile are associated to the one StatisticsCollection instance.
Access to all the statistics for the profile is through the StatisticsCollection. The StatisticsCollection has a
HostedCollection association to the “top level” computer system of the profile.

Note that statistics may be kept for a number of elements in the profile, including elements in profiles.
The elements that are metered are:

The top level ComputerSystem – This provides a summary of all statistics for the whole profile (e.g.,
ReadIOs are all read IOs handled by the array or storage virtualizer).

Component ComputerSystems – This provides a summary of all statistics that derive from a particular
processor in the system cluster (e.g., all ReadIOs or ReadIOs per second handled by a particular
processor). These statistics are kept in BlockStorageStatisticalData instances (one for each component
computer system).

Port – This provides a summary of all the statistics that derive from a particular Port on the Array or
Storage Virtualizer (e.g., all ReadIOs or ReadIOs per second that go through the particular port). These
statistics are kept in BlockStorageStatisticalData instances (one for each Port in the system).

StorageVolume – This provides a summary of statistics for a particular StorageVolume. For example, all
the ReadIOs (or ReadIOs per second) to the particular StorageVolume. These statistics are kept in
BlockStorageStatisticalData instances (one for each StorageVolume in the system).

StorageExtent – This provides a summary of statistics that derive from access to a particular
StorageExtent. Note: StorageExtent support is ONLY PROVIDED for extents with a ConcreteComponent
association to a concrete StoragePool. That is, this is not offered for intermediate extents. These
statistics are kept in BlockStorageStatisticalData instances (one for each Extent that is modeled in the
system).

SCSI Arbitrary Logical Units – This provides summary of statistics that derive from access to LUNs that
are not StorageVolumes (e.g., controller commands).

Remote Replica Groups – This provides summary of statistics that derive from access remote replica
volumes.

Finally, Figure 37: "Base Array Profile Block Server Performance Instance Diagram" illustrates the
BlockStatisticsService for Bulk retrieval of all the statistics data and creation of manifest collections.
These methods will be discussed later. They are shown here for completeness. Associated with the
BlockStatisticsService is a BlockStatisticsCapabilities instance that identifies the specific capabilities
implemented by the performance support. Specifically, it includes an “ElementsSupported” property that
identifies the elements for which statistics are kept and the various retrieval mechanisms that are
implemented (e.g., Extrinsic, Association Traversal, Indications and/or Query).
204

EXPERIMENTAL

The BlockStatisticsCapabilities also includes a SupportedFeatures property for identifying specific
features of the implementation.

EXPERIMENTAL

EXPERIMENTAL

7.2.2 Block Statistics Capabilities

An implementation shall advertise its capabilities in an instance of CIM_BlockStatisticsCapabilities that is
associated to its CIM_BlockStatisticsService (via CIM_ElementCapabilities). The properties of the
capabilities class and how they are to be set include:

• ElementTypesSupported - This is an array in which the implementation shall declare in the ElementTypes for
which the implementation provides standard support. For example, if the array contains 2 and 8, it means the
implementation supports the standard counters for top level computer systems and volumes.

• RateElementTypesSupported - This is an array in which the implementation shall declare in the
RatedElementTypes for which the implementation provides standard support. For example, if the array
contains 13 and 19, it means the implementation supports the standard rate data for top level computer
systems and volumes.

• SynchronousMethodsSupported - This is an array in which the implementation shall declare which methods it
supports. If the array is empty or null, then none of the methods in the service are supported. In this case,
statistics can only be retrieved via association traversal from the metered element to its instance of
CIM_BlockStorageStatisticalData.

• ClockTickInterval - This property in which the implementation shall declare the time interval (in microseconds)
in which it collects counter data.

• SupportedFeatures - This is an array in which the implementation shall declare which profile features are
supported by the implementation. If "none" is specified, then no other feature may be identified and it means
that there is no support or the support is not standard. The features that may be identified are:

• Client Defined Sequence - If this is included, the client may set the CSVSequence property in
CIM_BlockStatisticsManifest to identify the order that counters are supposed to be returned (using
GetStatisticsCollection).

• Client Defined Rate Sequence - If this is included, the client may set the CSVRateSequence property in
CIM_BlockStatisticsManifest to identify the order that rated data are supposed to be returned (using
GetRateStatisticsCollection).

• Rated Data - If this is included, the implementation provides standard support for at least one of the
RatedElementTypes.

• Advanced Metrics - If this is included, the implementation provides standard support for advanced metrics. If
this is not included, then the implementation only supports basic metrics.

NOTE Support for Advanced Metrics means advanced support is provided for each of the element types listed in
ElementTypesSupported.

• ElementTypeFeatures - This is an array in which the implementation shall declare which, if any, specific
element type combinations are supported. The current list of element type features are:

• Any one - Standard support is provided for at least one of the elements listed in ElementTypesSupported.
SNIA Technical Position 205

152
153

154

155

156

157

158

159

160

161

162

163

164

165

166

167
• Front-end Port and Volume - Standard support is provided for front-end ports and volumes. Standard support
may also be provided for other element types, but a client that relies on front-end ports and volumes can
determine this from this property.

• Volume and Disk Drive - Standard support is provided for volumes and disk drives. Standard support may
also be provided for other element types, but a client that relies on volumes and disk drives can determine
this from this property.

• Front-end Port and Disk Drive - Standard support is provided for front-end ports and disk drives. Standard
support may also be provided for other element types, but a client that relies on front-end ports and disk
drives can determine this from this property.

NOTE If an implementation provides standard support for front-end ports, volumes and disk drives, the implementation should list
all four of the above features.

EXPERIMENTAL

7.2.3 Performance Additions to base Array Profile

Figure 37 illustrates the class instances that would be supported if an Array only implemented the base
Array Profile and the Block Server Performance Profile. Only the StatisticsCollection, the
BlockStorageStatisticalData instance for the top level computer system, BlockStorageStatisticalData
instances for front end ports and BlockStorageStatisticalData instances for Storage Volumes would be
supported.

Only the GetStatisticsCollection method of the BlockStatisticsService would be supported. The actual
elements for which the statistics would be kept would be reported in the “ElementsSupported” property of
the BlockStatisticsCapabilities instance.

EXPERIMENTAL

For performance data rate, the method GetRateStatisticsCollection would be supported. The actual
elements for which the statistics would be kept would be reported in the “RateElementsSupported”
property of the BlockStatisticsCapabilities instance

EXPERIMENTAL
206

Figure 37 - Base Array Profile Block Server Performance Instance Diagram

Server Profile

ComputerSystem

LogicalPort

SCSIProtocolController

StorageVolume

StoragePool

ProtocolControllerForUnit

AllocatedFromStoragePool

AllocatedFromStoragePool

SystemDevice

HostedStoragePool

SystemDevice

ElementStatisticalData

ElementStatisticalData

ElementStatisticalData

MemberOfCollection

MemberOfCollection

HostedCollection

BlockStorageStatisticalData

InstanceID
ElementType=2
StatisticTime

TotalIOs
KBytesTransferred

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=6
StatisticTime

TotalIOs
KBytesTransferred

BlockStorageStatisticalData

InstanceID
ElementType=8
StatisticTime

TotalIOs
KBytesTransferred

ReadIOs
WriteIOs

BlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()

HostedService

BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]
ClockTickInterval

SupportedFeatures[]

ElementCapabilities

RegisteredName= Array

RegisteredProfile

RegisteredName=
Block Server Performance

RegisteredSubprofileSubprofileRequiresProfile

ElementConformsToProfile

BlockStatisticsManifestCollection

InstanceID
ElementName
IsDefault=True

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

MemberOfCollection

DeviceSAPImplementation

SCSIProtocolEndpoint

SAPAvailableForElement

BlockStatisticsManifest
SNIA Technical Position 207

168
169

170

171

172

173

174

175

176
NOTE The properties listed for the statistics classes are the mandatory properties for "Basic metrics" support. Optional Properties
and mandatory advanced support properties are not listed in order to save space in the diagram. Optional properties can be found
in 7.7 "CIM Elements".

7.2.4 Performance Additions to base Storage Virtualizer Profile

Figure 38 illustrates the class instances that would be supported if a Storage Virtualizer only implemented
the base Storage Virtualizer Profile and the Block Server Performance Profile. Only the
StatisticsCollection, the BlockStorageStatisticalData instance for the top level computer system,
BlockStorageStatisticalData instances for front-end and back-end ports, BlockStorageStatisticalData
instances for Storage Volumes and BlockStorageStatisticalData for StorageExtents would be supported.

Only the GetStatisticsCollection method of the BlockStatisticsService would be supported. The actual
elements for which the statistics would be kept would be reported in the “ElementsSupported” property of
the BlockStatisticsCapabilities instance.

EXPERIMENTAL

For performance data rate, the method GetRateStatisticsCollection would be supported. The actual
elements for which the statistics would be kept would be reported in the “RateElementsSupported”
property of the BlockStatisticsCapabilities instance

EXPERIMENTAL
208

Figure 38 - Base Storage Virtualizer Profile Block Server Performance Instance Diagram

Server Profile

Dedicated[*]=Storage Virtualizer

ComputerSystem

LogicalPort

SCSIProtocolController

StorageVolume

StoragePool

ProtocolControllerForUnit

AllocatedFromStoragePool

AllocatedFromStoragePool

HostedStoragePool

ElementStatisticalData

ElementStatisticalData

ElementStatisticalData

MemberOfCollection

MemberOfCollection

HostedCollection

BlockStorageStatisticalData

InstanceID
ElementType=2

StatisticTime
TotalIOs

KBytesTransferred

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=6
StatisticTime

TotalIOs
KBytesTransferred

BlockStorageStatisticalData

InstanceID
ElementType=8
StatisticTime

TotalIOs
KBytesTransferred

ReadIOs
WriteIOs

BlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()

HostedService

BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]
ClockTickInterval

SupportedFeatures[]

ElementCapabilities

RegisteredName= Storage Virtualizer

RegisteredProfile

RegisteredName=
Block Server Performance

RegisteredProfile
ReferencedProfile

ElementConformsToProfile

BlockStatisticsManifestCollection

InstanceID
ElementName
IsDefault=True

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

MemberOfCollection

DeviceSAPImplementation

SCSIProtocolEndpoint

SAPAvailableForElement

SystemDevice

LogicalPort

StorageExtent

ConcreteComponent

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=7
StatisticTime

TotalIOs

BlockStorageStatisticalData

InstanceID
ElementType=9

StatisticTime
TotalIOs

KBytesTransferred

ElementStatisticalData

SystemDevice

BlockStatisticsManifest
SNIA Technical Position 209

177
178

179

180

181

182

183

184

185

186
NOTE The properties listed for the statistics classes are the mandatory properties for "Basic metrics" support. Optional Properties
and mandatory advanced support properties are not listed in order to save space in the diagram. Optional properties can be found
in 7.7 "CIM Elements".

DEPRECATED

7.2.5 Performance Additions to base Volume Management Profile

Figure 39: "Base Volume Management Profile Block Server Performance Instance Diagram" illustrates
the class instances that would be supported if the volume manager only implemented the base Volume
Management Profile and the Block Server Performance Profile. Only the StatisticsCollection, the
BlockStorageStatisticalData instance for the top level computer system, BlockStorageStatisticalData
instances for LogicalDisks (lower extents) and BlockStorageStatisticalData instances for LogicalDisks
(exported Logical Disks) would be supported.
210

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206
Figure 39 - Base Volume Management Profile Block Server Performance Instance Diagram

Server Profile

ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

AllocatedFromStoragePool

HostedStoragePool

SystemDevice

ElementStatisticalData

ElementStatisticalData

MemberOfCollection

HostedCollection

BlockStorageStatisticalData

InstanceID
ElementType=2
StatisticTime

TotalIOs
KBytesTransferred

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=8
StatisticTime

TotalIOs
KBytesTransferred

ReadIOs
WriteIOs

BlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()

HostedService

BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]
ClockTickInterval

SupportedFeatures[]

ElementCapabilities

RegisteredName= Volume Management'

RegisteredProfile

RegisteredName=
Block Server Performance

RegisteredProfileReferencedProfile

ElementConformsToProfile

BlockStatisticsManifestCollection

InstanceID
ElementName
IsDefault=True

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

MemberOfCollection

LogicalDisk

ConcreteComponent

BlockStorageStatisticalData

InstanceID
ElementType=9
StatisticTime

TotalIOs
KBytesTransferred

ElementStatisticalData
BasedOn

BasedOn

SystemDevice

BlockStatisticsManifest
SNIA Technical Position 211

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225
NOTE The properties listed for the statistics classes are the mandatory properties. Optional Properties are not listed in order to
save space in the diagram. Optional properties can be found in 7.7 "CIM Elements".

DEPRECATED

7.2.6 Summary of BlockStorageStatisticsData support by Profile

Table 103 defines the Element Types (for BlockStorageStatisticalData instances) that may be supported
by profile.

YES means that this specification defines the element type for the profile. Actual support by any given
implementation would be implementation dependent. But the specification covers defining the element
type for the profile. NO means that this specification does not specify this element type for the profile.

EXPERIMENTAL

Table 104 defines the Rate Element Types (for BlockStorageStatisticalData instances) that may be
supported by profile.

Table 103 - Summary of Element Types by Profile

ElementType Array Storage Virtualizer

Computer System YES YES

Front-end Computer System YES YES

Peer Computer System YES YES

Back-end Computer System YES YES

Front-end Port YES YES

Back-end Port YES YES

Volume YES YES

Extent YES YES

Disk Drive YES YES

Arbitrary LUs YES YES

Remote Replica Group YES YES
212

226
227
228

229
230
EXPERIMENTAL

7.2.7 Server Profile Support for the Block Server Performance Profile

At the top of Figure 37: "Base Array Profile Block Server Performance Instance Diagram" is a dashed
box that illustrates a part of the Server Profile for the Array. A similar dashed box appears for the Storage
Virtualizer Profile. The part illustrated is the particulars for the Block Server Performance Profile. If
performance support has been implemented, then there shall be a RegisteredProfile instance for the
Block Server Performance Profile.

7.2.8 Default Manifest Collection

Associated with the instance of the StatisticsCollection shall be a provider supplied (Default)
CIM_BlockStatisticsManifestCollection that represents the statistics properties that are kept by the
profile. The default manifest collection is indicated by the IsDefault property (=True) of the
CIM_BlockStatisticsManifestCollection. For each metered object of the profile implementation the default
manifest collection will have exactly one manifest that will identify which properties are included for that
metered object. If a an object is not metered, then there shall not be a manifest for that element type. If
an element type (e.g., StorageVolume) is metered, then there shall be a manifest for that element type.

EXPERIMENTAL

Each default manifest in the default manifest collection identifies the statistics properties included by
default by the implementation. The CSVSequence property of the manifest shall identify the default
sequence in which the implementation will return statistics properties within each record for the
ElementType on a GetStatisticsCollection request. For each property included in the manifest by the
value “true” there should be an entry in the CSVSequence array identifying the
BlockStrorageStatisticalData property by name. The first three values of CSVSequence shall be

Table 104 - Summary of Rate Element Types by Profile

RateElementType Array Storage Virtualizer

Computer System Rate YES YES

Front-end Computer System Rate YES YES

Peer Computer System Rate YES YES

Back-end Computer System Rate YES YES

Front-end Port Rate YES YES

Back-end Port Rate YES YES

Volume Rate YES YES

Extent Rate YES YES

Disk Drive Rate YES YES

Arbitrary LUs Rate YES YES

Remote Replica Group Rate YES YES
SNIA Technical Position 213

231

232

233

234

235

236

237

238
239
240

241
242

243

244

245

246
"InstanceID", "ElementType" and "StatisticsTime" to allow correlation of the Manifest with the CSV record
based on the ElementType.

EXPERIMENTAL

EXPERIMENTAL

For performance data rate, each default manifest in the default manifest collection identifies the rate
statistics properties included by default by the implementation. The CSVRateSequence property of the
manifest shall identify the default sequence in which the implementation will return statistics properties
within each record for the RateElementType on a GetRateStatisticsCollection request. For each property
included in the manifest by the value “true” there should be an entry in the CSVRateSequence array
identifying the BlockStrorageStatisticalData property by name. The first four values of CSVRateSequence
shall be "InstanceID", "RateElementType", "RateIntervalStartTime", and “RateIntervalEndTime” to allow
correlation of the Manifest with the CSV record based on the RateElementType.

EXPERIMENTAL

7.2.9 Performance Additions applied to Multiple Computer Systems

Figure 40 illustrates the class instances that would be supported if an Array, Storage Virtualizer or
Volume Management Profile also implemented the Multiple Computer System Profile (and the Block
Server Performance Profile). In this case, additional BlockStorageStatisticalData instances would exist for
the component computer systems, as well as the top level computer system.

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Front-end
Computer System”, “Back-end Computer System” and/or “Peer Computer System”.
214

247

248

249

250

251

252

253

254

255

256

257

258
259
260
NOTE Support for both the Multiple Computer System Profile and the Block Server Performance Profile does not imply support for
statistics at the Component Computer System level. This support is ONLY implied by the “ElementsSupported” property of the
BlockStatisticsCapabilities instance.

NOTE The properties listed for the statistics classes are the mandatory properties for "Basic metrics" support. Optional Properties
and mandatory advanced support properties are not listed in order to save space in the diagram. Optional properties can be found
in 7.7 "CIM Elements".

Figure 40 - Multiple Computer System Profile Block Server Performance Instance Diagram

ComputerSystem
(Front-end)

ComputerSystem
Top level System

ComputerSystem
(Back-end)

ComponentCSComponentCS

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=3

StatisticTime
TotalIOs
ReadIOs
WriteIOs

BlockStorageStatisticalData

InstanceID
ElementType=5

StatisticTime
TotalIOs

MemberOfCollection

ElementStatisticalData

ElementStatisticalData

HostedCollection

BlockStorageStatisticalData

InstanceID
ElementType=2

StatisticTime
TotalIOs

KBytesTransferred

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled
SNIA Technical Position 215

261
262
263

264
265

266
267

268

269

270

271

272

273

274
275
7.2.10 Performance Additions to Backend Ports

Figure 41: "Fibre Channel Initiator Port Profile Block Server Performance Instance Diagram" illustrates
the class instances that would be supported if an Array also implemented the Fibre Channel Initiator Port
Profile (and the Block Server Performance Profile). In this case, additional BlockStorageStatisticalData
instances would exist for the back-end ports, as well as the front-end ports.

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Back-end
Ports”.

NOTE Support for both the Fibre Channel Initiator Port Profile and the Block Server Performance Profile DOES not imply support
for statistics at the Back-end Port level. This support is ONLY implied by the “ElementsSupported” property of the
BlockStatisticsCapabilities instance.

NOTE The properties listed for the statistics classes are the mandatory properties for "Basic metrics" support. Optional Properties
and mandatory advanced support properties are not listed in order to save space in the diagram. Optional properties can be found
in 7.7 "CIM Elements".

EXPERIMENTAL

In some systems a port may be either a front-end or backend port. In this standard such ports would have
a property that indicates that they serve both roles (UsageRestriction=’4’). When a port has a
UsageRestriction=’4’, then that port may have two BlockStorageStatisticalData records; one for the front-

Figure 41 - Fibre Channel Initiator Port Profile Block Server Performance Instance Diagram

StorageExtent

ComputerSystem

FCPort

UsageRestriction =
Back-end only

StorageExtent

SCSIProtocolEndpointFCPort

UsageRestriction =
Back-end only

DeviceSAPImplementation

SCSIInitiatorTargetLogicalUnitPath

StorageExtent

SCSIInitiatorTargetLogicalUnitPath
SCSIInitiatorTargetLogicalUnitPath

SystemDevice

ElementStatisticalData

BlockStorageStatisticalData

ElementType=7

MemberOfCollection

ElementStatisticalData

BlockStorageStatisticalData

ElementStatisticalData

HostedCollection

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=7

StatisticTime
TotalIOs

SCSIProtocolEndpoint

DeviceSAPImplementation
216

276
277

278
279

280
end port role and one for the backend port role. However, it will only have one record if only one of the
port ElementTypes (6 or 7) is supported by the implementation. That is, if
BlockStatisticsCapabilities.ElementTypes contains 6, but not 7, then the BlockStorageStatisticalData shall
contain statistics for the front-end port role. If BlockStatisticsCapabilities.ElementTypes contains both 6
and 7, then there shall be two BlockStorageStatisticalData instances (one for the front-end port role and
one for the backend port role).

EXPERIMENTAL

7.2.11 Performance Additions to Extent Composition

Figure 42 illustrates the class instances that would be supported if an Array also implemented the Extent
Composition Profile (and the Block Server Performance Profile). In this case, BlockStorageStatisticalData
instances would exist for the Extents that are modeled.

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Extents”.

NOTE The Storage Virtualizer Profile would use the “Extents” statistics for Storage Volumes that are imported instead of Disk
extent statistics (since they do not have disk drives). Also note that an Array may model both “Extents” and “Disks” extents.

NOTE Support for both the Extent Composition Profile and the Block Server Performance Profile DOES not imply support for
statistics at the Extent level. This support is ONLY implied by the “ElementsSupported” property of the BlockStatisticsCapabilities
instance.
SNIA Technical Position 217

NOTE The properties listed for the statistics classes are the mandatory properties for "Basic metrics" support. Optional Properties
and mandatory advanced support properties are not listed in order to save space in the diagram. Optional properties can be found
in 7.7 "CIM Elements".

7.2.12 Performance Additions to Disk Drives

Figure 43: "Disk Drive Lite Profile Block Server Performance Instance Diagram" illustrates the class
instances that would be supported if an Array also implemented the Disk Drive Lite (or Disk Drive) Profile
(and the Block Server Performance Profile). In this case, BlockStorageStatisticalData instances would
exist for each of the Disk Drives in the Array.

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Disks”.

Figure 42 - Extent Composition Profile Block Server Performance Instance Diagram

StorageVolume

CompositeStorageExtent

BasedOn

StoragePool

AllocatedFromStoragePool

ConcreteComponent

ElementStatisticalData

BlockStorageStatisticalData

ElementType=8

MemberOfCollectionElementStatisticalData

StatisticsCollection

InstanceID
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=9

StatisticTime
TotalIOs

KBytesTransferred

StorageExtent StorageExtent StorageExtent

CompositeExtentBasedOn
218

281

282

283

284

285

286

287
288
289

290

291

292
293
NOTE An Array or Storage Virtualizer may model both “Extents” and “Disks”. Note: Support for both the Disk Drive Lite Profile and
the Block Server Performance Profile DOES not imply support for statistics at the Disk Drive level. This support is ONLY implied by
the “ElementsSupported” property of the BlockStatisticsCapabilities instance.

NOTE The properties listed for the statistics classes are the mandatory properties for "Basic metrics" support. Optional Properties
and mandatory advanced support properties are not listed in order to save space in the diagram. Optional properties can be found
in 7.7 "CIM Elements".

Figure 44 shows performance data rates for Disk Drive.

Figure 43 - Disk Drive Lite Profile Block Server Performance Instance Diagram

StorageVolume or
StorageExtent

StorageExtent DiskDrive

PhysicalPackage

MediaPresent*

Realizes

*

Basedon

SoftwareIdentitty
DeviceSoftwareIdentity

StoragePool

ConcreteComponent

PhysicalPackage
(System)

Container

ElementStatisticalData

MemberOfCollection

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=10

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs
SNIA Technical Position 219

294

295

296

297

298

299

300

301

302

303

304

305
306
307

308
309
Figure 44 - Disk Drive Performance Data Rates

StorageVolume or
StorageExtent

StorageExtent DiskDrive

PhysicalPackage

MediaPresent*

Realizes

*

Basedon

SoftwareIdentitty
DeviceSoftwareIdentity

StoragePool

ConcreteComponent

PhysicalPackage
(System)

Container

ElementStatisticalData

MemberOfCollection

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=21

RateIntervalStartTime
RateIntervalEndTime

TotalIOsRate
KBytesTransferredRate

ReadIOsRate
220

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329
7.2.13 Performance Additions to SCSIArbitraryLogicalUnits (Controller LUNs)

Figure 45: "SCSIArbitraryLogicalUnit Block Server Performance Instance Diagram" illustrates the class
instances that would be supported if an Array (or Storage Virtualizer) has Controller LUNs (e.g.,
SCSIArbitraryLogicalUnits). In this case, BlockStorageStatisticalData instances would exist for each of
the Controller LUNs (LogicalDevices or SCSIArbitraryLogicalUnits) supported by the Array (or Storage
Virtualizer).

NOTE There is no ElementStatisticalData association to any element. This is because the Controller LUNs are not actually part of
the Array or Storage Virtualizer Profiles. But the statistics may still be collected in and kept in BlockStorageStatisticalData instances
with ElementType=11.

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Arbitrary
LUs”.

NOTE The properties listed for the statistics classes are the mandatory properties for "Basic metrics" support. Optional Properties
and mandatory advanced support properties are not listed in order to save space in the diagram. Optional properties can be found
in 7.7 "CIM Elements".

Figure 45 - SCSIArbitraryLogicalUnit Block Server Performance Instance Diagram

ComputerSystem

MemberOfCollection

HostedCollection StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=11

StatisticTime
TotalIOs

KBytesTransferred
SNIA Technical Position 221

330

331

332
EXPERIMENTAL

7.2.14 Performance Additions for Remote Mirrors

Figure 46: "Remote Mirrors Block Server Performance Instance Diagram" illustrates the class instances
that would be supported if an Array also implemented the Remote Mirroring of the Replication Services
Profile (and the Block Server Performance Profile). In this case, BlockStorageStatisticalData instances
would exist for non-volume (e.g., meta data) IO requests. In this case, the BlockStorageStatisticalData
instance is associated with the ConnectivityCollection instance that represents the connection to the
remote system.

NOTE Statistics attributed to the ConnectivityCollection are control IOs between the mirroring arrays. Statistics that actually move
data to the remote mirror are attributed to the targeted StorageVolume (or logical disk).

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Remote
Replica Group”.

NOTE Support for both the Replication Services Profile and the Block Server Performance Profile DOES not imply support for
statistics at the Remote Replica Group level. This support is ONLY implied by the “ElementsSupported” property of the
BlockStatisticsCapabilities instance.

NOTE The properties listed for the statistics classes are the mandatory properties for "Basic metrics" support. Optional Properties
and mandatory advanced support properties are not listed in order to save space in the diagram. Optional properties can be found
in 7.7 "CIM Elements".

EXPERIMENTAL

7.2.15 Client Defined Manifest Collections

Manifest collections are either provider supplied (CIM_BlockStatisticsManifestCollection.IsDefault=True)
for the profile implementation or client defined collections

Figure 46 - Remote Mirrors Block Server Performance Instance Diagram

ComputerSystem

(See referencing profile)

ConnectivityCollection

ConnectivityStatus: Up,
Down, Unknown

(See Replication Services)

ProtocolEndpoint

ProtocolIFType: TCP, HTTP ,
Fibre Channel, Other

(See Replication Services)

ElementStatisticalData

HostedCollection
StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=12

StatisticTime
TotalIOs

KBytesTransferred

HostedCollection

MemberOfCollection

HostedAccessPoint

HostedCollection

MemberOfCollection
222

333

334

335

336

337

338

339

340

341

342
343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369
(CIM_BlockStatisticsManifestCollection.IsDefault=False) that indicate what statistics properties the client
would like to retrieve using the GetStatisticsCollection or GetRateStatisticsCollection method. For a
discussion of provider supplied manifest collections, see 7.2.8.

Client defined manifest collections are a mechanism for restricting the amount of data returned on a
GetStatisticsCollection request. A client defined manifest collection is identified by the IsDefault property
of the collection is set to False. For each block statistics class (e.g., Computer System, Volume, Disk,
etc.) a manifest can be defined which identifies which properties of the particular statistics class are to be
returned on a GetStatisticsCollection request. Each of the classes of block statistic may have 0 or 1
manifest in any given manifest collection.

EXPERIMENTAL

In addition to identifying which properties the client wants returned, the client may define the sequence in
which the properties are to be returned with the CSVSequence (or CSVRateSequence) property of the
manifest. Support for this function is conditional on BlockStatisticsCapabilities.SupportedFeatures
including the value ‘3’ (Client Defined Sequence). If the client does not set this property or sets it
improperly, the implementation shall set the value of CSVSequence (or CSVRateSequence) to NULL. If
the SupportedFeatures does not include the value ‘3’ the implementation will set the CSVSequence (and
CSVRateSequence) to NULL (implying the default sequence will be used).

EXPERIMENTAL

This is illustrated in Figure 47.
SNIA Technical Position 223

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395
In Figure 47, manifest classes are defined for Volumes and Disk Drives. Each property of the manifest is
a Boolean that indicates whether the property is to be returned (true) or omitted (false).

Figure 47 - Block Server Performance Manifest Collections

BlockStorageStatisticalData

InstanceID
StatisticTime

TotalIOs
KBytesTransferred

IOTime
MaintOp
ReadIOs

StorageVolume

ElementStatisticalData

BlockStatisticsManifestCollection

InstanceID
ElementName

IsDefault=False

BlockStatisticsManifest

ElementType=8
StatisticTimeInclude

TotalIOsInclude
KBytesTransferredInclude

ReadIOsInclude
WriteIOsInclude
CSVSequence[]

StatisticsCollection

InstanceID
ElementName

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

BlockStorageStatisticalData

InstanceID
ElementType=8

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs
WriteIOs

StorageExtent

ElementStatisticalData

BasedOn

BlockStatisticsManifest

ElementType=10
StatisticTimeInclude

TotalIOsInclude
KBytesTransferredInclude

ReadIOsInclude
CSVSequence[]

ComputerSystem

HostedCollectionBlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()
CreateManifestCollection()

AddOrModifyManifest()
RemoveManifest()

HostedService

BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]
ClockTickInterval

SupportedFeatures[]

ElementCapabilities

BlockStatisticsManifestCollection

InstanceID
ElementName
IsDefault=True

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

MemberOfCollection

Server P rofile
RegisteredProfile

RegisteredName=
Block Server Performance

RegisteredProfile
ReferencedProfile

ElementConformsToProfile

BlockStatisticsManifest
MemberOfCollection

MemberOfCollection
224

 Overview

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421
422

423

424

425

426

427

428
429
430

431

432
Multiple client defined manifest collections can be defined in the profile. So different clients or different
client applications can define different manifests for different application needs. A manifest collection can
completely omit a whole class of statistics (e.g., no ComputerSystem statistics are shown in Figure 47:
"Block Server Performance Manifest Collections"). Since manifest collections are “client objects”, they
are named (ElementName) by the client for the client’s convenience. The CIM server will generate an
instance ID to uniquely identify the manifest collection in the CIM Server.

Client defined manifest collections are created using the CreateManifestCollection method. Manifests are
added or modified using the AddOrModifyManifest method. A manifest may be removed from the manifest
collection using the RemoveManifest method.

NOTE Use of manifest collections is optional with the GetStatisticsCollection or GetRateStatisticsCollection method. If NULL for
the manifest collection is passed on input, then all statistics instances are assumed.

7.2.16 Capabilities Support for Block Server Performance Profile

7.2.16.1 Overview

There are two dimensions to determining what is supported with a Block Server Performance Profile
implementation. First, there are the RegisteredProfiles supported by the Block server (Array or Storage
Virtualizer Profile). In order to support statistics for a particular class of metered element, the
corresponding object shall be modeled. So, if an Array has not implemented the Disk Drive Lite (or Disk
Drive) Profile, then it shall not implement the BlockStorageStatisticalData for Disk Drives in the Block
Server Performance Profile (and implementation of the Disk Drive Lite or Disk Drive Profile does not
guarantee implementation of the BlockStorageStatisticalData for disk drives).

Both of these dimensions are captured in the BlockStatisticsCapabilities class instance. This is populated
by the provider (not created or modified by Clients). The second dimension is techniques supported for
retrieving statistics and manipulating manifest collections.

7.2.16.2 ElementsSupported

The values of interest are “Computer System”, “Front-end Computer System”, “Peer Computer System”,
“Back-end Computer System”, “Front-end Port”, “Back-end Port”, “Volume”, “Extent”, “Disk Drive”,
“Arbitrary LUs”, “Remote Replica Group”

7.2.16.3 SynchronousMethodsSupported

The values of interest are “Exec Query”, “Query Collection”, “GetStatisticsCollection”, “Manifest
Creation”, “Manifest Modification”, “Manifest Removal”, and "GetRateStatisticsCollection"

7.2.16.4 AsynchronousMethodsSupported

For the current version of the standard this should be NULL.

EXPERIMENTAL

7.2.16.5 SupportedFeatures

The values of interest are “none”, “Client Defined Sequence”, "Client Defined Rate Sequence", "Rated
Data" and "Advanced Metrics".

EXPERIMENTAL

7.2.16.6 ClockTickInterval

An internal clocking interval for all timer counters kept in the subsystem, measured in microseconds (Unit
of measure in the timers, measured in microseconds). Time counters are monotonically increasing
counters that contain 'ticks'. Each tick represents one ClockTickInterval.
SNIA Technical Position 225

ElementTypeFeatures

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468
To be a valid implementation of the Block Server Performance Profile, at least one of the values listed for
ElementsSupported shall be supported. ElementsSupported is an array, such that all of the values can be
identified.

For the methods supported properties any or all of these values can be missing (e.g., the arrays can be
NULL). If all the methods supported are NULL, this means that manifest collections are not supported and
neither GetStatisticsCollection/GetRateStatisticsCollection nor Query are supported for retrieval of
statistics. This leaves enumerations or association traversals as the only methods for retrieving the
statistics.

7.2.16.7 ElementTypeFeatures

The values of interest are “Any one”, “Front-end Port & Volume”, “Volume & Disk Drive” or “Front-end Port
& Disk Drive”.

7.3 Health and Fault Management Considerations

Not defined in this document.

7.4 Cascading Considerations

Not applicable.

7.5 Methods of the Profile

7.5.1 Extrinsic Methods of the Profile

7.5.1.1 Overview

The methods supported by this profile are summarized in Table 105, and detailed in the sections that
follow it.

7.5.1.2 GetStatisticsCollection

This method retrieves statistics in a well-defined bulk format. The set of statistics returned by this list is
determined by the list of element types passed in to the method and the manifests for those types
contained in the supplied manifest collection. The statistics are returned through a well-defined array of
strings that can be parsed to retrieve the desired statistics as well as limited information about the
elements that those metrics describe.

Table 105 - Creation, Deletion and Modification Methods in Block Server Performance Profile

Method Created Instances Deleted Instances Modified Instances

GetStatisticsCollection None None None

GetRateStatisticsCollection None None None

CreateManifestCollection BlockStatisticsManifestColle
ction

AssociatedBlockStatisticsM
anifestCollection

None None

AddOrModifyManifest BlockStatisticsManifest
(subclass)

MemberOfCollection

None BlockStatisticsManifest
(subclass)

RemoveManifest None BlockStatisticsManifest
(subclass)

MemberOfCollection

None
226

 GetStatisticsCollection

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508
GetStatisticsCollection(

 [IN (false), OUT, Description(Reference to the job (shall be null in the current version of
SMI-S).)]

 CIM_ConcreteJob REF Job,

 [IN, Description(Element types for which statistics should be returned.)

ValueMap { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "..", "32768..65535" },

 Values { "Unknown", "Reserved", “Computer System”, “Front-end Computer System”,

"Peer Computer System”, « Back-end Computer System” “Front-end Port”, “Back-end Port”,

“Volume”, “Extent”, “Disk Drive”, “Arbitrary LUs” , “Remote Replica Group”,

"DMTF Reserved", "Vendor Specific" }]

 uint16 ElementTypes[],

 [IN, Description(The manifest collection that contains the manifests that list the metrics
that

should be returned for each element type.)]

 CIM_BlockStatisticsManifestCollection REF ManifestCollection,

 [IN, Description("Specifies the format of the Statistics output parameter.")

ValueMap { "2" },

 Values ("CSV")]

 Uint16 StatisticsFormat,

 [OUT, Description(The statistics for all the elements as determined by the Elements and

 ManifestCollection parameters.)]

 string Statistics[]);

Error returns are:

{ "Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"Method Reserved", "Method Parameters Checked - Job Started", "Element Not Supported", “Statistics
Format Not Supported”, "Method Reserved", "Vendor Specific"}

NOTE In this version of the standard, Job Control is not supported for the GetStatisticsCollection method. This method should
always return NULL for the Job parameter.

If the ElementTypes[] array is empty, then no data is returned. If the ElementTypes[] array is NULL, then
all data specified in the manifest collection is returned.

If the manifest collection is empty, then no data is returned. If the manifest collection parameter is NULL,
then the default manifest collection is used (Note: In SMI-S, a default manifest collection shall exist if the
GetStatisticalCollection method is supported).

NOTE The ElementTypes[] and ManifestCollection parameters may identify different sets of element types. The effect of this will
be for the implementation to return statistics for the element types that are in both lists (that is, the intersection of the two lists).
This intersection could be empty. In this case, no data will be returned.
SNIA Technical Position 227

GetStatisticsCollection

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543
For the current version of SMI-S, the only recognized value for StatisticsFormat is “CSV”. The method
may support other values, but they are not specified by SMI-S (i.e., they would be vendor specific).

Given a client has an inventory of the metered objects with Statistics InstanceIDs that may be used to
correlate with the BlockStorageStatisticalData instances, a simple CSV format is sufficient and the most
efficient human-readable format for transferring bulk statistics. More specifically, the following rules
constrain that format and define the content of the String[] Statistics output parameter to the
GetStatisticsCollection() method:

• The Statistics[] array may contain multiple statistics records per array entry. In such cases, the total length of
the concatenated record strings will not exceed 64K bytes. A single statistics record will not span Array
entries.

• There shall be exactly one statistics record per line in the bulk Statistics parameter. A line is terminated by:

• a line-feed character

• the end of a String Array Element (i.e., a statistics record cannot overlap elements of the String[] Statistics
output parameter).

• Each statistics record shall contain the InstanceID of the BlockStorageStatisticalData instance, the value map
(number) of the ElementType of the metered object and one value for each property that the relevant
BlockStatisticsManifest specifies as “true”.

• Each value in a record shall be separated from the next value by a Semi-colon (“;”). This is to support
internationalization of the CSV format. A provider creating a record in this format should not include white
space between values in a record. A client reading a record it has received would ignore white-space
between values.

• The InstanceID value is an opaque string that shall correspond to the InstanceID property from
BlockStorageStatisticalData instance.

• For the convenience of client software, that need to be able to correlate InstanceIDs between different
GetStatisticsCollection method invocations, the InstanceID for BlockStorageStatisticalData instance shall be
unique across all instances of the BlockStorageStatisticalData class. It is not sufficient that InstanceID is
unique across subclasses of BlockStorageStatisticalData.

• The ElementType value shall be a decimal string representation of the Element Type number (e.g., “8” for
StorageVolume). The StatisticTime shall be a string representation of DateTime. All other values shall be
decimal string representations of their statistical values.

• NULL values shall be included in records for which a statistic is returned (specified by the manifest or by a
lack of manifest for a particular element type) but there is no meaningful value available for the statistic. A
NULL statistic is represented by placing a semi-colon (“;”) in the record without a value in the position the
value would have otherwise been included. A record in which the last statistic has a NULL value shall end in
a semi-colon (“;”).

DEPRECATED

• The first three values in a record shall be the InstanceID, ElementType and StatisticTime values from
the BlockStorageStatisticalData instance. The remaining values shall be returned in the order in
which they are defined by the MOF for the BlockStatisticsManifest class or subclass the record
describes.

DEPRECATED
228

 GetStatisticsCollection

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566
567

568

569

570

571

572

573

574

575

576

577
EXPERIMENTAL

• Use of the MOF for defining the sequence of statistics in a record has proven to be an unreliable means of
defining the sequence of statistics in each record. If the CSVSequence is non-NULL, then the sequence of
statistics will be defined by the sequence of entries in the CSVSequence array. The first three values in the
CSVSequence shall be "InstanceID", "ElementType" and "StatisticTime". All other elements of the
CSVSequence array may be in the order defined by the creator of the Manifest. If the CSVSequence is NULL
in the Default (provider) Manifest, then the rule in the previous bullet still applies.

EXPERIMENTAL

As an additional convention, a provider should return all the records for a particular element type in
consecutive String elements, and the order of the element types should be the same as the order in which
the element types were specified in the input parameter to GetStatisticsCollection().

Example output as it might be transmitted in CIM-XML. It shows records for 5 Volumes and 5 disks,
assuming that 6 statistics were specified in the BlockStatisticsManifest instance for both disks and
volumes. The sixth statistic is unavailable for volumes, and the fourth statistic is unavailable for disks:

<METHODRESPONSE NAME="GetStatisticsCollection">

<RETURNVALUE PARAMTYPE="uint32">

<VALUE>

0

</VALUE>

</RETURNVALUE>

<PARAMVALUE NAME="Statistics" PARAMTYPE="string">

<VALUE.ARRAY>

<VALUE>

STORAGEVOLUMESTATS1;7;20040811133015.0000010-300;11111;22222;33333;44444;55555;

STORAGEVOLUMESTATS2;7;20040811133015.0000020-300;11111;22222;33333;44444;55555;

STORAGEVOLUMESTATS3;7;20040811133015.0000030-300;11111;22222;33333;44444;55555;

STORAGEVOLUMESTATS4;7;20040811133015.0000040-300;11111;22222;33333;44444;55555;

STORAGEVOLUMESTATS5;7;20040811133015.0000050-300;11111;22222;33333;44444;55555;

</VALUE>

<VALUE>

DISKSTATS1;9;20040811133015.0000100-300;11111;22222;33333;;55555;66666

DISKSTATS2;9;20040811133015.0000110-300;11111;22222;33333;;55555;66666

DISKSTATS3;9;20040811133015.0000120-300;11111;22222;33333;;55555;66666

DISKSTATS4;9;20040811133015.0000130-300;11111;22222;33333;;55555;66666

DISKSTATS5;9;20040811133015.0000140-300;11111;22222;33333;;55555;66666

</VALUE>

</VALUE.ARRAY>

</PARAMVALUE>

</METHODRESPONSE>
SNIA Technical Position 229

CreateManifestCollection

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615
616

617
7.5.1.3 CreateManifestCollection

Creates a new manifest collection whose members serve as a filter for metrics retrieved through the
GetStatisticsCollection method.

CreateManifestCollection(

 [IN, Description(The collection of statistics that will be filtered
using the new

manifest collection.)]

 CIM_StatisticsCollection REF Statistics,

 [IN, Description(Client-defined name for the new manifest collection)]

 string ElementName,

 [OUT, Description(Reference to the new manifest collection.)]

 CIM_BlockStatisticsManifestCollection REF ManifestCollection);

Error returns are:

{ "Ok", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter", "Method Reserved",
"Vendor Specific" }

7.5.1.4 AddOrModifyManifest

This is an extrinsic method that either creates or modifies a statistics manifest for this statistics service. A
client supplies a manifest collection in which the new manifest collection will be placed or an existing
manifest will be modified, the element type of the statistics that the manifest will filter, and a list of
statistics that should be returned for that element type using the GetStatisticsCollection method.

AddOrModifyManifest(

 [IN, Description(Manifest collection that the manifest is or should
be a member of.)]

 CIM_BlockStatisticsManifestCollection REF ManifestCollection,

 [IN, Description(The element type whose statistics the manifest
will filter.)

ValueMap { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10",
"11", "12", "..", "32768..65535" },

 Values { "Unknown", "Reserved", “Computer System”, “Front-end
Computer System”,

"Peer Computer System”, « Back-end Computer System” “Front-end Port”,
“Back-end Port”,

“Volume”, “Extent”, “Disk Drive”, “Arbitrary LUs” , “Remote Replica
Group”,

"DMTF Reserved", "Vendor Specific" }]

 uint16 ElementType,

 [IN, Description(The client-defined string
that identifies the manifest created or modified by
this method.)]

 string ElementName,

 [IN, Description(The statistics that will be supplied through
the GetStatisticsCollection method.)]

 string StatisticsList[],

 [OUT, Description(The Manifest that is created or modified on
successful execution of the method.)]

 CIM_BlockStatisticsManifest REF Manifest);
230

 RemoveManifest

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652
Error returns are:

{ “Success”, "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter", "Method Reserved",
"Element Not Supported", "Metric not supported", "ElementType Parameter Missing", "Method Reserved",
"Vendor Specific" }

If the StatisticsList[] array is empty, then only InstanceID and ElementType will be returned when the
manifest is referenced. If the StatisticsList[] array parameter is NULL, then all supported properties is
assumed

NOTE This would be the BlockStatisticsManifest from the default manifest collection.

EXPERIMENTAL

The sequence of properties identified in StatisticsList[] shall be used to fill in the CSVSequence array in
the manifest if BlockStatisticsCapabilities.SupportedFeatures includes the value ‘3’ (Client Defined
Sequence). Otherwise the CSVSequence array will be set to NULL.

EXPERIMENTAL

7.5.1.5 RemoveManifest

This is an extrinsic method that removes manifests from a manifest collection.

RemoveManifest(

 [IN, Description(Manifest collection from which the manifests will be removed.)]

 CIM_BlockStatisticsManifestCollection REF ManifestCollection,

 [IN, Description(List of manifests to be removed from the manifest collection.)]

 CIM_BlockStatisticsManifest REF Manifests[]);

Error returns are:

{ “Success”, "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter", "Method
Reserved", "Manifest not found", "Method Reserved", "Vendor Specific" }

7.5.2 Intrinsic Methods of the Profile

NOTE Basic Write intrinsic methods are not specified for StatisticsCollection, HostedCollection, BlockStorageStatisticalData,
MemberOfCollection or ElementStatisticalData.

7.5.2.1 DeleteInstance (of a CIM_BlockStatisticsManifestCollection)

This will delete the CIM_BlockStatisticsManifestCollection where IsDefault=False, the
CIM_AssociatedBlockStatisticsManifestCollection association to the StatisticsCollection and all manifests
collected by the manifest collection (and the MemberOfCollection associations to the
CIM_BlockStatisticsManifestCollection).

7.5.2.2 Association Traversal

One of the ways of retrieving statistics is through association traversal from the StatisticsCollection to the
individual Statistics following the MemberOfCollection association. This shall be supported by all
implementations of the Block Server Performance Profile and would be available to clients if the provider
does not support EXEC QUERY or GetStatisticsCollection approaches.
SNIA Technical Position 231

CreateInstance (of a ListenerDestinationCIMXML, IndicationSubscription and possibly IndicationFilters)

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675
EXPERIMENTAL

7.5.2.3 CreateInstance (of a ListenerDestinationCIMXML, IndicationSubscription and possibly
IndicationFilters)

CreateInstance would be required to establish subscriptions and ListenerDestinations for retrieval of
statistics via indications. Depending on the support in the profile, it may also be required to create the
IndicationFilter.

7.5.2.4 DeleteInstance (of a ListenerDestinationCIMXML, IndicationSubscription and possibly
IndicationFilters)

DeleteInstance would be required to delete subscriptions and ListenerDestinations that were defined for
retrieval of statistics via indications. Depending on the support in the profile, it may also be required to
delete the IndicationFilter.

7.5.2.5 ModifyInstance (of an IndicationFilter)

ModifyInstance may also be supported for modifying IndicationFilters, assuming the profile supports
client defined filters. It would not be supported for “pre-defined” filters.

7.5.2.6 EXEC QUERY

This is one of the ways of retrieving statistics.

7.5.2.7 GetInstance on QueryStatisticsCollection

This is yet another means of retrieving statistics. In this technique an instance of the
QueryStatisticsCollection class is created that defines a Query for statistics and the format in which the
query results are to be represented. The key properties of the QueryStatisticsCollection class are:

• Query - This is a query string that defines the statistics to be populated in the QueryStatisticsCollection
instance.

• QueryLanguage - This defines the query language that is used in the query. For the current version of SMI-S,
only CQL should be encoded.

• SelectedEncoding - This defines the encoding of the data that is to be populated in the
QueryStatisticsCollection instance. For the current version of SMI-S, this should be CSV (for Comma
Separated Values).

• SelectedNames - This is the list of statistics property names to be retrieved. These correspond to the Select
List of the Query. The encoding of these names is as defined by the SelectedEncoding (for the current
version of SMI-S, this would be CSV).

• SelectedTypes - This is the list of data types for the columns of the query result. Each data type specified
corresponds to a column in the SelectedValues property.

• SelectedValues - This is a table of values that correspond to the query results (for the query specified in the
Query property). The data types of the column of values are defined by SelectedTypes. The name of each
column in the table is defined by SelectedNames. The values are encoded as defined by SelectedEncoding
(i.e., CSV for the current version of SMI-S).
232

 GetInstance on QueryStatisticsCollection

676

677

678

679

680
681

682
683

684
685

686
687

688
689

690

691

692
693

694
695

696
697

698
699

700
701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720
An example CQL query would be:

SELECT Stats.*

FROM CIM_BlockStorageStatisticalData Stats, CIM_QueryStatisticsCollection
QSC,

 CIM_MemberOfCollection MoC

 WHERE ObjectPath(QSC) = ObjectPath(SELF)

 AND ObjectPath(QSC) = MoC.Collection

 AND ObjectPath(Stats) = MoC.Member

 AND CurrentDateTime() >=

 Stats.StatisticTime + Stats.SampleInterval

A client would define a QueryStatisticsCollection instance as means of specifying what the client wants.
This would be done with the CreateInstance intrinsic method. The client would delete such an instance
using the DeleteInstance method. If the client wishes to change the query, the client would use the
ModifyInstance intrinsic method.

Retrieving the data would be done via the GetInstance intrinsic. This would retrieve the
QueryStatisticsCollection instance, which includes the table of comma separated values which are the
statistics.

EXPERIMENTAL

EXPERIMENTAL

7.5.3 GetRateStatisticsCollection

This method retrieves rate statistics in a well-defined bulk format. The set of rate statistics returned by
this list is determined by the list of “rate element types” passed in to the method and the manifests for
those types contained in the supplied manifest collection. The rate statistics are returned through a well-
defined array of strings that can be parsed to retrieve the desired rate statistics as well as limited
information about the elements that those metrics describe.

GetRateStatisticsCollection(

 [IN (false), OUT, Description(Reference to the job (shall be null in the current version of SMI-S).)]

 CIM_ConcreteJob REF Job,

 [IN, Description(“Rate element types for which statistics should be returned.”)

ValueMap { "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", “23”, "..", "32768..65535" },

 Values { “Computer System Rate”, “Front-end Computer System Rate”,

"Peer Computer System Rate”, « Back-end Computer System Rate” “Front-end Port Rate”,

“Back-end Port Rate”,

“Volume Rate”, “Extent Rate”, “Disk Drive Rate”, “Arbitrary LUs Rate” , “Remote Replica Group
Rate”,

"DMTF Reserved", "Vendor Specific" }]

 uint16 RateElementTypes[],
SNIA Technical Position 233

GetInstance on QueryStatisticsCollection

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765
 [IN, Description(“The manifest collection that contains the manifests that list the metrics that
 should be returned for each element type.”)]

 CIM_BlockStatisticsManifestCollection REF ManifestCollection,

 [IN, Description("Specifies the format of the Statistics output parameter.")

ValueMap { "2" },

 Values ("CSV")]

 Uint16 StatisticsFormat,

 [IN, Description("The start time for the rate data interval. If not supplied, the
 returned data would be for the most recent interval.”)
 datetime RateIntervalStartTime,

 [IN, Description("The end time for the rate data interval. If not supplied, the
 returned data would be for the most recent interval.”)
 datetime RateIntervalEndTime,

 [OUT, Description(“The statistics for all the elements as determined by the Elements and
 ManifestCollection parameters.”)]

 string Statistics[]);

As an additional convention, a provider should return all the records for a particular element type in
consecutive String elements, and the order of the element types should be the same as the order in which
the element types were specified in the input parameter to GetRateStatisticsCollection().

Example output as it might be transmitted in CIM-XML. It shows records for 5 Volumes and 5 disks,
assuming that 6 statistics were specified in the BlockStatisticsManifest instance for both disks and
volumes. The sixth statistic is unavailable for volumes, and the fourth statistic is unavailable for disks:

Table 106 - Interval for rate statistics

RateIntervalStartTime RateIntervalEndTime Results

Null Null RateIntervalStartTime is assigned to the first available
interval the implementation has, and
RateIntervalEndTime is assigned to the last available
interval the implementation has, usually the current date
time.

Specified Null RateIntervalEndTime is assigned to the current date time.
However if RateIntervalStartTime is greater than
RateIntervalEndTime, the output parameter Statistics will
contain an empty string.

Null Specified RateIntervalStartTime is assigned to the first available
interval the implementation has. However if
RateIntervalStartTime is greater than
RateIntervalEndTime, the output parameter Statistics will
contain an empty string.

Specified Specified The returned data will be for the specified time period.
234

 Statistical Property Limits

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809
<METHODRESPONSE NAME="GetRateStatisticsCollection">

<RETURNVALUE PARAMTYPE="uint32">

<VALUE>

0

</VALUE>

</RETURNVALUE>

<PARAMVALUE NAME="Statistics" PARAMTYPE="string">

<VALUE.ARRAY>

<VALUE>

STORAGEARRAYSTATSRATE1;13;20040811133015.0000010-300;20040811133515.0000010-
300;11111.1;22222.2;33333.3;44444.4;55555.5;

STORAGEARRAYSTATSRATE2;13;20040811133515.0000020-300;20040811134015.0000010-
300;11111.1;22222.2;33333.3;44444.4;55555.5;

STORAGEARRAYSTATSRATE3;13;20040811134015.0000030-300;20040811134515.0000010-
300;11111.1;22222.2;33333.3;44444.4;55555.5;

STORAGEARRAYSTATSRATE4;13;20040811134515.0000040-300;20040811135015.0000010-
300;11111.1;22222.2;33333.3;44444.4;55555.5;

STORAGEARRAYSTATSRATE5;13;20040811135015.0000050-300;20040811135515.0000010-
300;11111.1;22222.2;33333.3;44444.4;55555.5;

</VALUE>

<VALUE>

RDFDIRECOTRSTATSRATE1;15;20040811133015.0000100-300;20040811133515.0000200-
300;11111.1;22222.2;33333.3;44444.4;55555.5;66666.6

RDFDIRECOTRSTATSRATE2;15;20040811133515.0000110-300;20040811134015.0000100-
300;11111.1;22222.2;33333.3;44444.4;55555.5;66666.6

RDFDIRECOTRSTATSRATE3;15;20040811134015.0000120-300;20040811134515.0000100-
300;11111.1;22222.2;33333.3;44444.4;55555.5;66666.6

RDFDIRECOTRSTATSRATE4;15;20040811134515.0000130-300;20040811135015.0000100-
300;11111.1;22222.2;33333.3;44444.4;55555.5;66666.6

RDFDIRECOTRSTATSRATE5;15;20040811135015.0000140-300;20040811135515.0000100-
300;11111.1;22222.2;33333.3;44444.4;55555.5;66666.6

</VALUE>

</VALUE.ARRAY>

</PARAMVALUE>

</METHODRESPONSE>

For additional information, see the method GetStatisticsCollection in section 7.5.1.2

EXPERIMENTAL

7.6 Client Considerations and Recipes

7.6.1 Recipes

Not defined in this document.

7.6.2 Summary of Statistics Support by Element

7.6.2.1 Statistical Property Limits

Not all statistics properties are kept for all elements. Table 107 illustrates the statistics properties that are
kept for each of the metered elements.
SNIA Technical Position 235

Statistical Property Limits

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852
Table 107 - Summary of Statistics Support by Element

The legend is:

R – Required

Cn - Conditional (see notes under table for specific conditions)

O – Optional

N – Not specified

Statistic Property Top Level
Computer

System

Component
Computer

System
(Front-end)

Component
Computer

System
(Peer)

Component
Computer

System
(Back-end)

Front-
end
Port

Back-
end
Port

Volume
(Logical

Disk)

Composite
Extent

Disk

StatisticTime R R R R R R R R R

TotalIOs R R R R R R R R R

KBytes Transferred R C1 C1 C1 R C1 R R R

IOTimeCounter O O O O C2 O C2 O C3

TotalHitIOs O O O O N N O O O

ReadIOs C4 R R O O O R O R

ReadHitIOs C4 O O N N N O N N

ReadIOTimeCounter O O O O C5 O C5 O O

ReadHitIO TimeCounter O O O N N N O O O

KBytesRead C4 O O O O O C4 O C4

ReadSequentialIOs O O O N N N O O O

ReadSequentialHits O O O N N N O O O

WriteIOs C4 R R O O O R O C4

WriteHitIOs C4 O O N N N O O O

WriteIOTimeCounter O O O O C5 O C5 O O

WriteHitIO TimeCounter O O O N N N O O O

KBytesWritten C4 O O O O O C4 O C4

WriteSequentialIOs O O O O N N O O O

WriteSequentialHits O O O O N N O O O

IdleTimeCounter N N O O O O O O C5

MaintOp N N N N N N N O O

MaintTime- Counter N N N N N N N O O

C1 - This property is required if the implementation supports Advanced Metrics,
CIM_BlockStatisticsCapabilities.SupportedFeatures=\6\'(AdvancedMetrics).

C2 - This property is required if the implementation supports Advanced Metrics,
CIM_BlockStatisticsCapabilities.SupportedFeatures=\6\'(AdvancedMetrics), and
CIM_BlockStorageStatisticsManifest(ProviderSupport).IncludeReadIOTimeCounter is FALSE, OR
CIM_BlockStorageStatisticsManifest(ProviderSupport).IncludeWriteIOTimeCounter is FALSE.

C3 - This property is required if the implementation supports Advanced Metrics,
CIM_BlockStatisticsCapabilities.SupportedFeatures=\6\'(AdvancedMetrics) and
CIM_BlockStorageStatisticsManifest(ProviderSupport).IncludeIdleTimeCounter is FALSE

C4 - This property is required if the implementation supports Advanced Metrics, CIM_BlockStatisticsCapabilities.SupportedFeatures='6'
(Advanced Metrics).

C5 - This property is required if if implementation supports Advanced Metrics, CIM_BlockStatisticsCapabilities.SupportedFeatures='6'
(Advanced Metrics) and CIM_BlockStorageStatisticsManifest(Provider Support).IncludeIOTimeCounter is FALSE.
236

 Statistical Property Limits

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893
Notice that there is a difference between the “front-end” port and “back-end” port elements. There is a
difference between the top level computer system (i.e., the Array or Storage Virtualizer Profile) and the
component computer systems. Furthermore, there can be variations in the component computer systems.
This is based on how component computer systems are configured. In some cases, these computer
systems are “front-end” and “back-end” controllers. In other subsystems, they are “peer” controllers.

NOTE Controller LUNs (SCSIArbitraryLogicalUnits) and RemoteReplicaGroup are not shown in Table 107: Summary of Block
Statistics Support by Element. They only require StatisticTime, TotalIOs and KBytesTransferred. All other properties are not
SPECIFIED.

A complete list of definitions of the metered elements as defined by the ElementType property of
BlockStorageStatisticalData follows:

• ElementType = 2 (Computer System) - These are statistics for the whole Array (virtualizer or volume
manager).

• ElementType = 3 (Front-end Computer System) - This is the Computer System (controller) that provides the
support for receiving the IO from host systems. The Front-end function acts as an target of IO.

• ElementType = 4 (Peer Computer System) - This is a Computer System that acts as both a front-end and
back-end Computer System.

• ElementType = 5 (Back-end Computer System) - This is the Computer System (controller) that provides the
support for driving the IO to the back-end storage (disk drives or external volumes). The back-end function
acts as an initiator of IO.

• ElementType = 6 (Front-end Port) - A port in a disk array that connects the disk array (or Storage Virtualizer)
to hosts using the storage. The Front End port is usually connected to either the Peer Computer System
(controller) or to the Front-end Computer System (controller) in some Disk Arrays or Storage Virtualizers.

• ElementType = 7 (Back-end Port) - A port that can be inside the disk array housing that connects to the disk
drives. This is connected to either the Peer Computer system (controller) or to the Back-end Computer
System (controller) in some Disk Arrays or Storage Virtualizers.

• ElementType = 8 (Volume) - This is a Logical Unit that is the target of data IOs for storing or retrieving data.
This would be a StorageVolume for Arrays or Storage Virtualizers.

• ElementType = 9 (Extent) - This is an intermediate Storage Extent. That is, it is not a Volume and it is not a
Disk Drive. An example of the use of an Extent would be a RAID rank that creates a logical storage extent
from multiple disk drives. In the case of Storage Virtualizers, this is used to represent the volumes that are
imported from Arrays.

• ElementType = 10 (Disk Drive) - This is a disk drive.

• ElementType = 11 (Arbitrary LUs) - This is a Logical Unit that is the target of “control” IO functions. The
Logical Unit does not contain data, but supports invocation of control functions in an Array or Storage
Virtualizer.

• ElementType = 12 (Remote Replica Group) - Replication requires a local disk array and a remote disk array
(in some “safe” location). The remote replica group is a group of disk drives in the remote disk array used to
replicated defined data from the local disk array.
SNIA Technical Position 237

Cumulative and Rate StatisticsProperties

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933
EXPERIMENTAL

7.6.2.2 Cumulative and Rate StatisticsProperties

Table 108 shows the cumulative and the corresponding rate statistics properties.

Table 108 - Cumulative and Rate Statistics Properties

Cumulative Statistics Rate Statistics

TotalIOs TotalIOsRate

KBytesTransferred KByteTransferredRate

IOTimeCounter (not applicable)

ReadIOs ReadIOsRate

ReadHitIOs ReadHitIOsRate

ReadIOTimeCounter (not applicable)

ReadHitIOTimeCounter (not applicable)

KBytesRead KBytesReadRate

WriteIOs WriteIOsRate

WriteHitIOs WriteHitIOsRate

WriteIOTimeCounter (not applicable)

WriteHitIOTimeCounter WriteHitIOTimeCounterRate

KBytesWritten KBytesWrittenRate

IdleTimeCounter (not applicable)

MaintOp MaintOpRate

MaintTimeCounter (not applicable)
238

 ElementType and RateElementType Properties

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976
7.6.2.3 ElementType and RateElementType Properties

Table 109 shows ElementType and the corresponding RateElementType properties:

EXPERIMENTAL

7.6.3 Formulas and Calculations

Table 107 identifies the set of statistics that are recommended for the various storage components in the
array. These metrics, once collected, can be further enhanced through the definition of formulas and
calculations that create additional ‘derived’ statistics.

Table 110 defines a set of such derived statistics. They are by no means the only possible derivations but
serve as examples of the most commonly asked for statistics.

Table 109 - ElementType and RateElementType Properties

ElementType Value RateElementType Value

Computer System 2 Computer System Rate 13

Front-end Computer System 3 Front-end Computer System Rate 14

Peer Computer System 4 Peer Computer System Rate 15

Back-end Computer System 5 Back-end Computer System Rate 16

Front-end Port 6 Front-end Port Rate 17

Back-end Port 7 Back-end Port Rate 18

Volume 8 Volume Rate 19

Extent 9 Extent Rate 20

Disk Drive 10 Disk Drive Rate 21

Arbitrary LUs 11 Arbitrary LUs Rate 22

Remote Replica Group 12 Remote Replica Group Rate 23

Table 110 - Formulas and Calculations

Calculated Statistics

New statistic Formula

TimeInterval delta StatisticTime

% utilization 100 * (delta StatisticTime - delta IdleTime)/ delta StatisticTime

I/O rate delta TotalIOs / delta StatisticTime

I/O response time delta IOTime / delta TotalIOs

Queue depth delta I/O rate * delta I/O response time

Service Time utilization / I/O rate

Wait Time Response Time - Service Time

Average Read Size delta KBytesRead / delta ReadIOs

Average Write Size delta KBytesWritten / delta WriteIOs

% Read 100 * (delta ReadIOs / delta TotalIOs)
SNIA Technical Position 239

ElementType and RateElementType Properties

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020
7.6.4 Block Server Performance Supported Capabilities Patterns

The Capabilities patterns summarized in Table 111 are formally recognized by the Block Server
Performance Profile of the current version of SMI-S

An implementation will support GetStatisticsCollection, Query, GetStatisticsCollection and Query or
neither. But if the implementation supports GetStatisticsCollection, it will shall support Synchronous
execution.

If manifest collections are supported, then ALL three methods shall be supported (Creation, modification
and removal).

7.6.5 Correlation of Block Storage Statistics and Fabric Statistics

A client will see statistics for Block Storage which describe statistical information relative to block access.
This profile defines those statistics. But a client may also see statistics relative to networking activity
(e.g., Port statistics). This section describes which metrics can be correlated between block storage
statistics and port statistics.

% Write 100 * (delta WriteIOs / delta TotalIOs)

% Hit 100 * ((delta ReadHitIOs + delta WriteHitIOs) / delta TotalIOs)

Table 111 - Block Server Performance Profile Supported Capabilities Patterns

ElementSupported SynchronousMethods
Supported

AsynchronousMethods
Supported

Any (at least one) NULL NULL

Any (at least one) Neither GettatisticsCollection nor Exec Query NULL

Any (at least one) GetStatisticsCollection NULL

Any (at least one) Any NULL

Any (at least one) Exec Query NULL

Any (at least one) GetStatisticsCollection, Query NULL

Any (at least one) Exec Query NULL

Any (at least one) “Manifest Creation”, “Manifest Modification”, and “Manifest
Removal”

NULL

Any (at least one) “Indications”, “Query Collection” NULL

Table 110 - Formulas and Calculations (Continued)

Calculated Statistics
240

 ElementType and RateElementType Properties

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066
7.7 CIM Elements

7.7.1 Element Overview

Table 112 describes the CIM elements for Block Server Performance.

Table 112 - CIM Elements for Block Server Performance

Element Name Requirement Description

7.7.2 CIM_AssociatedBlockStatisticsManifestCollection
(Client defined collection)

Conditional Conditional requirement: Clients can create
manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousM
ethodsSupported. This is an association
between the StatisticsCollection and a client
defined manifest collection.

7.7.3 CIM_AssociatedBlockStatisticsManifestCollection
(Provider defined collection)

Mandatory This is an association between the
StatisticsCollection and a provider supplied (pre-
defined) manifest collection that defines the
statistics properties supported by the profile
implementation.

7.7.4 CIM_BlockStatisticsCapabilities Mandatory This defines the statistics capabilities supported
by the implementation of the profile.

7.7.5 CIM_BlockStatisticsManifest (Client Defined) Conditional Conditional requirement: Clients can modify
manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousM
ethodsSupported. An instance of this class
defines the statistics properties of interest to the
client for one element type.

7.7.6 CIM_BlockStatisticsManifest (Provider Support) Mandatory An instance of this class defines the statistics
properties supported by the profile
implementation for one element type.

7.7.7 CIM_BlockStatisticsManifestCollection (Client
Defined)

Conditional Conditional requirement: Clients can create
manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousM
ethodsSupported. An instance of this class
defines one client defined collection of block
statistics manifests (one manifest for each
element type).

7.7.8 CIM_BlockStatisticsManifestCollection (Provider
Defined)

Mandatory An instance of this class defines the predefined
collection of default block statistics manifests
(one manifest for each element type).

7.7.9 CIM_BlockStatisticsService Mandatory This is a Service that provides (optional)
services of bulk statistics retrieval and manifest
set manipulation methods.

7.7.10 CIM_BlockStorageStatisticalData Mandatory This is a Subclass of CIM_StatisticalData for
Block servers. It would be instantiated as
specific block statistics for particular
components.

7.7.11 CIM_ElementCapabilities Mandatory This associates the BlockStatisticsCapabilities
to the BlockStatisticsService.
SNIA Technical Position 241

ElementType and RateElementType Properties

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105
7.7.12 CIM_ElementStatisticalData (Back end Port
Stats)

Conditional Conditional requirement: Back end port statistics
support. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesS
upported = "7".

This associates a BlockStorageStatisticalData
instance to the back end port for which the
statistics are collected.

7.7.13 CIM_ElementStatisticalData (Component
System Stats)

Conditional Conditional requirement: Component Systems
statistics support. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesS
upported = "3", "4" or "5".

This associates a BlockStorageStatisticalData
instance to the component ComputerSystem for
which the statistics are collected.

7.7.14 CIM_ElementStatisticalData (Disk Stats) Conditional Conditional requirement: Disk Drive statistics
support. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesS
upported = "10".

This associates a BlockStorageStatisticalData
instance to the StorageExtent (Disk Drive) for
which the statistics are collected.

7.7.15 CIM_ElementStatisticalData (Extent Stats) Conditional Conditional requirement: Extent statistics
support. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesS
upported = "9".

This associates a BlockStorageStatisticalData
instance to the StorageExtent (composite
extent) for which the statistics are collected.

7.7.16 CIM_ElementStatisticalData (Front end Port
Stats)

Conditional Conditional requirement: Front-end port
statistics support. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesS
upported = "6".

This associates a BlockStorageStatisticalData
instance to the target port for which the statistics
are collected.

7.7.17 CIM_ElementStatisticalData (Logical Disk Stats) Conditional Conditional requirement: Volume statistics
support in Volume Management Profiles. This is
mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesS
upported = "8", and the parent profile supports
Logical Disks.

This associates a BlockStorageStatisticalData
instance to the volume for which the statistics
are collected.

7.7.18 CIM_ElementStatisticalData (Remote Copy
Stats)

Conditional Conditional requirement: Remote Copy statistics
support. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesS
upported = "12".

This associates a BlockStorageStatisticalData
instance to the remote copy service network for
which the statistics are collected.

Table 112 - CIM Elements for Block Server Performance

Element Name Requirement Description
242

 ElementType and RateElementType Properties

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147
7.7.2 CIM_AssociatedBlockStatisticsManifestCollection (Client defined collection)

The CIM_AssociatedBlockStatisticsManifestCollection associates an instance of a
CIM_BlockStatisticsManifestCollection to the instance of CIM_StatisticsCollection to which it applies.
Client defined manifest collections identify the Manifests (properties) for retrieval of block statistics.

CIM_AssociatedBlockStatisticsManifestCollection is not subclassed from anything.

7.7.19 CIM_ElementStatisticalData (Top Level System
Stats)

Conditional Conditional requirement: Top level system
statistics support. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesS
upported = "2".

This associates a BlockStorageStatisticalData
instance to the Top Level ComputerSystem for
which the statistics are collected.

7.7.20 CIM_ElementStatisticalData (Volume Stats) Conditional Conditional requirement: Volume statistics
support or Referenced from Array -
StorageVolume is mandatory or Referenced
from Storage Virtualizer - StorageVolume is
mandatory. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesS
upported = "8", and the parent profile supports
Storage Volumes.

This associates a BlockStorageStatisticalData
instance to the volume for which the statistics
are collected.

7.7.21 CIM_HostedCollection (Client Defined) Conditional Conditional requirement: Clients can create
manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousM
ethodsSupported. This would associate a client
defined BlockStatisticsManifestCollection to the
top level system for the profile (e.g., array).

7.7.22 CIM_HostedCollection (Default) Mandatory This would associate a default
BlockStatisticsManifestCollection to the top level
system for the profile (e.g., array).

7.7.23 CIM_HostedCollection (Provider Supplied) Mandatory This would associate the StatisticsCollection to
the top level system for the profile (e.g., array).

7.7.24 CIM_HostedService Mandatory This associates the BlockStatisticsService to the
ComputerSystem that hosts it.

7.7.25 CIM_MemberOfCollection (Member of client
defined collection)

Conditional Conditional requirement: Clients can modify
manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousM
ethodsSupported. This would associate
Manifests to client defined manifest collections.

7.7.26 CIM_MemberOfCollection (Member of pre-
defined collection)

Mandatory This would associate pre-defined Manifests to
default manifest collection.

7.7.27 CIM_MemberOfCollection (Member of statistics
collection)

Mandatory This would associate all block statistics
instances to the StatisticsCollection.

7.7.28 CIM_StatisticsCollection Mandatory This would be a collection point for all Statistics
that are kept for a Block Server.

Table 112 - CIM Elements for Block Server Performance

Element Name Requirement Description
SNIA Technical Position 243

ElementType and RateElementType Properties

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187
There will be one instance of the CIM_AssociatedBlockStatisticsManifestCollection class, for each client
defined manifest collection that has been created.

Created By: Extrinsic: CreateManifestCollection

Modified By: Static

Deleted By: Static

Requirement: Clients can create manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported.

Table 113 describes class CIM_AssociatedBlockStatisticsManifestCollection (Client defined collection).

7.7.3 CIM_AssociatedBlockStatisticsManifestCollection (Provider defined collection)

The CIM_AssociatedBlockStatisticsManifestCollection associates an instance of a
CIM_BlockStatisticsManifestCollection to the instance of CIM_StatisticsCollection to which it applies. The
default manifest collection defines the CIM_BlockStorageStatisticalData properties that are supported by
the profile implementation.

CIM_AssociatedBlockStatisticsManifestCollection is not subclassed from anything.

One instance of the CIM_AssociatedBlockStatisticsManifestCollection shall exist for the default manifest
collection if the Block Server Performance Profile is implemented.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 114 describes class CIM_AssociatedBlockStatisticsManifestCollection (Provider defined collection).

7.7.4 CIM_BlockStatisticsCapabilities

An instance of the CIM_BlockStatisticsCapabilities class defines the specific support provided with the
block statistics implementation. Note: There would be zero or one instance of this class in a profile. There
would be none if the profile did not support the Block Server Performance Profile. There would be exactly
one instance if the profile did support the Block Server Performance Profile.

CIM_BlockStatisticsCapabilities class is subclassed from CIM_Capabilities.

Created By: Static

Table 113 - SMI Referenced Properties/Methods for CIM_AssociatedBlockStatisticsManifestCollection (Cli-
ent defined collection)

Properties Flags Requirement Description & Notes

Statistics Mandatory The StatisticsCollection to which the manifest collection applies.

ManifestCollection Mandatory A client defined manifest collection.

Table 114 - SMI Referenced Properties/Methods for CIM_AssociatedBlockStatisticsManifestCollection
(Provider defined collection)

Properties Flags Requirement Description & Notes

Statistics Mandatory The StatisticsCollection to which the manifest collection applies.

ManifestCollection Mandatory The default manifest collection.
244

 ElementType and RateElementType Properties

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231
Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 115 describes class CIM_BlockStatisticsCapabilities.

7.7.5 CIM_BlockStatisticsManifest (Client Defined)

The CIM_BlockStatisticsManifest class is Concrete class that defines the
CIM_BlockStorageStatisticalData properties that should be returned on a GetStatisticsCollection request.

Table 115 - SMI Referenced Properties/Methods for CIM_BlockStatisticsCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

ElementTypesSupported Mandatory ValueMap { "0", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"
},

Values {"Unknown", "Computer System", "Front-end Computer
System", "Peer Computer System", "Back-end Computer
System", "Front-end Port", "Back-endPort", "Volume", "Extent",
"Disk Drive", "Arbitrary LUs" , "Remote Replica Group"}.

RateElementTypesSupported Conditional Experimental. Conditional requirement: This property is
required if implementation supports rated data properties
(CIM_BlockStatisticsCapabilities.SupportedFeatures=\5\'(Rate
dData).'ValueMap { "0", "13", "14", "15", "16", "17", "18", "19",
"20", "21", "22", "23" },

Values {"Unknown", "Computer System Rate", "Front-end
Computer System Rate", "Peer Computer System Rate",
"Back-end Computer System Rate", "Front-end Port Rate",
"Back-endPort Rate", "Volume Rate", "Extent Rate", "Disk Drive
Rate", "Arbitrary LUs Rate" , "Remote Replica Group Rate"}.

SynchronousMethodsSupported N Mandatory This property is mandatory, but the array may be empty.

ValueMap { "2", "3", "4", "5", "6", "7", "8" },

Values {"Exec Query", "QueryCollection",
"GetStatisticsCollection", "Manifest Creation", "Manifest
Modification", "Manifest Removal",
"GetRateStatisticsCollection" }.

AsynchronousMethodsSupported Optional Not supported in current version of SMI-S.

ClockTickInterval Mandatory An internal clocking interval for all timers in the subsystem,
measured in microseconds (Unit of measure in the timers,
measured in microseconds).

Time counters are monotonically increasing counters that
contain "ticks". Each tick represents one ClockTickInterval. If
ClockTickInterval contained a value of 32 then each time
counter tick would represent 32 microseconds.

SupportedFeatures Optional Experimental. This is an array identifying features supported by
the implementation. The valid values are '2' (none), '3' (Client
Defined Sequence), '4' (Client Defined Rate Sequence), '5'
(Rated Data) or '6' (Advanced Metrics).

ElementTypeFeatures Optional Experimental. This is an array identifying known combinations
of element types supported by the implementation. The valid
values are '3' (Any one), '4' (Front-end Port and Volume), '5'
(Volume and Disk Drive) or '6' (Front-end Port and Disk Drive).
SNIA Technical Position 245

ElementType and RateElementType Properties

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274
CIM_BlockStatisticsManifest is subclassed from CIM_ManagedElement.

In order for a client defined instance of the CIM_BlockStatisticsManifest class to exist, all the manifest
collection manipulation functions shall be identified in the "SynchronousMethodsSupported" property of
the CIM_BlockStatisticsCapabilities (BlockStatisticsCapabilities.SynchronousMethodsSupported =
"5,6,7") instance, and a client shall have created at least ONE instance of
CIM_BlockStatisticsManifestCollection.

Created By: Extrinsic: AddOrModifyManifest

Modified By: Extrinsic: AddOrModifyManifest

Deleted By: Extrinsic: RemoveManifest

Requirement: Clients can modify manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported.

Table 116 describes class CIM_BlockStatisticsManifest (Client Defined).

Table 116 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Client Defined)

Properties Flags Requirement Description & Notes

ElementName Mandatory A Client defined string that identifies the manifest.

InstanceID Mandatory The instance Identification. Within the scope of the instantiating
Namespace, InstanceID opaquely and uniquely identifies an
instance of this class.

ElementType Mandatory This value is required AND the current version of SMI-S specifies
the following values:

ValueMap {"2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"}

Values { "Computer System", "Front-end Computer System", "Peer
Computer System", "Back-endComputer System", "Front-end
Port", "Back-end Port", "Volume", "Extent", "Disk Drive", "Arbitrary
LUs" , "Remote Replica Group"}.

IncludeStatisticTime Mandatory

IncludeTotalIOs Mandatory

IncludeKBytesTransferred Mandatory

IncludeIOTimeCounter Mandatory

Include TotalHitIOs Mandatory Experimental.

IncludeReadIOs Mandatory

IncludeReadHitIOs Mandatory

IncludeReadIOTimeCounter Mandatory

IncludeReadHitIOTimeCounter Mandatory

IncludeKBytesRead Mandatory

IncludeReadSequentialIOs Mandatory Experimental.

IncludeReadSequentialHits Mandatory Experimental.

IncludeWriteIOs Mandatory

IncludeWriteHitIOs Mandatory

IncludeWriteIOTimeCounter Mandatory

IncludeWriteHitIOTimeCounter Mandatory
246

 ElementType and RateElementType Properties

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316
IncludeKBytesWritten Mandatory

IncludeWriteSequentialIOs Mandatory Experimental.

IncludeWriteSequentialHits Mandatory Experimental.

IncludeIdleTimeCounter Mandatory

IncludeMaintOp Mandatory

IncludeMaintTimeCounter Mandatory

CSVSequence N Mandatory Experimental. An array of strings that define a sequence of
BlockStorageStatisticalData property names. The sequence is the
sequence that data is to be returned on a GetStatisticsCollection
request using this manifest. The first three elements of this array
should be "InstanceID", "ElementType" and "StatisticsTime" to
allow applications to match the ElementType of the Manifest with
the BlockStorageStatisticalData CSV record. For
BlockStatisticsManifest (Client Defined) this shall be the sequence
desired by the client.

RateElementType Conditional Experimental. Conditional requirement: This property is required if
the RateElementTypesSupported contains 13 through 23.

IncludeRateIntervalStartTime Conditional Experimental. Conditional requirement: This property is required if
the RateElementTypesSupported contains 13 through 23.

IncludeRateIntervalEndTime Conditional Experimental. Conditional requirement: This property is required if
the RateElementTypesSupported contains 13 through 23.

IncludeTotalIOsRate Conditional Experimental. Conditional requirement: This property is required if
the RateElementTypesSupported contains 13 through 23.

IncludeKBytesTransferredRate Conditional Experimental. Conditional requirement: This property is required if
the RateElementTypesSupported contains 13 through 23.

IncludeReadIOsRate Conditional Experimental. Conditional requirement: This property is required if
the RateElementTypesSupported contains 13 through 23.

IncludeReadHitIOsRate Conditional Experimental. Conditional requirement: This property is required if
the RateElementTypesSupported contains 13 through 23.

IncludeKBytesReadRate Conditional Experimental. Conditional requirement: This property is required if
the RateElementTypesSupported contains 13 through 23.

IncludeWriteIOsRate Conditional Experimental. Conditional requirement: This property is required if
the RateElementTypesSupported contains 13 through 23.

IncludeWriteHitIOsRate Conditional Experimental. Conditional requirement: This property is required if
the RateElementTypesSupported contains 13 through 23.

IncludeKBytesWrittenRate Conditional Experimental. Conditional requirement: This property is required if
the RateElementTypesSupported contains 13 through 23.

IncludeIdleTimeCounterRate Conditional Experimental. Conditional requirement: This property is required if
the RateElementTypesSupported contains 13 through 23.

Table 116 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Client Defined)

Properties Flags Requirement Description & Notes
SNIA Technical Position 247

ElementType and RateElementType Properties

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359
7.7.6 CIM_BlockStatisticsManifest (Provider Support)

The CIM_BlockStatisticsManifest class is Concrete class that defines the
CIM_BlockStorageStatisticalData properties that supported by the Provider. These Manifests are
established by the Provider for the default manifest collection.

CIM_BlockStatisticsManifest is subclassed from CIM_ManagedElement.

At least one Provider supplied instance of the CIM_BlockStatisticsManifest class shall exist, if the Block
Server Performance Profile is supported.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 117 describes class CIM_BlockStatisticsManifest (Provider Support).

IncludeMaintOpRate Conditional Experimental. Conditional requirement: This property is required if
the RateElementTypesSupported contains 13 through 23.

CSVRateSequence N Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23. An array of
strings that define a sequence of BlockStorageStatisticalData
property names. The sequence is the sequence that data is to be
returned on a GetRateStatisticsCollection request using this
manifest. The first four elements of this array should be
"InstanceID", "RateElementType", "RateIntervalStartTime" to allow
applications to match the RateElementType of the Manifest with
the BlockStorageStatisticalData CSV record. For
BlockStatisticsManifest (Client Defined) this shall be the sequence
desired by the client.

Table 117 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Provider Support)

Properties Flags Requirement Description & Notes

ElementName Mandatory A Provider defined string that identifies the manifest in the
context of the Default Manifest Collection.

InstanceID Mandatory The instance Identification. Within the scope of the
instantiating Namespace, InstanceID opaquely and
uniquely identifies an instance of this class.

ElementType Mandatory This value is required AND the current version of SMI-S
specifies the following values:

ValueMap {"2", "3", "4", "5", "6", "7", "8", "9", "10", "11",
"12"}

Values { "Computer System", "Front-end Computer
System", "Peer Computer System", "Back-endComputer
System", "Front-end Port", "Back-end Port", "Volume",
"Extent", "Disk Drive", "Arbitrary LUs" , "Remote Replica
Group"}.

IncludeStatisticTime Mandatory

IncludeTotalIOs Mandatory

Table 116 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Client Defined)

Properties Flags Requirement Description & Notes
248

 ElementType and RateElementType Properties

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402
IncludeKBytesTransferred Mandatory

IncludeIOTimeCounter Mandatory

Include TotalHitIOs Mandatory Experimental.

IncludeReadIOs Mandatory

IncludeReadHitIOs Mandatory

IncludeReadIOTimeCounter Mandatory

IncludeReadHitIOTimeCounter Mandatory

IncludeKBytesRead Mandatory

IncludeReadSequentialIOs Mandatory Experimental.

IncludeReadSequentialHits Mandatory Experimental.

IncludeWriteIOs Mandatory

IncludeWriteHitIOs Mandatory

IncludeWriteIOTimeCounter Mandatory

IncludeWriteHitIOTimeCounter Mandatory

IncludeKBytesWritten Mandatory

IncludeWriteSequentialIOs Mandatory Experimental.

IncludeWriteSequentialHits Mandatory Experimental.

IncludeIdleTimeCounter Mandatory

IncludeMaintOp Mandatory

IncludeMaintTimeCounter Mandatory

CSVSequence N Mandatory Experimental. An array of strings that define a sequence
of BlockStorageStatisticalData property names. The
sequence is the sequence that data is to be returned on a
GetStatisticsCollection request using this manifest. The
first three elements of this array shall be "InstanceID",
"ElementType" and "StatisticsTime" to allow applications
to match the ElementType of the Manifest with the
BlockStorageStatisticalData CSV record. For
BlockStatisticsManifest (Provider Support) this shall be
the default sequence provided by the provider.

RateElementType Conditional Experimental. Conditional requirement: This property is
required if the RateElementTypesSupported contains 13
through 23. This value is required AND the current version
of SMI-S specifies the following values:

ValueMap {"13", "14", "15", "16", "17", "18", "19", "20",
"21", "22", "23"}

Values { "Computer System Rate", "Front-end Computer
System Rate", "Peer Computer System Rate", "Back-
endComputer System Rate", "Front-end Port Rate",
"Back-end Port Rate", "Volume Rate", "Extent Rate",
"Disk Drive Rate", "Arbitrary LUs Rate" , "Remote Replica
Group Rate"}.

Table 117 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Provider Support)

Properties Flags Requirement Description & Notes
SNIA Technical Position 249

ElementType and RateElementType Properties

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444
IncludeRateIntervalStartTime Conditional Experimental. Conditional requirement: This property is
required if the RateElementTypesSupported contains 13
through 23.

IncludeRateIntervalEndTime Conditional Experimental. Conditional requirement: This property is
required if the RateElementTypesSupported contains 13
through 23.

IncludeTotalIOsRate Conditional Experimental. Conditional requirement: This property is
required if the RateElementTypesSupported contains 13
through 23.

IncludeKBytesTransferredRate Conditional Experimental. Conditional requirement: This property is
required if the RateElementTypesSupported contains 13
through 23.

IncludeReadIOsRate Conditional Experimental. Conditional requirement: This property is
required if the RateElementTypesSupported contains 13
through 23.

IncludeReadHitIOsRate Conditional Experimental. Conditional requirement: This property is
required if the RateElementTypesSupported contains 13
through 23.

IncludeKBytesReadRate Conditional Experimental. Conditional requirement: This property is
required if the RateElementTypesSupported contains 13
through 23.

IncludeWriteIOsRate Conditional Experimental. Conditional requirement: This property is
required if the RateElementTypesSupported contains 13
through 23.

IncludeWriteHitIOsRate Conditional Experimental. Conditional requirement: This property is
required if the RateElementTypesSupported contains 13
through 23.

IncludeKBytesWrittenRate Conditional Experimental. Conditional requirement: This property is
required if the RateElementTypesSupported contains 13
through 23.

IncludeIdleTimeCounterRate Conditional Experimental. Conditional requirement: This property is
required if the RateElementTypesSupported contains 13
through 23.

IncludeMaintOpRate Conditional Experimental. Conditional requirement: This property is
required if the RateElementTypesSupported contains 13
through 23.

CSVRateSequence N Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23. An
array of strings that define a sequence of
BlockStorageStatisticalData property names. The
sequence is the sequence that data is to be returned on a
GetRateStatisticsCollection request using this manifest.
The first four elements of this array should be
"InstanceID", "RateElementType", "RateIntervalStartTime"
to allow applications to match the RateElementType of the
Manifest with the BlockStorageStatisticalData CSV
record. For BlockStatisticsManifest (Provider Support) this
shall be the default sequence provided by the provider.

Table 117 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Provider Support)

Properties Flags Requirement Description & Notes
250

 ElementType and RateElementType Properties

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488
7.7.7 CIM_BlockStatisticsManifestCollection (Client Defined)

An instance of a client defined CIM_BlockStatisticsManifestCollection defines the set of Manifests to be
used in retrieval of Block statistics by the GetStatisticsCollection method.

CIM_BlockStatisticsManifestCollection is subclassed from CIM_SystemSpecificCollection.

In order for a client defined instance of the CIM_BlockStatisticsManifestCollection class to exist, then all
the manifest collection manipulation functions shall be identified in the "SynchronousMethodsSupported"
property of the CIM_BlockStatisticsCapabilities instance and a client shall have created a Manifest
Collection.

Created By: Extrinsic: CreateManifestCollection

Modified By: Static

Deleted By: Static

Requirement: Clients can create manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported.

Table 118 describes class CIM_BlockStatisticsManifestCollection (Client Defined).

7.7.8 CIM_BlockStatisticsManifestCollection (Provider Defined)

An instance of a default CIM_BlockStatisticsManifestCollection defines the set of Manifests that define
the properties supported for each ElementType supported for the implementation. It can also be used by
clients in retrieval of Block statistics by the GetStatisticsCollection method.

CIM_BlockStatisticsManifestCollection is subclassed from CIM_SystemSpecificCollection.

At least ONE CIM_BlockStatisticsManifestCollection shall exist if the Block Server Performance Profile is
implemented. This would be the default manifest collection that defines the properties supported by the
implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 118 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifestCollection (Client Defined)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A client defined user-friendly name for the manifest collection. It is set
during creation of the Manifest Collection through the ElementName
parameter of the CreateManifestCollection method.

IsDefault Mandatory Denotes whether or not this manifest collection is a provider defined
default manifest collection. For the client defined manifest collections this
is set to "false".
SNIA Technical Position 251

ElementType and RateElementType Properties

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529
Table 119 describes class CIM_BlockStatisticsManifestCollection (Provider Defined).

7.7.9 CIM_BlockStatisticsService

The CIM_BlockStatisticsService class provides methods for statistics retrieval and Manifest Collection
manipulation.

The CIM_BlockStatisticsService class is subclassed from CIM_Service.

There shall be an instance of the CIM_BlockStatisticsService, if the Block Server Performance Profile is
implemented. It is not necessary to support any methods of the service, but the service shall be
populated.

The methods that are supported can be determined from the SynchronousMethodsSupported and
AsynchronousMethodsSupported properties of the CIM_BlockStatisticsCapabilities.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 120 describes class CIM_BlockStatisticsService.

Table 119 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifestCollection (Provider
Defined)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For the default manifest collection, this should be set to "DEFAULT".

IsDefault Mandatory Denotes whether or not this manifest collection is a provider defined
default manifest collection. For the default manifest collection this is set to
"true".

Table 120 - SMI Referenced Properties/Methods for CIM_BlockStatisticsService

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

GetStatisticsCollection() Conditional Conditional requirement: Clients can get statistics
collections using the GetStatisticsCollection as identified
by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSu
pported. Support for this method is conditional on
CIM_BlockStatisticsCapabilities.SynchronousMethodsSu
pported containing '4' (GetStatisticsCollection). This
method retrieves all statistics kept for the profile as
directed by a manifest collection.
252

 ElementType and RateElementType Properties

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573
7.7.10 CIM_BlockStorageStatisticalData

The CIM_BlockStorageStatisticalData class defines the block statistics properties that may be kept for an
metered element of the block storage entity (such as a ComputerSystem, StorageVolume, Port or Disk
Drive).

CIM_BlockStorageStatisticalData is subclassed from CIM_StatisticalData.

Instances of this class will exist for each of the metered elements if the 'ElementTypesSupported'
property of the CIM_BlockStatisticsCapabilities indicates that the metered element is supported. For
example, 'Computer System' is identified in the 'ElementTypesSupported' property, then this indicates
support for metering of the Top level computer system or 'Component Computer System'.

GetRateStatisticsCollection() Conditional Conditional requirement: Clients can get statistics
collections using the GetRateStatisticsCollection as
identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSu
pported. Support for this method is conditional on
CIM_BlockStatisticsCapabilities.SynchronousMethodsSu
pported containing '8' (GetRateStatisticsCollection). This
method retrieves all rate statistics kept for the profile as
directed by a manifest collection.

GetRateStatisticsCollection() Conditional Conditional requirement: Clients can get statistics
collections using the GetRateStatisticsCollection as
identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSu
pported.

Support for this method is conditional on
CIM_BlockStatisticsCapabilities.SynchronousMethodsSu
pported containing '8' (GetRateStatisticsCollection). This
method retrieves all rate statistics kept for the profile as
directed by a manifest collection.

CreateManifestCollection() Conditional Conditional requirement: Clients can create manifests as
identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSu
pported. Support for this method is conditional on
CIM_BlockStatisticsCapabilities.SynchronousMethodsSu
pported containing '5' (Manifest Creation). This method is
used to create client defined manifest collections.

AddOrModifyManifest() Conditional Conditional requirement: Clients can modify manifests as
identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSu
pported. Support for this method is conditional on
CIM_BlockStatisticsCapabilities.SynchronousMethodsSu
pported containing '6' (Manifest Modification). This
method is used to add or modify block statistics manifests
in a client defined manifest collection.

RemoveManifests() Conditional Conditional requirement: Clients can remove manifests as
identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSu
pported. Support for this method is conditional on
CIM_BlockStatisticsCapabilities.SynchronousMethodsSu
pported containing '7' (Manifest Removal). This method is
used to remove a block statistics manifest from a client
defined manifest collection.

Table 120 - SMI Referenced Properties/Methods for CIM_BlockStatisticsService

Properties Flags Requirement Description & Notes
SNIA Technical Position 253

ElementType and RateElementType Properties

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 121 describes class CIM_BlockStorageStatisticalData.

Table 121 - SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Properties Flags Requirement Description & Notes

InstanceID Mandatory The InstanceID for BlockStorageStatisticalData instance shall be unique
across all instances of the BlockStorageStatisticalData class.

StatisticTime Mandatory Time statistics table by object was last updated (Time Stamp in CIM 2.2
specification format).

RateIntervalStartTime Optional Experimental. The start time for the rate data interval. Rate indicates the
number of data points per second - for example, number of read I/Os per
second.

RateIntervalEndTime Optional Experimental. The end time for the rate data interval.

ElementType Mandatory This value is required AND current version of SMI-S specifies the following
values:

ValueMap {"0", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"}

Values { "Unknown", "Computer System", "Front-end Computer System",
"Peer Computer System", "Back-end Computer System", "Front-end Port",
"Back-end Port", "Volume", "Extent", "Disk Drive", "Arbitrary LUs" , "Remote
Replica Group"}.

RateElementType Conditional Experimental. Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23. This value is required
AND current version of SMI-S specifies the following values:

ValueMap {"0", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "24"}

Values { "Unknown", "Computer System Rate", "Front-end Computer
System Rate", "Peer Computer System Rate", "Back-end Computer System
Rate", "Front-end Port Rate", "Back-end Port Rate", "Volume Rate", "Extent
Rate", "Disk Drive Rate", "Arbitrary LUs Rate" , "Remote Replica Group
Rate"}.

TotalIOs Mandatory The cumulative count of I/Os for the object.

KBytesTransferred Conditional Conditional requirement: This property is required if the ElementType is 2, 6,
8, 9, 10, 11 or 12. or This property is required if implementation supports
Advanced Metrics
(CIM_BlockStatisticsCapabilities.SupportedFeatures=\6\'(AdvancedMetrics)
.'The cumulative count of data transferred in KBytes (1024bytes = 1KByte).

Note: This is mandatory for the Top level computer system, Front-end Ports,
Volumes, Extents, Disk Drives, ArbitraryLUs and Remote Replica Groups,
but is optional for the component computer systems and Back-end Ports
with Basic metrics.

Note: This is mandatory for all ElementTypes with Advanced metrics
(CIM_BlockStatisticsCapabilities.SupportedFeatures = 6).
254

 ElementType and RateElementType Properties

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664
IOTimeCounter Conditional Conditional requirement: This property is required if implementation
supports Advanced Metrics
(CIM_BlockStatisticsCapabilities.SupportedFeatures=\6\'(AdvancedMetrics)
andCIM_BlockStorageStatisticsManifest(ProviderSupport).IncludeReadIOTi
meCounterisFALSE.oror.'The cumulative elapsed I/O time(number of Clock
Tick Intervals) for all cumulative I/Os as defined in "Total I/Os" above. I/O
response time is added to this counter at the completion of each measured I/
O using ClockTickInterval units. This value can be divided by number of IOs
to obtain an average response time.

Note: This is mandatory for Front-end Ports and Volumes with Advanced
Metrics (CIM_BlockStatisticsCapabilities.SupportedFeatures = 6) if either
ReadIOTimeCounter or WriteIOTimeCounter are not supported. It is also
mandatory for Disk Drives with the Advanced Metrics if the IdleTimeCounter
is not supported.

Note: This is not SPECIFIED for ArbitraryLUs or Remote Replica Groups.

TotalHitIOs Optional Experimental. The cumulative count of all cache hits (reads and writes from
Cache).

Note: This is not specified for Ports (either front-end or back-end).

ReadIOs Conditional Conditional requirement: This property is required if the ElementType is 3, 4,
8 or 10. or This property is required if the implementation supports
Advanced Metrics
[CIM_BlockStatisticsCapabilities.SupportedFeatures=\6\'(AdvancedMetrics)]
andtheElementType<StringThe cumulative count of all reads.

Note: This is mandatory with Basic metrics for "Front-end" and "Peer"
component ComputerSystems, Volumes and Disk Drives, but it is optional
for the Top level computer system.

Note: With Advanced Metrics this is also mandatory for the Top level
computer system.

Note: This is not specified for ArbitraryLUs or Remote Replica Groups.

ReadHitIOs Conditional Conditional requirement: This property is required if the implementation
supports Advanced Metrics
[CIM_BlockStatisticsCapabilities.SupportedFeatures=\6\'(AdvancedMetrics)]
andtheElementType<StringThe cumulative count of all read cache hits
(Reads from Cache).

Note: With Advanced Metrics this is also mandatory for the Top level
computer system.

Note: This is not specified for "Back-end" component computer systems,
Ports, ArbitraryLUs or Remote Replica Groups.

ReadIOTimeCounter Conditional Conditional requirement: This property is required if the implementation
supports Advanced Metrics
[CIM_BlockStatisticsCapabilities.SupportedFeatures=\6\'(AdvancedMetrics)]
andtheElementType<StringThe cumulative elapsed time for all Read I/Os)
for all cumulative Read I/Os.

Note: With Advanced Metrics this is mandatory for the Top level computer
system. It is also mandatory for Front-end Ports and Volumes if the
IOTimeCounter is not provided.

Note: This is not specified for ArbitraryLUs or Remote Replica Groups.

Table 121 - SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Properties Flags Requirement Description & Notes
SNIA Technical Position 255

ElementType and RateElementType Properties

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678
ReadHitIOTimeCounter Optional The cumulative elapsed time for all Read I/Os read from cache for all
cumulative Read I/Os.

Note: This is optional for "Front-end" and "Peer" component
ComputerSystems and the Top level computer system, Volumes,
CompositeExtents and DiskDrives.

Note: This is not specified for "Back-end" component computer systems,
Ports, ArbitraryLUs or Remote Replica Groups.

KBytesRead Conditional Conditional requirement: This property is required if the implementation
supports Advanced Metrics
(CIM_BlockStatisticsCapabilities.SupportedFeatures=\6\'(AdvancedMetrics)
andtheElementType<StringThe cumulative count of data read in KBytes
(1024bytes = 1KByte).

Note: With basic metrics this is optional for all ComputerSystems, Volumes,
Ports, CompositeExtents and Disk Drives.

Note: With advanced metrics this is mandatory for top level
ComputerSystems, Volumes and Disk Drives.

Note: This is not specified for ArbitraryLUs or Remote Replica Groups.

ReadSequentialIOs Optional Experimental. The cumulative count of read sequential IOs.

Note: This is not specified for back-end computer systems, Ports (either
front-end or back-end) ArbitraryLUs or Remote Replica Groups.

ReadSequentialHits Optional Experimental. The cumulative count of read sequential cache hits
(sequential reads from Cache).

Note: This is not specified for back-end computer systems, Ports (either
front-end or back-end) ArbitraryLUs or Remote Replica Groups.

WriteIOs Conditional Conditional requirement: This property is required if the ElementType is 3, 4
or 8. or This property is required if implementation supports Advanced
Metrics
(CIM_BlockStatisticsCapabilities.SupportedFeatures=\6\'(AdvancedMetrics)
andtheElementType<StringThe cumulative count of all writes.

Note: With basic metrics this is mandatory for "Front-end" and "Peer"
component ComputerSystems and Volumes, but it is optional for the Top
level computer system, "Back-end" component computer systems, Ports,
CompositeExtents and Disk Drives.

Note: With advanced metrics this is also mandatory for top level
ComputerSystems and Disk Drives.

Note: This is not specified for ArbitraryLUs or Remote Replica Groups.

WriteHitIOs Conditional Conditional requirement: This property is required if the ElementType is 8. or
This property is required if the implementation supports Advanced Metrics
[CIM_BlockStatisticsCapabilities.SupportedFeatures=\6\'(AdvancedMetrics)]
andtheElementType<StringThe cumulative count of Write Cache Hits
(Writes that went directly to Cache without blocking).

Note: With basic metrics this is mandatory for Volumes.

Note: With advanced metrics this is also mandatory for top level computer
systems.

Note: This is not specified for "Back-end" component computer systems,
Ports, ArbitraryLUs or Remote Replica Groups.

Table 121 - SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Properties Flags Requirement Description & Notes
256

 ElementType and RateElementType Properties

1679
1680
1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715
WriteIOTimeCounter Conditional Conditional requirement: This property is required if the implementation
supports Advanced Metrics
[CIM_BlockStatisticsCapabilities.SupportedFeatures=\6\'(AdvancedMetrics)]
andtheElementType<StringThe cumulative elapsed time for all Write I/Os for
all cumulative Writes.

Note: With basic metrics this is optional for all properties except
ArbitraryLUs or Remote Replica Groups.

Note: With advanced metrics this is mandatory for top level computer
systems. It is also mandatory for front-end ports and volumes if the
IOTimeCounter is not supported
(CIM_BlockStatisticsManifest.IncludeIOTimeCounter = FALSE).

Note: This is not specified for ArbitraryLUs or Remote Replica Groups.

WriteHitIOTimeCounter Optional The cumulative elapsed time for all Write I/Os written to cache for all
cumulative Write I/Os.

Note: This is optional for "Front-end" and "Peer" component
ComputerSystems and the Top level computer system and Volumes,
CompositeExtents and DiskDrives.

Note: This is not specified for "Back-end" component computer systems,
Ports, ArbitraryLUs or Remote Replica Groups.

KBytesWritten Conditional Conditional requirement: This property is required if the implementation
supports Advanced Metrics
(CIM_BlockStatisticsCapabilities.SupportedFeatures=\6\'(AdvancedMetrics)
andtheElementType<StringThe cumulative count of data written in KBytes
(1024bytes = 1KByte). Note: With basic metrics this is optional for all
ComputerSystems, Volumes, Ports, CompositeExtents and Disk Drives.

Note: With advanced metrics this is mandatory for top level
ComputerSystems, Volumes and Disk Drives.

Note: This is not specified for ArbitraryLUs or Remote Replica Groups.

WriteSequentialIOs Optional Experimental. The cumulative count of write sequential IOs.

Note: This is not specified for back-end computer systems, Ports (either
front-end or back-end) ArbitraryLUs or Remote Replica Groups.

WriteSequentialHits Optional Experimental. The cumulative count of write sequential cache hits
(sequential write to Cache).

Note: This is not specified for back-end computer systems, Ports (either
front-end or back-end) ArbitraryLUs or Remote Replica Groups.

IdleTimeCounter Conditional Conditional requirement: This property is required if implementation
supports Advanced Metrics
(CIM_BlockStatisticsCapabilities.SupportedFeatures=\6\'(AdvancedMetrics)
andCIM_BlockStorageStatisticsManifest(ProviderSupport).IncludeIOTimeCo
unter<StringThe cumulative elapsed idle time using ClockTickInterval units
(Cumulative Number of Time Units for all idle time in the array).

Note: With basic metrics this is optional for "Back-end" component
ComputerSystems, Front end Ports, Volumes, Extents and Disk Drives.

Note: With advanced metrics support for Disk Drives is mandatory if
BlockStorageStatisticsManifest(Provider Support).IncludeIOTimeCounter =
FALSE.

Note: This is not specified for Top level computer system, "Front-end"
component computer systems, ArbitraryLUs or Remote Replica Groups.

Table 121 - SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Properties Flags Requirement Description & Notes
SNIA Technical Position 257

ElementType and RateElementType Properties

1716

1717
MaintOp Optional The cumulative count of all disk maintenance operations (SCSI commands
such as: Verify, skip-mask, XOR read, XOR write-read, etc.) This is needed
to understand the load on the disks that may interfere with normal read and
write operations.

Note: This is optional for Extents and Disk Drives.

Note: This is not specified for ComputerSystems, Ports, Volumes,
ArbitraryLUs or Remote Replica Groups.

MaintTimeCounter Optional The cumulative elapsed disk maintenance time. maintenance response time
is added to this counter at the completion of each measured maintenance
operation using ClockTickInterval units.

Note: This is optional for Extents and Disk Drives.

Note: This is not specified for ComputerSystems, Ports, Volumes,
ArbitraryLUs or Remote Replica Groups.

TotalIOsRate Optional Experimental. (real32) The count of I/Os per second for the object.

KBytesTransferredRate Conditional Experimental. Conditional requirement: This property is required if the
RateElementType is 13, 17, 19, 20, 21, 22 or 23. (real32) The count of data
transferred in Kbytes per second (1024bytes = 1KByte).

Note: This is mandatory for the Top level computer system, Front-end Ports,
Volumes, Extents, Disk Drives, ArbitraryLUs and Remote Replica Groups,
but is optional for the component computer systems and Back-end Ports.

ReadIOsRate Conditional Experimental. Conditional requirement: This property is required if the
RateElementType is 14, 15, 19 or 21. (real32) The count of all reads per
second.

Note: This is mandatory for "Front-end" and "Peer" component
ComputerSystems, Volumes and Disk Drives, but it is optional for the Top
level computer system.

Note: This is not specified for Ports, CompositeExtents, "Back-end"
component computer systems, ArbitraryLUs or Remote Replica Groups..

ReadHitIOsRate Conditional Experimental. Conditional requirement: This property is required if the
RateElementType is 14, 15 or 19. (real32) The count of all read cache hits
(Reads from Cache) per second.

Note: This is mandatory for "Front-end" and "Peer" component
ComputerSystems, and Volumes, but it is optional for the Top level computer
system.

Note: This is not specified for "Back-end" component computer systems,
Ports, CompositeExtents, DiskDrives, ArbitraryLUs or Remote Replica
Groups.

KBytesReadRate Optional Experimental. (real32) The count of data read in Kbytes per second
(1024bytes = 1KByte).

Note: This is optional for all ComputerSystems, Volumes, and Disk Drives.

Note: This is not specified for Ports, CompositeExtents, ArbitraryLUs or
Remote Replica Groups..

Table 121 - SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Properties Flags Requirement Description & Notes
258

 ElementType and RateElementType Properties

1718

1719

1720

1721

1722

1723

1724

1725

1726
 7.7.11 CIM_ElementCapabilities

CIM_ElementCapabilities represents the association between ManagedElements
(i.e.,CIM_BlockStatisticsService) and their Capabilities (e.g., CIM_BlockStatisticsCapabilities). Note that
the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the
instantiation of the CIM_ElementCapabilities association for the referenced instance of Capabilities.
ElementCapabilities describes the existence requirements and context for the referenced instance of
ManagedElement. Specifically, the ManagedElement shall exist and provides the context for the
Capabilities.

CIM_ElementCapabilities is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

WriteIOsRate Conditional Experimental. Conditional requirement: This property is required if the
RateElementType is 14, 15 or 19. (real32) The cumulative count of all writes
per second.

Note: This is mandatory for "Front-end" and "Peer" component
ComputerSystems and Volumes, but it is optional for the Top level computer
system and Disk Drives.

Note: This is not specified for "Back-end" component computer systems,
Ports, CompositeExtents, ArbitraryLUs or Remote Replica Groups.

WriteHitIOsRate Conditional Experimental. Conditional requirement: This property is required if the
RateElementType is 14, 15 or 19. (real32) The count of Write Cache Hits per
second (Writes that went directly to Cache).

Note: This is mandatory for "Front-end" and "Peer" component
ComputerSystems and Volumes, but it is optional for the Top level computer
system.

Note: This is not specified for "Back-end" component computer systems,
Ports, CompositeExtents, DiskDrives, ArbitraryLUs or Remote Replica
Groups.

KBytesWrittenRate Optional Experimental. (real32) The count of data written in Kbytes per second
(1024bytes = 1KByte).

Note: This is optional for all ComputerSystems, Volumes and Disk Drives.

Note: This is not specified for Ports, CompositeExtents, ArbitraryLUs or
Remote Replica Groups.

MaintOpRate Optional Experimental. (real32) The cumulative count of all disk maintenance
operations per second (SCSI commands such as: Verify, skip-mask, XOR
read, XOR write-read, etc).This is needed to understand the load on the
disks that may interfere with normal read and write operations.

Note: This is optional for Extents and Disk Drives.

Note: This is not specified for ComputerSystems, Ports, Volumes,
ArbitraryLUs or Remote Replica Groups.

Table 121 - SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Properties Flags Requirement Description & Notes
SNIA Technical Position 259

ElementType and RateElementType Properties

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738
Table 122 describes class CIM_ElementCapabilities.

7.7.12 CIM_ElementStatisticalData (Back end Port Stats)

CIM_ElementStatisticalData is an association that relates a back end port to its statistics. Note that the
cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the
instantiation of the CIM_ElementStatisticalData association for the referenced instance of BlockStatistics.
ElementStatisticalData describes the existence requirements and context for the BlockStatistics, relative
to a specific back end port.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Back end port statistics support.

Table 123 describes class CIM_ElementStatisticalData (Back end Port Stats).

7.7.13 CIM_ElementStatisticalData (Component System Stats)

CIM_ElementStatisticalData is an association that relates a component ComputerSystem to its statistics.
Note that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates
the instantiation of the CIM_ElementStatisticalData association for the referenced instance of
BlockStatistics. ElementStatisticalData describes the existence requirements and context for the
BlockStatistics, relative to a specific component ComputerSystem.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Component Systems statistics support.

Table 122 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The managed element (BlockStatisticsService).

Capabilities Mandatory The Capabilities instance associated with the BlockStatisticsService.

Table 123 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Back end Port Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a back end port for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the statistics for
the Port.
260

 ElementType and RateElementType Properties
Table 124 describes class CIM_ElementStatisticalData (Component System Stats).

7.7.14 CIM_ElementStatisticalData (Disk Stats)

CIM_ElementStatisticalData is an association that relates a StorageExtent (Disk Drive) to its statistics.
Note that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates
the instantiation of the CIM_ElementStatisticalData association for the referenced instance of
BlockStatistics. ElementStatisticalData describes the existence requirements and context for the
BlockStatistics, relative to a specific StorageExtent of a Disk Drive.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Disk Drive statistics support.

Table 125 describes class CIM_ElementStatisticalData (Disk Stats).

7.7.15 CIM_ElementStatisticalData (Extent Stats)

CIM_ElementStatisticalData is an association that relates a StorageExtent (CompositeExtent) to its
statistics. Note that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality
mandates the instantiation of the CIM_ElementStatisticalData association for the referenced instance of
BlockStatistics. ElementStatisticalData describes the existence requirements and context for the
BlockStatistics, relative to a specific StorageExtent.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Extent statistics support.

Table 124 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Component System Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a component ComputerSystem for which the
Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the
statistics for the ComputerSystem.

Table 125 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Disk Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a Disk Drive StorageExtent for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the statistics for
the Disk Drive.
SNIA Technical Position 261

ElementType and RateElementType Properties
Table 126 describes class CIM_ElementStatisticalData (Extent Stats).

7.7.16 CIM_ElementStatisticalData (Front end Port Stats)

CIM_ElementStatisticalData is an association that relates a target port to its statistics. Note that the
cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the
instantiation of the CIM_ElementStatisticalData association for the referenced instance of BlockStatistics.
ElementStatisticalData describes the existence requirements and context for the BlockStatistics, relative
to a specific target port.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Front-end port statistics support.

Table 127 describes class CIM_ElementStatisticalData (Front end Port Stats).

7.7.17 CIM_ElementStatisticalData (Logical Disk Stats)

CIM_ElementStatisticalData is an association that relates a LogicalDisk to its statistics. Note that the
cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the
instantiation of the CIM_ElementStatisticalData association for the referenced instance of BlockStatistics.
ElementStatisticalData describes the existence requirements and context for the BlockStatistics, relative
to a specific logical disk.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Volume statistics support in Volume Management Profiles.

Table 126 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Extent Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a StorageExtent for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the
statistics for the StorageExtent.

Table 127 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Front end Port Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a target port for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the statistics for
the Port.
262

 ElementType and RateElementType Properties

1739

1740
1741

1742

1743
1744

1745

1746

1747

1748

1749

1750

1751

1752
1753
1754

1755

1756
1757

1758

1759

1760

1761

1762

1763

1764

1765
1766
1767

1768
Table 128 describes class CIM_ElementStatisticalData (Logical Disk Stats).

7.7.18 CIM_ElementStatisticalData (Remote Copy Stats)

CIM_ElementStatisticalData is an association that relates a Network to its statistics. Note that the
cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the
instantiation of the CIM_ElementStatisticalData association for the referenced instance of BlockStatistics.
ElementStatisticalData describes the existence requirements and context for the BlockStatistics, relative
to a specific Network.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Remote Copy statistics support.

Table 129 describes class CIM_ElementStatisticalData (Remote Copy Stats).

7.7.19 CIM_ElementStatisticalData (Top Level System Stats)

CIM_ElementStatisticalData is an association that relates a top level ComputerSystem to its statistics.
Note that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates
the instantiation of the CIM_ElementStatisticalData association for the referenced instance of
BlockStatistics. ElementStatisticalData describes the existence requirements and context for the
BlockStatistics, relative to a specific ComputerSystem.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Top level system statistics support.

Table 128 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Logical Disk Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a LogicalDisk for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the statistics for
the LogicalDisk.

Table 129 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Remote Copy Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a Network (remote replication group) for which the Statistics
apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the statistics for
the Network.
SNIA Technical Position 263

ElementType and RateElementType Properties

1769

1770

1771

1772

1773

1774

1775
1776

1777

1778
1779
Table 130 describes class CIM_ElementStatisticalData (Top Level System Stats).

7.7.20 CIM_ElementStatisticalData (Volume Stats)

CIM_ElementStatisticalData is an association that relates a StorageVolume to its statistics. Note that the
cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the
instantiation of the CIM_ElementStatisticalData association for the referenced instance of BlockStatistics.
ElementStatisticalData describes the existence requirements and context for the BlockStatistics, relative
to a specific volume.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Volume statistics support or Referenced from Array - StorageVolume is mandatory or
Referenced from Storage Virtualizer - StorageVolume is mandatory.

Table 131 describes class CIM_ElementStatisticalData (Volume Stats).

7.7.21 CIM_HostedCollection (Client Defined)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Block Server Performance Profile, it is used to associate
a client defined BlockStatisticsManifestCollections to the top level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Clients can create manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported or.

Table 130 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Top Level System Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to the top level ComputerSystem for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the statistics for
the ComputerSystem.

Table 131 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Volume Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a StorageVolume for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the statistics for
the StorageVolume.
264

 ElementType and RateElementType Properties

1780
1781

1782

1783

1784

1785

1786

1787
Table 132 describes class CIM_HostedCollection (Client Defined).

7.7.22 CIM_HostedCollection (Default)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Block Server Performance Profile, it is used to associate
the default BlockStatisticsManifestCollection to the top level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 133 describes class CIM_HostedCollection (Default).

7.7.23 CIM_HostedCollection (Provider Supplied)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Block Server Performance Profile, it is used to associate
the StatisticsCollection to the top level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 134 describes class CIM_HostedCollection (Provider Supplied).

Table 132 - SMI Referenced Properties/Methods for CIM_HostedCollection (Client Defined)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory A client defined BlockStatisticsManifestCollection.

Table 133 - SMI Referenced Properties/Methods for CIM_HostedCollection (Default)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory The provider defined BlockStatisticsManifestCollection.

Table 134 - SMI Referenced Properties/Methods for CIM_HostedCollection (Provider Supplied)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory The StatisticsCollection.
SNIA Technical Position 265

ElementType and RateElementType Properties

1788

1789
1790

1791

1792
1793

1794

1795

1796

1797

1798
7.7.24 CIM_HostedService

CIM_HostedService is an association between a Service (CIM_BlockStatisticsService) and the System
(ComputerSystem) on which the functionality resides. Services are weak with respect to their hosting
System. Heuristic: A Service is hosted on the System where the LogicalDevices or SoftwareFeatures that
implement the Service are located.

CIM_HostedService is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 135 describes class CIM_HostedService.

7.7.25 CIM_MemberOfCollection (Member of client defined collection)

This use of MemberOfCollection is to Collect all Manifests instances in a client defined manifest
collection.

Created By: Extrinsic: AddOrModifyManifest

Modified By: Static

Deleted By: Extrinsic: RemoveManifest

Requirement: Clients can modify manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported.

Table 136 describes class CIM_MemberOfCollection (Member of client defined collection).

7.7.26 CIM_MemberOfCollection (Member of pre-defined collection)

This use of MemberOfCollection is to Collect all Manifests instances in the default manifest collection.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 135 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Service hosted on the System.

Table 136 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of client defined
collection)

Properties Flags Requirement Description & Notes

Collection Mandatory A client defined manifest collection.

Member Mandatory The individual Manifest Instance that is part of the set.
266

 ElementType and RateElementType Properties
Table 137 describes class CIM_MemberOfCollection (Member of pre-defined collection).

7.7.27 CIM_MemberOfCollection (Member of statistics collection)

This use of MemberOfCollection is to collect all BlockStorageStatisticalData instances (in the
StatisticsCollection). Each association is created as a side effect of the metered object getting created.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 138 describes class CIM_MemberOfCollection (Member of statistics collection).

7.7.28 CIM_StatisticsCollection

The CIM_StatisticsCollection collects all block statistics kept by the profile. There is one instance of the
CIM_StatisticsCollection class and all individual element statistics can be accessed by using association
traversal(using MemberOfCollection) from the StatisticsCollection.

CIM_StatisticsCollection is subclassed from CIM_SystemSpecificCollection.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 137 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of pre-defined col-
lection)

Properties Flags Requirement Description & Notes

Collection Mandatory The provider defined default manifest collection.

Member Mandatory The individual Manifest Instance that is part of the set.

Table 138 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of statistics collec-
tion)

Properties Flags Requirement Description & Notes

Collection Mandatory The default manifest collection.

Member Mandatory The individual Manifest Instance that is part of the set.
SNIA Technical Position 267

ElementType and RateElementType Properties
Table 139 describes class CIM_StatisticsCollection.

STABLE

Table 139 - SSMI Referenced Properties/Methods for CIM_StatisticsCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SampleInterval Mandatory Minimum recommended polling interval
for an array, storage virtualizer system or
volume manager. It is set by the provider
and cannot be modified.

TimeLastSampled Mandatory Time statistics table by object was last
updated (Time Stamp in SMI 2.2
specification format).
268

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
EXPERIMENTAL

8 CKD Block Services Profile

8.1 Description

8.1.1 Synopsis

Profile Name: CKD Block Services (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: CIM_StoragePool (Primordial)

Scoping Class: ComputerSystem

Specializes: SNIA Block Services version 1.6.1

Related Profiles: Table 140 describes the supported profiles for CKD Block Services.

8.1.2 Overview

The CKD Block Services Profile models CKD (Count Key Data) storage of a block server storage system.
CKD storage is storage that is formatted to support Count and Key fields to support mainframe access.
CKD storage is at the StorageVolume level (which means the StorageVolume is access using single byte
FC protocols) or at the StoragePool level (that is, a StoragePool may be dedicated to holding CKD
StorageVolumes).

The CKD Block Services Profile is a component profile that provides a way for storage profiles to model
mainframe storage. With this support a client will be able to distinguish non-CKD storage that is provided
for non-CKD access from CKD storage that is provided for mainframe access. This is an important
distinction for management, since storage that is available to one (e.g., SCSI access) is typically not
usable by the other (e.g., mainframe access), although there are some devices that do support sharing a
volume across CKD and non-CKD hosts. Similarly, management functions for other functions of block
servers (e.g., masking and mapping) are somewhat different for CKD storage than non-CKD storage. So,
it is important for management applications to be aware of the distinctions.

The CKD Block Services requires and specializes the Block Services Package. That is, the functions of
the Block Services Package apply for CKD storage as well as non-CKD storage. The CKD Block Services
Profile extends the model for CKD storage.

Table 140 - Supported Profiles for CKD Block Services

Profile Name Organization Version Requirement Description

Job Control SNIA 1.5.0 Optional

Extent Composition SNIA 1.7.0 Optional

Block Services SNIA 1.8.0 Mandatory

Storage Pool Diagnostics SNIA 1.8.0 Optional Experimental

Storage Relocation SNIA 1.7.0 Optional

Pools from Volumes SNIA 1.7.0 Optional
SNIA Technical Position 269

Block Services Support for CKD Storage

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
8.1.3 Implementation

8.1.3.1 Block Services Support for CKD Storage

Some profile implementations may support Extended Count Key Data formatted storage. This support is
provided using existing classes, but adds some new properties as illustrated in Figure 48: "Block
Services Support for Count Key Data Storage".

CKD storage may apply to StoragePools (via StorageCapabilities), StorageVolumes or LogicalDisks. CKD
storage is indicated by the DataOrganization property in StorageVolume and LogicalDisk classes. For
SMI-S the values of this property shall be “4” for CKD Volumes (or LogicalDisks). The capability of a
StoragePool to support either (or both) non-CKD or CKD volumes is indicated by the
SupportedDataOrganizations[] property of StorageCapabilities associated to the StoragePool.

DataOrganization can be specified on StorageSetting to indicate that an CKD Volume is desired on either
of the Volume creation methods. If this property is left as null, it will be set according to the StoragePool
that is being used. If the StoragePool supports both non-CKD and CKD storage, then the default will be to
create a non-CKD volume (or LogicalDisk) for backward compatibility. This property exists in
StorageVolume, LogicalDisk, and StorageSetting classes.

An additional difference between non-CKD and CKD Volumes are the NameFormats supported. For CKD
Volumes, the volumes follow a Node Element Descriptor (NED) format. For non-CKD volumes there are a
variety of formats that may be supported.

Certain instrumentation supports the use of a volume for both CKD and non-CKD hosts. These volumes
are called Intermediate volumes in this specification. A StorageVolume can be classified as non-CKD,
CKD, or both. The StorageVolume.DataOrganization property indicates the data format of the volume,
while the new StorageVolume ExtentType property indicates the type of host access allowed (CKD, non-
CKD, both). Since this volume is shared across CKD and non-CKD hosts, it has a different name for each
host. The Name property is used by Intermediate volumes for non-CKD hosts to provide for backwards
compatibility, and the OtherIdentifyingInfo[] and IdentifyingDescriptions[] holds the CKD name and format
information.

There is also a CUImage property on both the StorageVolume and the StorageSetting. In the SB
architecture and CKD access the CKD Volume has a “home” ProtocolController (in a Masking and
Mapping sense). This property is covered in more detail in (need a Masking and Mapping reference here).

Figure 48 - Block Services Support for Count Key Data Storage

S t o r a g e V o lu m e

N a m e
N a m e F o r m a t = �қ

D a t a O r g a n iz a t io n = C K D
C U I m a g e

S u b s y s t e m I D
E m u la t e d D e v ic e
E x t e n t T y p e = �

S t o r a g e P o o l

A l lo c a t e d F r o m S t o r a g e P o o l

E le m e n t S e t t in g D a t a

S t o r a g e S e t t in g

D a t a O r g a n iz a t io n = C K D
C U I m a g e

S u b s y s t e m I D
E m u la t e d D e v ic e
E x t e n t T y p e = �

C o m p u t e r S y s t e m :

S y s t e m D e v ic e

S t o r a g e C a p a b i l i t ie s

S u p p o r t e d D a t a O r g a n iz a t io n s [] =
a n y t h in g | C K D

S u p p o r t e d E x t e n t T y p e s []

E le m e n t C a p a b i l i t ie s

L o g ic a lD is k

N a m e
N a m e F o r m a t < ��

D a t a O r g a n iz a t io n = N U L L

E le m e n t S e t t in g D a t a

S t o r a g e S e t t in g

D a t a O r g a n iz a t io n = N U L L

S y s t e m D e v ic e
S t o r a g e V o lu m e

(in t e r m e d ia t e V o lu m e)

N a m e
N a m e F o r m a t < ��

D a t a O r g a n iz a t io n = C K D
C U I m a g e

S u b s y s t e m I D
E m u la t e d D e v ic e
E x t e n t T y p e = �

O t h e r I d e n t i f y in g I n f o = N E D

S y s t e m D e v ic e

S t o r a g e S e t t in g

D a t a O r g a n iz a t io n = C K D
C U I m a g e

S u b s y s t e m I D
E m u la t e d D e v ic e
E x t e n t T y p e = �

E le m e n t S e t t in g D a t a

A l lo c a t e d F r o m S t o r a g e P o o l
270

 Use Cases for CKD Storage

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107
But an CKD Volume cannot exist without an associated CUImage (ProtocolController). This is
accommodated by the CUImage property on StorageSetting. That is, on creation of an CKD Volume the
CUImage parameter is passed as part of the StorageSetting for the Volume being created. The CUImage
in the StorageSetting is the CUImage requested and the CUImage in the StorageVolume is the CUImage
assigned. CUImage is not supported for LogicalDisks.

A host can see more than 16 CU images by changing the SSID associated with the image. For example,
there can be two CU images with the same image number but with different SSIDs. Thus, the same CU
image numbers can be in use multiple times within the array and the host as long as each image has a
unique SubsystemID. The second CU image with the same number is known as a “split."

Mainframe systems use the SubsystemID to locate physical disk controllers, and all devices in the CU
image shall have the same SubsystemID. If the CU image that is specified does not exist yet, the
SubsystemID of the first device is used as the SubsystemID of the CU image. If the CU image already
exists and contains other devices (and thus a SubsystemID), the SubsystemIDs of the newly mapped
devices are changed to match the existing SubsystemID of the CU image.

8.1.3.2 Use Cases for CKD Storage

8.1.3.2.1 Summarize Pools and Capacities by SupportedDataOrganizations

Primordial StoragePools may be capable of supporting non-CKD, CKD or both non-CKD and CKD
storage. This can be determined by inspecting the SupportedDataOrganizations property of the
StorageCapabilities of the primordial StoragePool. If the property is NULL or not “4”, then the pool only
supports non-CKD storage and all concrete StoragePools allocated from this Primordial StoragePool shall
only support non-CKD storage. Similarly, if the property only identifies “4” (Count Key Data), then the pool
only supports CKD storage and all concrete StoragePools allocated from this primordial StoragePool shall
only support CKD storage.

If the StorageCapabilities.SupportedDataOrganizations property for primordial StoragePool identifies
both “4” (Count Key Data) and something else (including NULL), then the storage allocated from the pool
can be either non-CKD or CKD storage. It will be necessary to follow the AllocatedFromStoragePool
association to the concrete StoragePools above the primordial StoragePool. As the client moves up the
AllocatedFromStoragePool association, it would keep track of the SpaceConsumed value in the
AllocatedFromStoragePool. If all concrete StoragePools are also capable of both non-CKD and CKD
storage, then the primordial capacity of the storage is considered capable of supporting both non-CKD
and CKD Volumes (or LogicalDisks).

If, however, the client reaches a concrete StoragePool that is only capable of supporting non-CKD or CKD
storage, then the SpaceConsumed value by that StoragePool would be considered either non-CKD or
CKD. It may be necessary to “pro-rate” the SpaceConsumed value to determine the actual primordial
storage that has been allocated to non-CKD or CKD.

8.1.3.2.2 Find the Capacity of CKD Capable Storage

Building on the previous use case, a client would determine the capacity of primordial StoragePools that
are only CKD capable (that is, StorageCapabilities.SupportedDataOrganization = “4” and only “4”. This
capacity is dedicated to CKD storage.

Next the client would consider primordial StoragePools that are capable of both non-CKD and CKD
storage. The client would inspect the concrete StoragePools that are allocated from those primordial
StoragePools. If any are identified as CKD only, the SpaceConsumed property on the
AllocatedFromStoragePool will indicate the primordial storage that is dedicated to CKD.

If the concrete StoragePool just above the primordial StoragePool is also capable of supporting non-CKD
or CKD storage, divide the SpaceConsumed value by the TotalManagedSpace value of the concrete
StoragePool and save this “multiplier”.
SNIA Technical Position 271

Use Cases for CKD Storage

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130
The client would continue executing the previous step until it finds a concrete StoragePool that only
supports non-CKD storage. At this point, the client would multiply all the multipliers it has saved away to
derive the amount of primordial space that has been dedicated to non-CKD storage. This value would be
subtracted from the TotalManagedSpace value of the primordial StoragePool to determine the primordial
capacity available for CKD storage. The client would execute this logic on all upper level concrete
StoragePools that are identified as non-CKD only to get the remaining primordial capacity available for
CKD storage.

8.1.3.2.3 Create an CKD Volume

To create an CKD Volume (or LogicalDisk) a client would create a StorageSetting (or select a
SettingAssociated to Capabilities) with DataOrganization set to “4” and the CUImage set to a valid
CUImage value.

With the appropriate CKD Volume Setting the client would issue either
CreateOrModifyElementFromStoragePool or CreateOrModifyElementFromElements.

8.2 Health and Fault Management Consideration

No change for CKD.

8.3 Cascading Considerations

No change for CKD.

8.4 Methods of the Profile

All methods of the Block Services Package should work for CKD storage (subject to restrictions of
particular profile implementations).

8.5 Use case

Not defined in this document.

8.6 CIM Elements

8.6.1 Element Overview

Table 141 describes the CIM elements for CKD Block Services.

Table 141 - CIM Elements for CKD Block Services

Element Name Requirement Description

8.6.2 CIM_AllocatedFromStoragePool (Pool from Pool) Mandatory AllocatedFromStoragePool.

8.6.3 CIM_AllocatedFromStoragePool (Volume or
LogicalDisk from Pool)

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. AllocatedFromStoragePool.

8.6.4 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to StorageVolume or
LogicalDisk)

Optional Expressed the ability for the element to be named or have
its state changed.

8.6.5 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to StoragePool)

Optional Expressed the ability for the element to be named or have
its state changed.

8.6.6 CIM_ElementCapabilities
(ImplementationCapabilities to System)

Optional Associates the conformant Array ComputerSystem to the
CIM_ImplementationCapabilities supported by the
implementation.
272

 Use Cases for CKD Storage

131

132
8.6.7 CIM_ElementCapabilities (StorageCapabilities to
StorageConfigurationService)

Optional Associates StorageCapabilities with
StorageConfigurationService. This StorageCapabilities
shall represent the capabilities of the entire
implementation.

8.6.8 CIM_ElementCapabilities (StorageCapabilities to
StoragePool)

Mandatory Associates StorageCapabilities with StoragePool. This
StorageCapabilities shall represent the capabilities of the
StoragePool to which it is associated.

8.6.9 CIM_ElementCapabilities
(StorageConfigurationCapabilities to
StorageConfigurationService)

Mandatory Associates StorageConfigurationCapabilities with
StorageConfigurationService.

8.6.10 CIM_ElementCapabilities
(StorageConfigurationCapabilities to concrete StoragePool)

Optional Associates StorageConfigurationCapabilities with
StoragePool.

8.6.11 CIM_ElementCapabilities
(StorageConfigurationCapabilities to primordial
StoragePool)

Optional Associates StorageConfigurationCapabilities with
StoragePool.

8.6.12 CIM_ElementCapabilities (Used to declare the
naming capabilities of the StoragePool)

Optional Deprecated. Associates
EnabledLogicalElementCapabilities with
StorageConfigurationService.

8.6.13 CIM_ElementCapabilities (Used to declare the
naming capabilities of the StorageVolume or LogicalDisk)

Optional Associates EnabledLogicalElementCapabilities with
StorageConfigurationService.

8.6.14 CIM_ElementSettingData Mandatory

8.6.15 CIM_EnabledLogicalElementCapabilities (For
StorageConfigurationService)

Optional Deprecated. This class is used to express the naming and
possible requested state change possibilities for storage
elements.

8.6.16 CIM_EnabledLogicalElementCapabilities (For
StoragePool)

Optional This class is used to express the naming and possible
requested state change possibilities for storage pools.

8.6.17 CIM_HostedService Conditional Conditional requirement: Support for
StorageConfigurationService.

8.6.18 CIM_HostedStoragePool Mandatory

8.6.19 CIM_ImplementationCapabilities
(ImplementationCapabilities)

Optional The capabilities of the profile implementation.

8.6.20 CIM_LogicalDisk Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. A LogicalDisk is
allocated from a concrete StoragePool. This is required if
the parent profile supports LogicalDisks.

8.6.21 CIM_OwningJobElement Conditional Conditional requirement: Support for Job Control profile.

8.6.22 CIM_StorageConfigurationCapabilities (Concrete) Conditional Conditional requirement: Support for the Storage
Relocation profile.

8.6.23 CIM_StorageConfigurationCapabilities (Global) Conditional Conditional requirement: Support for
StorageConfigurationService.

8.6.24 CIM_StorageConfigurationCapabilities (Primordial) Conditional Conditional requirement: Support for the Storage
Relocation profile.

8.6.25 CIM_StorageConfigurationService Optional

8.6.26 CIM_StoragePool (Concrete) Mandatory The concrete StoragePool. A concrete StoragePool shall
be allocated from another StoragePool. It shall be used
for allocating StorageVolumes and LogicalDisks as well
as other concrete StoragePools.

Table 141 - CIM Elements for CKD Block Services

Element Name Requirement Description
SNIA Technical Position 273

Use Cases for CKD Storage
8.6.27 CIM_StoragePool (Empty) Optional An empty StoragePool is a special case of a StoragePool
(Concrete or Primordial) where the StoragePool contains
no capacity.

8.6.28 CIM_StoragePool (Primordial) Mandatory The primordial StoragePool. It is created by the provider
and cannot be deleted or modified. It cannot be used to
allocate any storage element other than concrete
StoragePools.

8.6.29 CIM_StorageSettingWithHints Optional

8.6.30 CIM_StorageSettingsAssociatedToCapabilities Optional This class associates the StorageCapabilities with the
preset setting. Any StorageSetting instance associated
with this association shall work, unmodified, to create a
storage element. The preset settings should not change
overtime and represent possible settings for storage
elements are set of design time rather than runtime. All
StorageSetting instances linked with this association shall
have a ChangeableType of "0" ("Fixed - Not
Changeable").

8.6.31 CIM_StorageSettingsGeneratedFromCapabilities Conditional Conditional requirement: Support for
StorageConfigurationService. This class associates the
StorageCapabilities with the StorageSetting generated
from it via the CreateSetting method. StorageSettings
instances generated in this manner, as identified with this
association, may be removed from the model at any time
by the implementation if the ChangeableType of the
associated setting is set to "2" ("Changeable - Transient").
All StorageSettings associated with this class shall be
changeable, ChangeableType is "2" or "3". Some
implementations may permit the modification of the
ChangeableType property itself on StorageSetting
instances associated via this class. Provided this is
allowed, a client may change the ChangeableType to "3"
("Changeable - Persistent") to have this setting retained
either after generation of the instance or after its
modification by the client. The DefaultSetting property of
the StorageSetting instances linked with this association
is meaningless.

8.6.32 CIM_SystemDevice (System to StorageVolume or
LogicalDisk)

Mandatory Associates a top level system to the StorageVolumes or
LogicalDisks.

8.6.33 CIM_StorageCapabilities Mandatory These Capabilities define the capabilities provided by a
CIM_StoragePool. This includes the capability to support
SCSI and/or CKD storage.

8.6.34 CIM_StorageSetting Mandatory The StorageSettings define the settings for a given
StorageVolume (or LogicalDisk). This includes the Setting
for whether or not the volume is SCSI or CKD.

8.6.35 CIM_StorageVolume Conditional Conditional requirement: Referenced from either Array or
Storage Virtualizer - StorageVolume is mandatory. A
logical unit representing a virtual disk. A StorageVolume is
allocated from a concrete StoragePool. The
StorageVolume is enhanced for CKD.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Creation/Deletion of StoragePool.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Deletion of StoragePool..

Table 141 - CIM Elements for CKD Block Services

Element Name Requirement Description
274

 Use Cases for CKD Storage
SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. Creation of StorageVolume, if the
StorageVolume storage element is implemented.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. Deletion of StorageVolume, if the
StorageVolume storage element is implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::OperationalStatus
<>
PreviousInstance.CIM_StorageVolume::OperationalStatus

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. CQL -Change of status of a Storage Volume,
if Storage Volume is implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::ElementName <>
PreviousInstance.CIM_StorageVolume::ElementName

Conditional Conditional requirement: Referenced from Array
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. CQL -Change of ElementName of a Storage
Volume, if Storage Volume is implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::NumberOfBlocks <>
PreviousInstance.CIM_StorageVolume::NumberOfBlocks

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. CQL -Change of NumberOfBlocks of a
Storage Volume, if Storage Volume is implemented.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. Creation of
LogicalDisk, if the LogicalDisk storage element is
implemented.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. Deletion of
LogicalDisk, if the LogicalDisk storage element is
implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::OperationalStatus <>
PreviousInstance.CIM_LogicalDisk::OperationalStatus

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. CQL -Change of
status of LogicalDisk, if LogicalDisk is implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StoragePool AND
SourceInstance.CIM_StoragePool::TotalManagedSpace <>
PreviousInstance.CIM_StoragePool::TotalManagedSpace

Mandatory CQL -Change of TotalManagedSpace.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StoragePool AND
SourceInstance.CIM_StoragePool::ElementName <>
PreviousInstance.CIM_StoragePool::ElementName

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. CQL -Change of ElementName of a Storage
Pool, if Storage Pool is implemented.

Table 141 - CIM Elements for CKD Block Services

Element Name Requirement Description
SNIA Technical Position 275

Use Cases for CKD Storage
8.6.2 CIM_AllocatedFromStoragePool (Pool from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 142 describes class CIM_AllocatedFromStoragePool (Pool from Pool).

8.6.3 CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced from Host Hardware RAID Controller -
StorageVolume is mandatory.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StoragePool AND
SourceInstance.CIM_StoragePool::RemainingManagedSp
ace <>
PreviousInstance.CIM_StoragePool::RemainingManagedS
pace

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. CQL -Change of RemainingManagedSpace of
a Storage Pool, if Storage Pool is implemented.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='DRM28'

Mandatory Experimental. Indication that capacity is running low.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='DRM29'

Mandatory Experimental. Indication that capacity is has run out.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='DRM30'

Mandatory Experimental. Indication that capacity condition has been
cleared.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='DRM38'

Mandatory Experimental. A LogicalDisk has degraded.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='DRM39'

Mandatory Experimental. A LogicalDisk has failed

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='DRM40'

Mandatory Experimental. A LogicalDisk has returned to normal
service.

Table 142 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory Antecedent references the parent pool from which the
dependent pool is allocated.

Dependent Mandatory

Table 141 - CIM Elements for CKD Block Services

Element Name Requirement Description
276

 Use Cases for CKD Storage
Table 143 describes class CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool).

8.6.4 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or Logi-
calDisk)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 144 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageVolume or LogicalDisk).

8.6.5 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 145 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StoragePool).

8.6.6 CIM_ElementCapabilities (ImplementationCapabilities to System)

Associates the conformant Array ComputerSystem to the CIM_ImplementationCapabilities supported by
the implementation.

Table 143 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or LogicalD-
isk from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory

Dependent Mandatory

Table 144 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to StorageVolume or LogicalDisk)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory A Storage Volume or Logical Disk.

Table 145 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object (CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StoragePool Enabled Capabilities" that is associated
with a storage pool.

ManagedElement Mandatory A reference to an instance of a StoragePool.
SNIA Technical Position 277

Use Cases for CKD Storage
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 146 describes class CIM_ElementCapabilities (ImplementationCapabilities to System).

8.6.7 CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 147 describes class CIM_ElementCapabilities (StorageCapabilities to
StorageConfigurationService).

8.6.8 CIM_ElementCapabilities (StorageCapabilities to StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 148 describes class CIM_ElementCapabilities (StorageCapabilities to StoragePool).

8.6.9 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationService)

Created By: Static

Modified By: Static

Table 146 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities
to System)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The ImplementationCapabilities.

ManagedElement Mandatory The conformant Array ComputerSystem that has
ImplementationCapabilities.

Table 147 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
ageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 148 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
agePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.
278

 Use Cases for CKD Storage

133

134

135

136

137

138

139

140

141

142

143

144

145

146
Deleted By: Static

Requirement: Mandatory

Table 149 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to
StorageConfigurationService).

8.6.10 CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 150 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete
StoragePool).

8.6.11 CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 151 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial
StoragePool).

8.6.12 CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool)

Deprecated. Associates EnabledLogicalElementCapabilities with StorageConfigurationService. This is for
identifying the capability to provide an element name for storage pools.

Table 149 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to StorageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 150 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to concrete StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 151 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to primordial StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.
SNIA Technical Position 279

Use Cases for CKD Storage

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 152 describes class CIM_ElementCapabilities (Used to declare the naming capabilities of the
StoragePool).

8.6.13 CIM_ElementCapabilities (Used to declare the naming capabilities of the StorageVolume or
LogicalDisk)

Associates EnabledLogicalElementCapabilities with StorageConfigurationService. This is for identifying
the capability to provide an element name for storage volumes or logical disks.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 153 describes class CIM_ElementCapabilities (Used to declare the naming capabilities of the
StorageVolume or LogicalDisk).

8.6.14 CIM_ElementSettingData

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 152 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming
capabilities of the StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object (CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StoragePool Enabled Capabilities" that is associated
with an instance of StorageConfigurationService.

ManagedElement Mandatory A reference to an instance of CIM_StorageConfigurationService.

Table 153 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming
capabilities of the StorageVolume or LogicalDisk)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object (CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StorageVolume Enabled Capabilities" or "LogicalDisk
Enabled Capacilities" that is associated with an instance of
StorageConfigurationService.

ManagedElement Mandatory A reference to an instance of CIM_StorageConfigurationService.
280

 Use Cases for CKD Storage

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181
Table 154 describes class CIM_ElementSettingData.

8.6.15 CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService)

Deprecated.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 155 describes class CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService).

8.6.16 CIM_EnabledLogicalElementCapabilities (For StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Table 154 - SMI Referenced Properties/Methods for CIM_ElementSettingData

Properties Flags Requirement Description & Notes

IsDefault Mandatory An enumerated integer indicating that the referenced setting is a default
setting for the element, or that this information is unknown. Value shall be
0,1 or 2 (Unknown or Is Default or Is Not Default).

IsCurrent Mandatory An enumerated integer indicating that the referenced setting is currently
being used in the operation of the element, or that this information is
unknown. Value shall be 0,1 or 2 (Unknown or Is Default or Is Not Default).

ManagedElement Mandatory StorageVolume or LogicalDisk.

SettingData Mandatory The StorageSetting or StorageSettingWithHints that is associated with the
Storage Volume or Logical Disk.

Table 155 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
ConfigurationService)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For this usage of the capabilities this should include one of the
following three values:

StoragePool Enabled Capabilities

StorageVolume Enabled Capabilities

LogicalDisk Enabled Capacilities.

ElementNameEditSupported Mandatory Denotes whether a storage element can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See
MOF for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and
format for the element name. See MOF for details.

RequestedStatesSupported Optional Expresses the states to which this element may be changed using
the RequestStateChange method. If this property is NULL, it may
be assumed that the state may not be changed.
SNIA Technical Position 281

Use Cases for CKD Storage

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201
Requirement: Optional

Table 156 describes class CIM_EnabledLogicalElementCapabilities (For StoragePool).

8.6.17 CIM_HostedService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 157 describes class CIM_HostedService.

8.6.18 CIM_HostedStoragePool

Requirement: Mandatory

Table 158 describes class CIM_HostedStoragePool.

8.6.19 CIM_ImplementationCapabilities (ImplementationCapabilities)

The capabilities (features) of the profile implementation.

Table 156 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
Pool)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For this usage of the capabilities this should be 'StoragePool
Enabled Capabilities'.

ElementNameEditSupported Mandatory Denotes whether a storage element can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See
MOF for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and format
for the element name. See MOF for details.

RequestedStatesSupported Optional Expresses the states to which this element may be changed using
the RequestStateChange method. If this property, it may be assumed
that the state may not be changed.

Table 157 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting computer system.

Dependent Mandatory The storage configuration service hosted on the computer system.

Table 158 - SMI Referenced Properties/Methods for CIM_HostedStoragePool

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The reference to the hosting computer system.

PartComponent Mandatory The reference to the hosted storage pool.
282

 Use Cases for CKD Storage

202

203

204

205
206

207

208

209

210

211

212

213

214

215
216

217

218

219

220
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 159 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

8.6.20 CIM_LogicalDisk

LogicalDisks could be formatted as CKD disks. The Properties that are different from what is specified in
the Block Services Package are marked as (Overridden). Properties that are added are marked as
(Added). The class definition specializes the CIM_LogicalDisk definition in the Block Services profile.
Properties or methods not inherited are marked accordingly as (overridden)' or '(added)' in the left most
column.

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Volume Management - LogicalDisk is mandatory.

Table 160 describes class CIM_LogicalDisk.

Table 159 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the implementation capability of an
implementation.

ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.

SupportedElementNameCodeSet Optional This property indicates the supported code set for the
ElementName -- for example, "Single Byte ASCII", "UTF-8",
"ISO 8859-1", etc. See MOF for details.

Table 160 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name Mandatory OS Device Name.

NameFormat Mandatory This shall be "12" (OS Device Name).

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting
or Dormant). In addition, the secondary OperationalStatus
may be 19 (Relocating) with 2|3|15 (OK or Degraded or
Dormant).
SNIA Technical Position 283

Use Cases for CKD Storage

221

222

223

224

225

226

227

228

229

230

231

232

233

234
8.6.21 CIM_OwningJobElement

Conditional on support for Job Control profile.

Requirement: Support for Job Control profile.

Table 161 describes class CIM_OwningJobElement.

BlockSize (overridden) Mandatory The BlockSize would report the number of bytes in a cylinder.

NumberOfBlocks
(overridden)

Mandatory The number of blocks would be the number of cylinders.

ConsumableBlocks Mandatory The number of usable cylinders.

IsBasedOnUnderlyingRedu
ndancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Conditonal Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory This is an array of values that shall contain 'SNIA:Allocated'.

NumExtentsMigrating Optional The number of Extents in the process of migrating for this
logical disk when the logical disk relocation is on going.

IsCompressed Optional IsCompressed identifies whether or not compression is being
applied to the volume. When set to "true" the data is
compressed. When set to "false" the data is not compressed.

CompressionRate Optional CompressionRate identifies whether or not compression is
being applied to the volume and at what rate. The possible
values are '1' (None), '2' (High), '3' (Medium) or '4' (Low).

CompressionState Optional CompressionState indicates whether the compresson is '2'
(pending), '3' (initializing), '4' (in progress) or '5' (completed). If
compression is not supported (CompressionRate='1') for the
volume, the CompressionState shall be '1' (Not Applicable).

DataOrganization (added) Mandatory Supported value for SMI-S is "4" (Count Key Data). Values
that are not "4" are for non-CKD LogicalDisks. CKD
LogicalDisks use "4".

Table 161 - SMI Referenced Properties/Methods for CIM_OwningJobElement

Properties Flags Requirement Description & Notes

OwnedElement Mandatory

OwningElement Mandatory

Table 160 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes
284

 Use Cases for CKD Storage

235

236

237

238

239

240

241
8.6.22 CIM_StorageConfigurationCapabilities (Concrete)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for the Storage Relocation profile.

Table 162 describes class CIM_StorageConfigurationCapabilities (Concrete).

Table 162 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePoolFeatures Optional Lists what StorageConfigurationService functionalities are
implemented. Matches 2|3|5|6|7 (InExtents or Single InPool or
Storage Pool QoS Change or Storage Pool Capacity Expansion
or Storage Pool Capacity Reduction).

SupportedSynchronousActions Conditional Conditional requirement: Support for the Storage Relocation
profile. Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "3" (Storage Pool Deletion), "4"
(Storage Pool Modification), "5" (Storage Element Creation), "12"
(Storage Element from Element Creation), "13" (Storage Element
from Element Modification) or "15" (StoragePool Usage
Modification) or "17" (StorageVolume To StoragePool
Relocation) or "18" (StoragePool To StoragePool Relocation) or
"19" (StorageVolume To StorageExtent Relocation) or "20"
(StoragePool To StorageExtent Relocation) or "21" (LogicalDisk
To StorageExtent Relocation) or "22" (Multiple Storage Element
Creation) or "23" (Multiple Storage Element Return) or "24"
(Storage Element from Multiple Pools Creation) or "25"
(CompositeVolume Creation) or "26" (CompositeVolume Return)
or "27" (CompositeVolume Modification) or "28"
(CompositeVolume Dissolve).

SupportedStorageElementTypes Mandatory Lists the type of storage elements that are supported by this
implementation. This version of the standard recognizes '2'
(StorageVolume) or '4' (LogicalDisk).

If thin provisioning is supported, then the following additional
ElementTypes are recognized: "5"
(ThinlyProvisionedStorageVolume), "6"
(ThinlyProvisionedLogicalDisk), "7"
(ThinlyProvisionedAllocatedStoragePool), "8"
(ThinlyProvisionedQuotaStoragePool) or "9"
(ThinlyProvisionedLimitlessStoragePool).
SNIA Technical Position 285

Use Cases for CKD Storage

242

243
244
245

246

247

248

249

250

251

252

253

254

255

256

257

258

259
SupportedAsynchronousActions Conditional Conditional requirement: Support for the Storage Relocation
profile. Lists what actions, invoked through
StorageConfigurationService methods, may produce Concrete
jobs. This version of the standard recognizes "2" (Storage Pool
Creation), "3" (Storage Pool Deletion), "4" (Storage Pool
Modification), "5" (Storage Element Creation), "12" (Storage
Element from Element Creation), "13" (Storage Element from
Element Modification) or "15" (StoragePool Usage Modification)
or "17" (StorageVolume To StoragePool Relocation) or "18"
(StoragePool To StoragePool Relocation) or "19"
(StorageVolume To StorageExtent Relocation) or "20"
(StoragePool To StorageExtent Relocation) or "21" (LogicalDisk
To StorageExtent Relocation) or "22" (Multiple Storage Element
Creation) or "23" (Multiple Storage Element Return) or "24"
(Storage Element from Multiple Pools Creation)) or "25"
(CompositeVolume Creation) or "26" (CompositeVolume Return)
or "27" (CompositeVolume Modification) or "28"
(CompositeVolume Dissolve).

SupportedStorageElementFeatures Conditional Conditional requirement: Support for the Storage Relocation
profile. Lists actions supported through the invocation of
StorageConfigurationService.CreateOrModifyElementFromStora
gePool(). Matches 3|8|14|15|16|17|18|19|20|21 (StorageVolume
Creation or LogicalDisk Creation or StorageVolume To
StoragePool Relocation or StoragePool To StoragePool
Relocation or StorageVolume To StorageExtent Relocation or
StoragePool To StorageExtent Relocation LogicalDisk To
StorageExtent Relocation or CompositeVolume Creation or
CompositeVolume Modification or CompositeVolume Dissolve).

SupportedStorageElementUsage Optional Indicates the intended usage or any restrictions that may have
been imposed on supported storage elements.

ClientSettableElementUsage Optional Indicates the intended usage or any restrictions that may have
been imposed on the usage of client-settable elements.

SupportedStoragePoolUsage Conditional Conditional requirement: Support for the Storage Relocation
profile. Indicates the intended usage or any restrictions that may
have been imposed on storage pools.

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage Relocation
profile. Indicates the intended usage or any restrictions that may
have been imposed on the usage of a client-settable storage
pool.

MaximumElementCreateCount Optional Indicates the maximum number of elements that can be
specified to be created in a single method call. If 0 or null, there
is no limit.

MaximumElementDeleteCount Conditional Conditional requirement: Support for the Storage Relocation
profile. Indicates the maximum number of elements that can be
deleted in a single method call. If 0 or null, there is no limit.

MultipleElementCreateFeatures Optional Enumeration indicating features offered by the multiple element
create method. "2" (Single instance creation indication).

Table 162 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes
286

 Use Cases for CKD Storage

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277
8.6.23 CIM_StorageConfigurationCapabilities (Global)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 163 describes class CIM_StorageConfigurationCapabilities (Global).

MultipleElementDeleteFeatures Optional Enumeration indicating features offered by the multiple element
delete method. "2" (Continue on nonexistent element) or "3"
(Return error on nonexistent element).

GetElementNameCapabilities() Optional This method indicates if ElementName can be specified as a part
of invoking an appropriate method of
StorageConfigurationService to create a new element.
Additionally, the returned data includes the methods that can be
used to modify the ElementName of existing storage elements.

Table 163 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePoolFeatures Optional Lists what StorageConfigurationService functionalities are
implemented. Matches 2|3|5|6|7 (InExtents or Single InPool or
Storage Pool QoS Change or Storage Pool Capacity Expansion
or Storage Pool Capacity Reduction).

SupportedSynchronousActions Conditional Conditional requirement: Support for the Storage Relocation
profile. Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs.

SupportedStorageElementTypes Mandatory Lists the type of storage elements that are supported by this
implementation. This version of the standard recognizes '2'
(StorageVolume) or '4' (LogicalDisk).

If thin provisioning is supported, then the following additional
ElementTypes are recognized: "5"
(ThinlyProvisionedStorageVolume), "6"
(ThinlyProvisionedLogicalDisk), "7"
(ThinlyProvisionedAllocatedStoragePool), "8"
(ThinlyProvisionedQuotaStoragePool) or "9"
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchronousActions Conditional Conditional requirement: Support for the Storage Relocation
profile. Lists what actions, invoked through
StorageConfigurationService methods, may produce Concrete
jobs.

Table 162 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes
SNIA Technical Position 287

Use Cases for CKD Storage

278

279

280

281

282
283

284

285

286

287

288

289
8.6.24 CIM_StorageConfigurationCapabilities (Primordial)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for the Storage Relocation profile.

SupportedStorageElementFeatures Conditional Conditional requirement: Support for the Storage Relocation
profile. Lists actions supported through the invocation of
StorageConfigurationService.CreateOrModifyElementFromSto
ragePool(). Matches 3|5|8|9|11|12|13|14|15|16|17|18|19|20|21
(StorageVolume Creation or StorageVolume Modification or
LogicalDisk Creation or LogicalDisk Modification or Storage
Element QoS Change or Storage Element Capacity Expansion
or Storage Element Capacity Reduction or StorageVolume To
StoragePool Relocation or StoragePool To StoragePool
Relocation or StorageVolume To StorageExtent Relocation or
'StoragePool To StorageExtent Relocation or LogicalDisk To
StorageExtent Relocation or CompositeVolume Creation or
CompositeVolume Modification or CompositeVolume Dissolve).

SupportedStorageElementUsage Optional Indicates the intended usage or any restrictions that may have
been imposed on supported storage elements.

ClientSettableElementUsage Optional Indicates the intended usage or any restrictions that may have
been imposed on the usage of client-settable elements.

SupportedStoragePoolUsage Conditional Conditional requirement: Support for the Storage Relocation
profile. Indicates the intended usage or any restrictions that
may have been imposed on storage pools.

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage Relocation
profile. Indicates the intended usage or any restrictions that
may have been imposed on the usage of a client-settable
storage pool.

MaximumElementCreateCount Optional Indicates the maximum number of elements that can be
specified to be created in a single method call. If 0 or null, there
is no limit.

MaximumElementDeleteCount Conditional Conditional requirement: Support for the Storage Relocation
profile. Indicates the maximum number of elements that can be
deleted in a single method call. If 0 or null, there is no limit.

MultipleElementCreateFeatures Optional Enumeration indicating features offered by the multiple element
create method. "2" (Single instance creation indication).

MultipleElementDeleteFeatures Optional Enumeration indicating features offered by the multiple element
delete method. "2" (Continue on nonexistent element) or "3"
(Return error on nonexistent element).

AutomaticPoolSelectionAllowed Optional If true, it indicates the implementation selects appropriate pools
based on other supplied parameters to create elements. For
example, based on supplied Goal.

GetElementNameCapabilities() Optional This method indicates if ElementName can be specified as a
part of invoking an appropriate method of
StorageConfigurationService to create a new element.
Additionally, the returned data includes the methods that can
be used to modify the ElementName of existing storage
elements.

Table 163 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes
288

 Use Cases for CKD Storage

290

291
292

293

294

295

296

297

298

299

300
Table 164 describes class CIM_StorageConfigurationCapabilities (Primordial).

Table 164 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePoolFeatures Optional Lists what StorageConfigurationService functionalities are
implemented. Matches 2|3 (InExtents or Single InPool).

SupportedSynchronousActions Conditional Conditional requirement: Support for the Storage Relocation
profile. Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "12" (Storage Element from Element
Creation) or "15" (StoragePool Usage Modification) or "17"
(StorageVolume To StoragePool Relocation) or "18"
(StoragePool To StoragePool Relocation) or "19"
(StorageVolume To StorageExtent Relocation) or "20"
(StoragePool To StorageExtent Relocation) or "21"
(LogicalDisk To StorageExtent Relocation).

SupportedStorageElementTypes Optional Lists the type of storage elements that are supported by this
implementation.

If thin provisioning is supported, the ElementTypes may
include 7 (ThinlyProvisionedAllocatedStoragePool), 8
(ThinlyProvisionedQuotaStoragePool), or 9
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchronousActions Conditional Conditional requirement: Support for the Storage Relocation
profile. Lists what actions, invoked through
StorageConfigurationService methods, may produce Concrete
jobs. This version of the standard recognizes "2" (Storage Pool
Creation), "12" (Storage Element from Element Creation) or
"15" (StoragePool Usage Modification) or "17" (StorageVolume
To StoragePool Relocation) or "18" (StoragePool To
StoragePool Relocation) or "19" (StorageVolume To
StorageExtent Relocation) or "20" (StoragePool To
StorageExtent Relocation) or "21" (LogicalDisk To
StorageExtent Relocation) or "22" (Multiple Storage Element
Creation) or "23" (Multiple Storage Element Return) or "24"
(Storage Element from Multiple Pools Creation).

SupportedStorageElementFeatures Conditional Conditional requirement: Support for the Storage Relocation
profile. Lists actions supported through the invocation of
StorageConfigurationService.CreateOrModifyElementFromSto
ragePool(). This version of the standard does not recognize
any values for this property. For Primordial pools, this shall not
contain 3 (StorageVolume Creation), 5 (StorageVolume
Modification), 8 (LogicalDisk Creation) or 9 (LogicalDisk
Modification) or 14 (StorageVolume To StoragePool
Relocation) or 15 (StoragePool To StoragePool Relocation) or
16 (StorageVolume To StorageExtent Relocation) or 17
(StoragePool To StorageExtent Relocation) or 18 (LogicalDisk
To StorageExtent Relocation) or 19 (CompositeVolume
Creation) or 20 (CompositeVolume Modification) or 21
(CompositeVolume Dissolve).

SupportedStorageElementUsage Optional For Primordial StorageConfigurationCapabilities, this shall be
NULL.

ClientSettableElementUsage Optional For Primordial StorageConfigurationCapabilities, this shall be
NULL.
SNIA Technical Position 289

Use Cases for CKD Storage

301

302

303

304

305

306

307

308
309

310

311

312

313

314
8.6.25 CIM_StorageConfigurationService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 165 describes class CIM_StorageConfigurationService.

SupportedStoragePoolUsage Conditional Conditional requirement: Support for the Storage Relocation
profile. Indicates the intended usage or any restrictions that
may have been imposed on storage pools.

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage Relocation
profile. Indicates the intended usage or any restrictions that
may have been imposed on the usage of a client-settable
storage pool.

Table 165 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

CreateOrModifyStoragePool() Optional Create (or modify) a StoragePool. A job may be
created as well.

DeleteStoragePool() Optional Start a job to delete a StoragePool.

CreateOrModifyElementFromStoragePool() Mandatory Create or modify a storage element. A job may be
created as well.

CreateElementsFromStoragePools() Optional Create one or more storage elements. A job may be
created as well.

CreateOrModifyElementFromElements() Optional Create or modify a storage element using component
StorageExtents of the Pool. A job may be created as
well.

ReturnToStoragePool() Mandatory Release the capacity represented by this storage
element back to the Pool.

ReturnElementsToStoragePool() Optional Release the capacity represented by one or more
storage elements back to the Pool.

RequestUsageChange() Optional Allows a client to change the Usage for the element.

GetElementsBasedOnUsage() Optional Allows a client to retrieve elements for a specialized
Usage.

CreateOrModifyAnyElementFromStorageP
ool()

Optional This method is an extension of
CreateOrModifyElementFromStoragePool that
supports composite type elements.

Table 164 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)

Properties Flags Requirement Description & Notes
290

 Use Cases for CKD Storage

315

316

317
318

319

320

321

322

323

324
8.6.26 CIM_StoragePool (Concrete)

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Mandatory

Table 166 describes class CIM_StoragePool (Concrete).

Table 166 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes

Primordial Mandatory Shall be false.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies this Pool.

OperationalStatus Mandatory Value shall be 2|3|5|6|11|15 (OK or Degraded or Predictive Failure or
Error or In Service or Dormant). In addition, the secondary
OperationalStatus may be 19 (Relocating) with 2|3|15 (OK or
Degraded or Dormant).

TotalManagedSpace Mandatory

RemainingManagedSpace Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Conditional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

CapacityInMigratingSource Optional The total capacity of extents migrating out from this storage pool.

CapacityInMigratingTarget Optional The total capacity of extents migrating into this storage pool.

ElementsShareSpace Optional If true, it indicates elements allocated from the storage pool are
sharing space from the storage pool. For example, multiple snapshots
"allocated" from a storage pool, point to the same blocks of the storage
pool. As another example, elements utilizing de-duplication technology
refer to a shared copy of the data stored in the storage pool.

ReservedSpace Optional The amount of capacity used by the storage pool to store information
about the configuration of the storage pool. The space is not included
in the TotalManagedSpace of the storage pool.

CompressionActive Optional Experimental. Indicates if the pool is compressed.

CompressionPercent Optional Experimental. Indicates amount of compression on the pool.

CompressionRate Optional Experimental. CompressionRate identifies whether or not compression
is being applied to the pool and at what rate.

CompressionState Optional Experimental. The CompressionState indicates whether the
compression is pending, initializing, in progress or completed.

DedupActive Optional Experimental. Indicates if deduplication is active for this pool.

DedupPercent Optional Experimental. Deduplication percentage of the pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService. List
the discrete storage element sizes that can be created or expanded
from this Pool.
SNIA Technical Position 291

Use Cases for CKD Storage

325

326
327

328

329

330

331

332

333
8.6.27 CIM_StoragePool (Empty)

An empty StoragePool is a special case of a StoragePool where the StoragePool contains no capacity. All
properties are supported as defined for the StoragePool (Concrete or Primordial), except that the empty
StoragePool has TotalManagedSpace=0.

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Optional

Table 167 describes class CIM_StoragePool (Empty).

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService. List
the size ranges for storage element that can be created or expanded
from this Pool.

GetAvailableExtents() Optional List the StorageExtents from this Pool that may be used to create or
expand a storage element. The StorageExtents may not already be in
use as supporting capacity for existing storage element.

Table 167 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty)

Properties Flags Requirement Description & Notes

Primordial Mandatory This may be either true or false. That is, both concrete and
primordial StoragePools may be empty.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory

OperationalStatus Mandatory Value shall be 2|3|5|6|11|15 (OK or Degraded or Predictive Failure
or Error or In Service or Dormant). In addition, the secondary
OperationalStatus may be 19 (Relocating) with 2|3|15 (OK or
Degraded or Dormant).

TotalManagedSpace Mandatory This shall be 0 for an empty StoragePool.

RemainingManagedSpace Mandatory

Usage Optional

OtherUsageDescription Conditional Set when Usage is Other

ClientSettableUsage Optional

CapacityInMigratingSource Optional The total capacity of extents migrating out from this storage pool.

CapacityInMigratingTarget Optional The total capacity of extents migrating into this storage pool.

CompressionActive Optional Experimental. Indicates if the pool is compressed.

CompressionPercent Optional Experimental. Indicates amount of compression on the pool.

CompressionRate Optional Experimental. CompressionRate identifies whether or not
compression is being applied to the pool and at what rate.

CompressionState Optional Experimental. The CompressionState indicates whether the
compression is pending, initializing, in progress or completed.

Table 166 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes
292

 Use Cases for CKD Storage

334

335
336

337

338

339

340

341

342
8.6.28 CIM_StoragePool (Primordial)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 168 describes class CIM_StoragePool (Primordial).

DedupActive Optional Experimental. Indicates if deduplication is active for this pool.

DedupPercent Optional Experimental. Deduplication percentage of the pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService.

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService.

GetAvailableExtents() Optional

Table 168 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes

Primordial Mandatory Shall be true.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies this Pool.

OperationalStatus Mandatory Value shall be 2|3|5|6|11|15 (OK or Degraded or Predictive Failure or
Error or In Service or Dormant). In addition, the secondary
OperationalStatus may be 19 (Relocating) with 2|3|15 (OK or
Degraded or Dormant).

TotalManagedSpace Mandatory

RemainingManagedSpace Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Conditional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

CapacityInMigratingSource Optional The total capacity of extents migrating out from this storage pool.

CapacityInMigratingTarget Optional The total capacity of extents migrating into this storage pool.

ReservedSpace Optional The amount of capacity used by the storage pool to store information
about the configuration of the storage pool. The space is not included
in the TotalManagedSpace of the storage pool.

CompressionActive Optional Experimental. Indicates if the pool is compressed.

CompressionPercent Optional Experimental. Indicates amount of compression on the pool.

CompressionRate Optional Experimental. CompressionRate identifies whether or not
compression is being applied to the pool and at what rate.

CompressionState Optional Experimental. The CompressionState indicates whether the
compression is pending, initializing, in progress or completed.

Table 167 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty)

Properties Flags Requirement Description & Notes
SNIA Technical Position 293

Use Cases for CKD Storage

343

344
345

346

347

348

349

350

351

352

353
8.6.29 CIM_StorageSettingWithHints

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 169 describes class CIM_StorageSettingWithHints.

DedupActive Optional Experimental. Indicates if deduplication is active for this pool.

DedupPercent Optional Experimental. Deduplication percentage of the pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService.
List the discrete storage element sizes that can be created or
expanded from this Pool.

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService.
List the size ranges for storage element that can be created or
expanded from this Pool.

GetAvailableExtents() Optional List the StorageExtents from this Pool that may be used to create or
expand a storage element. The StorageExtents may not already be in
use as supporting capacity for existing storage element.

Table 169 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In
addition, the user-friendly name can be used as a index property
for a search of query. (Note: Name does not have to be unique
within a namespace.).

NoSinglePointOfFailure Mandatory

DataRedundancyMin Mandatory

DataRedundancyMax Mandatory

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory

PackageRedundancyMax Mandatory

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional

ExtentStripeLengthMin Optional

ExtentStripeLengthMax Optional

ParityLayout Optional

UserDataStripeDepth Optional

UserDataStripeDepthMin Optional

UserDataStripeDepthMax Optional

Table 168 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes
294

 Use Cases for CKD Storage

354

355

356

357

358

359

360

361
362

363

364

365

366

367
8.6.30 CIM_StorageSettingsAssociatedToCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 170 describes class CIM_StorageSettingsAssociatedToCapabilities.

StorageExtentInitialUsage Optional

StoragePoolInitialUsage Optional

DataAvailabilityHint Mandatory This hint is an indication from a client of the importance placed
on data availability. Values are 0=Don't Care to 10=Very
Important.

AccessRandomnessHint Mandatory This hint is an indication from a client of the randomness of
accesses. Values are 0=Entirely Sequential to 10=Entirely
Random.

AccessDirectionHint Mandatory This hint is an indication from a client of the direction of
accesses. Values are 0=Entirely Read to 10=Entirely Write.

AccessSizeHint Mandatory This hint is an indication from a client of the optimal access
sizes. Several sizes can be specified. Units("Megabytes").

AccessLatencyHint Mandatory This hint is an indication from a client how important access
latency is.` Values are 0=Don't Care to 10=Very Important.

AccessBandwidthWeight Mandatory This hint is an indication from a client of bandwidth prioritization.
Values are 0=Don't Care to 10=Very Important.

StorageCostHint Mandatory This hint is an indication of the importance the client places on
the cost of storage. Values are 0=Don't Care to 10=Very
Important. A StorageVolume provider might choose to place
data on low cost or high cost drives based on this parameter.

StorageEfficiencyHint Mandatory This hint is an indication of the importance placed on storage
efficiency by the client. Values are 0=Don't Care to 10=Very
Important. A StorageVolume provider might choose different
RAID levels based on this hint.

ChangeableType Mandatory

Table 170 - SMI Referenced Properties/Methods for CIM_StorageSettingsAssociatedToCapabilities

Properties Flags Requirement Description & Notes

DefaultSetting Mandatory This boolean designates the setting that will be used if the CreateSetting()
method is called with providing the NewSetting parameter. However, some
implementations may require that the NewSetting parameter be non null.
There may be only one default setting per the combination of
StorageCapabilities and associated StoragePool as associated through
ElementCapabilities.

Dependent Mandatory The StorageSetting reference.

Antecedent Mandatory The StorageCapabilities reference.

Table 169 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints

Properties Flags Requirement Description & Notes
SNIA Technical Position 295

Use Cases for CKD Storage

368

369

370
371

372

373

374

375

376

377
8.6.31 CIM_StorageSettingsGeneratedFromCapabilities

Created By: Extrinsic: CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 171 describes class CIM_StorageSettingsGeneratedFromCapabilities.

8.6.32 CIM_SystemDevice (System to StorageVolume or LogicalDisk)

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Mandatory

Table 172 describes class CIM_SystemDevice (System to StorageVolume or LogicalDisk).

8.6.33 CIM_StorageCapabilities

The CIM_StorageCapabilities is specializes CIM_StorageCapabilities to add the
SupportedDataOrganizations and SupportedExtentTypes properties. The Properties that are different
from what is specified in the Block Services Package have descriptive text. NOTE: SCSI can be coded as
NULL or any value other than "4". The class definition specializes the CIM_StorageCapabilities definition
in the Block Services profile. Properties or methods not inherited are marked accordingly as '(overridden)'
or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 171 - SMI Referenced Properties/Methods for CIM_StorageSettingsGeneratedFromCapabilities

Properties Flags Requirement Description & Notes

Dependent Mandatory The StorageSetting reference.

Antecedent Mandatory The StorageCapabilities reference.

Table 172 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageVolume or Log-
icalDisk)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory
296

 Use Cases for CKD Storage

378

379
380
381

382

383

384

385

386
Table 173 describes class CIM_StorageCapabilities.

Table 173 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of Capabilities. In
addition, the user-friendly name can be used as a index
property for a search or query. (Note: ElementName does
not have to be unique within a namespace) If the
capabilities are fixed, then this property should be used as
a means for the client application to correlate between
capabilities and device documentation.

ElementType Mandatory Enumeration indicating the type of instance to which this
StorageCapabilities applies. Shall be either 5 or 6
(StoragePool or StorageConfigurationService).

NoSinglePointOfFailure Mandatory Indicates whether or not the associated instance supports
no single point of failure. Values are: FALSE = does not
support no single point of failure, and TRUE = supports no
single point of failure.

NoSinglePointOfFailureDefault Mandatory Indicates the default value for the NoSinglePointOfFailure
property.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of
complete copies of data that can be maintained. Examples
would be RAID 5 where 1 copy is maintained and RAID 1
where 2 or more copies are maintained. Possible values
are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of
complete copies of data that can be maintained. Examples
would be RAID 5 where 1 copy is maintained and RAID 1
where 2 or more copies are maintained. Possible values
are 1 to n.

DataRedundancyDefault Mandatory DataRedundancyDefault describes the default number of
complete copies of data that can be maintained. Examples
would be RAID 5 where 1 copy is maintained and RAID 1
where 2 or more copies are maintained. Possible values
are 1 to n.

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number
of spindles or logical devices that can be used. Package
redundancy describes how many disk spindles or logical
devices can fail without data loss including, at most, one
spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number
of spindles or logical devices that can be used. Package
redundancy describes how many disk spindles or logical
devices can fail without data loss including, at most, one
spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancyDefault Mandatory PackageRedundancyDefault describes the default number
of spindles or logical devices that can be used. Package
redundancy describes how many disk spindles or logical
devices can fail without data loss including, at most, one
spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.
SNIA Technical Position 297

Use Cases for CKD Storage

387

388
389

390

391
ExtentStripeLengthDefault Optional Describes what the default stripe length, the number of
members or columns, a storage element will have when
created or modified using this capability. A NULL means
that the setting of stripe length is not supported at all or not
supported at this level of storage element allocation or
assignment.

ParityLayoutDefault Optional ParityLayoutDefault describes what the default parity a
storage element will have when created or modified using
this capability. A NULL means that the setting of the parity
is not supported at all or is not supported at this level of
storage element allocation or assignment.

UserDataStripeDepthDefault Optional UserDataStripeDepthDefault describes what the number of
bytes forming a stripe that a storage element will have
when created or modified using this capability. A NULL
means that the setting of stripe depth is not supported at all
or not supported at this level of storage element allocation
or assignment.

AvailableDiskType Optional Enumeration indicating the type of DiskDrives which may
be available. (0)Unknown, (1)Other, (2)Hard Disk Drive,
(3)Solid State Drive, (4)Hybrid.

AvailableFormFactorType Optional Enumeration indicating the drive physical size which may
be available. (0)Unknown, (1)Other, (2)Not Reported,
(3)5.25 inch, (4)3.5 inch, (5)2.5 inch, (6)1.8 inch".

AvailableInterconnectType Optional Enumeration indicating the type of disk interconnections
which may be available. (0)Unknown, (1)other , (2)SAS,
(3)SATA, (4)SAS/SATA, (5)FC, (6)SOP.

AvailableInterconnectSpeed Optional The speed of disk interconnections which are be available.
Values are in bits/second.

AvailableRPM Optional The rotational speed of disk media which are be available.
Values are in rotations per minute. SSD devices shall report
0".

Encryption Optional This property reflects support of the encryption feature
implemented by some disk drives.

SupportedCompressionRates Optional SupportedCompressionRates identifies the compression
rates that are supported by the implementation, "including
'1' (None). If '1' (None) is specified, then no other rate may
be identified. If '1' (None) is not specificed, then the values
recognized are '2' (High), '3' (Medium), '4' (Low) and/or '5'
(Implementation Decides).

SupportedDataOrganizations
(added)

N Mandatory Supported values for SMI-S are "4" (Count Key Data) and
anything else (including NULL) for non-CKD volumes. CKD
Volumes use "4".

SupportedExtentTypes (added) Mandatory Supported values for SMI-S are "2" ("Open"), "3"
("Intermediate") and "4" ("Mainframe"). CKD access is
supported for either "3" or "4". Open systems access is
supported for either "2" or "3".

CreateSetting() Conditional Conditional requirement: Support for
StorageConfigurationService. Generate a setting to use as
a goal for creating or modifying storage elements.

GetSupportedStripeLengths() Optional List the possible discrete stripe lengths supported at this
time of this method's execution.

Table 173 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes
298

 Use Cases for CKD Storage

392

393

394

395
396

397

398

399

400

401

402

403

404

405

406

407

408
8.6.34 CIM_StorageSetting

The CIM_StorageSetting specializes CIM_StorageSetting and is enhanced to add the DataOrganization,
CUImage, SubsystemID and EmulatedDevice properties. The Properties that are different from what is
specified in the Block Services Package have descriptive text. The class definition specializes the
CIM_StorageSetting definition in the Block Services profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 174 describes class CIM_StorageSetting.

GetSupportedStripeLengthRange() Optional List the possible stripe length ranges supported at the time
of this method's execution.

GetSupportedParityLayouts() Optional List the possible parity layouts supported at the time of this
method's execution.

GetSupportedStripeDepths() Optional List the possible stripe depths supported at the time of this
method's execution.

GetSupportedStripeDepthRange() Optional List the possible stripe depth ranges supported at the time
of this method's execution.

Table 174 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In addition, the
user-friendly name can be used as a index property for a search of
query. (Note: Name does not have to be unique within a namespace.).

NoSinglePointOfFailure Mandatory Indicates the desired value for No Single Point of Failure. Possible
values are false = single point of failure, and true = no single point of
failure.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete
copies of data to be maintained. Examples would be RAID 5 where 1
copy is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete
copies of data to be maintained. Examples would be RAID 5 where 1
copy is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of spindles or
logical devices to be used. Package redundancy describes how many
disk spindles or logical devices can fail without data loss including, at
most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

Table 173 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes
SNIA Technical Position 299

Use Cases for CKD Storage

409

410

411

412

413

414

415
PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of spindles
or logical devices to be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss
including, at most, one spare. Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional ExtentStripeLength describes the desired stripe length goal.

ExtentStripeLengthMin Optional ExtentStripeLengthMin describes the minimum acceptable stripe
length.

ExtentStripeLengthMax Optional ExtentStripeLengthMax describes the maximum acceptable stripe
length.

ParityLayout Optional ParityLayout describes the desired parity layout. The value may be 1 or
2 (Non-rotated Parity or Rotated Parity).

UserDataStripeDepth Optional UserDataStripeDepth describes the desired stripe depth.

UserDataStripeDepthMin Optional UserDataStripeDepthMin describes the minimum acceptable stripe
depth.

UserDataStripeDepthMax Optional UserDataStripeDepthMax describes the maximum acceptable stripe
depth.

ChangeableType Mandatory This property informs a client if the setting can be modified. It also tells
the client how long this setting is expected to remain in the model. If the
implementation allows it, the client can use the property to request that
the setting's existence be not transient.

StorageExtentInitialUsage Optional The Usage value to be used when creating a new storage element.

StoragePoolInitialUsage Optional The Usage value to be used when creating a new storage pool.

DiskType Optional Enumeration indicating the type of DiskDrive wanted. (0)Dont care,
(1)Other, (2)Hard Disk Drive, (3)Solid State Drive, (4)Hybrid.

InterconnectType Optional Enumeration indicating the type of disk interconnection wanted.".

InterconnectSpeed Optional The speed of disk interconnection wanted in bits/second. Value of 0
means dont care.

FormFactorType Optional Enumeration indicating the physical size of drive wanted.".

RPM Optional The rotational speed of disk media wanted. A value of 0xffffffff means
dont care. A value of 0 specifies a SSD drive.

Encryption Optional This property reflects support of the encryption feature wanted.

PortType Optional

CompressionRate Optional CompressionRate Indicates the desired compression for a storage
element. The possible values are '1' (None), '2' (High), '3' (Medium), '4'
(Low) or '5' (Implementation Decides).

CompressedElement Optional CompressedElement property indicates whether or not compression of
the element is being requested. When set to true, compression is being
requested. When set to false, compression is not being requested.

DataOrganization (added) Mandatory Supported value for CKD Volumes in SMI-S is "4" (Count Key Data).
For non-CKD Volumes the property is either NULL or any value other
than "4".

Table 174 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes
300

 Use Cases for CKD Storage

416

417

418

419
8.6.35 CIM_StorageVolume

The CIM_StorageVolume specializes CIM_StorageVolume and enhances that class to add the
DataOrganization, CUImage, SubsystemID and EmulatedDevice properties. Other properties have some
unique CKD considerations. The StorageVolume is listed as optional. The Properties that are different
from what is specified in the Block Services Package have descriptive text. The class definition
specializes the CIM_StorageVolume definition in the Block Services profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from either Array or Storage Virtualizer - StorageVolume is mandatory.

ExtentType (added) Mandatory This property specifies extent type for host access. ("1"(=Other),
"2"(=Open), "3"(Intermediate), "4"(=Mainframe)).

CUImage (added) Conditional Conditional requirement: Required if
StorageSetting.DataOrganization=\4\'.'This property is the Node
Element Descriptor of the Control Unit Image (this property is required
for CKD StorageVolumes). It is not required for LogicalDisks.

SubsystemID (added) Optional This property is the Subsystem ID if the array or virtualizer supports
Subsystem IDs. If they are supported they would be required on
volume creation.

EmulatedDevice (added) Optional This string property specifies the specific device (e.g., 3380 or 3390)
that is emulated by the volume.

Table 174 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes
SNIA Technical Position 301

Use Cases for CKD Storage

420

421
Table 175 describes class CIM_StorageVolume.

Table 175 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name (overridden) CD Mandatory An Identifier for this volume.CKD extents the name formats
allowed to include a NED format.

OtherIdentifyingInfo CD Optional Additional correlatable names. CKD extents the name formats
allowed to include a NED format.

IdentifyingDescriptions Conditional. Required if OtherIdentifyingInfo is provided.

NameFormat (overridden) Mandatory Format for Name property. For CKD Volumes, this shall be set to
"12" (NED).

NameNamespace Mandatory The namespace that defines uniqueness for the NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant). In addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

BlockSize (overridden) Mandatory The BlockSize would report the number of bytes in a cylinder.

NumberOfBlocks
(overridden)

Mandatory The number of blocks would be the number of cylinders.

ConsumableBlocks
(overridden)

Mandatory The number of usable cylinders.

IsBasedOnUnderlyingRedun
dancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Conditional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory This is an array of values that shall contain 'SNIA:Allocated'.

CanDelete Optional Indicates if the volume is able to be deleted by a client application.

NumExtentsMigrating Optional The number of Extents in the process of migrating for this storage
volume when the volume relocation is on going.
302

 Use Cases for CKD Storage
EXPERIMENTAL

IsCompressed Optional IsCompressed identifies whether or not compression is being
applied to the volume. When set to "true" the data is compressed.
When set to "false" the data is not compressed.

CompressionRate Optional CompressionRate identifies whether or not compression is being
applied to the volume and at what rate. The possible values are '1'
(None), '2' (High), '3' (Medium) or '4' (Low).

CompressionState Optional CompressionState indicates whether the compression is '2'
(pending), '3' (initializing), '4' (in progress) or '5' (completed). If
compression is not supported (CompressionRate='1') for the
volume, the CompressionState shall be '1' (Not Applicable).

DataOrganization (added) Mandatory Supported value for CKD Storage Volumes in SMI-S is "4" (Count
Key Data). For non-CKD volumes the property is either NULL or
any value other than "4".

ExtentType (added) Mandatory This property specifies extent type for host access. ("1"(=Other),
"2"(=Open), "3"(Intermediate), "4"(=Mainframe)).

CUImage (added) Conditional Conditional requirement: Required if
StorageVolume.DataOrganization=\4\'.'This property is the Node
Element Descriptor of the Control Unit Image (this property is
required for CKD Volumes).

SubsystemID (added) Optional This property is the Subsystem ID if the array or virtualizer
supports Subsystem IDs. If they are supported they would be
required on volume creation.

EmulatedDevice (added) Optional This string property specifies the specific device (e.g., 3380 or
3390) that is emulated by the volume.

Table 175 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes
SNIA Technical Position 303

Use Cases for CKD Storage
304

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
DEPRECATED

9 Copy Services Profile

As of 1.7.0, Copy Services Profile has been deprecated in favor of Replication Services. This profile will
be removed in the next version of this standard.

9.1 Description

9.1.1 Synopsis

Profile Name: Copy Services (Component Profile)

Version: 1.5.0

Organization: SNIA

Central Class: StorageConfigurationService

Scoping Class: ComputerSystem

Related Profiles: Table 176 describes the related profiles for Copy Services.

9.1.2 Overview

The Copy Services Profile is an optional component profile for the Array, Virtualization and Volume
Manager Profiles.

The profile defines a management interface for local mirror management, local snapshot management
and clone management.

The profile specification uses terminology consistent with the SNIA dictionary of storage networking
except for the term clone. A clone is a fully copied replica the same size as the source element created
with the intent of becoming an independent element.

Two types of synchronization views are supported. A replica may be synchronized to the current view of
the source element or may be synchronized to a point-in-time view. Snapshots and clones always
represent a point-in-time view of the source element. A mirror can represent either a current view or a
point-in-time view as indicated by the synchronization state property of the association. A provider
maintains a stateful view of a source element as long as the source and replica association is maintained.
The synchronization view is modeled with a StorageSynchronized association. A client can determine the
type and state of the synchronized view by inspecting properties of the association instance.

Two copy operation modes are supported -- synchronous and asynchronous. In the synchronous mode,
the write operations to the source elements are reflected to the target elements before signalling the host
that a write operation is complete. In the asynchronous mode, the host is signaled as soon as the write
operations to the source elements are complete; however, the writes to the target elements may take
place at a later time.

Table 176 - Related Profiles for Copy Services

Profile Name Organization Version Requirement Description

Block Services SNIA 1.6.1 Mandatory

Job Control SNIA 1.5.0 Optional
SNIA Technical Position 305

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48
The profile supports two types of storage elements. Replicas can be instances of StorageVolume or
LogicalDisk. The source and replica elements shall be the same element type. All of the instance
diagrams that follow show StorageVolume replicas but apply equally to LogicalDisk replicas.

A copy service for storage elements deploys some type of copy engine. Copy techniques for storage
elements include full background copy, copy-on-write and copy-on-read. Most aspects of copy engines
are opaque to clients. A provider may allow the client to manage the copy engine for background copy
operations. This optional capability is discussed in 9.6.9.

9.1.3 Copy Services Discovery

The extrinsic methods invoked to create and manage replicas are defined in the
StorageConfigurationService class shown in Figure 49.

Figure 49 - Copy Services Discovery

ElementCapabilities

ComputerSystem

// Array

StorageConfigurationService

(Methods Deprecated)

HostedService

StorageConfigurationCapabilities

SupportedAsynchronousActions
SupportedSynchronousActions
SupportedStorageElementTypes
SupportedCopyTypes
InitialReplicationState

ElementCapabilities

ReplicationServiceCapabilities

SupportedReplicationTypes
SupportedStorageObjects
SupportedAsynchronousActions
SupportedSynchronousActions

Copy Services Instance

ReplicationService

HostedService

ElementCapabilities

StorageReplicationCapabilities

SupportedSynchronizationType
SupportedAsynchronousActions
SupportedSynchronousActions
InitialReplicationState
SupportedModifyOperations
ReplicaHostAccessibility
HostAccessibleState
LocalMirrorSnapshotSupported
MaximumReplicasPerSource
MaximumLocalReplicationDepth
InitialSynchronizationDefault
ReplicationPriorityDefault
LowSpaceWarningThresholdDefault
DeltaReplicaPoolAccess
306

 Overview

49

50

51

52

53
EXPERIMENTAL

The single instance of the class ReplicationService and its methods provide the mechanism for creating
and managing replicas.

Replication Services relies on the Block Services Package for storage pool manipulations and capacity
related indications.

EXPERIMENTAL

9.1.4 Copy Services Capabilities

9.1.4.1 Overview

The Copy Services Profile enables a provider to deploy all of the modeled replication capabilities in a
single service instance. For example, one service instance may support local mirrors and delta
snapshots. A client discovers and analyzes each of these capabilities as shown in Figure 49: "Copy
Services Discovery".

EXPERIMENTAL

The StorageConfigurationService methods for performing copy functions are being deprecated, but the
StorageConfigurationCapabilities and ReplicationServiceCapabilities are not being deprecated. The
newer methods for performing copy functions are in the ReplicationService, which has its own
Capabilities class. Both the StorageConfigurationCapabilities and the ReplicationServiceCapabilities
would be associated to the StorageConfigurationService. This section discusses both sets of capabilities
and how they relate.

EXPERIMENTAL

9.1.4.2 Replication Policy

A provider exposes an instance of StorageReplicationCapabilities for each replication capabilities
supported. The CopyType property as defined in CIM_StorageSynchronized describes the replication
policies supported by the profile.

Async: Create and maintain an asynchronous mirror copy of the source.

Sync: Create and maintain a synchronous mirror copy of the source. Writes done to the source
element are reflected to the mirror before signalling the host that the write is complete. Used to
maintain a copy requiring guaranteed consistency during a recovery operation.

UnSyncAssoc: Creates an unsynchronized copy associated to the source element. This type of
copy is called a “snapshot” and represents a point-in-time image of the source element. Separate
instances of StorageReplicationCapabilities may be defined for full size snapshots and delta
snapshots corresponding to this CopyType value.

UnSyncUnAssoc: Creates an unsynchronized clone of the source element and does not maintain
the source association after completing the copy operation.

EXPERIMENTAL

In addition, an implementation may specify SyncTypes to describe the replication policy supported by the
profile. The following SyncTypes are defined:
SNIA Technical Position 307

Modes

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87
Mirror: Creates and maintains a synchronized mirror copy of the source. Writes done to the
source element are reflected to the target element. The target element remains dependent on the
source element.

Snapshot: Creates a point-in-time, virtual image of the source element. The target element
remains dependent on the source element. Snapshots are commonly known as delta replicas and
contain incrementally changed data as well as the pointers to the unchanged source element
data.

Clone: Creates a point-in-time, independent, copy of the source element.

Synchronized replication indicates that updates to a source element are reflected to the target element.
The mode determines whether the target element is updated immediately, in the case of synchronous
mode, or some time later, in the case of asynchronous mode.

Table 177 compares the SyncTypes and the relationships between the source and target elements. It is a
quick reference for the clients to determine the appropriate SyncType for the intended target results.

With respect to "Relation of Target to Source," Dependent indicates the target element shall remain
associated with the source element; Independent indicates the target element can exist without the
source element.

9.1.4.3 Modes

The mode controls when the write operations are performed. The following modes are defined:

Synchronous: The writer waits until the write operations are committed to both the source and
target elements; or to both the source element and a target related entity, such as pointer tables.

Asynchronous: The writer waits until the write operations are committed to the source elements
only. In this mode, there can be a delay before the write operations are committed to the target
elements.

Table 177 - Comparing SyncTypes

SyncType Relation of
Target to
Source

Updates to
Source

Reflected to
Target

Target
is Point-In-

Time
Copy

Target is self-
contained

Target is
Virtual copy
of Source

Target’s space
consumption

Mirror Dependent Yes No Yes-after Split/
Detach

No Same as source

Snapshot Dependent No Yes No Yes Much less than source

Clone Independent No Yes Yes No Same as source
308

 Alignment of SupportedSynchronizationType and SupportedReplicationType

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106
9.1.4.4 Alignment of SupportedSynchronizationType and SupportedReplicationType

The values for SupportedSynchronizationType (in StorageReplicationCapabilities) and
SupportedReplicationType (in ReplicationServiceCapabilities) should be aligned with each other. Table
178 the alignment of these properties.

EXPERIMENTAL

9.1.4.5 Other Capabilities

The StorageReplicationCapabilities class defines informational properties with un-modifiable values that
guide a client using the various capabilities of the service. For example:

• Instance 1 defines the capability to create local mirrors. SupportedSynchronizationType is set to a
value of “Sync” and the AttachReplica method is the only method supported for mirror creation. The
InitialReplicationState is “Synchronized”.

• Instance 2 defines the capability to create snapshots. SupportedSynchronizationType is set to a
value of “UnSyncAssoc - Delta” and the CreateReplica method is the only method supported for
snapshot creation. The InitialReplicationState is “Idle”.

Further details concerning discovery and the use of capability properties are included in 9.6 "Client
Considerations and Recipes".

Table 178 - Alignment of SupportedSynchronizationType and SupportedReplicationType

Supported
ReplicationType

Supported
Synchronization

Type

Notes

Synchronous Mirror
Local

Sync If an implementation supports the “Sync“ SupportedSynchronizationType, then
it should report that it supports a “Synchronous Mirror Local”
SupportedReplicationType

Asynchronous Mirror
Local

Async If an implementation supports the “Async“ SupportedSynchronizationType,
then it should report that it supports a “Asynchronous Mirror Local”
SupportedReplicationType

Synchronous Snapshot
Local

UnsyncAssoc - Full If an implementation supports the “UnsyncAssoc - Full“
SupportedSynchronizationType, then it may report that it supports a
“Synchronous Snapshot Local” SupportedReplicationType.

UnsyncAssoc - Delta If an implementation supports the “UnsyncAssoc - Delta“
SupportedSynchronizationType, then it may report that it supports a
“Synchronous Snapshot Local” SupportedReplicationType

Asynchronous
Snapshot Local

UnsyncAssoc - Full If an implementation supports the “UnsyncAssoc - Full“
SupportedSynchronizationType, then it may report that it supports a
“Asynchronous Snapshot Local” SupportedReplicationType

UnsyncAssoc - Delta If an implementation supports the “UnsyncAssoc - Delta“
SupportedSynchronizationType, then it may report that it supports a
“Asynchronous Snapshot Local” SupportedReplicationType

Synchronous Clone
Local

UnsyncUnassoc

If an implementation supports the “UnsyncUnassoc“
SupportedSynchronizationType, then it may report that it supports a
“Synchronous Clone Local” SupportedReplicationType

Asynchronous Clone
Local

If an implementation supports the “UnsyncUnassoc“
SupportedSynchronizationType, then it may report that it supports a
“Asynchronous Clone Local” SupportedReplicationType
SNIA Technical Position 309

Overview

107

108

109

110

111

112

113

114

115

116

117
9.1.5 Replication modeling

9.1.5.1 Overview

Figure 50: "Local Replica" shows the basic model of a local replica.

A local replica is created by invoking either the CreateReplica or the AttachReplica extrinsic methods.
CreateReplica creates a new storage element in a storage pool. AttachReplica transforms an existing,
independent storage element into a replica. The new replica is the same element type as the source
element. Several associations are implicitly created for all replica elements. A StorageSynchronized
association shall be created if the new replica remains associated with its source element. A
SystemDevice association shall be created or shall already exist. An AllocatedFromStoragePool
association shall be created or shall already exist. An ElementSettingData association with an instance of
StorageSetting is created or shall already exist for the replica element. An optional BasedOn association
may exist if AttachReplica is invoked to transform an existing element into an associated replica.

EXPERIMENTAL

The CreateReplica method allows a client to delegate the selection of a target element location and
settings to the invoked provider. The client selects a source element for the replication operation and may
optionally choose to supply a storage pool location and storage settings or to let the provider make the

Figure 50 - Local Replica

StorageVolume

// source

StorageVolume

// target
StorageSynchronized

ElementSettingData

AllocatedFromStoragePool

SystemDevice

BasedOn
(or sub-class)

ComputerSystem

// array
310

 Multiple Replicas

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
choices. The AttachReplica method allows a client to completely manage the source/target replication
pairing. The client creates a new target element or selects an existing element to be used as the target.
Once the target element is prepared, the client invokes the AttachReplica method and the provider pairs
the source and target elements selected by the client. All providers shall support at least one of these two
methods.

EXPERIMENTAL

9.1.5.2 Multiple Replicas

The profile supports both multiple replicas per associated source element and multi-level replication.
Properties in StorageReplicationCapabilities allow the provider to indicate the maximum number of
replicas for one source element and the maximum depth for multi-level replication. Figure 51: "Multi-
Level Local Replication" show the basic model for local multi-level replication.

EXPERIMENTAL

If an implementation supports multi-hop replication, the supported features (obtained via the
GetSupportedFeatures method) will indicate “Multi-hop element replication”. Furthermore, the
implementation may need to know that the client is planning to add additional hops in subsequent
operations. In this case, the replication capabilities would indicate “Multi-hop requires advance notice”. In
response to this capability, the client in creating the first replica, must set the property
ReplicationSettingData.Multihop appropriately; see 9.7 "CIM Elements" for details on Multihop
specification. The capabilities method GetSupportedMaximum indicates the maximum number of hops
supported by the implementation.

EXPERIMENTAL

Figure 51 - Multi-Level Local Replication

StorageVolume

// level 1 source

StorageVolume

// mirror replica
// level 2 source

StorageSynchronized

Local multi-level replication

StorageVolume

// mirror replica
// level 3 source

StorageSynchronized

StorageVolume

// snapshots

StorageSynchronized

StorageVolume

// snapshots

StorageSynchronized

StorageVolume

// snapshots

StorageSynchronized
SNIA Technical Position 311

Snapshots

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149
9.1.5.3 Snapshots

Snapshots are created using CopyType “UnSyncAssoc” when either the CreateReplica or AttachReplica
extrinsic method is invoked. Snapshots may be created as full replicas or delta replicas. A provider
supporting delta replicas may enable several optional capabilities used with the variable space
consumption model described in 9.6 "Client Considerations and Recipes". A client uses these capabilities
to ensure sufficient but not excessive availability of space for groups of delta replicas. Action can be
taken by a client to prevent failure of delta replica elements caused by lack of consumable space.

Figure 52: "Multiple Snapshots Per Source Element" shows the basic model of snapshots created as
delta replicas.

9.1.6 Associations

9.1.6.1 StorageSynchronized Association

9.1.6.1.1 Association Properties

This association relates the individual source and target elements. The association’s property SyncState
indicates the current state of the association. Some possible values of SyncState are Initialized or
Synchronized.

In addition to the SyncState, there are a number of other properties on the StorageSynchronized
Association. These include:

Figure 52 - Multiple Snapshots Per Source Element

AllocatedFromStoragePool

StoragePool

// Pool for delta replicas

StorageVolume

// source

Multiple delta snapshots per source element

StorageVolume

// snapshot

StorageVolume

// snapshot

StorageVolume

// snapshot

ReplicaPoolForStorage

StorageSynchronized
312

 StorageSynchronized Association

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166
• WhenSynced: This is the date/time of the creation of a point in time copy.

• SyncMaintained: This indicates whether synchronization is maintained.

• CopyType: This defines the type of (copy) association between source and target.

• ReplicaType: This is an informational property describing the type of replication.

EXPERIMENTAL

• CopyPriority: Priority of copy engine I/O relative to host I/O.

In addition, there are a number of other properties that are being added to the StorageSynchronized
Association. These include:

• WhenEstablished: Specifies when the association was established.

• WhenActivated: Specifies when the association was activated.

• WhenSuspended: Specifies when the association was suspended.

• SyncType: Type of association between source and target elements.

• Mode: Specifies when target elements are updated.

• RequestedCopyState: Indicates the last requested or desired state for the association.

• CopyState: indicates the current state of the association.

• ProgressStatus: Status of association between source and target groups.

• PercentSynced: Specifies the percent of the work completed to reach synchronization.

9.1.6.1.2 Alignment of StorageSynchronized Properties

The SyncType and mode properties and the CopyType property are related and their values should be
aligned as shown in Table 179.

Table 179 - Alignment of SyncType/Mode and CopyType

SyncType /
Mode

CopyType Notes

Mirror / Asynchronous Async If an implementation reports SyncType=”Mirror” and Mode=”Asynchronous”,
then it should report CopyType=”Async”.

Mirror / Synchronous Sync If an implementation reports SyncType=”Mirror” and Mode=”Synchronous”,
then it should report CopyType=”Sync”.

Snapshot /
Synchronous

UnsyncAssoc If an implementation reports SyncType=”Snapshot” and Mode=”Synchronous”
or Mode=”Asynchronous”, then it should report CopyType=”UnsyncAssoc”.

Snapshot /
Asynchronous

Clone / Synchronous UnsyncUnAssoc If an implementation reports SyncType=”Clone” and Mode=”Synchronous” or
Mode=”Asynchronous”, then it should report CopyType=”UnsyncUnAssoc”.

Clone / Asynchronous
SNIA Technical Position 313

StorageSynchronized Association

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185
The CopyState and ProgressStatus and SyncState properties are related and their values should be
aligned as shown in Table 180:

Table 180 - Alignment of CopyState and SyncState

CopyState /
ProgressStatus

SyncState Notes

Initialized /Completed Initialized If an implementation reports CopyState=”Initialized” and
ProgressStatus=”Completed”, then it should report SyncState=”Initialized”.

Initialized / Preparing Prepare In Progress If an implementation reports CopyState=”Initialized” and
ProgressStatus=”Preparing”, then it should report SyncState=”Prepare In
Progress”.

Prepared / Completed Prepared If an implementation reports CopyState=”Prepared” and
ProgressStatus=”Completed”, then it should report SyncState=”Prepared”.

Unsynchronized /
Synchronizing

ResyncInProgress If an implementation reports CopyState=”Unsynchronized” and
ProgressStatus=”Synchronizing”, then it should report
SyncState=”ResyncInProgress”.

Synchronized /
Completed

Synchronized or Frozen If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Completed”, then it should report SyncState=”Synchronized”
or SyncState=”Frozen”.

Initialized / Completed PrepareInProgress If an implementation reports CopyState=”Initialized” and
ProgressStatus=”Completed”, then it should report
SyncState=”PrepareInProgress”.

Prepared / Completed Prepared If an implementation reports CopyState=”Prepared” and
ProgressStatus=”Completed”, then it should report SyncState=”Prepared”.

Prepared /
Synchronizing

ResyncInProgress If an implementation reports CopyState=”Prepared” and
ProgressStatus=”Synchronizing”, then it should report
SyncState=”ResyncInProgress”.

Unsynchronized /
Suspending

Quiesce In Progress If an implementation reports CopyState=”Unsynchronized” and
ProgressStatus=”Suspending”, then it should report SyncState=”Quiesce In
Progress”.

Unsynchronized /
Dormant

Quiesce In Progress If an implementation reports CopyState=”Unsynchronized” and
ProgressStatus=”Dormant”, then it should report SyncState=”Quiesce In
Progress”.

Synchronized /
Completed

Synchronized For mirrors, if an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Completed”, then it should report SyncState=”Synchronized”.

Synchronized /
Completed

Idle For snapshots, if an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Completed”, then it should report SyncState=”Idle” or
SyncState="Synchronized". See Notes.

Synchronized /
Suspending

Quiesce In Progress If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Suspending”, then it should report SyncState=”Quiesce In
Progress”.

Synchronized /
Fracturing

Fracture In Progress If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Fracturing”, then it should report SyncState=”Fracture In
Progress”.

Synchronized / Splitting Fracture In Progress If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Splitting”, then it should report SyncState=”Fracture In
Progress”.

Synchronized / Failing
Over

RestoreInProgress If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Failing Over”, then it should report
SyncState=”RestoreInProgress”.
314

 StorageSynchronized Association

186

187
Synchronized /
Dormant

Quiesce In Progress If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Dormant”, then it should report SyncState=”Quiesce In
Progress”.

Synchronized /
Initializing

Initialized If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Initializing”, then it should report SyncState=”Initialized”.

Fractured / Completed Fractured If an implementation reports CopyState=”Fractured” and
ProgressStatus=”Completed”, then it should report SyncState=”Fractured”.

Fractured / Resyncing ResyncInProgress If an implementation reports CopyState=”Fractured” and
ProgressStatus=”Resyncing”, then it should report
SyncState=”ResyncInProgress”.

Split / Completed Fractured If an implementation reports CopyState=”Split” and
ProgressStatus=”Completed”, then it should report SyncState=”Fractured”.

Split / Resyncing ResyncInProgress If an implementation reports CopyState=”Split” and
ProgressStatus=”Resyncing”, then it should report
SyncState=”ResyncInProgress”.

Suspended /
Completed

Quiesced If an implementation reports CopyState=”Initialized” and
ProgressStatus=”Completed”, then it should report SyncState=”Quiesced”.

Suspended / Resyncing ResyncInProgress If an implementation reports CopyState=”Suspended” and
ProgressStatus=”Resyncing”, then it should report
SyncState=”ResyncInProgress”.

Broken /
Not Applicable

Broken If an implementation reports CopyState=”Broken” and ProgressStatus=”Not
Applicable”, then it should report SyncState=”Broken”.

Inactive / Completed Quiesced For mirrors, if an implementation reports CopyState=”Inactive” and
ProgressStatus=”Completed”, then it should report SyncState=”Quiesced”.

Inactive / Completed Idle For snapshots, if an implementation reports CopyState=”Inactive” and
ProgressStatus=”Completed”, then it should report SyncState=”Idle”.

Inactive / Resyncing ResyncInProgress If an implementation reports CopyState=”Inactive” and
ProgressStatus=”Resyncing”, then it should report
SyncState=”ResyncInProgress”.

Aborted / Completed Quiesced For mirrors, if an implementation reports CopyState=”Aborted” and
ProgressStatus=”Completed”, then it should report SyncState=”Quiesced”.

Aborted / Completed Idle For snapshots, if an implementation reports CopyState=”Aborted” and
ProgressStatus=”Completed”, then it should report SyncState=”Idle”.

Failedover / Completed Fractured For mirrors, if an implementation reports CopyState=”Failedover” and
ProgressStatus=”Completed”, then it should report SyncState=”Fractured”.

Failedover / Completed Frozen For snapshots, if an implementation reports CopyState=”Failedover” and
ProgressStatus=”Completed”, then it should report SyncState=”Frozen”.

Synchronized / Failing
back

RestoreInProgress If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Failing back”, then it should report
SyncState=”RestoreInProgress”.

Skewed / Completed Initialized If an implementation reports CopyState=”Skewed” and
ProgressStatus=”Completed”, then it should report SyncState=”Initialized”.

Skewed / Resyncing ResyncInProgress If an implementation reports CopyState=”Skewed” and
ProgressStatus=”Resyncing”, then it should report
SyncState=”ResyncInProgress”.

Table 180 - Alignment of CopyState and SyncState

CopyState /
ProgressStatus

SyncState Notes
SNIA Technical Position 315

SettingsDefineState Association
Notes:

1) SyncState will have a value of 0 when there is no direct mapping between CopyState/ProgressStatus.

2) It is possible to map a combination of CopyState/ProgressStatus to more than one possible SyncStates
– for example, SyncState=”Idle” or SyncState=”Synchronized”. In such cases, clients should check for
both possible values.

9.1.6.2 SettingsDefineState Association

The SettingsDefineState associates an element (e.g., a StorageVolume) to a SynchronizationAspect. An
instance of SynchronizationAspect includes properties for the date and time of the point-in-time copy and
a reference to the source element (see Figure 53). The association is particularly useful for Clones
(targets) and Snapshots (source) that do not have a StorageSynchronized association to another storage
element. In the case of Clones, the StorageSynchronized association is removed (generally, following the
provider’s restart) after the copy operation completes. As for Snapshots, it is possible to create a point-in-
time snapshot copy of an element, or a group of elements, without having a target element (using the
method CreateSynchronizationAspect). In this mode, the target elements are added at a later time (using
the method ModifySettingsDefineState).

SettingsDefineState may also be applied to Mirror targets; as such, the property
SynchronizationAspect.WhenPointInTime would have the date and time of when the mirror relationship
was fractured (or split).

In all cases, the SettingsDefineState association may not persist across the provider’s restarts.
Furthermore, an instance of a SynchronizationAspect shall be removed if the SourceElement is deleted.

Figure 54 is an instance diagram for a clone target element and its associated SynchronizationAspect
instance. Once the clone target element becomes synchronized, the StorageSynchronized association is
removed and the property SynchronizationAspect.SyncState has a value of “Operation Completed.”

Figure 53 - SettingsDefineState Association

StorageVolume

Source or Target Element

SynchronizationAspect

datetime WhenPointInTime
REF SourceElementSettingsDefineState
316

 SettingsDefineState Association

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210
EXPERIMENTAL

9.1.7 Durable Names and Correlatable IDs of the Profile

This is not applicable to local copy services. Normal Block Services Correlatable IDs apply for volumes
(or logical disks) managed by Copy Services.

Figure 54 - SynchronizationAspect Instance

StorageVolume

// Source

StorageVolume

// Target
// Clone

SettingsDefineState

StorageSynchronized

Before

SynchronizationAspect

// SyncStatus: Operation In Progress
// WhenPointInTime
// SourceElement ObjectPath

StorageVolume

// Source

StorageVolume

// Target
// Clone

SettingsDefineState

After

SynchronizationAspect

// SyncStatus: Operation Completed
// WhenPointInTime
// SourceElement ObjectPath

Once synchronization is reached, StorageSynchronized association is removed.
SNIA Technical Position 317

Using StorageConfigurationService Methods

211

212

213
9.1.8 Accessibility to Created Elements

9.1.8.1 Using StorageConfigurationService Methods

The profile recommends that method providers for replica creation methods make all replica elements
and associations accessible when the method response is returned to the client. This includes the case
when the provider returns “job started” to the client. This allows the client to immediately monitor and
manage the replica, new associations to the replica and new associated elements.

If the provider returns “job completed”, all new elements and associations shall be accessible. If “job
started” is returned, new elements may not be immediately accessible. There are two cases the provider
should consider:

Case 1: a new element and new associations are created (CreateReplica).

If the provider returns a reference to the new element as a method output parameter, all new associations
shall also be accessible and AffectedJobElement shall now reference the new element for the returned
job reference. No instance creation indications need to be generated. If the provider does not return a
reference to the new element, an instance creation indication shall be generated when the new element is
accessible. When the job completes successfully, AffectedJobElement shall reference the new element.
The new element and all new associations shall be accessible when the instance creation indication is
generated or the job completes successfully, whichever occurs first. Instance creation indications are not
generated for new associations.

Case 2: a new association is created for an existing element (AttachReplica).

If the provider returns “job started”, AffectedJobElement already references the existing element and the
client may attempt to access the new StorageSynchronized association. If the new association is not
accessible, an instance creation indication for StorageSynchronized shall be generated when the
association is accessible. The new association shall be accessible when the instance creation indication
is generated or the job completes successfully, whichever occurs first.

For both cases, at the time an element or association is accessible to the client, all manageable element
and association properties have valid values.

EXPERIMENTAL

9.1.8.2 Using ReplicationService Methods

Not defined in this document.

EXPERIMENTAL

9.1.9 Completion of Long Operations

9.1.9.1 Using StorageConfigurationService Methods

The profile supports three ways of indicating the completion of long running operations when a replica
element is created or modified. This does not apply to a detach operation.

Option 1:

1) Provider returns “job completed” status.

2) SyncState value set to “… In Progress”.

3) Instance modification or instance deletion indication when SyncState value changes to final, steady
state.
318

 Using ReplicationService Methods

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245
Option 2:

1) Provider returns “job started” status and REF to replica element.

2) SyncState value set to “… In Progress”.

3) Instance modification or instance deletion indication when SyncState value changes to final, steady
state.

4) Instance modification when ConcreteJob ends.

Option 3:

1) Provider returns “job started” status but no REF to replica element.

2) Instance creation indication for StorageSynchronized when element is available. May indicate “… In
Progress” state or final state.

3) Instance modification or instance deletion indication when SyncState value changes to final, steady
state.

4) Instance modification when ConcreteJob ends.

Options 2 and 3 based on job control allow a provider to indicate “percent complete” for long operations
and report job failure information with an instance of Error.

Any option may be selected for un-associated replicas if the provider creates a temporary instance of
StorageSynchronized that is implicitly deleted when the replica is finished. If a temporary instance is not
created, then only options 2 and 3 may be selected and steps 2 and 3 are bypassed.

The ModifySynchronization detach operation and the ReturnToStoragePool method cause element and
association deletion. There are two ways to indicate completion of long delete operations.

Option 1:

Provider returns “job completed”. All affected elements and associations are no longer accessible. No
instance deletion indications should be generated.

Option 2:

1) Provider returns “job started” status. Client assumes elements and associations are no longer
accessible.

2) An instance deletion indication is generated for StorageSynchronized for a detach operation or for a
replica element for a ReturnToStoragePool invocation. The element is successfully deleted when
either job completion occurs or the instance deletion indication is generated, whichever occurs first.

EXPERIMENTAL

9.1.9.2 Using ReplicationService Methods

There are two ways of indicating the completion of long running operations when a replica element is
created or modified:

Option 1: Generally, the long running operations are performed under the control of a job. The client can
monitor the progress of the job by polling the job’s status and percent complete, or by subscribing to job
related indications.

Option 2: Subscribe to receive to indications when the CopyState of StorageSynchronized changes.
SNIA Technical Position 319

Using ReplicationService Methods

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278
Clients may utilize both options simultaneously. To avoid receiving many indications, it is recommended
for the clients to utilize indication queries that are constrained by the object path of the appropriate
replication association.

If replication operation was specified with a WaitForCopyState parameter, the job “waits” until at least the
CopyState is reached, at which point the job considers the operation complete. However, depending on
the specified WaitForCopyState, the copy engine may continue until a steady state is achieved. For
example, in the Figure 57, Inactive and Synchronized states are considered steady states; whereas
Initialized and Unsynchronized are transient states.

EXPERIMENTAL

9.1.10 State Management For Associated Replicas

Both mirror and snapshot replicas maintain stateful associations with source elements. The SyncState
property of a StorageSynchronized association identifies the state. All providers shall support the
deprecated ModifySynchronization extrinsic method that allows a client to manage the synchronization
state of an associated replica unless a provider only allows unassociated replicas. All of the modify
operations supported by the profile are classified as mandatory, optional or not supported by type of
replica. Mirror replicas are the only type of replica created for CopyType values “Sync” and “Async”.
Snapshot replicas are the only type of replica created for CopyType value “UnSyncAssoc”. Table 181
shows the classification.

All instances of StorageReplicationCapabilities shall indicate all mandatory operations plus all supported
optional operations in the value list assigned to the SupportedModifyOperations[] property. Undeployed
optional operations should be implemented as a stubbed “no operation” to ensure backward compatibility
with earlier versions of the profile. Modify operations perform the following actions:

Resync: Causes a fractured mirror replica to change from a point-in-time (PIT) view to a synchronized
mirror replica representing the current view of the source element. The provider can execute a full or
incremental copy as needed to realize a synchronized state. Causes a snapshot to be restarted as a new
PIT image with a new value assigned to WhenSynced. May release all space previously consumed by the
snapshot.

Table 181 - Synchronization Operation Support Requirements

ModifySynchronization Operation Mirror Replicas Snapshot Replicas

Detach Mandatory Optional

Resync Mandatory Mandatory

Fracture Mandatory Not supported

Quiesce Optional Optional

Unquiesce Optional Not supported

Prepare Optional Optional

Unprepare Optional Optional

Restore Optional Optional

Start Copy Not supported Optional

Stop Copy Not Supported Optional

Reset To Sync Optional Not supported

Reset To Async Optional Not supported
320

 Using ReplicationService Methods

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302
Fracture: Splits a synchronized mirror replica from its source element, changing the replica from a
current view of the source element to a PIT view.

Restore: Copies a fractured mirror or a snapshot to the source element. At the completion of the restore
operation, the source and replica represent the same PIT view. The Restore operation for each supported
CopyType can be implemented as an incremental restore or a full restore based on the capabilities of the
provider.

Detach: Removes the association between the source and replica elements. The StorageSynchronized
association is deleted. If the replica is still a valid PIT image, the provider sets OperationalStatus to “OK”.
If not a valid image but the storage element can be reused, the provider sets OperationalStatus to “Error”.
A Detach operation does not delete the replica element. A client should invoke ReturnToStoragePool if
the element is to be deleted following the Detach operation.

 Start Copy: Starts a background copy operation for a snapshot replica. At the completion of the copy
operation, the snapshot enters “Frozen” state.

Stop Copy: Stops a background copy operation for a snapshot replica. The snapshot state changes from
“Copy In Progress” to “Idle”.

Quiesce/Unquiesce: This operation has optional, vendor-specific behavior for mirror replicas that is
opaque to clients. The Quiesce operation stops the copy engine for snapshots and the snapshot no
longer consumes space. A snapshot is no longer a valid PIT image if the source element is updated after
the snapshot enters “Quiesced” state.

Prepare/Unprepare: This operation has optional, vendor-specific behavior for all replica types that may
also depend on the entry state. A prepare operation typically starts a copy engine if entered from
“Initialized” state.

Reset To Sync: Changes the CopyType value of a mirror replica from “Async” to “Sync”.

Reset To Async: Changes the CopyType value of a mirror replica from “Sync” to “Async”.

This information is summarized in Table 182.

Table 182 - SyncState Values

Synchronization State
(SyncState value)

Mirror Replicas Snapshot Replicas Required ModifySynchronization
Operations For Optional States

Initialized Optional Optional Prepare

Prepare In Progress Optional Optional

Prepared Optional Optional Unprepare

Resync In Progress Mandatory Mandatory

Synchronized Mandatory Not specified

Idle Not specified Mandatory

Quiesce In Progress Optional Optional Quiesce

Quiesced Optional Optional Quiesce

Fracture In Progress Mandatory Not specified

Fractured Mandatory Not specified

Copy In Progress Not specified Optional Start Copy

Frozen Not specified Mandatory
SNIA Technical Position 321

Using ReplicationService Methods

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335
EXPERIMENTAL

In addition, an implementation may maintain CopyState and ProgressStatus for a StorageSynchronized
relationship.

The CopyState property of the StorageSynchronized association identifies the state, while the
ProgressStatus property of the same association indicates the “status” of the copy operation to reach the
requested CopyState, which is indicated in the property RequestedSyncState. For example, CopyState
might have a value of “UnSynchronized”, while ProgressStatus might have a value of “Synchronizing”,
also known as “sync-in-progress”. In all cases, when creating a replica element, the desired SyncState is
Synchronized, which indicates the replica element has the same data as the source element. The
RequestedSyncState property will contain “Not Applicable” once the requested SyncState is achieved.

Use the method ReplicationServiceCapabilities.GetSupportedCopyStates to determine the possible
CopyStates. The CopyStates have been normalized in such a way that they may apply to all SyncTypes.

Restore In Progress Optional Optional Restore

Broken Optional Optional

Table 182 - SyncState Values (Continued)

Synchronization State
(SyncState value)

Mirror Replicas Snapshot Replicas Required ModifySynchronization
Operations For Optional States
322

 Using ReplicationService Methods

336

337

338

339

340

341

342

343

344

345

346

347

348
Table 183 describes the supported CopyStates.

EXPERIMENTAL

9.1.11 Reporting Time of Synchronization

All providers shall have access to a time service that allows the provider to assign a date/time value to
the WhenSynced property of StorageSynchronized at the time a replica becomes a valid PIT view of its
source element. The WhenSynced value for mirror replicas shall be non-null for the “Fractured” and
“Restore In Progress” synchronization states. The WhenSynced value for snapshot replicas shall be non-
null for any synchronization state allowing host access to the replica.

9.1.12 State Transition Rules

A provider shall enforce state transition rules for associated replicas. If a client initiates a
ModifySynchronization operation that causes a state transition violation, the provider returns an error
response of “Invalid State Transition”. The provider shall allow a client to bypass certain transitions
related to operations not supported by the provider. For example, a snapshot transition from “Idle” to
“Resync In Progress” is allowed if the provider does not support Quiesce and Prepare operations.

Synchronization states have the following behavior:

Initialized: A source element and replica element are associated and all implicitly created associations
are accessible. The copy engine has not started.

Synchronized: A mirror replica is fully copied and represents the current view of the source element.

Table 183 - CopyStates Values

CopyState value Description

Initialized The source and target elements are associated. The copy engine has not started -- no dataflow.

Prepared Initialization is completed, the copy engine has started, however, the data flow has not started.

Synchronized The “copy operation” is complete. The target element is an “exact replica” of the source element.

Unsynchronized Not all the source element data has been “copied” to the target element.

Fractured The target element was abruptly split from its source element
-- consistency is not guaranteed.

Split The target element was gracefully (or systematically) split from its source element
-- consistency is guaranteed.

Suspended Data flow between the source and target elements has stopped. Writes to source element are held until
the association is Resumed.

Broken Replica is not a valid view of the source element. OperationalStatus of replica may indicate an Error
condition. This state generally indicates an error condition such as broken connection.

Aborted The copy operation is aborted with the Abort operation. Use the Resync Replica operation to restart the
copy operation.

Failedover Reads and writes to/from the target element. Source element is not “reachable”.

Inactive Copy engine has stopped, writes to source element will not be sent to target element.

Skewed The target has been modified and is no longer synchronized with the source element or the point-in-
time view.

Mixed Applies to the SyncState of GroupSynchronized. It indicates the StorageSynchronized associations of
the elements in the groups have different SyncState values.
SNIA Technical Position 323

Using ReplicationService Methods

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363
Idle: A snapshot is accessible but not copied and represents a PIT view of the source element. A copy
engine is actively executing copy-on-write operations.

Fractured: A mirror element is split from its source element and is now a PIT view.

Frozen: A snapshot is accessible and fully copied and represents a PIT view of the source element. The
copy engine is stopped.

Broken: A replica is not a valid view of the source element and OperationalStatus of the replica element
may have a value of “Error” if a repair action is necessary. The provider may allow access to a replica in
this state if indicated in HostAccesibleState[] of StorageReplicationCapabilities. The profile currently does
not specify how to recover from “Broken” state. A ModifySynchronization Detach operation may be
invoked to a replica in this state.

Values of the SyncMaintained and WhenSynced properties in a StorageSynchronized association are
maintained as shown in the Table 184. The table does not apply to CopyType “UnSyncUnAssoc”.

SyncMaintained “True” means that a copy engine is actively copying updated blocks from the source
element to the target element. “False” means either the copy engine is stopped or copying the target to
the source during “Restore In Progress” state. WhenSynced can contain two forms of a Date/Time value.
A non-null value indicates either the date/time a frozen image is created or the date/time that the source
element is completely copied to the target mirror element. The Fracture, Resync and Restore operations
for ModifySynchronization may cause the WhenSynced value to change.

Table 184 - SyncMaintained and WhenSynced Properties

Synchronization State SyncMaintained WhenSynced

Sync/Async UnSyncAssoc Sync/Async UnSyncAssoc

Initialized True or False True or False Null Date/Time frozen

Prepare In Progress True or False True or False Null Date/Time frozen

Prepared True or False True or False Null Date/Time frozen

Resync In Progress True or False True or False Null Date/Time frozen

Synchronized True Not specified Null or

D/T copy done

Null

Idle Not specified True or False Null Date/Time frozen

Quiesce In Progress True or False False Null or

D/T copy done

Null

Quiesced True or False False Null or

D/T copy done

Null

Fracture In Progress True or False Not specified Null or

D/T copy done

Null

Fractured False Not specified Date/Time frozen Null

Copy In Progress Not specified True or False Null Date/Time frozen

Frozen Not specified False Null Date/Time frozen

Restore In Progress False False Date/Time frozen Date/Time frozen

Broken False False Null Null
324

 Overview

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380
9.1.13 State Transitions

9.1.13.1 Overview

Figure 55: "State Transitions for Mirrors and Clones" shows state transitions for mirrors and clones:

Figure 55 - State Transitions for Mirrors and Clones

Prepared

Synchronized

Initialized

Prepare
in

Progress

Resync
in

Progress

Quiesce in
Progress

Quiesced

Prepare

Resync

Unprepare

Prepare

Fractured

Restore
in

Progress

Restore

Fracture in
Progress

Fracture

Unquiesce

Quiesce
SNIA Technical Position 325

Overview

381

382

383

384

385
Figure 56: "State Transitions for Snapshots and Migration" shows state transitions for snapshots:

Figure 55: "State Transitions for Mirrors and Clones" and Figure 56: "State Transitions for Snapshots
and Migration" use the a number of conventions:

Figure 56 - State Transitions for Snapshots and Migration

P re p a re d

Id le

In itia lize d

F ro z e n

P re p a re
in

P ro g re s s

R e sy n c
in

P ro g re s s

C o p y
in

P ro g re ss

R e s to re
in

P ro g re s s

Q u ie s c e in
P ro g re s s

Q u ie sc e d

P re p a re

R e sy n c

R e s to re

R e s to re

Q u ie sc e

S ta r t C o p y

Q u ie s ce

U n p re p a re

P re p a re

S to p
C o p y
326

 Overview

386

387
• The state diagram is entered when any of the three replica creation methods is invoked. Exit occurs
when a ModifySynchronization Detach operation is invoked.

• A transition from a steady state to an in progress state is shown by a solid arrow line and is initiated
by a ModifySynchronization operation other than Detach.

• An automatic transition from an in progress state to a steady state is shown by a dashed arrow line.

• Automatic exit occurs from an in progress state when cloning and migration operations have
completed.

EXPERIMENTAL

Figure 57 shows the CopyState transitions. The dashed arrow lines represent automatic transitions. They
transition unconditionally when the target element is ready to move to the next state. The solid arrow
lines represent the transitions as the result of a requested operation (using, for example,
ModifyReplicaSynchronization). The label of the solid arrow line indicates the requested operation.

The “create” methods normally start with the Initialized state. However, it is possible to use the
WaitForCopyState parameter of the create method to force the CopyState to the Inactive or Prepared
state after the initialization is complete. In this case, CopyState will remain in Inactive or Prepared state
until such time a Modify method is used to Activate the synchronization.
SNIA Technical Position 327

Overview

388

389

390

391
Figure 57 - CopyState Transitions

Exit

Initialized

Unsynchronized

Fractured

Synchronized

Fracture

Inactive

Suspended

Suspend

Suspend

Activate

Resume

Split

Split

Failedover

Failover

Resync

Detach

Detach

ReturnToResourcePool

Deactivate

Entry

Exit

Deactivate

Exit

Detach

Resync

Failback

Create*Replica may
specify WaitForCopyState

= Inactive or Prepared
Note: Dashed arrow lines represent triggerless transition. They fire

unconditionally when target element is ready to move to the next state.

General flow: Initialized, Unsynchronized, Synchronized.

(Synchronized
Clone Target
Dissolves
Relationship)

Exit

Dissolve

Prepared

Activate

unprepare

SkewedResync
328

 Alignment of State Transitions

392

393

394

395

396

397

398

399

400

401

402

403
9.1.13.2 Alignment of State Transitions

Both SyncState and the combination of CopyState and ProgressStatus should be reported and the values
need to be aligned. Table 180 addresses the basic alignment. This section provides more detail on the
state transitions and how they would be coded for both SyncState and CopyState.

• CopyState=”Initialized”, ProgressStatus=”Completed” (SyncState=“PrepareInProgress”)
If the InitialReplicationState=”Initialized”, then this state will exist. When the Initial state can be
Initialized, this is the state of a StorageSynchronized after it is created (or Unprepared). The
association exists, but nothing is going on (WhenSynced=NULL). With ModifyReplicaSynchronization
an Initialized association is automatically Prepared.

Note that it is also possible to get to the Initialized state by doing a ModifyReplicaSynchronization
Unprepare operation. This puts the association back in the Initialized state (which is then
automatically progressed to the next state).

From the Initialized state, the no ModifyReplicaSynchronization operations are supported.

• CopyState=”Prepared”, ProgressStatus=”Completed” (SyncState=”Prepared”)
If the InitialReplicationState=”Prepared” or an Initialized association has been successfully Prepared,
then this state will exist. The association exists, but nothing is going on (WhenSynced=NULL), but it
is enabled for a Resync operation.

From the “Prepared” state there are only operation supported is Activate. This is represented by:

CopyState=”Prepared” and ProgressStatus=”Synchronizing” (SyncState=”ResyncInProgress”)

• CopyState=”Unsynchronized”, ProgressStatus=”Synchronizing” (SyncState=”ResyncInProgress”)
This CopyState is equivalent to a SyncState of “ResyncInProgress”. From the “Synchronized” state
the only operations supported are Suspend and Deactivate. How this gets reported as SyncState
depends on how the CopyState was achieved.

With Suspend: When a client uses ModifyReplicaSynchronization with an Operation of “Suspend” the
association changes to CopyState=”Unsynchronized” with ProgressStatus=”Suspending”. The
SyncState should be set to “QuiesceInProgress”.

With Deactivate: When a client uses ModifyReplicaSynchronization with an Operation of “Deactivate”
the association changes to CopyState=”Unsynchronized” with ProgressStatus=”Dormant”. The
SyncState should be set to “QuiesceInProgress”.

• CopyState=”Synchronized”, ProgressStatus=”Completed” (SyncState=”Synchronized“ or “Idle”)
The CopyState of “Synchronized” is an automatic transition from the Unsynchronized state. For
mirrors, then an implementation should report SyncState=”Synchronized”. For snapshots, the
implementation should report SyncState=”Idle” (or SyncState="Synchronized"). From the
“Synchronized” state the operations supported are: Suspend, Fracture, Split, Failover, Deactivate,
Unprepare and Dissolve.

With Suspend: When a client uses ModifyReplicaSynchronization with an Operation of “Suspend” the
association changes to CopyState=”Synchronized” with ProgressStatus=”Suspending”. The
SyncState should be set to “QuiesceInProgress”.

With Fracture: When a client uses ModifyReplicaSynchronization with an Operation of “Fracture” the
association changes to CopyState=”Synchronized” with ProgressStatus=”Fracturing”. The SyncState
should be set to “Fracture In Progress”.

With Split: When a client uses ModifyReplicaSynchronization with an Operation of “Split” the
association changes to CopyState=”Synchronized” with ProgressStatus=”Splitting”. The SyncState
should be set to “Fracture In Progress”.
SNIA Technical Position 329

Alignment of State Transitions
With Failover: When a client uses ModifyReplicaSynchronization with an Operation of “Failover” the
association changes to CopyState=”Synchronized” with ProgressStatus=”Failing over”. The SyncState
should be set to “Restore In Progress”.

With Deactivate: When a client uses ModifyReplicaSynchronization with an Operation of “Deactivate”
the association changes to CopyState=”Synchronized” with ProgressStatus=”Dormant”. The
SyncState should be set to “QuiesceInProgress”.

With Unprepare: When a client uses ModifyReplicaSynchronization with an Operation of “Unprepare”
the association changes to CopyState=”Synchronized” with ProgressStatus=”Initializing”. The
SyncState should be set to “Initialized”.

With Dissolve: The StorageSynchronized is deleted.

• CopyState=”Fractured”, ProgressStatus=”Completed” (SyncState=”Fractured“)
This CopyState is equivalent to a SyncState of “Fractured”. From the “Fractured” state the only
operations supported are: Resync and Detach.

With Detach: The StorageSynchronized is deleted.

With Resync: When a client uses ModifyReplicaSynchronization with an Operation of “Resync” the
association changes to CopyState=”Fractured” with ProgressStatus=”Resyncing”. The SyncState
should be set to “ResyncInProgress”.

• CopyState=”Split”, ProgressStatus=”Completed” (SyncState=”Fractured“)
This CopyState is equivalent to a SyncState of “Fractured”. From the “Split” state the only operations
supported are: Resync and Detach.

With Detach: The StorageSynchronized is deleted.

With Resync: When a client uses ModifyReplicaSynchronization with an Operation of “Resync” the
association changes to CopyState=”Split” with ProgressStatus=”Resyncing”. The SyncState should be
set to “ResyncInProgress”.

• CopyState=”Suspended”, ProgressStatus=”Completed” (SyncState=”Quiesced“)
This CopyState is equivalent to a SyncState of “Quiesced”. From the “Suspended” state the only
operation supported is: Resume.

With Resume: When a client uses ModifyReplicaSynchronization with an Operation of “Resume” the
association changes to CopyState=”Suspended” with ProgressStatus=”Resyncing”. The SyncState
should be set to “ResyncInProgress”.

• CopyState=”Broken”, ProgressStatus=”Not Applicable” (SyncState=”Broken“)
This CopyState is equivalent to a SyncState of “Broken”. From the “Broken” state the only operation
supported is Activate. Repair work must be done. When this is done, the association is put in the
“Inactive” state.

With Activate: When a client uses ModifyReplicaSynchronization with an Operation of “Activate” the
association changes to CopyState=”Inactive” with ProgressStatus=”Resyncing”. The SyncState
should be set to “ResyncInProgress”.

• CopyState=”Aborted”, ProgressStatus=”Completed” (SyncState=”Idle“ for snapshots and “Quiesced”
for mirrors)
This CopyState is equivalent to a SyncState of “Idle” for snapshots and “Quiesced” for mirrors. From
the “Aborted” state the only operation supported is Activate.

With Activate: When a client uses ModifyReplicaSynchronization with an Operation of “Activate” the
association changes to CopyState=”Aborted” with ProgressStatus=”Resyncing”. The SyncState
should be set to “ResyncInProgress”.
330

 Alignment of State Transitions

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449
• CopyState=”Failedover”, ProgressStatus=”Completed” (SyncState=”Frozen“ for snapshots and
”Fractured“ for mirrors)
This CopyState is equivalent to a SyncState of “Frozen” for snapshots and “Fractured” for mirrors.
From the “Failedover” state the only operations supported are: Failback and Detach.

With Failback: When a client uses ModifyReplicaSynchronization with an Operation of “Failback” the
association changes to CopyState=”Synchronized” with ProgressStatus=”Failing back”. The
SyncState should be set to “Restore In Progress”.

With Detach: The association is deleted.

• CopyState=”Inactive”, ProgressStatus=”Completed” (SyncState=”Idle“ for snapshots and “Quiesced”
for mirrors)
This CopyState is equivalent to a SyncState of “Idle” for snapshots and “Quiesced” for mirrors. From
the “Inactive” state the only operation supported is: Activate.

With Activate: When a client uses ModifyReplicaSynchronization with an Operation of “Activate” the
association changes to CopyState=”Inactive” with ProgressStatus=”Resyncing”. The SyncState
should be set to “ResyncInProgress”.

• CopyState=”Skewed”, ProgressStatus=”Completed” (SyncState=”Initialized“)
This CopyState is equivalent to a SyncState of “Initialized”. That is, the association exists, but
nothing else can be said about it. From the “Skewed” state the only operation supported is: Resync.

With Resync: When a client uses ModifyReplicaSynchronization with an Operation of “Resync” the
association changes to CopyState=”Skewed” with ProgressStatus=”Resyncing”. The SyncState
should be set to “ResyncInProgress”. NOTE: With ModifyReplicaSynchronization, Prepare is
automatic.

• CopyState=”Mixed”, ProgressStatus=”Completed”
The mixed state only applies to group operations and should never show up on single source-target
pairs.

Using the deprecated method ModifySynchronization, the SyncStates that are effected also need to be
reported in the CopyState and ProgressStatus properties. This is summarized by the following bullets:

• SyncState=”Initialized” (CopyState=”Initialized”, ProgressStatus=”Completed”)
This state would only exist if InitialReplicationState=”Initialized” or an ModifySynchronization
Unprepare operation is issued. The only ModifySynchronization operation supported is Prepare.

With Prepare: When a client uses ModifySynchronization with an Operation of “Prepare” the
association changes to SyncState=”PrepareInProgress”. This should be reported as
CopyState=”Initialized” with ProgressStatus=”Preparing”.

• SyncState=”Prepared” (CopyState=”Prepared”, ProgressStatus=”Completed”)
The only ModifySynchronization operations supported are Resync or Unprepare.

With Resync: When a client uses ModifySynchronization with an Operation of “Resync” the
association changes to SyncState=”ResyncInProgress”. This should be reported as
CopyState=”Prepared” with ProgressStatus=”Synchronizing”.

With Unprepare: When a client uses ModifySynchronization with an Operation of “Unprepare” the
association changes to SyncState=”Initialized”. This should be reported as CopyState=”Initialized”
with ProgressStatus=”Completed”.

• SyncState=”Synchronized” (CopyState=”Synchronized”, ProgressStatus=”Completed”)
This state only applies to mirrors. The only ModifySynchronization operation supported is Quiesce.
SNIA Technical Position 331

Alignment of State Transitions

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494
With Quiesce: When a client uses ModifySynchronization with an Operation of “Quiesce” the
association changes to SyncState=”QuiesceInProgress”. This should be reported as
CopyState=”Synchronized” with ProgressStatus=”Dormant”.

• SyncState=”Quiesced” (CopyState=”Suspended”, ProgressStatus=”Completed”)
The only ModifySynchronization operations supported are Fracture and Unquiesce for mirrors and
Prepare for snapshots.

With Fracture: When a client uses ModifySynchronization with an Operation of “Fracture” the
association changes to SyncState=”FractureInProgress”. This should be reported as
CopyState=”Suspended” with ProgressStatus=”Fracturing”.

With Unquiesce: When a client uses ModifySynchronization with an Operation of “Unquiesce” the
association changes to SyncState=”ResyncInProgress”. This should be reported as
CopyState=”Suspended” with ProgressStatus=”Resyncing”.

With Prepare: When a client uses ModifySynchronization with an Operation of “Prepare” the
association changes to SyncState=”PrepareInProgress”. This should be reported as
CopyState=”Suspended” with ProgressStatus=”Preparing”.

• SyncState=”Restore In Progress” (CopyState=”Synchronized”, ProgressStatus=”Failing over”)

• SyncState=”Idle” (CopyState=”Inactive”, ProgressStatus=”Completed”)
This state only applies to snapshots. The only ModifySynchronization operations supported are
Quiesce, Start Copy and Restore.

With Quiesce: When a client uses ModifySynchronization with an Operation of “Quiesce” the
association changes to SyncState=”QuiesceInProgress”. This should be reported as
CopyState=”Inactive” with ProgressStatus=”Dormant”.

With Start Copy: When a client uses ModifySynchronization with an Operation of “Start Copy” the
association changes to SyncState=”Copy In Progress”. This should be reported as
CopyState=”Inactive” with ProgressStatus=”Synchronizing”. NOTE: This is a background copy.

With Restore: When a client uses ModifySynchronization with an Operation of “Restore” the
association changes to SyncState=”Restore In Progress”. This should be reported as
CopyState=”Inactive” with ProgressStatus=”Failing over”.

• SyncState=”Broken” (CopyState=”Broken”, ProgressStatus=”Completed”)
A broken association needs to be repaired. After the relationship is repaired, the association goes
into its InitialReplicationState.

• SyncState=”Fractured” (CopyState=”Fractured”, ProgressStatus=”Completed”)
This state only applies to mirrors. The only ModifySynchronization operations supported are Prepare
and Restore.

With Prepare: When a client uses ModifySynchronization with an Operation of “Prepare” the
association changes to SyncState=”PrepareInProgress”. This should be reported as
CopyState=”Fractured” with ProgressStatus=”Preparing”.

With Restore: When a client uses ModifySynchronization with an Operation of “Restore” the
association changes to SyncState=”Restore In Progress”. This should be reported as
CopyState=”Fractured” with ProgressStatus=”Failing over”.

• SyncState=”Frozen” (CopyState=”Synchronized”, ProgressStatus=”Completed”)
This state only applies to snapshots. The only ModifySynchronization operations supported are
Quiesce and Restore.
332

 Synchronized SyncState

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537
With Quiesce: When a client uses ModifySynchronization with an Operation of “Quiesce” the
association changes to SyncState=”QuiesceInProgress”. This should be reported as
CopyState=”Synchronized” with ProgressStatus=”Dormant”.

With Restore: When a client uses ModifySynchronization with an Operation of “Restore” the
association changes to SyncState=”Restore In Progress”. This should be reported as
CopyState=”Synchronized” with ProgressStatus=”Failing over”.

9.1.13.3 Synchronized SyncState

Synchronized state for the Mirror and Clone SyncTypes indicates all data has been copied from the
source element to the target element. For the Snapshot SyncType, because the target element is a virtual
point-in-time view of the source element, the Synchronized CopyState indicates all the metadata
(pointers) for the snapshot have been created. Synchronization for the snapshots is achieved relatively
quickly.

Figure 58 shows a sampling of the CopyState transitions and the corresponding ProgressStatus changes.
In a steady state condition, for example, the CopyState has a value of “Synchronized”, and at the same
time the ProgressStatus has a value of “Completed”.
SNIA Technical Position 333

Synchronized SyncState

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580
9.1.14 Accessibility to Associations and Elements

There are two cases that should be considered:

Case 1: The method completes successfully without returning a job. The created replication association
(StorageSynchronized for Mirror and Snapshot copy types) and the newly created target element shall be
accessible. The StorageSynchronized association between source and target elements for the Clone
copy type may not be accessible after synchronization is achieved; however, there will be a

Figure 58 - Sample CopyState and ProgressStatus Transitions

 Resyncing

 Completed

 Initializing

Detaching

 Fracturing

 Synchronizing

Completed

 Completed

Legend:

ProgressStatus

Initialized

Unsynchronized

Synchronized

Fractured

Fracture

Resync

Entry

ExitCopyState

Detach

Automatic
Transition

Operation
334

 Synchronized SyncState

581

582

583

584

585

586

587

588

589
SettingsDefineState association (if supported) between the newly copied target element and a
SynchronizationAspect instance.

Case 2: The method returns the status of “Job Started”. The AffectedJobElement association associates
the concrete job to the target element, unless there is no target element such as
CreateSynchronizationAspect or when the target element is deleted (ReturnToStoragePool). In this case,
the AffectedJobElement points to the source element. To ensure the replication association is accessible,
the CopyState of the association has to have at least reached the Initialized state. To guarantee
accessibility to associations and elements, specify the WaitForCopyState when issuing the method
CreateElementReplica.

EXPERIMENTAL

9.1.15 Host Access Restrictions

The Copy Services Profile does not provide any services for managing access to replicas. However,
replication services often restrict access to replicas for two reasons:

1) Replicas have the same volume signature as their source element. Exposing both the source
and replica to the same host may cause problems with a duplicate volume signature.

2) Delta replicas created by embedded software elements such as a volume manager may be
unavailable for export to a secondary host.

The profile uses two properties in StorageReplicationCapabilities to indicate host access restrictions:

1) ReplicaHostAccessibility

2) HostAccessibleState[]

A provider may set values for these two properties indicating any host access restrictions imposed on
replicas. These restrictions apply to all replicas created with the same CopyType value. Access control
for a specific replica by a specific host is normally managed using services described in 14 Masking and
Mapping Profile.

EXPERIMENTAL

Generally, exposing both the source and replica to the same host may cause problems due to a duplicate
volume signature. At a minimum, the signature of a replica must be changed before the replica is exposed
to the same host as the source element.

Managing host access to source and target elements can be managed by using services described in 14
Masking and Mapping Profile.

The method ReplicationServiceCapabilities.GetSupportedCopyStates for each CopyState additionally
returns information as to whether a replica is host accessible (boolean) for the given CopyState.

EXPERIMENTAL
SNIA Technical Position 335

Synchronized SyncState

590

591

592

593

594

595
EXPERIMENTAL

9.1.16 Settings, Specialized Elements and Pools for Replicas

A copy services provider shall support StorageSetting with the additional properties defined to manage
replica elements and replication operations. These properties are listed in the definition of StorageSetting
in this profile. This definition extends the basic list of required StorageSetting properties listed in the
Block Services Package. The CreateSetting method should return a REF to a StorageSetting instance
with all of the replication properties initialized to values consistent with the capabilities indicated in
StorageReplicationCapabilities. Many replication properties allow an initial value of “not applicable” if the
provider does not use the property. The provider sets the value lists for the
SupportedStorageElementUsage[] and SupportedStoragePoolUsage[] properties in
StorageConfigurationCapabilities to indicate which values of StorageSetting.StorageExtentInitialUsage
and StorageSetting.StoragePoolInitialUsage are supported by the provider.

A provider may require specialized pools to contain delta replicas, specialized elements as replica targets
and specialized elements as concrete components for delta replica pools. The provider may require the
client to manage creation of these specialized elements – this is explained in detail in 9.6 "Client
Considerations and Recipes". Alternatively, the provider may automatically create specialized pools and
elements and make them available for discovery by clients. In either case, the StorageExtentInitialUsage
and StoragePoolInitialUsage properties in StorageSetting shall be supported by the provider as part of
the goal parameter for pool/element creation methods.

Elements and pools specialized for Copy Services are located using the GetElementsBasedOnUsage
method described in 5 Block Services Package.

When StorageExtentInitialUsage or StoragePoolInitialUsage is set in the goal parameter for an element
or pool creation method, the value acts as an additional parameter indicating a specialized element. The
provider ensures that the required element type is created and the Usage property value is set in the new
replica element or pool. Certain types of specialized replica elements can be provided by changing
existing elements using the RequestUsageChange method. The ClientSettableElementUsage[] value list
indicates the allowable modifications for a storage element and the ClientSettablePoolUsage[] value list
indicates the allowable modifications for a storage pool.

EXPERIMENTAL

9.1.17 Backward Compatibility

A copy services provider can maintain backward compatibility with a 1.0 copy services client. The
following conditions are necessary for backward compatibility:

1) The instance of StorageConfigurationCapabilities should set replication capability property values in
the same way indicated for a 1.0 copy services provider. A newer copy services client should ignore
these properties and use StorageReplicationCapabilities instead.

EXPERIMENTAL

2) The provider should treat AttachReplica as an alias for CreateElementReplica.

EXPERIMENTAL

3) The provider should treat StorageSynchronized.SyncState values “Synchronized” and “Idle” as
equivalent for CopyType “UnSyncAssoc”.
336

 Allocation Pools

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625
9.1.18 Mutually Exclusive Capabilities

Both StorageReplicationCapabilities and StorageConfigurationCapabilities contain the
SupportedSynchronousActions[] and SupportedAsynchronousActions[] properties. The provider shall not
include the value corresponding to an action in both properties. An action can run synchronously or
asynchronously but not both. An action indicated in one of the StorageConfigurationCapabilities
properties shall also be indicated in a corresponding instance of StorageReplicationCapabilities.

EXPERIMENTAL

9.1.19 Deleting the Target Elements

Mirror, Clone, and Snapshot target elements that are no longer in a synchronization association are
deleted using the StorageConfigurationService.ReturnToStoragePool method. However, the Snapshot
target elements that are in a synchronization association are deleted using the
ReplicationService.ModifyReplicaSynchronization (or ModifySynchronization) method with the “Return To
ResourcePool” operation parameter, which also removes the synchronization association.

9.1.20 Using StorageSettings for Replicas

The StorageSetting class has several properties used to create and manage replicas. Instances of this
class are used as the goal parameter for the methods of this profile. The extrinsic method
CIM_StorageCapabilities.CreateSetting is used to create a setting and the intrinsic method
ModifyInstance is used to adjust the properties of a created StorageSetting. See 5 "Block Services
Package" for the details of creating and modifying a storage setting.

9.1.21 Finding and Creating Target Elements

The extrinsic method ReplicationService.GetAvailableTargetElements is used to locate the available
target elements for a given source and copy type. The implementation may also support creating target
elements if the appropriate target elements are not supplied and/or are not available. The implementation
may require the client to create specialized elements to be used as a target of a copy operation. The
specialized elements have a specific values in their Usage property. Certain types of specialized
elements can be provided by changing the Usage property of existing elements. Refer to 5 "Block
Services Package" for creating (specialized) elements and modifying the Usage value of existing
elements.

Refer to 9.5.2.4.10 "GetDefaultReplicationSettingData" and 9.5.2.4.5 "GetSupportedFeatures" to
determine if the implementation automatically creates target elements, and if specialized elements are
required for the desired SyncType.

9.1.22 Using StoragePools for Replicas

9.1.22.1 Allocation Pools

Replicas are allocated from storage pools. The implementation may require specialized storage pools to
contain delta replicas (changed tracks of snapshots) or the “write intent log” files. The specialized storage
pools have a specific value in their Usage property, for example, “Reserved as a Delta Replica
Container“, “Reserved for Local Replication Services“, or “Reserved for Remote Replication Services”.

9.1.22.2 Delta Replica StoragePools

Depending on the implementation, the Snapshot targets may require a fixed space consumption or
variable space consumption. Refer to 9.5.2.4.5 "GetSupportedFeatures" to determine if specialized
storage pool are required.

There are three types of delta replica pool access:
SNIA Technical Position 337

Delta Replica StoragePools

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661
• “Any” - specialized storage pools are not required for delta replicas. The implementation creates
delta replicas based on the fixed space consumption model and the client can select any storage
pool as a container.

• “Shared” - a single shared storage pool is the container for all delta replicas. This type of storage
pool is always preexisting and may be located with the GetElementBasedOnUsage method. The
client may need to add space to this type of storage pool.

• “Exclusive” - each source element requires an exclusive, special storage pool for associated delta
replicas. If the storage pool already exists, it is associated to the source element with a
ReplicaPoolForStorage association. If the storage pool does not exist, the client creates the storage
pool.

“Multiple” - “multiple specialized, exclusive pools may exist or may be created.“

Figure 59 and Figure 60 show the fixed and variable space consumption for the Snapshot targets,
respectively. If the implementation supports fixed space consumption, the DeltaReservation properties
are set by the client to the appropriate values for a new snapshot. The values are set in the associated
StorageSetting element to be passed as a goal parameter to the CreateElementReplica method (or
CreateSynchronizationAspect method). For variable space consumption, there are no special properties
to set by the client.

Figure 59 - Fixed Space Consumption

StorageVolume

// target element
NumberOfBlocks = N
BlockSize = M
DeltaReservation = D

StorageSynchronized

StorageExtent (optional)

// container element
NumberOfBlocks = S1
BlockSize = M
ConsumableBlocks = S2

BasedOn

StorageVolume

// source element
NumberOfBlocks = N
BlockSize = M
DeltaReservation = 0

StartingAddress = A
EndingAddress = A + SpaceConsumed/M - 1

StoragePool

// container element
// any concrete pool
TotalManagedSpace = S3
RemainingManagedSpace = S4

AllocatedFromStoragePool
SpaceConsumed = (N*M*D)/100 rounded up to nearest multiple of M

StorageSetting

DeltaReservationMin = D1
DeltaReservationGoal = D2
DeltaReservationMax = D3

ElementSettingData

SyncType = Snapshot
338

 Overview

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701
9.1.23 Thinly Provisioned Elements

Replication Services supports “copying” thinly provisioned elements. Depending on the underlying
implementation, it is possible to copy a thinly provisioned source element to a thinly provisioned target
element or alternatively to a fully provisioned target element. Other combinations may be advertised in
the capabilities.

If an implementation supports more than one combination of source and target provisioning, clients may
use the ReplicationSettingData parameter of the CreateElementReplica to request a specific
combination.

Refer to the capabilities for the allowable combinations supported by the implementation. See 9.5.2.4.8,
9.7.17, and 9.5.2.4.10.

9.1.24 Indication Events

9.1.24.1 Overview

Depending on the implementation, the Copy Services Profile generates a number of different alert and life
cycle indications, shown in Table 185. Clients decide what indications they wish to receive by subscribing
to the appropriate indications.

Figure 60 - Variable Space Consumption

StorageSynchronized

StorageVolume

// target element
NumberOfBlocks = N
BlockSize = M

StoragePool

// container element
// delta replica pool
TotalManagedSpace = S
RemainingManagedSpace = variable
LowSpaceWarningThreshold = T2
Usage =
٪ Reserved as a Delta Replica Container

AllocatedFromStoragePool

StorageVolume

// source element
NumberOfBlocks = N
BlockSize = M

SpaceConsumed = variable

SyncType = Snapshot

ReplicaPoolForStorage
SNIA Technical Position 339

InstCreation on StorageSynchronized

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718
EXPERIMENTAL

9.1.24.2 InstCreation on StorageSynchronized

This indication is triggered by any event that causes a StorageSynchronized association to be created.
This includes use of methods such as CreateElementReplica. But it may also be triggered by other
(external) events.

This indication is required of any conforming implementation of Copy Services.

9.1.24.3 InstDeletion on StorageSynchronized

This indication is triggered by any event that causes a StorageSynchronized association to be deleted.
This includes use of methods such as ModifyReplicaSynchronization with the “Detach” operation. But it
may also be triggered by other (external) events.

This indication is required of any conforming implementation of Copy Services.

9.1.24.4 InstModification on SyncState

This indication is triggered by any event that causes a SyncState change in any StorageSynchronized
association. This includes use of methods such as ModifyReplicaSynchronization. But it may also be
triggered by other (external) events.

This indication is required of any conforming implementation of Copy Services.

This Indication is being deprecated in favor of the “qualified” InstModification on Copy State (see
9.1.24.5).

Table 185 - Indications

Indication Source Of

CIM_InstCreation • New Job Creation

• New Target Element Creation

• New StorageSynchronized Association Creation

CIM_InstDeletion • Job Deletion

• Target Element Deletion (e.g. Snapshot)

• StorageSynchronized Association Deletion

CIM_InstModification • Job Progress and Status Changes

• Source and Target Elements Status Changes

• SyncState Changes

• ProgressStatus Changes

CIM_AlertIndication • StoragePool space consumption Alerts (especially by Snapshot targets).

• Error conditions, such as:

• StorageSynchronized State set to Broken.
340

 Qualified InstDeletion on StorageSynchronized

719

720

721

722

723

724

725

726

727

728

729

730

731

732
EXPERIMENTAL

9.1.24.5 Qualified InstDeletion on StorageSynchronized

This indication is triggered by any event that causes a specific client defined StorageSynchronized
association to be deleted. This includes use of methods such as ModifyReplicaSynchronization with the
“Detach” operation. But it may also be triggered by other (external) events.

This indication may be supported by any conforming implementation of Copy Services.

9.1.24.6 Qualified InstModification on CopyState

This indication is triggered by any event that causes a CopyState change in a specific client defined
StorageSynchronized association. This includes use of methods such as ModifyReplicaSynchronization.
But it may also be triggered by other (external) events.

This indication may be supported by any conforming implementation of Copy Services.

9.1.24.7 Qualified InstModification on ProgressStatus

This indication is triggered by any event that causes a ProgressStatus change in a specific client defined
StorageSynchronized association. This includes use of methods such as ModifyReplicaSynchronization.
But it may also be triggered by other (external) events.

This indication may be supported by any conforming implementation of Copy Services.

9.1.24.8 InstModification on ProgressStatus

This indication is triggered by any event that causes a ProgressStatus change in any
StorageSynchronized association. This includes use of methods such as ModifyReplicaSynchronization.
But it may also be triggered by other (external) events.

This indication may be supported by any conforming implementation of Copy Services.

9.1.24.9 AlertIndication on StorageSynchronized

This indication is triggered by any event that causes a CopyState change to “broken” in any
StorageSynchronized association. This is typically triggered by an external event.

This indication may be supported by any conforming implementation of Copy Services.

9.1.24.10AlertIndication on StoragePool

This indication is triggered by any event that causes the remaining space in any StoragePool to dip below
its warning threshold. This could be triggered by any one of a number of events.

This indication may be supported by any conforming implementation of Copy Services.

EXPERIMENTAL

9.2 Health and Fault Management Considerations

9.2.1 Health Indications

Certain capabilities of the profile use alert, instance modification and instance deletion indications for
health and fault management. In general, instance modification indications when the OperationalStatus
values of a replica element change may indicate a fault. Instance modification indications when
StorageSynchronized.SyncState automatically changes from any other value to “Broken” indicates a fault.
If delta replica pools are supported with warning thresholds, alert indications may be generated by the
SNIA Technical Position 341

AlertIndication on StoragePool

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750
provider when remaining space in a pool falls below a warning threshold or is completely consumed. The
information in the alert indications is described in Table 186, “Copy Services Alert Indications”.

EXPERIMENTAL

The Copy Services profile generates alert indications, shown in Table 186, that allow monitoring of
dynamic space consumption by delta replica elements. All of the alert indications indicate an AlertType
value of “Device Alert” and an OwingEntity value of “SNIA”. Alerts are generated for CIM_StoragePool
elements to indicate that remaining consumable space is below a warning threshold percentage of total
space or that all space in the pool has been consumed. The LowSpaceWarningThreshold,
TotalManagedSpace and RemainingManagedSpace properties can be analyzed to determine an
appropriate response.

EXPERIMENTAL

EXPERIMENTAL

The profile uses indications to report health and fault management. In general, instance modification
indications are sent when changes in OperationalStatus and HealthState values of the following instances
indicate a fault condition:

• Source and Replica elements

In response to a fault indication, clients can follow the RelatedElementCausingError association between
the instance reporting the error and the faulted component.

The profile also generates alert indications when the CopyState of a replication association transitions to
the Broken state.

The profile generates alert indications that allow monitoring of storage pool consumption by the replica
elements.

EXPERIMENTAL

Table 186 - Copy Services Alert Indications

AlertingManaged
Element

PerceivedSeverity ProbableCause ProbableCauseDescription

Storage pool Minor (4) Threshold Crossed
(52)

Pool at low space warning threshold:
 RemainingManagedSpace/
 TotalManagedSpace

Storage pool Major (5) Out of Memory
(33)

No remaining space in storage pool
342

 Storage Configuration Service Method Messages

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777
9.2.2 Replication Error Messages

9.2.2.1 Storage Configuration Service Method Messages

The Copy Services Profile returns the error responses listed in Table 187 for the extrinsic methods
supported by the profile. The profile uses MessageID values defined in the common error registry and the
storage error registry.

EXPERIMENTAL

9.2.2.2 Replication Service Method Messages

Not defined in this document.

EXPERIMENTAL

9.3 Cascading Considerations

Not defined in this document.

9.4 Supported Profiles and Packages

See 9.1.1 "Synopsis".

The Block Services Profile is a mandatory prerequisite for the Copy Services Profile. Clients require
methods from block services for the following purposes:

• Identify replica target candidates

• Identify extents and pools to be used as replica containers

• Create and delete replica container elements

• Create and delete replica target elements

• Create generated setting objects with additional properties required by the copy services profile.

Many classes and methods defined in Block Services are used in Copy Services without extensions or
additional properties. In this case, the classes and methods are not redefined in Copy Services.

Table 187 - Copy Services Error Responses

MessageID Message Name

MP2 Operation Not Supported

MP3 Property Not Found

MP5 Parameter Error

MP11 Too Busy To Respond

MP17 Invalid Property Combination During Instance Modification

DRM20 Invalid Extent Passed

DRM24 Invalid State Transition

DRM25 Invalid SAP For Method

DRM26 Resource Not Available

DRM27 Resource Limit Exceeded
SNIA Technical Position 343

Block Services Package

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801
The Job Control Profile is required if any of the copy services extrinsic methods run asynchronously with
created job elements.

Copy services defines instance indications and alert indications using required and optional properties
described in 37 Indication Profile.

9.5 Methods of the Profile

9.5.1 Intrinsic Methods of the Profile

The profile requires the provider to support the CreateInstance, GetInstance, ModifyInstance and
DeleteInstance intrinsic methods for certain optional capabilities of the profile.

9.5.2 Extrinsic Methods of the Profile

EXPERIMENTAL

9.5.2.1 Block Services Package

The profile is dependent on other extrinsic methods provided by the Block Services Package for storage
pool and storage element manipulations.

EXPERIMENTAL

9.5.2.2 StorageConfigurationService Methods

9.5.2.2.1 Overview

The Copy Services Profile is dependent on many of the extrinsic methods provided by block services. The
ReturnToStoragePool extrinsic method defined by block services is used to delete a replica element.
ReturnToStoragePool may receive an MP3 (property not found) error response for replica elements that
are implicitly deleted by a ModifySynchronization Detach operation.

All of the profile methods return one of three status codes or return an error response. The supported
status codes are:

• 0: Job completed with no error

• 1: Method not supported

• 0x1000: Job started

Table 188 summarizes the extrinsic methods for replica creation and management in the
StorageConfigurationService.

Table 188 - Extrinsic Methods of StorageConfigurationService

Method Described in

ModifySynchronization() Table 189, “ModifySynchronization”

CreateReplica() Table 190, “CreateReplica Method”

AttachReplica() Not documented
344

 StorageConfigurationService Methods

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816
9.5.2.2.2 ModifySynchronization Method

Table 189 lists and describes the ModifySynchronization Method.

“Detach” operation deletes the StorageSynchronized association. An instance deletion indication is
generated for this operation.

All ModifySynchronization operations are described in 9.1.8 Accessibility to Created Elements. If “job
completed” is returned and the replica association indicates an “… in progress” SyncState value, an
instance modification indication should follow when the replica enters its final, expected state. If “job
started” is returned, the replica association indicates an “… in progress” SyncState value. In this case,
two instance modification indications may follow. One should indicate the final SyncState value of the
replica association when the job completes with no error. The other should indicate job completion for the
instance of ConcreteJob.

StorageReplicationCapabilities.SupportedModifyOperations[] allows a client to verify that a specific
operation is supported by a provider.

9.5.2.2.3 CreateReplica Method

.Table 190 describes the CreateReplica Method.

Table 189 - ModifySynchronization

Method: ModifySynchronization

Errors: DRM24, MP2, DRM25

Parameters:

Qualifiers Name Type Description/Values

IN, REQ Operation uint16 Type of operation to modify the
replica:

2: Detach
3: Fracture
4: Resync
5: Restore
6: Prepare
7: Unprepare
8: Quiesce
9: Unquiesce
10: Reset to Sync
11: Reset to Async
12: Start Copy
13: Stop Copy

OUT Job ConcreteJob REF Returned if job started.

IN, REQ Synchronization StorageSynchronized REF Association to replica that is modified

Table 190 - CreateReplica Method

Method: CreateReplica

Errors: DRM26, DRM27, DRM25, MP5

Parameters:

Qualifiers Name Type Description/Values

IN ElementName string Client-assigned, friendly name
SNIA Technical Position 345

StorageConfigurationService Methods

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843
Method notes:

• Creates a storage element of the same type as the source element.

• Creates a StorageSynchronized association”.

• Creates a SystemDevice association.

• Creates an AllocatedFromStoragePool association.

• Creates a StorageSetting instance with an ElementSettingData association.

• May create a BasedOn association.

• May create a ReplicaPoolForStorage association.

• All CopyType values may be supported.

If TargetPool is not supplied by the client, the provider response is implementation specific. For all
operations not using specialized delta replica pools, the behavior of the client follows these rules:

1) Provider may return MP5 message indicating that TargetPool is an invalid parameter. In this case,
the client should select a pool and retry the operation.

2) The provider will select a pool and proceed with the operation.

If the TargetPool is supplied, the provider uses the requested pool except for the next special case. For
CopyType “UnSyncAssoc” creating a delta replica and DeltaReplicaPoolAccess values of “Shared” or

OUT Job ConcreteJob REF

IN, REQ SourceElement LogicalElement REF

OUT TargetElement LogicalElement REF

IN TargetSettingGoal StorageSetting REF

IN TargetPool StoragePool REF

IN, REQ CopyType uint16 Copy type created:

2: Async
3: Sync
4: UnSyncAssoc
5: UnSyncUnAssoc

Table 190 - CreateReplica Method (Continued)

Method: CreateReplica
346

 StorageConfigurationService Methods

844

845

846

847

848

849

850

851

852

853

854

855

856

857
“Exclusive” are indicated by the provider, TargetPool should be managed by the client as shown in Table
191

If TargetSettingGoal is not supplied by the client, the provider generates a default StorageSetting element
for the replica. If TargetSettingGoal is supplied by the client, the provider will return an MP5 error
message if the goal is incompatible with the corresponding target pool. If “job started' is returned, a
Target Element reference may or may not be returned by the provider. 9.1.8 Accessibility to Created
Elements explains when a reference to the new replica element is available to the client.

9.5.2.2.4 AttachReplica

This method creates a StorageSynchronized relationship between two (existing) storage volumes. Once
the association is created the SyncState is set to “initialized”, “Prepared” or “Synchronized” as defined in
the StorageConfigurationCapabilities associated with the StorageConfigurationService. There is no
ConcreteJob created or returned on this method call (since the only action effected is the creation of the
association).

AttachReplica():

[In, Description (“A end user relevant name for the element being created. If
NULL, then a system supplied

default name can be used. The value will be stored in the

'ElementName' property for the created element”)]

string ElementName,

[In, Required, Description(“The source storage object.”)]

CIM_LogicalElement REF SourceElement,

[In, Required, Description(“Reference to the target storage element (i.e.,
the replica).”)]

CIM_LogicalElement REF TargetElement,

[In, Required, Description(“CopyType describes the type of copy that will be
made. Values are:

Async: Create and maintain an asynchronous copy of the source.

Sync: Create and maintain a synchronized copy of the source.

UnSyncAssoc: Create an unsynchronized copy and maintain an association to the
source.

UnSyncUnAssoc: Create unassociated copy of the source element.”),

ValueMap {“2”, “3”, “4”, “5”, “.”, “0x8000..”},

Values {“Async”, “Sync”, “UnSyncAssoc”, “UnSyncUnAssoc”, “DMTF Reserved”,
“Vendor Specific”}]

Uint16 CopyType

[Out, IN(false), Description(“Reference to the job (may be null if job
completed).”)]

CIM_ConcreteJob REF Job,

Table 191 - TargetPool Parameter for Delta Replicas

DeltaReplicaPoolAccessvalue TargetPool supplied TargetPool not supplied

Shared Error with an MP5 message. The specialized pool
pre-exists and is always supplied by the provider.

Always the correct client action. The
provider locates the specialized pool.

Exclusive If the method invocation is creating the first delta
replica for the specified source element,
TargetPool is supplied by the client. The pool is
used by the provider and a ReplicaPoolForStorage
association is created as a side effect. If delta
replicas already exist for the source element, an
error with an MP5 message will be returned.

If the specified source element has a
ReplicaPoolForStorage association,
the provider uses this pool as the
container for a new delta replica. If
this association does not exist, an
error with an MP5 message is
returned.
SNIA Technical Position 347

ReplicationService Methods

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877
9.5.2.2.5 Additional Notes on StorageConfigurationService Methods

CreateReplica shall be provided if local replicas are supported. Replica target elements are deleted using
the ReturnToStoragePool method in block services. All associations and associated setting elements are
automatically deleted at the same time the element is deleted.

TargetElement candidates cannot have an existing SyncedElement role to a StorageSynchronized
association. The provider returns a DRM26 error message if the candidate is already in use as a replica
target element. Source elements may generally be associated with multiple replica targets. The provider
may return a DRM26 error in some cases if an element cannot serve as a replica source. The provider
may return a DRM27 error if the client attempts to create replication targets exceeding the provider
specified limits.

If the method returns “job completed”, the new StorageSynchronized association is accessible to the
client. If the method returns “job started”, the association may not be accessible. In this case, an instance
creation indication should be generated by the provider when the association is accessible.

If the provider supports replica modification, a Goal parameter may be passed by the client to change the
value of modifiable setting properties. The provider may ignore properties not relevant to replication
operations. The properties that may be supplied by the client include UseReplicationBuffer,
InitialSynchronization and ReplicationPriority.

EXPERIMENTAL

9.5.2.3 ReplicationService Methods

9.5.2.3.1 Overview

The ReplicationService has a number of extrinsic methods for replication management.

All of the ReplicationService extrinsic methods return one of the following status codes:

0: (Job) Completed with no error

1: Method not supported

4: Failed

5: Invalid Parameter

4096: Method Parameters Checked - Job Started

Depending on the error condition, a method may return additional error codes and/or throw an
appropriate exception to indicate the error encountered.

For the input/output parameter values, refer to the appropriate MOF files and the value maps.

Table 192 summarizes the extrinsic methods for replica creation and management in the
ReplicationService.

Table 192 - Extrinsic Methods of ReplicationService

Method Described in

CreateElementReplica Section 9.5.2.3.2

CreateSynchronizationAspect Section 9.5.2.3.3

ModifyReplicaSynchronization Section 9.5.2.3.4

ModifyListSynchronization Section 9.5.2.3.5
348

 ReplicationService Methods

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901
902

903

904

905

906

907

908
909

910
9.5.2.3.2 CreateElementReplica

 uint32 ReplicationService.CreateElementReplica(

 [IN] string ElementName,

 [IN, Required] uint16 SyncType,

 [IN, Required] uint16 Mode,

 [IN, Required] CIM_LogicalElement REF SourceElement,

 [IN, OUT] CIM_LogicalElement REF TargetElement,

 [IN, EmbeddedInstance("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronization,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState);

This method allows a client to create (or start a job to create) a new storage object which is a replica of
the specified source storage object (SourceElement). The parameters are as follows:

• ElementName: A end user relevant name for the element being created. If NULL, then a system
supplied name is used. The value will be stored in the 'ElementName' property for the created
element.

• SyncType: Describes the type of copy that will be made. For example, Mirror, Snapshot, and Clone.

• Mode: Describes whether the target elements will be updated synchronously or asynchronously.

• SourceElement: The source storage object which may be a StorageVolume or storage object.

• TargetElement:

• As an input, refers to a target element to use. If a target element is not supplied, the implementation
may locate or create a suitable target element. See 9.5.2.4.10.

• As an output, refers to the created target storage element (i.e., the replica). If a job is created, the
target element may not be available immediately.

• ReplicationSettingData: If provided, it overrides the default replication setting data for the given
SyncType. If not provided, the implementation uses the default replication setting data.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be NULL if job is completed).

• Synchronization: Refers to the created association between the source and the target element. If a
job is created, this parameter may be NULL, unless the association is actually formed.

• TargetSettingGoal: The definition for the StorageSetting to be maintained by the target storage object
(the replica). If a target element is supplied, this parameter shall be NULL.

ModifySettingsDefineState Section 9.5.2.3.6

GetAvailableTargetElements Section 9.5.2.3.7

GetReplicationRelationships Section 9.5.2.3.8

Table 192 - Extrinsic Methods of ReplicationService (Continued)

Method Described in
SNIA Technical Position 349

ReplicationService Methods

911
912

913

914

915
916

917

918

919
920

921

922
923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949
• TargetPool: The underlying storage for the target element (the replica) will be drawn from TargetPool
if specified, otherwise the allocation is implementation specific. If a target element is supplied, this
parameter shall be NULL.

• WaitForCopyState: Before returning, the method shall wait until this CopyState is reached. For
example, CopyState of Initialized means associations have been established, but there is no data
flow. CopyState of Synchronized indicates the replica is an exact copy of the source element.
CopyState of UnSynchronized means copy operation is in progress (see Table 183, “CopyStates
Values,” for the CopyStates).

Method Notes:

• Creates a storage element of the same type as the source element.

• Creates a StorageSynchronized association.

• Creates SystemDevice, AllocatedFromStoragePool, and ElementSettingData associations to the
newly created target element.

• May create BasedOn and ReplicaPoolForStorage associations.

9.5.2.3.3 CreateSynchronizationAspect

 uint32 ReplicationService.CreateSynchronizationAspect(

 [IN] string ElementName,

 [IN, Required] uint16 SyncType,

 [IN, Required] uint16 Mode,

 [IN] CIM_ReplicationGroup REF SourceGroup,

 [IN] CIM_LogicalElement REF SourceElement,

 [IN] uint16 Consistency,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_SettingsDefineState REF SettingsState);

This method allows a client to create (or start a job to create) new instances of SynchronizationAspect
that are associated to the source element via the SettingsDefineState associations. This representation
may be of a form of pointers or a series of checkpoints that keep track of the source element data for the
created point-in-time.

This method does not include a target element, however, a target element can be added subsequently
using the ModifySettingsDefineState method.

The method creates individual associations between the source elements and the instances of
SynchronizationAspect.

The parameters are as follows:

• ElementName: A end user relevant name. If NULL, then a system supplied default name can be
used. The value will be stored in the ElementName property of the created SynchronizationAspect.

• SyncType: See 9.5.2.3.2: CreateElementReplica’s parameters.

• Mode: See 9.5.2.3.2: CreateElementReplica’s parameters.

• SourceGroup: This should be null for ungrouped copies.
350

 ReplicationService Methods

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977
• SourceElement: See 9.5.2.3.2: CreateElementReplica’s parameters.

• Consistency: This should be null for ungrouped copies.

• ReplicationSettingData: See 9.5.2.3.2: CreateElementReplica’s parameters.

• Job: See 9.5.2.3.2: CreateElementReplica’s parameters.

• SettingsState: Refers to the created association between the source element or group and the
instance of the SynchronizationAspect. If a job is created, this parameter may be NULL, unless the
association is actually formed.

Method Notes:

• May create an instance of SynchronizationAspect if an appropriate one does not exist already.

• May create ReplicaPoolForStorage associations.

9.5.2.3.4 ModifyReplicaSynchronization

 uint32 ReplicationService.ModifyReplicaSynchronization(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_Synchronized REF Synchronization,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

[IN] CIM_StorageSynchronized REF SyncPair[],

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean Force,

[OUT] CIM_SettingsDefineState REF SettingsState,

 [IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) the synchronization association between
two storage objects. The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the replica and/or to the
related associations, for example, Split.

• Synchronization: The reference to the replication association describing the elements relationship
that is to be modified.

• ReplicationSettingData: See 9.5.2.3.2: CreateElementReplica’s parameters.

• SyncPair[]: For operations on ungrouped elements, this parameter should be NULL.

• Job: See 9.5.2.3.2: CreateElementReplica’s parameters.

• SettingsState: Reference to the association between the source element and an instance of
SynchronizationAspect. This parameters applies to operations such as Dissolve, which dissolves the
Synchronized relationship, but causes the SettingsDefineState association to be created. Depending
on the implementation, Deactivate may also return a SettingsState.

• Force: Some operations may cause an inconsistency among the target elements. If true, the client is
not warned and the operation is performed if possible.

• WaitForCopyState: See 9.5.2.3.2: CreateElementReplica’s parameters.
SNIA Technical Position 351

ReplicationService Methods

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018
9.5.2.3.5 ModifyListSynchronization

uint32 ReplicationService.ModifyListSynchronization(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_Synchronized REF Synchronization[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean Force,

 [IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) a list of synchronization associations
between two storage objects. The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the replica and/or to the
related associations, for example, Split.

• Synchronization: An array of references to the replication association describing the elements
relationship that is to be modified. All elements of the this array shall of the same concrete class, i.e.,
StorageSynchronized, and shall have the same SyncType, the same Mode, and the Operation must
be valid for the ReplicationType -- SyncType, Mode.

• ReplicationSettingData: See 9.5.2.3.2: CreateElementReplica’s parameters.

• Job: See 9.5.2.3.2: CreateElementReplica’s parameters.

• Force: Some operations may cause an inconsistency among the target elements. If true, the client is
not warned and the operation is performed if possible.

• WaitForCopyState: See 9.5.2.3.2: CreateElementReplica’s parameters. All the supplied
synchronization associations must reach at least the specified CopyState before the method returns.

9.5.2.3.6 ModifySettingsDefineState

 uint32 ReplicationService.ModifySettingsDefineState(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_SettingsDefineState REF SettingsState,

 [IN, OUT] CIM_LogicalElement REF TargetElement,

 [IN, OUT] CIM_ReplicationGroup REF TargetGroup,

 [IN] uint64 TargetElementCount,

 [OUT] CIM_Synchronized REF Synchronization,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) the SettingsDefineState association
between the storage objects and SynchronizationAspect. The modification could range from introducing
the target elements, which creates new StorageSynchronized associations, to dissolving the
SettingsDefineState associations all together.

With the Copy To Target operation, the supplied SettingsState is deleted since an “active”
Synchronization is created to associate the source and the target elements.
352

 ReplicationService Methods

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056
The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the related associations,
for example, Copy To Target, which initiates the copy operation from the point-in-time view to the
supplied targets.

• SettingsState: Refers to the associations between the source elements and the
SynchronizationAspect instances.

• TargetElement: If TargetElement is supplied, TargetGroup and TargetCount shall be NULL.

• As an input, if the point-in-time has only one source element, this parameter supplies the target
element.

• As an output, refers to the created target storage element (i.e., the replica). If a job is created, the
target element may not be available immediately.

• TargetGroup: For ungrouped elements, this shall be NULL.

• Synchronization: The reference to the replication association describing the element relationship.

• ReplicationSettingData: See CreateElementReplica’s parameters (9.5.2.3.2).

• Job: See CreateElementReplica’s parameters (9.5.2.3.2).

• TargetSettingGoal: See CreateElementReplica’s parameters (9.5.2.3.2).

• TargetPool: See CreateElementReplica’s parameters (9.5.2.3.2).

• WaitForCopyState: See CreateElementReplica’s parameters (9.5.2.3.2).

9.5.2.3.7 GetAvailableTargetElements Method

Since the rules for determining potential target volumes for a copy operation are not always
straightforward, due to vendor-specific conditions, e.g. RAID level, the number of extents which consist of
the StorageVolume, the type of storage array, and so on, it can be difficult for the client to know which
volumes can be used as copy targets for a given source volume. This makes it difficult for the user to
create a copy pair with the AttachReplica because he must know which volumes can be used for target
volume for a particular source volume, otherwise the request may fail. The GetAvailableTargetElements
method can be used to identify the potential target volumes for a copy operation.
GetAvailableTargetElements method takes the source volume and list of candidate pools and returns the
list of candidate target volumes for that source volume.

.Table 193 describes the GetAvailableTargetElements Method.

Table 193 - GetAvailableTargetElements Method

Method: GetAvailableTargetElements

Errors: DRM25, DRM27, MP5, MP11

Parameters:

Qualifiers Name Type Description/Values

IN, REQ SourceElement LogicalElement REF The original source volume for the pair
SNIA Technical Position 353

ReplicationService Methods

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097
 uint32 ReplicationService.GetAvailableTargetElements(

 [IN, Required] CIM_LogicalElement REF SourceElement,

 [IN, Required] uint16 CopyType,

 [IN, Required] uint16 Mode,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [IN] CIM_ComputerSystem REF Systems[],

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPools[],

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_LogicalElement REF Candidates[]);

This method allows a client to get (or start a job to get) all of the candidate target elements for the
supplied source element. If a job is started, once the job completes, examine the AffectedJobElement
associations for candidate targets. The parameters are as follows:

• SourceElement: The source storage object which may be a StorageVolume or storage object.

• CopyType: See CreateElementReplica’s parameters (9.5.2.3.2).

• Mode: See CreateElementReplica’s parameters (9.5.2.3.2).

• ReplicationSettingData: See CreateElementReplica’s parameters (9.5.2.3.2). The parameter is useful
for requesting a specific combination of thinly and fully provisioned elements.

• Systems[]: For local copies this parameter should be NULL.

• TargetSettingGoal: Desired target StorageSetting. If NULL, settings of the source elements shall be
used.

• TargetPools[]: The storage pools for the target elements. If NULL, all storage pools are examined.

• Job: See CreateElementReplica’s parameters (9.5.2.3.2).

IN TargetPool[] StoragePool REF The arrays of the pools to search for
target volumes. The method finds
candidate target volumes from the
available volumes in the specified
TargetPools.

This does include volumes with a
Usage property value of reserved for
copy target.

IN, REQ CopyType uint16 Copy type:

2: Async

3: Sync

4: UnSyncAssoc

5: UnSyncUnAssoc

6: Migrate

OUT Candidates[] LogicalElement REF The list of candidate target volumes

Table 193 - GetAvailableTargetElements Method

Method: GetAvailableTargetElements
354

 ReplicationServiceCapabilities Methods

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135
• Candidates[]: The list of the candidate target elements found.

9.5.2.3.8 GetReplicationRelationships

 uint32 ReplicationService.GetReplicationRelationships(

 [IN] uint16 Type,

 [IN] uint16 CopyType,

 [IN] uint16 Mode,

 [IN] uint16 SyncState,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronizations[]);

This method allows a client to get (or start a job to get) all of the synchronization relationships known to
the processing replication service. If a job is started, once the job completes, examine the
AffectedJobElement associations for the synchronization relationships. The parameters are as follows:

• Type: The type of synchronization relationships, for example, StorageSynchronized. If this parameter
is not supplied, all such relationships are retrieved.

• SyncType: See CreateElementReplica’s parameters (9.5.2.3.2). If this parameter is not supplied, all
SyncTypes are retrieved.

• Mode: See CreateElementReplica’s parameters (9.5.2.3.2). If this parameter is not supplied, all
Modes are retrieved.

• CopyState: Only retrieve synchronization relationships that currently this CopyState (see Table 183,
“CopyStates Values,”). If this parameter is not supplied, relationships are retrieved regardless of their
current CopyState.

• Job: See CreateElementReplica’s parameters (9.5.2.3.2).

• Synchronizations[]: An array of elements found.

9.5.2.4 ReplicationServiceCapabilities Methods

9.5.2.4.1 Overview

There are a number of extrinsic methods in the ReplicationServiceCapabilities that advertise the
implemented replication services capabilities.

All of the Profile extrinsic methods return one of the following status codes:

0: (Job) Completed with no error

1: Method not supported

4: Failed

5: Invalid Parameter

4096: Method Parameters Checked - Job Started

Depending on the error condition, a method may return additional error codes and/or throw an
appropriate exception to indicate the error encountered.

For the input/output parameter values, refer to the appropriate MOF files and the value maps.
SNIA Technical Position 355

ReplicationServiceCapabilities Methods

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156
Table 194 summarizes the extrinsic methods for replica creation and management in the
ReplicationService.

9.5.2.4.2 ConvertSyncTypeToReplicationType

uint32 ReplicationServiceCapabilities.ConvertSyncTypeToReplicationType(

 [IN] uint16 SyncType,

 [IN] uint16 Mode,

 [IN] uint16 LocalOrRemote,

 [OUT] uint16 SupportedReplicationTypes);

The majority of the methods in this class accept ReplicationType which represents a combination of
SyncType, Mode, and Local/Remote. This method accepts the supplied information and returns the
corresponding ReplicationType, which can be passed to other methods to get the additional capabilities.

Table 195, Table 196, Table 197, and Table 198 show the values for the
CovertSyncTypeToReplicationType parameters. These values also appear in the value maps in the
appropriate MOF files.

Table 194 - Extrinsic Methods of ReplicationServiceCapabilities

Method Described in

ConvertSyncTypeToReplicationType Section 9.5.2.4.2

ConvertReplicationTypeToSyncType Section 9.5.2.4.3

GetSupportedCopyStates Section 9.5.2.4.4

GetSupportedFeatures Section 9.5.2.4.5

GetSupportedOperations Section 9.5.2.4.6

GetSupportedSettingsDefineStateOperations Section 9.5.2.4.7

GetSupportedThinProvisioningFeatures Section 9.5.2.4.8

GetSupportedMaximum Section 9.5.2.4.9

GetDefaultReplicationSettingData Section 9.5.2.4.10

GetSupportedReplicationSettingData Section 9.5.2.4.11

Table 195 - SyncTypes

SyncType Value

Mirror 6

Snapshot 7

Clone 8

Table 196 - Modes

Mode Value

Synchronous 2

Asynchronous 3
356

 ReplicationServiceCapabilities Methods

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195
9.5.2.4.3 ConvertReplicationTypeToSyncType

 uint32 ReplicationServiceCapabilities.ConvertReplicationTypeToSyncType(

 [IN] uint16 ReplicationType,

 [OUT] uint16 CopyType,

 [OUT] uint16 Mode,

 [OUT] uint16 LocalOrRemote);

This method does the opposite of the method ConvertSyncTypeToReplicationType. This method
translates ReplicationType to the corresponding SyncType, Mode, and Local/Remote.

9.5.2.4.4 GetSupportedCopyStates

 uint32 ReplicationServiceCapabilities.GetSupportedCopyStates(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedCopyStates[],

 [OUT] boolean HostAccessible[]);

For a given ReplicationType, this method returns the supported CopyStates (Table 183) and a parallel
array to indicate whether for a given CopyState the target element is host accessible or not (true or false).

9.5.2.4.5 GetSupportedFeatures

 uint32 ReplicationServiceCapabilities.GetSupportedFeatures(

Table 197 - Local or Remote

LocalOrRemote Value

Local 2

Remote 3

Table 198 - ReplicationTypes

SupportedReplicationType Value

Synchronous Mirror Local 2

Asynchronous Mirror Local 3

Synchronous Mirror Remote 4

Asynchronous Mirror Remote 5

Synchronous Snapshot Local 6

Asynchronous Snapshot Local 7

Synchronous Snapshot Remote 8

Asynchronous Snapshot Remote 9

Synchronous Clone Local 10

Asynchronous Clone Local 11

Synchronous Clone Remote 12

Asynchronous Clone Remote 13
SNIA Technical Position 357

ReplicationServiceCapabilities Methods

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212
 [IN] uint16 ReplicationType,

 [OUT] uint16 Features[]);

For a given ReplicationType, this method returns the supported features listed in Table 199.

9.5.2.4.6 GetSupportedOperations

 uint32 GetSupportedOperations(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedOperations[]);

For a given ReplicationType this method returns the supported Operations on a StorageSynchronized
association that can be supplied to the ModifyReplicaSynchronization method, as shown in Table 200.

Refer to Figure 57, “CopyState Transitions” for additional information.

Table 199 - Features

Feature Description

“Replication Groups” Elements in a replication group are supported in a replication
operation.

"Number of hops in multi-hop replication" Maximum number of hops in multi-hop replication the service can
manage.

"Service suspends source I/O when necessary" Provider is able to suspend I/O to source elements before splitting
the target elements. Otherwise, the client needs to quiesce the
application before issuing the split command.

"Targets allocated from Any storage pool" Specialized storage pools are not required for the target elements,
as long as the pool is not reserved for special activities.

"Targets allocated from Shared storage pool" Targets are allocated from storage pools reserved for Copy
Services.

"Targets allocated from Exclusive storage pool" Targets are allocated from exclusive storage pools.

"Targets allocated from Multiple storage pools" Targets are allocated from multiple specialized, exclusive pools.

“Targets require reserved elements” The target elements must have a specific Usage value. For
example, reserved for "Local Replica Target" (mirror), reserved for
"Delta Replica Target" (Snapshot)., etc.

"Target is associated to SynchronizationAspect” The target element is associated to SynchronizationAspect via
SettingsDefineState. SynchronizationAspect contains the point-in-
time timestamp and the source element reference used to copy to
the target element.

"Source is associated to SynchronizationAspect” The source element is associated to SynchronizationAspect via the
SettingsDefineState association. SynchronizationAspect contains
the point-in-time information of the source data.

"Error recovery from Broken state Automatic", For example, if the connection between the source and target
elements is broken (CopyState = Broken), once the connection is
restored, the copy operation continues automatically. If the error
recovery is not automatic, it requires manual intervention to restart
the copy operation. Use ModifyReplicaSynchronization, with
Operation set to Resume.

Table 200 - Operations

Operation Description Special Consideration

“Abort” Abort the copy operation if it is possible.

"Activate Consistency" Enable consistency.
358

 ReplicationServiceCapabilities Methods

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223
“Activate” Activate an inactive StorageSynchronized association.

"AddSyncPair" Add source and target elements of a
StorageSynchronized association to the source and target
replication groups. The SyncType of the associations
must be the same.

"Deactivate Consistency" Disable consistency.

“Deactivate” Stop the copy engine. Writes to source element are
allowed.

Snapshot: Writes to target element
after point-in-time is created are lost
(pointers removed).

"Detach" Remove the association between the source and target
elements. Detach does not delete the target element.

“Dissolve” Dissolve the synchronization association between two
storage objects, however, the target element continues to
exist.

Snapshot: This operation also
creates a SettingsDefineState
association between the source
element and an instance of
SynchronizationAspect if the
ReplicationType supports it.

"Failover" Enable the read and write operations from the host to the
target element. This operation useful for situations when
the source element is unavailable.

"Failback" Switch the read/write activities from the host back to
source element. Update source element from target
element with writes to target during the failover period.

"Fracture" Separate the target element from the source element.

"Resync Replica" Resynchronize a fractured target element.

"Restore from Replica" Copy a fractured target element to the source element.

"Resume" Continue the copy operation of a suspended (or Broken)
relationship.

To continue from the Broken state,
the problem should be corrected first
before requesting to resume.

"Reset To Sync" Change Mode to Synchronous.

"Reset To Async" Change Mode to Asynchronous.

“Return To StoragePool” Delete a Snapshot target.

"Reverse Roles" Switch the source and the target elements’ roles.

"Split" Separate the source and the target elements in a
consistent manner.

"Suspend" Stop the copy engine in such a way that it can be
resumed.

Table 200 - Operations

Operation Description Special Consideration
SNIA Technical Position 359

ReplicationServiceCapabilities Methods

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238
Table 201 compares the action of similar Operations.

9.5.2.4.7 GetSupportedSettingsDefineStateOperations

uint32
ReplicationServiceCapabilities.GetSupportedSettings
DefineStateOperations(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedOperations[]);

For a given ReplicationType this method returns the supported operations on a SettingsDefineState
association that can be supplied to the ModifySettingsDefineState method, shown in Table 202.

Table 201 - Comparison of Similar Operations

Operations Description

Activate versus Resume Activate: Activates a StorageSynchronizes association
that has a CopyState of “Inactive.”

Resume: Resumes a StorageSynchronized association
that has a CopyState of “Suspended”.

Deactivate versus Suspend Deactivate: Stops the copy engine. In the case of
Snapshots, all writes to target element are deleted
(pointers to changed data are removed). While inactive,
writes to source element will not be committed to target
element once activated.

Suspend: Stops the copy engine. All writes to target
element are preserved. Once resumed, pending writes to
target element are committed.

Fracture versus Split Fracture: Source and target elements are separated
“abruptly.”

Split: Source and target elements are separated in an
orderly fashion. Consistency of target elements is
maintained.

Detach versus Dissolve Detach: The association between the source and target
element must be first Fractured/Split before it can be
Detached.

Dissolve: The association can have a CopyState of
Synchronized. Additionally, Dissolve can create a
SettingsDefineState association based on
GetSupportedFeatures (see 9.5.2.4.5) Capabilities.

Table 202 - SettingsDefineState Operations

SettingsDefineState
Operation

Description Special Consideration

"Activate Consistency" Enable consistency

"Deactivate Consistency" Disable consistency

"Delete" Remove the SettingsDefineState association. Instance of
SynchronizationAspect may also be deleted if it is not shared
with other elements.

"Copy To Target" Introduces the target elements and forms the necessary
associations between the source and the target elements
(i.e., StorageSynchronized).
360

 ReplicationServiceCapabilities Methods

1239
 9.5.2.4.8 GetSupportedThinProvisioningFeatures

uint32 ReplicationServiceCapabilities.GetSupportedThinProvisioningFeatures(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedThinProvisioningFeatures[]);

For a given ReplicationType this method returns the supported features related to thin provisioning.

A client can request a specific thin provisioning policy in the ReplicationSettingData parameter of the
appropriate method call.

9.5.2.4.9 GetSupportedMaximum

 uint32 ReplicationServiceCapabilities.GetSupportedMaximum(

 [IN] uint16 ReplicationType,

 [IN] uint16 Component,

 [OUT] uint64 MaxValue);

This method accepts a ReplicationType and a component, it then returns a static numeric value
representing the maximum number of the specified component that the service supports. A value of 0
indicates unlimited components of the given type. In all cases the maximum value is bounded by the
availability of resources on the computer system. If the information is not known, the method returns 7
which indicates "Information is not available".

Effectively, this method informs clients of the edge conditions.

Table 204 shows the list of components that can be specified.

Table 203 - Thin Provisioning Features

Feature Description

"Thin provisioning is not supported" The replication service does not distinguish between thinly and fully
provisioned elements. The service treats all elements as fully
provisioned elements.

"Zeros written in unused allocated blocks of target" Applies to copying from a thinly provisioned element to a fully
provisioned element. The implementation needs to allocate “real”
storage blocks on the target side for the corresponding blocks of the
source element that are unused.

"Unused allocated blocks of target are not initialized" Applies to copying from a thinly provisioned element to a fully
provisioned element. The implementation needs to allocate “real”
storage blocks on the target side for the corresponding blocks of the
source element that are unused.

Table 204 - Components

Component Description

"Number of target elements per source element" Maximum number of target elements per source element.

"Number of total source elements" Maximum number of total source elements supported by the service.

"Number of total target elements" Maximum number of total target elements supported by the source.

"Number of hops in multi-hop replication" Maximum number of hops in multi-hop replication the service can
manage.
SNIA Technical Position 361

ReplicationServiceCapabilities Methods

1240

1241

1242

1243

1244

1245

1246

1247

1248
9.5.2.4.10 GetDefaultReplicationSettingData

 uint32 ReplicationServiceCapabilities.GetDefaultReplicationSettingData(

 [IN] uint16 ReplicationType,

 [OUT, EmbeddedObject]

 string DefaultInstance);

This method for a given ReplicationType returns the default ReplicationSettingData as an instance.

9.5.2.4.11 GetSupportedReplicationSettingData

Not defined in this document.

EXPERIMENTAL

9.6 Client Considerations and Recipes

9.6.1 Discovery of Copy support and Capabilities

A single instance of a Copy Services provider may support mirrors, snapshots and clones. A client follows
these steps to fully discover and understand all capabilities of the provider:

• Locate the hosted instance of StorageConfigurationService.

• Enumerate and get all of the informational capability objects associated with
StorageConfigurationService

Block services shall be supported by the provider. The Copy Services Profile shall be registered by the
provider. The provider shall host one instance of StorageConfigurationService.

The properties of StorageConfigurationCapabilities and StorageReplicationCapabilities indicate precisely
how the provider supports each copy service feature. The client should find one instance of
StorageReplicationCapabilities for each SupportedSynchronizationType value supported by the provider.
StorageReplicationCapabilities can be specialized as shown in Table 205.

Each instance shows the client:

• Replica type supported (full or delta)

• Methods supported and ModifySynchronization operations supported

• Any restrictions on host access to replicas

• Upper limits such as maximum replicas for one source element

• Specialized features by CopyType

Table 205 - Replica Specialization by CopyType

SupportedSynchronizationType
value

CopyType value Specialization

Async (2) Async (2) Asynchronous local mirror replication

Sync (3) Sync (3) Synchronous local mirror replication

UnSyncAssoc-Full (4) UnSyncAssoc (4) Full snapshots

UnSyncAssoc-Delta (5) UnSyncAssoc (4) Delta snapshots

UnSyncUnAssoc (6) UnSyncUnAssoc (5) Clone replication
362

 ReplicationServiceCapabilities Methods

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265
Most of the properties in StorageReplicationCapabilities are optional. The client first analyzes
SupportedSynchronousActions[], SupportedAsynchronousActions[], SupportedModifyOperations[] and
SupportedSpecializedElements[]. Support for the remaining optional properties is conditional on the
values indicated for these properties.

EXPERIMENTAL

If the CIM_ReplicationService has been implemented, another set of methods and capabilities will also
exist -- the CIM_ReplicationServiceCapabilities. The client should find one instance of
ReplicationServiceCapabilities for each instance of hosted ReplicationService.
ReplicationServiceCapabilities can be specialized as shown in Table 206.

An instance of ReplicationServiceCapabilities shows the client:

• Methods supported and ModifyReplicaSynchronization operations supported, and

• Storage Objects (e.g., Volumes or LogicalDisks) supported

The client first analyzes SupportedSynchronousActions[], SupportedAsynchronousActions[] and
SupportedStorageObjects[]. Other features can be determined from the GetSupportedFeatures method of
the class.

EXPERIMENTAL

EXPERIMENTAL

9.6.2 Creating and Managing Replicas

In general, creating and managing replicas involves the following steps:

• Decide on the SyncType of replica (Mirror, Snapshot, Clone) and Mode (Synchronous,
Asynchronous). See 9.1.4.2.

• Locate the hosted instance of ReplicationService. See 9.1.3.

• Locate the instance of ReplicationServiceCapabilities. Utilize its properties and methods to determine
the applicable capabilities offered by the implementation for the desired ReplicationType (includes
SyncType and Mode). See 9.1.4.

Table 206 - Replica Specialization by SyncType/Mode

SupportedReplicationType value SyncType/Mode value Specialization

Synchronous Mirror Local (2) Mirror (6) / Synchronous (2) Synchronous mirror

Asynchronous Mirror Local (3) Mirror (6) / Asynchronous (3) Asynchronous mirror

Synchronous Snapshot Local (6) Snapshot (7) / Synchronous (2) Synchronous Snapshot

Asynchronous Snapshot Local (7) Snapshot (7) / Asynchronous (3) Asynchronous Snapshot

Synchronous Clone Local (10) Clone (8) / Synchronous (2) Synchronous Clone

Asynchronous Clone Local (11) Clone (8) / Asynchronous (3) Asynchronous Clone
SNIA Technical Position 363

ReplicationServiceCapabilities Methods

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291
• Use the method ReplicationService.GetAvailableTargetElements to locate appropriate target
elements. Depending on the implementation, it is also possible to allow the service to locate target
elements. See 9.5.2.3.7.

• Verify StoragePools have sufficient free capacity for the target elements. See 9.1.22.

• Invoke the appropriate extrinsic method of the ReplicationService to create a replica. See 9.5.2.3.2.

• Monitor the copy operation’s progress by examining the replication associations properties, or
subscribe to the appropriate indications -- including storage pool low space alert indications. See
9.1.6 and 9.1.24.

• Invoke the method ReplicationService.ModifyReplicaSynchronization to modify a replica. For
example, “split” a replica from its source element. See 9.5.2.3.4.

EXPERIMENTAL

9.6.3 Using StorageSetting for Replicas

The StorageSetting class has several properties used to create and manage replicas. Instances of this
class are used as goal parameters for many of the methods used by the profile. These instances are
serially reusable for a short sequence of operations ending with creation of a pool or an element. The
client should follow these steps:

1) Invoke CreateSetting with SettingType value “Goal” for a selected storage pool.

2) Set values for all of the properties used to create and manage replicas. These properties are listed
in the definition of StorageSetting in this profile. Property values can be changed by the ModifyIn-
stance intrinsic method. The SupportedStorageElementUsage[] and SupportedStoragePoolUsage[]
properties in StorageConfigurationCapabilities indicates which values of StorageExtentInitialUsage
and StoragePoolInitialUsage are supported. Other replication properties may have been returned to
the client with an initial value of “not applicable”. The client should not modify the value of any prop-
erty with a value of “not applicable”.

3) The generated setting may initially be used one or more times as a goal parameter for the GetSup-
portedSizes and GetSupportedSizeRange methods. The setting may then be used once as a goal
parameter for a pool or element creation method.

4) When the client no longer needs the generated setting instance, invoke the DeleteInstance intrinsic
method.

9.6.4 Finding and Creating Target Elements

If a provider supports the AttachReplica method, the client finds or creates target elements eligible to
become replicas. A provider may restrict replica targets to a specialized set of elements if element usage
restrictions are supported as indicated in StorageConfigurationCapabilities. The client should follow these
steps:

Case1: If the instrumentation does not support GetAvailableTargetElements method.

1) Determine the required size of the target element. Use the size of the source element unless a delta
replica is created. If a delta replica is created, the size may be smaller than the associated source
element.

2) Create a goal setting instance. Set StorageExtentInitialUsage to the correct value for the type of
specialized element needed by the client. Set other replication setting property values as desired.
Refer to 9.6.8 Creating and Managing Snapshots for guidelines on using delta reservation proper-
ties. Use this goal instance in all the remaining steps.
364

 ReplicationServiceCapabilities Methods

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313
3) Search for existing StorageVolume instances that can be used as replica targets. A client can invoke
the GetElementsBasedOnUsage method to locate available targets from existing elements. The cli-
ent is responsible for screening the candidates for the required size and settings values. The search
is always initiated on the system that will host the target element.

4) If no candidates exist, follow block services client considerations to create a new element as the
replica target. Target elements may be created in pools or from element types that a provider sup-
ports as a component. As in step 2, set StorageExtentInitialUsage and all of the other replication
setting properties to the required values before creating a new element. If a virtual element is cre-
ated in a special delta replica pool (described in subsequent sections), the Size parameter value
should be omitted when the element is created.

EXPERIMENTAL

Case2: If the instrumentation supports GetAvailableTargetElements method.

1) Select the original volume.

2) Get the copy target candidates by using GetAvailableTargetElements.

3) Select one of the candidates.

4) Create pair by CreateElementReplica.

EXPERIMENTAL

EXPERIMENTAL

9.6.5 Creating and Managing Pools for Delta Replicas

A provider may require specialized pools as containers for delta replicas. Such a pool only contains delta
replicas based on the variable space consumption model explained later in this clause. The client should
inspect the values of StorageReplicationCapabilities.DeltaReplicaPoolAccess. Values are:

• “Any” – Specialized pools not required for delta replicas. The provider creates delta replicas based
on the fixed space consumption model and the client can select any pool as a container.

• “Shared” – a single shared pool is the container for all delta replicas. This type of pool is always
preexisting and may be located with the GetElementBasedOnUsage method. The client may need
to add space to this type of pool.

• “Exclusive” – each source element requires an exclusive, special pool for associated delta replicas.
If the pool already exists, it is associated to the source element with a ReplicaPoolForStorage
association. If the pool does not exist, the client creates the pool.

Delta replica pools are commonly created from or extended with component elements supplied by the
InExtents[] parameter of the CreateOrModifyStoragePool method. The provider consumes all of the space
in the supplied elements for this type of pool. All of the supplied elements should come from a single pool.
Preexisting component elements may be located using the GetElementsBasedOnUsage method with the
Usage parameter set to “Element Component”. New component elements may be created using a goal
parameter with StorageExtentInitialUsage set to “Element Component”. The component element type
shall be a type supported by the provider as indicated in SupportedStorageElementTypes[].

A client may increase the size of a preexisting shared pool by adding component elements. A common
practice would be to use multiple small elements of equal size. Selected component elements are passed
SNIA Technical Position 365

ReplicationServiceCapabilities Methods

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350
to the CreateOrModifyStoragePool method using the InExtents[] parameter. The new elements are
combined with any existing elements to increase the pool size.

A client may create new exclusive pools or increase the size of an existing exclusive pool. A new
exclusive pool is commonly created by supplying one component element that supplies the required pool
size. Later, the exclusive pool size is increased by supplying a Size parameter value indicating the
required new size of the pool. The provider determines how to increase the size. An exclusive delta
replica pool is automatically associated to a source element by the provider. A ReplicaPoolForStorage
association to the source element is created during the first CreateReplica operation that refers to the
pool.

If warning threshold alerts are supported, the client may invoke ModifyInstance to modify the value of
StoragePool.LowSpaceWarningThreshold. The pool size can be increased following a low space alert
indication.

If the provider requires a shared pool and only supports “Replica Attachment” as the method for creating
delta snapshots, then the shared pool shall be provisioned with virtual devices to be used as target
elements. The client should ensure that enough virtual devices exist to create the expected maximum
number of delta replicas. Some number of virtual devices may preexist. If the client creates virtual
devices, create a goal element for each virtual device with StorageExtentInitialUsage set to “Delta
Replica Target” and omit the Size parameter when invoking the element creation method. This type of
virtual device always has an initial SpaceConsumed value of zero and does not have a
StorageSynchronized association until AttachOrModifyReplica is subsequently invoked by the client.

Capacity management for a delta replica pool adheres to the capacity relationship formula specified in
Block Services, Extent Mapping and Extent Conservation. The standard capacity relationship is:

TotalManagedSpace = RemainingManagedSpace + SUM(SpaceConsumed)

where SpaceConsumed is a sum for all elements created in the pool. RemainingManagedSpace and
SpaceConsumed properties may have volatile values for a delta replica pool and the elements in the pool.
The provider shall maintain values for these properties that satisfy the formula. However, a client may
receive stale values when instance properties are retrieved in multiple operations. The stale values may
result in an unequal comparison when the capacity management relationship is checked. A client should
not expect to determine exactly how much space is consumed by a delta replica in a shared or exclusive
pool. If a snapshot service provider allows multiple snapshots to share a consumed block, only one
snapshot will count the block in its SpaceConsumed value. The most important capacity management role
for the client is to correctly size the delta replica pool. The sizing should be based on the maximum
number of snapshots retained in the pool and the expected space consumption per snapshot.

If the provider supports low space warning threshold alerts, the client should subscribe to these alert
indications. The client should maintain adequate pool capacity by either increasing the pool size or
deleting the oldest snapshots when an alert is received.

Extent mapping and extent conservation are not supported for elements created in a specialized delta
replica pool.

EXPERIMENTAL

9.6.6 Creating and Managing Mirrors

A mirror replica is the same size as the associated source element and is fully copied from the source
element. A provider may allow the mirror element to be a larger size than the source element. A full
background copy is normally initiated by the provider when a mirror replica is created. If the provider
defers the background copy, the client may need to initiate the copy at a later time.
366

 ReplicationServiceCapabilities Methods

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386
 A provider normally runs a copy engine that maintains a mirror as the current image of the associated
source element. The copy engine may operate in either synchronous or asynchronous mode. If the client
requests CopyType “Sync” when the replica is created, the copy engine runs in synchronous mode and
any write I/O operation to the source does not receive ending status until the write operation is also
completed for the mirror. If the client requests CopyType “Async”, the copy engine runs in asynchronous
mode and write I/O operations receive ending status when the operation completes for the source
element.

A mirror may be changed from a current image of the source element to a point-in-time image using a
fracture operation. A mirror in the “Fractured” state is called a split mirror. A mirror can also be converted
to an independent storage element by a “Detach” operation following a fracture operation. The detached
mirror is equivalent to a clone element created with a CopyType “UnSyncUnAssoc” request (discussed
later in this clause).

A local mirror target element is hosted on the same system as the source element. An operation to create
a mirror includes the following steps:

Step 1: search the target host using the GetElementsBasedOnUsage method with the Usage
parameter value set to “Local Replica Target”. The client can search the entire host or selected
pools on the host. The client interfaces to the host system for the source element if a local mirror
is created. The client shall provide a replica size value for the screening operation. Normally, this
is the same size value as the source element. Select a candidate volume based on best fit or
some other appropriate filter. Proceed to step 3 if a candidate is selected from existing elements.

Step 2: select a pool for creation of a new target element. For the pool being screened, access the
associated StorageCapabilities instance and invoke CreateSetting to generate a modifiable
setting object that is used as a goal parameter for one or more method invocations. Set
StorageExtentInitialUsage to either “Local Replica Target”. Invoke GetSupportedSizes or
GetSupportedSizeRange and screen the pool based on the target element size. If the pool does
not support the required size, proceed to the next candidate pool. If a candidate pool is found and
CreateReplica will be used to create the new mirror, proceed to step 3. Otherwise, the client may
follow operations described in 5 Block Services Package to create a new replica target candidate.
Note: a client may elect to bypass screening and require a user to manually select a candidate
pool or target element.

Step 3: invoke AttachReplica or CreateReplica to create a new mirror replica. If the provider
returns “job completed” status, the client can immediately access the StorageSynchronized
association instance for the new replica. If the provider returns “job started” status, the client may
need to wait for accessibility to the StorageSynchronized association as described in 9.1.10 State
Management For Associated Replicas. The client may need to initiate additional operations to
bring the new replica to the required synchronization state. If the provider supports an
InitialReplicationState of “Initialized”, the copy engine has not started a background copy
operation and the client may invoke ModifySynchronization requesting a “Prepare” or “Resync”
operation as needed.

The ModifySynchronization method can be invoked to manage existing mirrors. The profile supports the
following operations:

1) Mirrors can be split from their associated source element using a “Fracture” operation. A split mirror
is a point-in-time image of the source element. The split mirror can be used as a source for a backup
operation or can be treated as a temporary clone. A split mirror can be changed back to a current
image of the source element using a “Resync” operation.

2) Mirrors can be converted to independent storage elements by a sequence of operations including
“Fracture” and “Detach”.
SNIA Technical Position 367

ReplicationServiceCapabilities Methods

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428
3) The source element can be restored from a mirror by invoking a “Restore” operation. This should
normally follow a client action that blocks host I/O to both the source element and all associated
replica elements until the restore operation is completed.

4) A provider may support “ResetToSync” and “ResetToAsync” operations if availability and perfor-
mance QoS policies change over time. Invoke “ResetToSync” when availability QoS changes to a
higher priority than performance QoS. Invoke “ResetToAsync” when the reverse relationship occurs.

9.6.7 Creating a Clone and Redirected Restore Operations

A clone is a full size, fully copied local replica that becomes an independent storage element as soon as
the background copy operation is completed. A clone is usually created by invoking the AttachReplica or
CreateReplica methods with the CopyType parameter set to a value of “UnSyncUnAssoc”. Alternatively, a
clone may be created by detaching a split mirror or a frozen snapshot.

The provider shall automatically initiate a background copy operation when CopyType “UnSyncUnAssoc”
is requested by a client. If the provider deploys the method as an asynchronous operation, then the
provider may elect to create a temporary StorageSynchronized association that allows the client to
manage copy priority for the background copy operation. This temporary association should only indicate
a SyncState value of “Resync in progress” and the provider shall automatically delete the association
when the background copy operation is completed. The client can modify the value of CopyPriority while
the copy operation is in progress. The temporary association cannot be used for any other purpose and
the client shall never invoke ModifySynchronization against this type of association.

A provider may allow a frozen snapshot to be treated as a clone. The client observes that a replica
previously created with CopyType “UnSyncAssoc” has a SyncState value of “Frozen”. If the provider
supports the ModifySynchronization Start Copy operation, this operation may be invoked to bring the
replica from idle state to frozen state. The provider may allow copy priority to be managed as described in
9.6.9 "Managing Background Copy".

The clone is a point-in-time image of the source element. The client shall supply any needed date/time
value for the point-in-time because a guaranteed WhenSynced property value is not available for a clone
created by a CopyType “UnSyncUnAssoc” operation. A provider may create a clone as either a
synchronous or asynchronous operation. When the operation is completed, the client assumes the clone
is ready to manage as an independent element if the OperationalStatus property indicates a value of
“OK”.

The Restore operation for the ModifySynchronization method only allows restoration to the source
element associated with a replica. If a provider supports multi-level replication, a variation of clone
creation may be used to restore a replica to a redirected location. Invoke a replica creation method
supported by the provider passing a replica element as the source parameter and also indicate CopyType
“UnSyncUnAssoc”. The target may be a new element or an existing independent element.

EXPERIMENTAL

9.6.8 Creating and Managing Snapshots

Snapshot replicas are point-in-time images created with CopyType value “UnSyncAssoc”. Snapshots can
be created as full size replicas of a source element or as delta replicas of a source element. Snapshots
usually have lower space consumption and lower copy engine overhead than either split mirrors or clones
used as point-in-time images. Snapshots are only supported as local replicas hosted on the same storage
system as the associated source element. A provider defines only one instance of
StorageReplicationCapabilities for managing snapshots. This instance indicates one of two values for
SupportedSynchronizationType:

• Full size: SupportedSynchronizationType = “UnSyncAssoc-Full”
368

 ReplicationServiceCapabilities Methods

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476
• Delta: SupportedSynchronizationType = “UnSyncAssoc-Delta”

Snapshot providers may deploy either a fixed space consumption model or a variable space consumption
model for snapshot replicas. A full size replica always uses a fixed space consumption model. A delta
replica may use either a fixed or a variable model. Replica elements based on the variable model shall be
created in special pools for delta replicas. A provider indicates support for special pools by including the
value “Reserved as a Delta Replica Container” in
StorageConfigurationCapabilities.SupportedStoragePoolUsage[]. The replica
AllocatedFromStoragePool.SpaceConsumed property has a constant value for the fixed model and a
volatile, increasing value for the variable model. The RemainingManagedSpace property for the
corresponding pool has a volatile, decreasing value if the pool contains replicas based on the variable
model. Figure 61: "Fixed Space Consumption" and Figure 62: "Variable Space Consumption" show the
fixed and variable space consumption models for delta snapshots:

For full size snapshots, NumberOfBlocks and BlockSize indicate the actual size of the target element
which is as large or larger than the source element. For delta snapshots, NumberOfBlocks and BlockSize
have the same values as the associated source element. Delta reservation properties are only used for
snapshots created by the CreateReplica method using fixed space consumption.

Figure 61 - Fixed Space Consumption

StorageVolume

// delta replica
NumberOfBlocks = N
BlockSize = M
DeltaReservation = D

StorageSynchronized

StorageExtent (optional)

// container element
NumberOfBlocks = S1
BlockSize = M
ConsumableBlocks = S2

BasedOn

StorageVolume

// source element
NumberOfBlocks = N
BlockSize = M
DeltaReservation = 0

StartingAddress = A
EndingAddress = A + SpaceConsumed/M - 1

StoragePool (required)

// container element
// any concrete pool
TotalManagedSpace = S3
RemainingManagedSpace = S4

AllocatedFromStoragePool
SpaceConsumed = (N*M*D)/100 rounded up to nearest multiple of M

StorageSetting

DeltaReservationMin = D1
DeltaReservationGoal = D2
DeltaReservationMax = D3

ElementSettingData

CopyType = UnSyncAssoc
SNIA Technical Position 369

ReplicationServiceCapabilities Methods

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521
The instances of StorageReplicationCapabilities for “UnSyncAssoc-Delta” and “UnSyncAssoc-Full” may
use the patterns detailed in Table 207.

The steps required to create a snapshot vary for each pattern. There are a number of common steps.

Figure 62 - Variable Space Consumption

Table 207 - Patterns Supported for StorageReplicationCapabilities

SupportedSynchronizati
onType

Supported…Actions[n] DeltaReplicaPoolAccess Space Consumption

UnSyncAssoc-Delta “Replica Attachment” Any pool or extent Fixed

UnSyncAssoc-Delta “Replica Creation” Any pool or extent Fixed

UnSyncAssoc-Delta “Replica Attachment” Shared or Exclusive Variable

UnSyncAssoc-Delta “Replica Creation” Shared or Exclusive Variable

UnSyncAssoc-Full “Replica Attachment” n/a Fixed

UnSyncAssoc-Full “Replica Creation” n/a Fixed

S to ra g e S y n c h ro n iz e d

S to ra g e V o lu m e

// d e l ta re p l ic a
N u m b e rO fB lo c k s = N
B lo c k S iz e = M

S to ra g e P o o l

/ / c o n ta in e r e le m e n t
/ / d e l ta re p l ic a p o o l
T o ta lM a n a g e d S p a c e = S
R e m a in in g M a n a g e d S p a c e = v a r ia b le
L o w S p a c e W a rn in g T h re s h o ld = T 2
U s a g e =
٪ R e s e rv e d a s a D e l ta R e p l ic a C o n ta in e r

A l lo c a te d F ro m S to ra g e P o o l

S to ra g e V o lu m e

// s o u rc e e le m e n t
N u m b e rO fB lo c k s = N
B lo c k S iz e = M

S p a c e C o n s u m e d = v a r ia b le

C o p y T y p e = U n S y n c A s s o c

R e p l ic a P o o lF o rS to ra g e
(o p t io n a l)
370

 ReplicationServiceCapabilities Methods

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538
Step 1 the provider may limit the maximum number of replicas per source element. Verify that the limit is
not exceeded when a new replica is created. The provider may restrict snapshots to independent source
elements. If the source element is a replica, verify that the provider allows snapshots of local replicas.

Step 2: locate a candidate pool eligible to contain a new snapshot. This is a special pool if the
DeltaReplicaPoolAccess value is “Shared” or “Exclusive”. A shared, special pool is a preexisting element
supplied by the provider. The special pool may be populated with virtual devices that do not consume
space until the AttachReplica method is invoked at a later time. An exclusive, special pool is created the
first time a new delta replica is created for a source element that currently has no associated delta
replicas. The operation for locating or creating a special pool for delta replicas is described in 9.6.5
Creating and Managing Pools for Delta Replicas. If snapshots can be created in any pool, enumerate all
existing pool instances and begin screening the pools for eligibility. If snapshots are created by the
AttachReplica method, all existing storage elements in each candidate pool should be screened for
eligibility in a subsequent step.

Step 3: For the special pool or for the pool being screened, access the associated StorageCapabilities
instance and invoke CreateSetting to generate a modifiable setting object to be used as a goal parameter
for one or more method invocations. Set StorageExtentInitialUsage to either “Local Replica Target” for a
full snapshot or “Delta Replica Target” for a delta snapshot.

If the operation will use CreateReplica to create a delta snapshot using fixed space consumption, the
DeltaReservationMin, DeltaReservationGoal and DeltaReservationMax properties are set by the client to
appropriate values for a new delta replica. The values are set in the unassociated StorageSetting element
to be passed as a goal parameter to an extrinsic method. The client cannot modify the values of delta
reservation properties in a StorageSetting element associated to an existing storage element. The values
set by the client satisfy the relationship:

DeltaReservationMin <= DeltaReservationGoal <= DeltaReservationMax

as constrained by the provider. The client cannot decrease the value of DeltaReservationMin and cannot
increase the value of DeltaReservationMax returned by the provider. If the provider supports a fixed
space consumption model, the client estimates the fixed size of the delta replica as a percentage of the
source element size and the provider determines the actual size when the element is created.

Step 4: Skip this step if CreateReplica is used to create a delta replica with variable space consumption.
For all other cases, screen the candidate pool or the storage elements contained in the pool. If
AttachReplica is used to create a delta replica with variable space consumption, search the special delta
replica pool for a virtual storage element not in use as a replica target. For all fixed space consumption
cases, the client calculates a replica size value for the screening operation. Use the source element size
if a full snapshot replica is created. Use the DeltaReplicaMax percentage times the source element size if
a delta snapshot replica is created. The generated setting created in step 3 is used as the goal parameter
for the screening methods. Search existing volumes for replica target candidates as described in 9.6.4
Finding and Creating Target Elements if AttachReplica is used as the method to create the replica. Select
a returned volume based on best fit or some other appropriate filter. Invoke GetSupportedSizes or
GetSupportedSizeRange and verify that the replica size is supported by the candidate pool if
CreateReplica is used. Proceed to step 5 if an eligible candidate element is found. Otherwise, proceed to
the next candidate pool. If no candidates are located from existing pools, the client may create a new
candidate pool or element. Omit the Size parameter whenever a virtual replica element is created. Note:
a client may elect to bypass screening and require a user to manually select a candidate pool or target
element.

Step 5: Invoke AttachReplica or CreateReplica to create a new snapshot. The setting property values
from the goal parameter apply to the new replica. The provider determines which setting property values
from the goal parameter are copied to an existing setting instance when AttachReplica is invoked. If a
delta replica is created, the NumberOfBlocks and BlockSize values of the source element are assigned to
the target.
SNIA Technical Position 371

ReplicationServiceCapabilities Methods

1539

1540

1541
The properties listed in Table 208 are used to monitor and manage space consumption for delta replicas
using a variable space consumption pattern.

The properties listed in Table 209 are used to monitor and manage space consumption for delta replicas
using a fixed space consumption pattern.

Two of the properties have volatile values automatically changed by the provider when a delta replica
uses a variable space consumption model: SpaceConsumed increases and RemainingManagedSpace
decreases as the associated source element is updated. When a delta replica consumes an additional
block, SpaceConsumed increases by the value of BlockSize and RemainingManagedSpace decreases by
the value of BlockSize. If the replica uses a fixed space consumption model, the values of these two
properties are constant and change only when an extrinsic method is invoked to create or modify the
replica element. The value of SpaceConsumed at the instant the delta replica is created is zero if no
space is reserved or greater than zero if space is reserved. The value of RemainingManagedSpace is
decreased by the value of SpaceConsumed at the instant the replica is created.

Table 208 - Space Consumption Properties

Delta Replica Property – Variable Space Consumption Value Modifiable

StorageExtent.NumberOfBlocks: valid for all elements. Same value as associated source element. constant no

StorageExtent.BlockSize: valid for all elements. Same value as associated source element. constant no

StoragePool.RemainingManagedSpace: valid for all pools. Value decreases by BlockSize each time
replica consumes a block in the pool.

volatile no

StoragePool.TotalManagedSpace: valid for all pools. constant no

StoragePool.LowSpaceWarningThreshold: valid for special delta replica pools if provider supports
pool warning thresholds. Value 0 to 100.

constant yes

AllocatedFromStoragePool.SpaceConsumed: valid for all elements. Value increases by BlockSize
each time replica consumes a block in the pool.

volatile no

Table 209 - Space Consumption Properties, Fixed Pattern

Delta Replica Property – FixedSpace Consumption Value Modifiable

StorageExtent.NumberOfBlocks: valid for all elements. Same value as associated source element. constant no

StorageExtent.BlockSize: valid for all elements. Same value as associated source element. constant no

StorageExtent.DeltaReservation: valid for target elements. Value set by CreateReplica method
providers for delta replicas.

constant no

StoragePool.RemainingManagedSpace: valid for all pools. Value decreases by fixed element size
when element is created.

constant no

StoragePool.TotalManagedSpace: valid for all pools. constant no

AllocatedFromStoragePool.SpaceConsumed: valid for all elements. Value set to fixed element size
when element is created.

constant no

StorageSetting.DeltaReservationMin: Value is % of source element size that is minimum fixed size.
Used only with CreateReplica method for delta replicas.

constant yes (goal)

StorageSetting.DeltaReservationMax: Value is % of source element size that is maximum fixed
size. Used only with CreateReplica method for delta replicas.

constant yes (goal)

StorageSetting.DeltaReservationGoal: Value is % of source element size that is the client goal for
the fixed size. Used only with CreateReplica method for delta replicas.

constant yes (goal)
372

 ReplicationServiceCapabilities Methods

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590
The ModifySynchronization method can be invoked to manage existing snapshots. The profile supports
the following operations:

1) A snapshot can be reused by invoking a “Resync” operation. This releases all of the space con-
sumed by a snapshot using the variable space consumption model. The WhenSynced property in
StorageSynchronized is reset to a new date/time value.

2) A “Detach” operation releases all of the space consumed by a snapshot using the variable space
consumption model. The detached target element can be reused for another purpose or deleted by
invoking the ReturnToStoragePool method. If the snapshot was not previously detached, invocation
of ReturnToStoragePool deletes the StorageSynchronized association.

3) Snapshot space consumption can be stopped by invoking a “Quiesce” operation. If the associated
source element is updated while the snapshot is in “Quiesced” state it is no longer a valid point-in-
time image.

4) The source element can be restored from a snapshot by invoking a “Restore” operation. This may
follow a client action that blocks host I/O to both the source element and all associated snapshot
elements until the restore operation is completed.

9.6.9 Managing Background Copy

Background copy is a full copy operation that copies all blocks from a source element to a replica
element. An initial background copy is normally started by a provider when a mirror or a clone is created.
Initial background copy is not normally started when a snapshot is created. A provider may allow a client
to initiate a deferred background copy. Management of background copy is an optional provider capability
indicated to a client for each supported CopyType value using properties in
StorageReplicationCapabilities. Deferred background copy for snapshots is supported if
SupportedModifyOperations[] includes “Start Copy” and “Stop Copy”. Deferred background copy for
mirrors is supported if InitialSynchronizationDefault has a value other than “Not Managed” or “Not
Applicable”. Copy priority can be managed for any CopyType if ReplicationPriorityDefault has a value
other than “Not Managed” or “Not Applicable”.

A ModifySynchronization Operation value of “Start Copy” or “Stop Copy” may be invoked for snapshots. A
“Start Copy” operation causes a snapshot to transition from “Idle” state to “Copy In Progress” state to
“Frozen” state. A “Stop Copy” operation causes a snapshot to transition from “Copy In Progress” state to
“Idle” state.

If initial background copy is not initiated when a mirror is created, a subsequent sequence of
ModifySynchronization operations that may include Prepare and Resync should start a background copy
operation.

The InitialSynchronization property in the goal parameter may be set to indicate whether or not an initial
background copy operation is initiated at the time a replica is created. The ReplicationPriority property in
the goal parameter may be set to override the default copy I/O rate priority.

A client may invoke ModifyInstance to modify the value of CopyPriority for a StorageSynchronized
association. This allows a client to manage the copy I/O rate and the priority of peer I/O operations
relative to host I/O operations. CopyPriority may be modified before or during a background copy
operation. Standard CopyPriority values are:

• Low – peer I/O is lower priority than host I/O

• Medium – peer I/O is the same priority as host I/O

• High – peer I/O is higher priority than host I/O

EXPERIMENTAL
SNIA Technical Position 373

ReplicationServiceCapabilities Methods

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604
EXPERIMENTAL

By default, replication service performs the copy operations in the background. In other words, the
methods such as CreateElementReplica, start the copy operation (or start a job) and return while the
copy operation is in progress. To perform a copy operation in the foreground, the method may specify the
WaitForCopyState of Synchronized, in which case the call will not return until the copy operation is
complete.

Alternatively, the methods CreateElementReplica may specify the WaitForCopyState of Inactive if the
ReplicationType supports it. In this case, the copy operation is not started until the inactive
synchronization is activated (using the ModifyReplicaSynchronization or ModifyListSynchronization
methods).

EXPERIMENTAL

9.6.10 Recipes

Not defined in this document.

9.7 CIM Elements

9.7.1 Overview

Table 210 describes the CIM elements for Copy Services.

Table 210 - CIM Elements for Copy Services

Element Name Requirement Description

9.7.2 CIM_ElementCapabilities (Associates
ReplicationServiceCapabilities and
ReplicationService)

Conditional Experimental. Conditional requirement: The
ReplicationService is implemented.

9.7.3 CIM_ElementCapabilities (Associates
StorageReplicationCapabilities and
StorageConfigurationService)

Mandatory

9.7.4 CIM_ElementCapabilities
(StorageConfigurationCapabilities to
StorageConfigurationService)

Mandatory Associates StorageConfigurationCapabilities with
StorageConfigurationService.

9.7.5 CIM_ElementCapabilities
(StorageConfigurationCapabilities to StoragePool)

Optional Associates StorageConfigurationCapabilities with
StoragePool.

9.7.6 CIM_HostedService (Replication Service) Conditional Experimental. Conditional requirement: The
ReplicationService is implemented.

9.7.7 CIM_HostedService (Storage Configuration
Service)

Mandatory

9.7.8 CIM_ReplicaPoolForStorage Optional Experimental. Associates special storage pool for
Snapshots (delta replicas) to a source element.

9.7.9 CIM_ReplicationService Optional Experimental. Base class for Replication Services.
Methods are described in the Extrinsic Methods
clause.

9.7.10 CIM_ReplicationServiceCapabilities Conditional Experimental. Conditional requirement: The
ReplicationService is implemented. A set of
properties and methods that describe the
capabilities of a replication services provider.
374

 ReplicationServiceCapabilities Methods

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647
9.7.11 CIM_ReplicationSettingData Optional Experimental. Contains special options for use by
methods of Replication Services.

9.7.12 CIM_SettingsDefineState Optional Experimental. Associates a storage object to an
instance of SynchronizationAspect.

9.7.13 CIM_StorageCapabilities Mandatory Base definition is in Block Services Package.

9.7.14 CIM_StorageConfigurationCapabilities Mandatory Base definition is in Block Services Package. Adds
two properties.

9.7.15 CIM_StorageConfigurationService Mandatory Base definition is in Block Services Package.
Methods are described in the Extrinsic Methods
clause. The methods of this Service are being
Deprecated in favor of CIM_ReplicationService
methods.

9.7.16 CIM_StoragePool Mandatory Base definition is in Block Services Package.

9.7.17 CIM_StorageReplicationCapabilities Mandatory A set of properties that describe the capabilities of a
copy services provider.

9.7.18 CIM_StorageSetting Mandatory Base definition is in Block Services Package.

9.7.19 CIM_StorageSynchronized Conditional Experimental. Conditional requirement: The
ReplicationService is implemented. Associates
replica target element to source element. Property
definitions and descriptions are identical to those for
LogicalDisk usage.

9.7.20 CIM_StorageSynchronized (Between
StorageExtent elements)

Mandatory Associates replica target element to a source
element.

9.7.21 CIM_SynchronizationAspect Optional Experimental. Keeps track of the source of a copy
operation, even after StorageSynchronized is
removed. Also keeps track of point-in-time.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageSynchronized

Mandatory All instance creation indications for
StorageSynchronized.

See 9.1.24.2 InstCreation on
StorageSynchronized.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageSynchronized

Mandatory All instance deletion indications for
StorageSynchronized.

See 9.1.24.3 InstDeletion on
StorageSynchronized.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::SyncState
<>
PreviousInstance.CIM_StorageSynchronized::SyncState

Optional Deprecated. CQL -Synchronization state transition
for a replica association.

This Indication is being DEPRECATED.

See 9.1.24.4 InstModification on SyncState.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageSynchronized AND
OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-synchronized')

Optional CQL -Instance deletion indications for a specific
StorageSynchronized.

See 9.1.24.5 Qualified InstDeletion on
StorageSynchronized.

Table 210 - CIM Elements for Copy Services

Element Name Requirement Description
SNIA Technical Position 375

ReplicationServiceCapabilities Methods

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685
9.7.2 CIM_ElementCapabilities (Associates ReplicationServiceCapabilities and ReplicationSer-
vice)

Experimental.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: The ReplicationService is implemented.

Table 211 describes class CIM_ElementCapabilities (Associates ReplicationServiceCapabilities and
ReplicationService).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::CopyState
<>
PreviousInstance.CIM_StorageSynchronized::CopyState
AND OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-synchronized')

Optional Experimental. CQL -Synchronization state transition
for a specific replica association.

See 9.1.24.6 Qualified InstModification on
CopyState.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::ProgressStat
us <>
PreviousInstance.CIM_StorageSynchronized::ProgressSt
atus AND OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-synchronized')

Optional Experimental. CQL -Progress status transition for a
specific replica association.

See 9.1.24.7 Qualified InstModification on
ProgressStatus.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::ProgressStat
us <>
PreviousInstance.CIM_StorageSynchronized::ProgressSt
atus

Optional Experimental. CQL -Progress status transition for
replica associations.

See 9.1.24.8 InstModification on
ProgressStatus.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = "SNIA" AND AlertingManagedElement
ISA CIM_StorageSynchronized

Optional Experimental. Be notified when CopyState is set to
Broken.

See 9.1.24.9 AlertIndication on
StorageSynchronized.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = "SNIA" AND AlertingManagedElement
ISA CIM_StoragePool

Optional Experimental. Remaining pool space either below
warning threshold set for the pool or there is no
remaining space in the pool.

See 9.1.24.10 AlertIndication on StoragePool.

Table 211 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Associates ReplicationSer-
viceCapabilities and ReplicationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory

ManagedElement Mandatory

Table 210 - CIM Elements for Copy Services

Element Name Requirement Description
376

 ReplicationServiceCapabilities Methods

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727
9.7.3 CIM_ElementCapabilities (Associates StorageReplicationCapabilities and StorageConfigu-
rationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 212 describes class CIM_ElementCapabilities (Associates StorageReplicationCapabilities and
StorageConfigurationService).

9.7.4 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationSer-
vice)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 213 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to
StorageConfigurationService).

9.7.5 CIM_ElementCapabilities (StorageConfigurationCapabilities to StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 214 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to StoragePool).

Table 212 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Associates StorageReplica-
tionCapabilities and StorageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory

ManagedElement Mandatory

Table 213 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to StorageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 214 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.
SNIA Technical Position 377

ReplicationServiceCapabilities Methods

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771
9.7.6 CIM_HostedService (Replication Service)

Experimental.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: The ReplicationService is implemented.

Table 215 describes class CIM_HostedService (Replication Service).

9.7.7 CIM_HostedService (Storage Configuration Service)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 216 describes class CIM_HostedService (Storage Configuration Service).

9.7.8 CIM_ReplicaPoolForStorage

Experimental. Associates special storage pool for Snapshots (delta replicas) to a source element.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 217 describes class CIM_ReplicaPoolForStorage.

9.7.9 CIM_ReplicationService

Experimental. Base class for Replication Services.

Table 215 - SMI Referenced Properties/Methods for CIM_HostedService (Replication Service)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Replication Service hosted on the System.

Table 216 - SMI Referenced Properties/Methods for CIM_HostedService (Storage Configuration Service)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Storage Configuration Service hosted on the System.

Table 217 - SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
378

 ReplicationServiceCapabilities Methods

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 218 describes class CIM_ReplicationService.

9.7.10 CIM_ReplicationServiceCapabilities

Experimental. This class defines all of the capability properties for the replication services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: The ReplicationService is implemented.

Table 219 describes class CIM_ReplicationServiceCapabilities.

Table 218 - SMI Referenced Properties/Methods for CIM_ReplicationService

Properties Flags Requirement Description & Notes

CreateElementReplica() Mandatory

CreateSynchronizationAspect() Optional

ModifyReplicaSynchronization() Mandatory

ModifyListSynchronization() Optional

ModifySettingsDefineState() Optional

GetAvailableTargetElements() Optional

GetReplicationRelationships() Optional

Table 219 - SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities

Properties Flags Requirement Description & Notes

SupportedReplicationTypes Mandatory Enumeration indicating the supported CopyType/
Mode/Local-or-Remote combinations. Values:

 2: Synchronous Mirror Local

 3: Asynchronous Mirror Local

 6: Synchronous Snapshot Local

 7: Asynchronous Snapshot Local

 10: Synchronous Clone Local

11: Asynchronous Clone Local.

SupportedStorageObjects Mandatory Enumeration indicating the supported storage objects.
Values:

 2: StorageVolume

3: LogicalDisk.
SNIA Technical Position 379

ReplicationServiceCapabilities Methods

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860
9.7.11 CIM_ReplicationSettingData

Experimental. Contains special options for use by methods of Replication Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

SupportedAsynchronousActions N Mandatory Identify replication methods using job control. Values:

 2: CreateReplica

 4: CreateSynchronizationAspect

 5: ModifySynchronization

 7: ModifySettingsDefineState

 8: GetAvailableTargetElements

10: GetReplicationRelationships.

SupportedSynchronousActions N Mandatory Identify replication methods not using job control.
Values:

 2: CreateReplica

 4: CreateSynchronizationAspect

 5: ModifySynchronization

 7: ModifySettingsDefineState

 8: GetAvailableTargetElements

10: GetReplicationRelationships.

ConvertSyncTypeToReplicationType() Mandatory

ConvertReplicationTypeToSyncType() Mandatory

GetSupportedCopyStates() Mandatory

GetSupportedFeatures() Mandatory

GetSupportedConsistency() Optional

GetSupportedOperations() Mandatory

GetSupportedSettingsDefineStateOperations() Optional

GetSupportedThinProvisioningFeatures() Optional

GetSupportedMaximum() Optional

GetDefaultReplicationSettingData() Optional

GetSupportedReplicationSettingData() Optional

Table 219 - SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities

Properties Flags Requirement Description & Notes
380

 ReplicationServiceCapabilities Methods

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905
Table 220 describes class CIM_ReplicationSettingData.

9.7.12 CIM_SettingsDefineState

Experimental. Associates a storage object to an instance of SynchronizationAspect.

Table 220 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes

Pairing MN Optional Controls how source and target elements are paired. Values:

 2: Instrumentation decides

 3: Exact order

4: Optimum (If possible source and target elements on different adapters).

DesiredCopyMethodology MN Optional Request specific copy methodology. Values:

 1: Other

 2: Instrumentation decides

 3: Full-Copy

 4: Incremental-Copy

 5: Differential-Copy

 6: Copy-On-Write

 7: Copy-On-Access

8: Delta-Update.

TargetElementSupplier MN Optional If target elements are not supplied, this property indicates where the target
elements should come from. Values:

 1: Use existing elements

 2: Create new elements

 3: Use existing or Create new elements

4: Instrumentation decides.

ThinProvisioningPolicy MN Optional If the target element is not supplied, this property specifies the
provisioning of the target element. Values:

 2: Copy thin source to thin target

 3: Copy thin source to full target

 4: Copy full source to thin target

 5: Provisioning of target same as source

 6: Target pool decides provisioning of target element

7: Implementation decides provisioning of target.

ConsistentPointInTime MN Optional If it is true, it means the point-in-time to be created at an exact time with no
I/O activities in such a way the data is consistent among all the elements
or the group.

DeltaUpdateInterval MN Optional If non-zero, it specifies the interval between the snapshots of source
element, for example, every 23 minutes (00000000002300.000000:000). If
zero or NULL, the implementation decides.

Multihop MN Optional This property applies to multihop copy operation. It specifies the number of
hops the starting source (or group) element is expected to be copied.
Default is 1.
SNIA Technical Position 381

ReplicationServiceCapabilities Methods

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 221 describes class CIM_SettingsDefineState.

9.7.13 CIM_StorageCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 222 describes class CIM_StorageCapabilities.

9.7.14 CIM_StorageConfigurationCapabilities

This class is only defined to maintain SMI-S 1.0 backward compatibility. This version of SMI-S indicate
copy services capabilities using instances of the StorageReplicationCapabilities class.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 221 - SMI Referenced Properties/Methods for CIM_SettingsDefineState

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Storage Element.

SettingData Mandatory Synchronization Aspect.

Table 222 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes

DeltaReservationMin Mandatory Refer to property descriptions for CIM_StorageSetting class.

DeltaReservationMax Mandatory

DeltaReservationDefault Mandatory Initial value for CIM_StorageSetting.DeltaReservationGoal.
382

 ReplicationServiceCapabilities Methods

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998
Table 223 describes class CIM_StorageConfigurationCapabilities.

9.7.15 CIM_StorageConfigurationService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 224 describes class CIM_StorageConfigurationService.

Table 223 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities

Properties Flags Requirement Description & Notes

SupportedAsynchronousActions N Mandatory Identify replication methods using job control. Values:

 8: Replica Creation

 9: Replica Modification

10: Replica Attachment.

SupportedSynchronousActions N Mandatory Identify replication methods not using job control. Values:

 8: Replica Creation

 9: Replica Modification

10: Replica Attachment.

SupportedStorageElementTypes Mandatory Storage element types that can be replicated. Values:

 2: Storage Volume

4: Logical Disk.

SupportedCopyTypes Mandatory CopyType values:

 2: Async

 3: Sync

 4: UnSyncAssoc

5: UnSyncUnAssoc.

InitialReplicationState Mandatory The initial SyncState when replica creation is completed. Values:

 2: Initialized

 3: Prepared

4: Synchronized.

Table 224 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Properties Flags Requirement Description & Notes

ModifySynchronization() Mandatory Deprecated. This method is Deprecated in favor of
ReplicationService.ModifySynchronization.

CreateReplica() Optional Deprecated. This method is Deprecated in favor of
ReplicationService.CreateElementReplica.

AttachReplica() Optional Deprecated. This method is Deprecated in favor of
ReplicationService.CreateElementReplica.
SNIA Technical Position 383

ReplicationServiceCapabilities Methods

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032
9.7.16 CIM_StoragePool

LowSpaceWarningThreshold only applies to specialized pools created as containers for delta replica
elements using dynamic, variable space consumption. The specialized pool is associated to either the
StorageConfigurationService or to a single replica source element.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 225 describes class CIM_StoragePool.

9.7.17 CIM_StorageReplicationCapabilities

This class defines all of the capability properties for a replication service. A provider must supply one
instance for each SupportedSynchronizationType value supported.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 226 describes class CIM_StorageReplicationCapabilities.

Table 225 - SMI Referenced Properties/Methods for CIM_StoragePool

Properties Flags Requirement Description & Notes

LowSpaceWarningThresho
ld

M Optional Experimental. Percentage of TotalManagedSpace triggering an alert
indication. When RemainingManagedSpace reaches or falls below
this percentage, the indication is generated.

Table 226 - SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities

Properties Flags Requirement Description & Notes

SupportedSynchronizationType Mandatory Provider must supply one instance of this class for each
supported value. Values:

 2: Async

 3: Sync

 4: UnSyncAssoc-Full

 5: UnSyncAssoc-Delta

6: UnSyncUnAssoc.

SupportedAsynchronousActions N Mandatory Identify replication methods using job control. Values:

 2: Local Replica Creation

 4: Local Replica Modification

6: Local Replica Attachment.

SupportedSynchronousActions N Mandatory Identify replication methods not using job control. Values:

 2: Local Replica Creation

 4: Local Replica Modification

6: Local Replica Attachment.
384

 ReplicationServiceCapabilities Methods
InitialReplicationState Mandatory The initial SyncState when replica creation is completed.
Values:

 2: Initialized

 3: Prepared

 4: Synchronized

5: Idle.

SupportedModifyOperations Mandatory Identify ModifySynchronization operations supported for this
CopyType. Values:

 2: Detach

 3: Fracture

 4: Resync

 5: Restore

 6: Prepare

 7: Unprepare

 8: Quiesce

 9: Unquiesce

 10: Reset To Sync

 11: Reset To Async

 12: Start Copy

13: Stop Copy.

ReplicaHostAccessibility Mandatory Host access restrictions. Values:

 2: Not accessible

 3: Any host may access

 4: Only accessible by the associated source element host

5: Accessible by hosts other than the source element host.

Table 226 - SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities

Properties Flags Requirement Description & Notes
SNIA Technical Position 385

ReplicationServiceCapabilities Methods

2033

2034

2035

2036

2037

2038

2039
9.7.18 CIM_StorageSetting

Created By: Static

Modified By: Static

HostAccessibleState Mandatory Associated replicas are host accessible for these SyncState
values:

 2: Initialized

 3: Prepare In Progress

 4: Prepared

 5: Resync In Progress

 6: Synchronized

 7: Fracture In Progress

 8: Quiesce In Progress

 9: Quiesced

 10: Restore In Progress

 11: Idle

 12: Broken

 13: Fractured

 14: Frozen

15: Copy In Progress.

LocalMirrorSnapshotSupported Conditional Conditional requirement: Local or remote mirrors supported.
Only valid for CopyType "Sync" and "Async":

 true: local mirror replicas can be snapshot source element

false: local mirrors cannot be snapshot source.

MaximumReplicasPerSource Mandatory Maximum replicas of all types allowed for one source element.

MaximumLocalReplicationDepth Conditional Conditional requirement: Local or remote mirrors supported.
Volume A mirrors Volume B mirrors Volume C to this
maximum allowable depth.

InitialSynchronizationDefault Conditional Conditional requirement: Managed background copy
operations supported. Refer to
CIM_StorageSetting.InitialSynchronization.

ReplicationPriorityDefault Conditional Conditional requirement: Managed background copy
operations supported. Refer to
CIM_StorageSetting.ReplicationPriority.

LowSpaceWarningThresholdDefault Conditional Conditional requirement: Snapshots supported. Default value
for LowSpaceWarningThreshold. Percentage value between 0
and 100.

DeltaReplicaPoolAccess Conditional Conditional requirement: Snapshots supported. Indicates if a
specialized pool is required as a container for delta replicas.
Values:

 2: Any pool may contain delta replicas

 3: Exclusive special pool per source element

4: Shared special pool for all source elements.

Table 226 - SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities

Properties Flags Requirement Description & Notes
386

 ReplicationServiceCapabilities Methods

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057
Deleted By: Static

Requirement: Mandatory

Table 227 describes class CIM_StorageSetting.

9.7.19 CIM_StorageSynchronized

Experimental. Associates replica target element to source element. CIM_StorageSynchronized is
subclassed from CIM_StorageSynchronized.

Created By: Extrinsics: CreateReplica, AttachReplica, CreateElementReplica

Modified By: Extrinsics: ModifySynchronization, ModifyReplicaSynchronization

Deleted By: Extrinsics: ModifySynchronization, ModifyReplicaSynchronization

Requirement: The ReplicationService is implemented.

Table 228 describes class CIM_StorageSynchronized.

Table 227 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes

DeltaReservationMin M Mandatory Minimum space reserved for a delta replica at time of creation. Value 0 to
100 is a percentage of the source element size.

DeltaReservationMax M Mandatory Maximum space reserved for a delta replica at time of creation. Value 0 to
100 is a percentage of the source element size.

DeltaReservationGoal M Mandatory Goal for space reserved for a delta replica at time of creation. Value 0 to
100 is a percentage of the source element size.

InitialSynchronization M Optional Experimental. Indicates that the source element should be fully copied to
the target element when a replica is created. Values:

 0: Not applicable

 1: Not managed

 2: Start copy operation

3: Do not start copy operation.

ReplicationPriority M Optional Experimental. Priority of copy engine I/O relative to host I/O. Values:

 0: Not applicable

 1: Not managed

0: Not managed

 2: Lower than host I/O

 3: Same as host I/O

4: Higher than host I/O.

Table 228 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Flags Requirement Description & Notes

WhenEstablished N Optional Specifies when the association was established.

WhenActivated N Optional Specifies when the association was activated.

WhenSuspended N Optional Specifies when the association was suspended.
SNIA Technical Position 387

ReplicationServiceCapabilities Methods

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076
9.7.20 CIM_StorageSynchronized (Between StorageExtent elements)

Created By: Extrinsics: CreateReplica, AttachReplica, CreateElementReplica

Modified By: Extrinsics: ModifySynchronization, ModifyReplicaSynchronization

Deleted By: Extrinsics: ModifySynchronization, ModifyReplicaSynchronization

Requirement: Mandatory

SyncType Mandatory Type of association between source and target elements. Values:

 6: Mirror

 7: Snapshot

8: Clone.

Mode Mandatory Specifies when target elements are updated. Values:

 2: Synchronous

3: Asynchronous.

RequestedCopyState Mandatory Indicates the last requested or desired state for the association. Values:

 6: Synchronized

 13: Fractured

 17: Split

 18: Inactive

 19: Suspended

20: FailedOver.

SyncState Mandatory State of association between source and target elements. See MOF for
the complete list and values.

ProgressStatus Mandatory Status of association between source and target groups. Values:

 2: Completed

 3: Dormant

 4: Initializing

 5: Synchronizing

 6: Resyncing

 7: Restoring

 8: Fracturing

 9: Splitting

 10: Failing over

 11: Failing back

12: Mixed.

PercentSynced N Optional Specifies the percent of the work completed to reach synchronization.
For synchronized associations (e.g. CopyType Mirror), while fractured,
the percent difference between source and target elements can derived
by subtracting PercentSynched from 100.

SyncedElement Mandatory

SystemElement Mandatory

Table 228 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Flags Requirement Description & Notes
388

 ReplicationServiceCapabilities Methods

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095
Table 229 describes class CIM_StorageSynchronized (Between StorageExtent elements).

Table 229 - SMI Referenced Properties/Methods for CIM_StorageSynchronized (Between StorageExtent
elements)

Properties Flags Requiremen
t

Description & Notes

WhenSynced N Mandatory If the replica is a PIT image, this value is the date/time created.

SyncMaintained Mandatory Boolean indicating whether synchronization is maintained.

CopyType Mandatory Type of association between source and target. Values:

 2: Async

 3: Sync

 4: UnSyncAssoc

5: UnSyncUnAssoc.

ReplicaType Optional Informational property describing the type of replication. Values:

 0: Not specified

 2: Full Copy

 3: Before Delta

 4: After Delta

5: Log.

SyncState Mandatory State of the association between source and target. Values:

 2: Initialized

 3: PrepareInProgress

 4: Prepared

 5: ResyncInProgress

 6: Synchronized

 7: FractureInProgress

 8: QuiesceInProgress

 9: Quiesced

 10: RestoreInProgress

 11: Idle

 12: Broken

 13: Fractured

 14: Frozen

15: CopyInProgress.

CopyPriority M Optional Experimental. Priority of copy engine I/O relative to host I/O. Values:

 0: Not managed

 1: Lower than host I/O

 2: Same as host I/O

3: Higher than host I/O.

SyncedElement Mandatory

SystemElement Mandatory
SNIA Technical Position 389

ReplicationServiceCapabilities Methods

2096

2097
9.7.21 CIM_SynchronizationAspect

Experimental. Keeps track of source of a copy operation and point-in-time.

Created By: Extrinsics: CreateElementReplica, CreateSynchronizationAspect

Modified By: Extrinsic: ModifyReplicaSynchronization

Deleted By: Extrinsics: ModifyReplicaSynchronization, ModifySettingsDefineState

Requirement: Optional

Table 230 describes class CIM_SynchronizationAspect.

DEPRECATED

Table 230 - SMI Referenced Properties/Methods for CIM_SynchronizationAspect

Properties Flags Requirement Description & Notes

SyncType Mandatory Type of association between source and target elements. Values:

 6: Mirror

 7: Snapshot

8: Clone.

ConsistencyEnabled Mandatory Set to true if consistency is enabled.

ElementName Optional A end user relevant name. The value will be stored in the ElementName
property of the created SynchronizationAspect.

CopyMethodology Optional Indicates the copy methodology utilized for copying. Values:

 2: Implementation decides

 3: Full-Copy

 4: Incremental-Copy

 5: Differential-Copy

 6: Copy-On-Write

 7: Copy-On-Access

8: Delta-Update.

WhenPointInTime N Optional Specifies when point-in-time was created.

SourceElement Mandatory Reference to the source element or the source group of a copy operation
and/or a point-in-time.
390

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
STABLE

10 Disk Drive Lite Profile

10.1 Synopsis

Profile Name: Disk Drive Lite (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: DiskDrive

Scoping Class: ComputerSystem where Dedicated contains “15” (Block Server)

Table 231 describes the related profiles for Disk Drive Lite.

10.2 Description

The Disk Drive Lite Profile is used to model disk drive devices. This profile assumes the drive is linked to
a larger system (e.g., Array, SDE). The model supports asset information, health and status, and Physical
information. The model also supports external links to Pool membership, extent mapping, backend port
modeling, SCSI buss and address mapping, and physical containment in system packages. The profile
also includes active management of an optional location indicator.

10.3 Modeling

10.3.1 Base model

A disk drive is modeled as a single MediaAccessDevice (DiskDrive). The DiskDrive class shall be linked
to a single StorageExtent (representing the storage of the drive) by a MediaPresent association. The
StorageExtent class represents the storage of the drive and contains its size. Other classes further refine
the model. PhysicalPackage contains asset information for the device and shall be connected by a
Realizes association. The model can optionally contain SoftwareIdentity that contains information about
the firmware and is linked by a DeviceSoftware association.

Disk Drive Lite also has an optional set of classes to model the ports on the drive. These classes include
LogicalPort and ProtocolEndpoint. LogicalPort is subclassed to many different port types (e.g., Fibre
channel, SAS, SATA …). All subclasses shall define the "PortType" property as mandatory so that it can
be used to determine the interface on the drive.

NOTE The logicalPort class, ProtocolEndpoint, and the DiskDrive properties DiskType, FormFactor, and Encryption will be made
mandatory in the future.

10.3.2 Associations to external classes

The Disk Drive Profile ties into the rest of the system via a number of key associations.

• ConcreteComponent - Is used to associate the StorageExtent to the StoragePool that the disk is part of.
Required when used with Block Services profile

Table 231 - Related Profiles for Disk Drive Lite

Profile Name Organization Version Requirement Description

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2
SNIA Technical Position 391

37

38

39

40

41

42

43

44

45

46

47

48

49

50
• BasedOn - Is used to associate The StorageExtent exported by the Disk Drive to another (higher level) extent
(or a Volume).

• Container - Is used to associate the physical package of the disk drive to the physical package of the system.

• SystemDevice - Is used to scope the Disk to the system containing it and is mandatory.

• ProtocolControllerAccessesUnit - Is used to link the Disk to system port(s) it is accessed through.

• SCSIInitiatorTargetLogicalUnitPath or MemberOfCollection may be used with Initiator Port Profiles.

• MemberOfCollection - Is used with Storage Device Enclosure.

10.3.3 Active Management

The DiskDrive class has been enhanced by the addition of a property (LocationIndicator) to read or set
the state of a location indicator. When read, returns a value that can be used to determine if the indicator
is supported and its value. When written the indicator's state is set.

10.3.4 Diagram of CIM Elements

Figure 63 illustrates the CIM elements for modeling of Disk Drives.

This Profile defines the following CIM Classes (and their uses):

DiskDrive - Used to represent the drive characteristics.

LogicalPort - To represent (target ports) for accessing the disk drive. This is optional.

Figure 63 - CIM Elements in the Disk Drive Model

D isk D rive L ite

S of tw a re Iden t i ty

S to rageP oo l

(S ee B lockS e rv ices P ackage)

P ro toco lE ndpo in t

(S ee In it ia to r P or ts P ro f i le)

S C S IIn it ia to rT arge tLog ica lU n itP a th

P ro toco lC on tro l le r

(S ee In it ia to r P o r ts P ro f i le)

P ro toco lC on tro l le rA ccessesU n it

P hys ica lP ackage

(S ee re fe renc ing p ro f i le)

C oncre teC om ponen t &
A ssoc ia tedC om ponen tE xten t

C on ta ine r

.

S to rageE xten t
(P r im ord ia l D isk D r ive E xten t)

P r im o rd ia l= true
E xten tD iscr im ina to r= S N IA :D iskD r iveྴ

S N IA :P oo l C om ponen t

M ed iaP resen t

E lem en tS o f tw a re Iden t i ty

D iskD r ive

R ea lizes

P hys ica lP ackage

S A P ava ilab le
fo rE lem en t

P ro toco lE ndpo in t

D ev iceS A P
Im p lem enta t ion

Log ica l P o r t

C oncre te : S to rageE xten t

(S ee E xten t C om pos it ion)

B asedO n
(B o t tom Leve l)
392

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75
PhysicalPackage - Used to represent the physical packaging aspects of the drive.

ProtocolEndpoint - To represent the protocol used (SCSI or ATA) for accessing the disk drive. This is
optional.

SoftwareIdentity - Used to represent the firmware information for the disk drive.

StorageExtent (Primordial Disk Drive Extents) - Used to represent the storage media on a disk drive.

10.3.5 Durable Names and Correlatable IDs of the Profile

Not defined in this document.

10.3.6 Conditional Associations to other profiles

The following associations shall be implemented if certain other profiles are implemented:

DEPRECATED

• ConcreteComponent

When implementing the Disk Drive Lite Profile with the Block Services Package, the
ConcreteComponent association between the disk drive StorageExtent and the primordial
StoragePool to which it is assigned shall be implemented. Block Services models logical storage
(StoragePools) and Disk Drive Lite models is StorageExtents that provide storage for a primordial
storage pool.

DEPRECATED

• AssociatedComponentExtent

When implementing the Disk Drive Lite profile with the Block Services Package, the
AssociatedComponentExtent association between the disk drive StorageExtent and a primordial
StoragePool to which it is assigned shall be implemented. Block Services models logical storage
(StoragePools) and Disk Drive Lite models is StorageExtents that provide storage for a primordial storage
pool.

• BasedOn

When implementing the Disk Drive Lite profile with Extent Composition, the BasedOn association between
the primordial disk drive StorageExtent and higher level concrete StorageExtents that directly use storage
from the disk drive extent shall be implemented.

10.3.7 Optional Associations to other profiles

The SCSIInitiatorTargetLogicalUnitPath or MemberOfCollection from CIM_ProtocolEndpoint may be used
with Initiator Port Profiles.

The MemberOfCollection association from the LogicalPort is used with enclosure profiles.
SNIA Technical Position 393

76

77

78

79

80

81

82

83

84

85

86
10.4 Health and Fault Management Considerations

10.4.1 Overview

The DiskDrive.OperationalStatus contains the overall status of the disk, summarized in Table 232.

Table 233 shows the relationship between the EnabledState of a disk drive to the drives
OperationalStatus and the disk drive StorageExtent OperationalStatus.

EXPERIMENTAL

10.4.2 Disk Drive Dependency

The StorageElementDriveDependency and ResourcePoolDriveDependency associations show the direct
associations between disk drives and dependent storage elements (such as StorageVolumes) and
resource pools (such as StoragePools), respectively. Such associations allow clients to readily determine
the affected storage components when the operational status of a disk drive changes.

Figure 64 shows the StorageElementDriveDependency association between a disk drive and a dependent
StorageVolume. Additionally, the figure shows the ResourcePoolDriveDependency association between
two disk drives and a dependent StoragePool.

Table 232 - OperationalStatus For DiskDrive

Primary Operational Status Subsidiary Operational
Status

Description

2 “OK” Disk Drive is enabled.

5 “Predictive Failure” Disk Drive is functionality nominally but is predicting
a failure in the near future

6 “Error” Disk Drive is no longer functioning.

8 “Starting” Disk Drive is becoming enabled.

9 “Stopping” Disk Drive is being disabled.

10 “Stopped” Disk Drive is disabled.

Table 233 - Enabled State

StorageExtent.
OperationalStatus

DiskDrive.
OperationStatus

DiskDrive.
EnabledState

2, OK 2, OK 2, Enabled

13, Lost Communication 10, Stopped 3, Disabled

13, Lost Communication 9, Stopping 4, Shutting Down

13, Lost Communication 2, OK 6, Enabled but Offline

13, Lost Communication 8, Starting 10, Starting
394

87

88

89
Figure 65 shows the ResourcePoolDriveDependency associations to a storage pool hierarchy. In this
figure, Pool2 is allocated from Pool1. Pool1 is dependent on Drives 1 and 2, however, Pool2 is only
dependent on Drive 2.

Figure 64 - Disk Drive Dependency

Volume 1:
StorageVolume

Pool 1:
StoragePool

AllocatedFromStoragePool

Drive 2: DiskDrive

ResourcePoolDriveDependency

StorageElementDriveDependency

Drive1: DiskDrive

ResourcePoolDriveDependency

Antecedent AntecedentAntecedent

Dependent

DependentDependent
SNIA Technical Position 395

Request State Change

90

91

92

93

94

95

96

97

98
EXPERIMENTAL

10.5 Cascading Considerations

Not defined in this document.

10.6 Methods of this Profile

10.6.1 Extrinsic Methods on Disk Drives

10.6.1.1 Request State Change

uint32 RequestStateChange(

[In] uint16 RequestedState,

[Out] CIM_ConcreteJob REF Job,

[In] datetime TimeoutPeriod)

The allowed state changes are indicated by the RequestedStatesSupported property of
EnabledLogicalElementCapabilities. A Job shall be returned if the operation takes longer than the

Figure 65 - Drive Dependency and Pool Hierarchy

Volume 1:
StorageVolume

Pool 1:
StoragePool

AllocatedFromStoragePool

Drive 2: DiskDrive

ResourcePoolDriveDependency

Drive1: DiskDrive

ResourcePoolDriveDependency

AntecedentAntecedent

Dependent

DependentDependent

Pool 2:
StoragePool

AllocatedFromStoragePool

ResourcePoolDriveDependency

Dependent

StorageElementDriveDependency

Note:
Pool 2 is allocated
from Pool 1.

Antecedent
396

 Request State Change

99

100

101

102

103

104

105

106

107

108

109

110

111
TimeoutPeriod. The Requested State of Offline makes a drives extents unavailable to the dependent
volume.

The Job may represent a drive rebuild if the RequestedState of the drive is Offline and a failover shall be
complete before the offline operation can finish.

10.7 CIM Elements

10.7.1 Overview

Table 234 describes the CIM elements for Disk Drive Lite.

Table 234 - CIM Elements for Disk Drive Lite

Element Name Requirement Description

10.7.2 CIM_ATAPort (Disk Drive Target ATA Port) Optional Represents an ATA target port for the disk drive.

10.7.3 CIM_ATAProtocolEndpoint (Disk Drive target ATA
Protocol Endpoint)

Optional A target ATA protocol endpoint for a disk drive if ATA
protocols are supported.

10.7.4 CIM_AssociatedComponentExtent (Pool
Component to Primordial Pool)

Mandatory

10.7.5 CIM_BasedOn (Bottom Level BasedOn) Conditional Conditional requirement: Implementation of the Extent
Composition profile. Associates a concrete
StorageExtent representing a decomposition(partial
allocation) or composition to the disk drive
StorageExtent that it is allocated from.

10.7.6 CIM_ConcreteComponent (Disk Extent to
Primordial Pool)

Conditional Deprecated. Conditional requirement: Implementation
of the Block Services Package. Associates a disk drive
extent to a primordial storage pool.

10.7.7 CIM_Container Optional Associates a disk drive physical package to its higher
level package.

10.7.8 CIM_DeviceSAPImplementation (ATA) Optional Associates a target ATA protocol endpoint to the target
port for the drive.

10.7.9 CIM_DeviceSAPImplementation (SCSI) Optional Associates a target SCSI protocol endpoint to the target
port for the drive.

10.7.10 CIM_DiskDrive Mandatory Represents the disk drive.

10.7.11 CIM_ElementSoftwareIdentity Mandatory Associates the firmware (SoftwareIdentity) to a disk
drive.

10.7.12 CIM_FCPort (Disk Drive Target FC Port) Optional Represents an FC target port for the disk drive.

10.7.13 CIM_MediaPresent Mandatory Associates a disk drive to its storage extent.

10.7.14 CIM_PhysicalPackage Mandatory The physical package for the disk drive.

10.7.15 CIM_ProtocolControllerAccessesUnit Optional Deprecated. Associates an initiator protocol controller
to the disk drive storage extent.

10.7.16 CIM_Realizes Mandatory Associates the disk drive to its physical package.

10.7.17 CIM_ResourcePoolDriveDependency Optional Associates disk drive to resource pools, such as a
StoragePool.

10.7.18 CIM_SAPAvailableForElement Optional Associates the target protocol endpoint to the disk
drive.

10.7.19 CIM_SASPort (Disk Drive Target SAS Port) Optional Represents a SAS target port for the disk drive.
SNIA Technical Position 397

Request State Change
10.7.2 CIM_ATAPort (Disk Drive Target ATA Port)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 235 describes class CIM_ATAPort (Disk Drive Target ATA Port).

10.7.20 CIM_SCSIInitiatorTargetLogicalUnitPath Optional Associates protocol endpoints of the initiator and target
ports to the extent that is exposed through the ports.

10.7.21 CIM_SCSIProtocolEndpoint (Disk Drive target
SCSI Protocol Endpoint)

Optional A target SCSI protocol endpoint for a disk drive if SCSI
protocols are supported.

10.7.22 CIM_SoftwareIdentity Mandatory Represents the firmware information for the disk drive.

10.7.23 CIM_StorageElementDriveDependency Optional Associates disk drive to storage elements, such as a
StorageVolume.

10.7.24 CIM_StorageExtent (Primordial Disk Drive
Extent)

Mandatory The storage extent that represents the storage of the
disk drive.

10.7.25 CIM_SystemDevice (Disk Drive System) Mandatory Associates DiskDrive to a hosting computer system.

10.7.26 CIM_SystemDevice (Port System) Optional Associates disk drive Ports to a hosting computer
system.

10.7.27 CIM_SystemDevice (Storage Extent System) Mandatory Associates a StorageExtent to a hosting computer
system.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_DiskDrive

Mandatory Addition of a new Disk Drive instance.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_DiskDrive

Mandatory Deletion of a Disk Drive instance.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_DiskDrive AND
SourceInstance.CIM_DiskDrive::OperationalStatus <>
PreviousInstance.CIM_DiskDrive::OperationalStatus

Mandatory CQL -Change of Status of a disk drive.
PreviousInstance is optional, but may be supplied by an
implementation of the Profile.

Table 235 - SMI Referenced Properties/Methods for CIM_ATAPort (Disk Drive Target ATA Port)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Optional

UsageRestriction Mandatory Shall be 2 for disk drive target ports.

PortType Mandatory Shall be 92|93 (SATA or SATA2) .

Table 234 - CIM Elements for Disk Drive Lite

Element Name Requirement Description
398

 Request State Change

112

113

114

115

116

117

118
10.7.3 CIM_ATAProtocolEndpoint (Disk Drive target ATA Protocol Endpoint)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 236 describes class CIM_ATAProtocolEndpoint (Disk Drive target ATA Protocol Endpoint).

10.7.4 CIM_AssociatedComponentExtent (Pool Component to Primordial Pool)

The referenced primordial disk drive StorageExtent represents capacity has not been allocated, is
allocated in part, or is allocated in its entirety.

Requirement: Mandatory

Table 237 describes class CIM_AssociatedComponentExtent (Pool Component to Primordial Pool).

10.7.5 CIM_BasedOn (Bottom Level BasedOn)

Created By: External

Modified By: External

Deleted By: External

Requirement: Implementation of the Extent Composition profile.

Table 236 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Disk Drive target ATA Pro-
tocol Endpoint)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Role Mandatory Shall be 3 (Target).

ProtocolIFType Mandatory

OtherTypeDescription Mandatory

ConnectionType Mandatory

Table 237 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool Component to
Primordial Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Primordial StoragePool.

PartComponent Mandatory The disk drive storage extent that is a component of the primordial storage
pool.
SNIA Technical Position 399

Request State Change

119

120

121

122

123

124

125

126

127

128

129

130

131

132
Table 238 describes class CIM_BasedOn (Bottom Level BasedOn).

10.7.6 CIM_ConcreteComponent (Disk Extent to Primordial Pool)

Deprecated. Associates a disk drive extent to a primordial storage pool. This is Deprecated since its
function is better covered by AssociatedComponentExtent.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Implementation of the Block Services Package.

Table 239 describes class CIM_ConcreteComponent (Disk Extent to Primordial Pool).

10.7.7 CIM_Container

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 240 describes class CIM_Container.

Table 238 - SMI Referenced Properties/Methods for CIM_BasedOn (Bottom Level BasedOn)

Properties Flags Requirement Description & Notes

StartingAddress Optional This should be specified if the concrete extent does not
use the whole disk drive extent.

EndingAddress Optional This should be specified if the concrete extent does not
use the whole disk drive extent.

Dependent Mandatory This is a reference to the concrete storage extent.

Antecedent Mandatory This is a reference to the disk drive storage extent.

Table 239 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Disk Extent to Primordial
Pool)

Properties Flags Requirement Description & Notes

PartComponent Mandatory A reference to an instance of CIM_StorageExtent that represents the
storage on the disk drive. The extent shall have its Primordial property set
to true.

GroupComponent Mandatory A reference to an instance of CIM_StoragePool with the Primordial
property set to true.

Table 240 - SMI Referenced Properties/Methods for CIM_Container

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of CIM_PhysicalPackage that represents the
higher level package that contains the disk drive package.

PartComponent Mandatory A reference to an instance of CIM_PhysicalPackage that represents the
packaging for the disk drive.
400

 Request State Change

133

134

135
136

137

138

139

140

141

142

143

144

145

146

147
10.7.8 CIM_DeviceSAPImplementation (ATA)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 241 describes class CIM_DeviceSAPImplementation (ATA).

10.7.9 CIM_DeviceSAPImplementation (SCSI)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 242 describes class CIM_DeviceSAPImplementation (SCSI).

10.7.10 CIM_DiskDrive

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 243 describes class CIM_DiskDrive.

Table 241 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (ATA)

Properties Flags Requirement Description & Notes

Antecedent Mandatory A reference to an instance of an ATA port with a
UsageRestriction property set to '2' (Target).

Dependent Mandatory A reference to an instance of an ATA protocol endpoint
with a Role property set to '3' (Target).

Table 242 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (SCSI)

Properties Flags Requirement Description & Notes

Antecedent Mandatory A reference to an instance of an SAS or FC port with a
UsageRestriction property set to '2' (Target).

Dependent Mandatory A reference to an instance of a SCSI protocol endpoint with a
Role property set to '3' (Target).

Table 243 - SMI Referenced Properties/Methods for CIM_DiskDrive

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

Name Mandatory
SNIA Technical Position 401

Request State Change

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164
10.7.11 CIM_ElementSoftwareIdentity

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 244 describes class CIM_ElementSoftwareIdentity.

10.7.12 CIM_FCPort (Disk Drive Target FC Port)

Created By: Static

Modified By: Static

OperationalStatus Mandatory Possible OperationalStatus values are 2 (OK), 5 (Predictive
Failure), 6 (Error), 8 (Starting), 9 (Stopping) or 10 (Stopped).

EnabledState Mandatory Possible EnabledStates are 2 (Enabled), 3 (Disabled), 4
(Shutting Down), 6 (Enabled but Offline) or 10 (Starting)

Enabled - drive is spun up and online.

Disabled - drive is spun down, and offline

Shutting down - drive is spinning down

Enabled but Offline - drive is spun up but offline

Starting - drive is spinning up.

RequestedState Optional Possible RequestedStates are 2 (Enabled), 4 (Shutting Down)
and 6 (Offline)

Enabled - Spin up drive if it was spun down and Online the
drive if it was offline.

Shutting down - spin down drive

Offline - offline drive.

DiskType Mandatory The technology employed to store data. DiskType values are 0
(Unknown), 1 (Other), 2 (Hard Disk Drive) or 3 (Solid State
Disk).

FormFactor Mandatory The Physical size of the disk drive. FormFactor values are 0
(Unknown), 1 (Other), 2 (Not Reported), 3 (5.25 inch), 4 (3.5
inch), 5 (2.5 inch), 6 (1.8 inch).

Encryption Mandatory This property reflects the state of the encryption feature
implemented by some disk drives. Encryption values are 0
(Unknown), 1 (Not Supported), 2 (unlocked) or 3 (locked).

RequestStateChange() Optional

Table 244 - SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity

Properties Flags Requirement Description & Notes

Antecedent Mandatory A reference to an instance of CIM_SoftwareIdentity that
represents the software the disk drive.

Dependent Mandatory A reference to an instance of CIM_DiskDrive.

Table 243 - SMI Referenced Properties/Methods for CIM_DiskDrive

Properties Flags Requirement Description & Notes
402

 Request State Change

165

166

167

168

169

170

171
Deleted By: Static

Requirement: Optional

Table 245 describes class CIM_FCPort (Disk Drive Target FC Port).

10.7.13 CIM_MediaPresent

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 246 describes class CIM_MediaPresent.

10.7.14 CIM_PhysicalPackage

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 245 - SMI Referenced Properties/Methods for CIM_FCPort (Disk Drive Target FC Port)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Optional

UsageRestriction Mandatory Shall be 2 for disk drive target ports.

PortType Mandatory Shall be 0|1|10|11|12|13|14|15|16|17|18 (Unknown or Other
or N or NL or F/NL or Nx or E or F or FL or B or G).

PermanentAddress CD Mandatory Port WWN. Shall be 16 unseparated uppercase hex digits.

SupportedCOS Optional

ActiveCOS Optional

SupportedFC4Types Optional

ActiveFC4Types Optional

Table 246 - SMI Referenced Properties/Methods for CIM_MediaPresent

Properties Flags Requirement Description & Notes

Dependent Mandatory A reference to an instance of CIM_StorageExtent with the Primordial
propery set to true (a disk drive extent).

Antecedent Mandatory A reference to an instance of CIM_DiskDrive .
SNIA Technical Position 403

Request State Change

172

173

174

175

176

177

178

179
180
181

182

183

184
Table 247 describes class CIM_PhysicalPackage.

10.7.15 CIM_ProtocolControllerAccessesUnit

Deprecated.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 248 describes class CIM_ProtocolControllerAccessesUnit.

10.7.16 CIM_Realizes

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 249 describes class CIM_Realizes.

Table 247 - SMI Referenced Properties/Methods for CIM_PhysicalPackage

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Tag Mandatory

Manufacturer Mandatory

Model Mandatory

SerialNumber Optional

PartNumber Optional

Table 248 - SMI Referenced Properties/Methods for CIM_ProtocolControllerAccessesUnit

Properties Flags Requirement Description & Notes

Dependent Mandatory A reference to an instance of CIM_StorageExtent with the Primordial
property set to true (the disk drive extent).

Antecedent Mandatory A reference to a CIM_ProtocolController (from the Initiator for this disk
drive).

Table 249 - SMI Referenced Properties/Methods for CIM_Realizes

Properties Flags Requirement Description & Notes

Antecedent Mandatory A reference to an instance of a physical package that represents the
packaging for the disk drive.

Dependent Mandatory A reference to an instance of CIM_DiskDrive.
404

 Request State Change

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201
10.7.17 CIM_ResourcePoolDriveDependency

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 250 describes class CIM_ResourcePoolDriveDependency.

10.7.18 CIM_SAPAvailableForElement

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 251 describes class CIM_SAPAvailableForElement.

10.7.19 CIM_SASPort (Disk Drive Target SAS Port)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 252 describes class CIM_SASPort (Disk Drive Target SAS Port).

Table 250 - SMI Referenced Properties/Methods for CIM_ResourcePoolDriveDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory A reference to an instance of StoragePool that is dependent on the disk
drive.

Antecedent Mandatory A reference to an instance of CIM_DiskDrive.

Table 251 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

AvailableSAP Mandatory A reference to an instance of a SCSI or ATA protocol endpoint that
represents the target endpoint (role='3') for the disk drive.

ManagedElement Mandatory A reference to an instance of a Disk Drive.

Table 252 - SMI Referenced Properties/Methods for CIM_SASPort (Disk Drive Target SAS Port)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Optional

UsageRestriction Mandatory Shall be 2 for disk drive target ports.
SNIA Technical Position 405

Request State Change

202

203

204

205

206

207

208

209

210

211

212

213

214
10.7.20 CIM_SCSIInitiatorTargetLogicalUnitPath

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 253 describes class CIM_SCSIInitiatorTargetLogicalUnitPath.

10.7.21 CIM_SCSIProtocolEndpoint (Disk Drive target SCSI Protocol Endpoint)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 254 describes class CIM_SCSIProtocolEndpoint (Disk Drive target SCSI Protocol Endpoint).

PermanentAddress Mandatory SAS Address. Shall be 16 un-separated upper case hex digits.

PortType Mandatory Shall be 94 (SAS).

Table 253 - SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath

Properties Flags Requirement Description & Notes

Initiator Mandatory The protocol endpoint for the back end initiator port for accessing the disk
drive.

Target Mandatory A reference to an instance of a SCSI or ATA protocol endpoint that
represents the target endpoint (role='3') for the disk drive.

LogicalUnit Mandatory Shall reference the StorageExtent associated to the DiskDrive.

Table 254 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Disk Drive target SCSI
Protocol Endpoint)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Role Mandatory Shall be 3 (Target).

ProtocolIFType Mandatory

OtherTypeDescription Mandatory

ConnectionType Mandatory

Table 252 - SMI Referenced Properties/Methods for CIM_SASPort (Disk Drive Target SAS Port)

Properties Flags Requirement Description & Notes
406

 Request State Change

215

216

217

218

219

220

221

222

223
224
10.7.22 CIM_SoftwareIdentity

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 255 describes class CIM_SoftwareIdentity.

10.7.23 CIM_StorageElementDriveDependency

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 256 describes class CIM_StorageElementDriveDependency.

10.7.24 CIM_StorageExtent (Primordial Disk Drive Extent)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 255 - SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Properties Flags Requirement Description & Notes

InstanceID Mandatory

VersionString Mandatory

Manufacturer Optional

BuildNumber Optional

MajorVersion Optional

RevisionNumber Optional

MinorVersion Optional

Table 256 - SMI Referenced Properties/Methods for CIM_StorageElementDriveDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory A reference to an instance of StorageVolume or LogicalDisk that is
dependent on the disk drive.

Antecedent Mandatory A reference to an instance of CIM_DiskDrive.
SNIA Technical Position 407

Request State Change

225

226

227

228

229

230
231

232

233

234

235

236

237

238

239

240

241

242
Table 257 describes class CIM_StorageExtent (Primordial Disk Drive Extent).

10.7.25 CIM_SystemDevice (Disk Drive System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 258 describes class CIM_SystemDevice (Disk Drive System).

10.7.26 CIM_SystemDevice (Port System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 259 describes class CIM_SystemDevice (Port System).

Table 257 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Disk Drive Extent)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks as reported by the hardware.

ConsumableBlocks Mandatory The number of usable blocks.

Primordial Mandatory Shall be true.

ExtentStatus Mandatory

OperationalStatus Mandatory

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain
'SNIA:Pool Component' and 'SNIA:DiskDrive'.

Table 258 - SMI Referenced Properties/Methods for CIM_SystemDevice (Disk Drive System)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of Computer System.

PartComponent Mandatory A reference to an instance of CIM_DiskDrive used in this profile.

Table 259 - SMI Referenced Properties/Methods for CIM_SystemDevice (Port System)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of Computer System.

PartComponent Mandatory A reference to an instance of CIM_FCPort, CIM_SASPort or CIM_ATAPort
used in this profile.
408

 Request State Change

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258
10.7.27 CIM_SystemDevice (Storage Extent System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 260 describes class CIM_SystemDevice (Storage Extent System).

STABLE

Table 260 - SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extent System)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of Computer System.

PartComponent Mandatory A reference to an instance of CIM_StorageExtent used in this profile.
SNIA Technical Position 409

Request State Change
410

1

2

3

4

5

6

7

8

9

10
IMPLEMENTED

11 Disk Sparing Profile

11.1 Description

11.1.1 Synopsis

Profile Name: Disk Sparing (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: CIM_StorageRedundancySet

Scoping Class: ComputerSystem where Dedicated contains “15” (Block Server)

Table 261 describes the related profiles for Disk Sparing

11.1.2 Overview

Many block service systems enhance availability by providing backup storage capacity to be used in
place of a failed component. The failure of the component may be caused by the failure of a physical
component that realizes that component or the invalidation or corruption of the component itself.

The end result of the failure is that block server is degraded by performance or spare redundancy. In the
first case, it is important that the cause of the performance degradation is known so the appropriate
response may be taken. In the second case, the administrator will have to know of the loss of
redundancy. The administrator can then plan to replace the used redundancy and fix the broken
component. A sample instance diagram is provided in Figure 66.

Table 261 - Related Profiles for Disk Sparing

Profile Name Organization Version Requirement Description

Job Control SNIA 1.5.0 Mandatory
SNIA Technical Position 411

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51
13 "Extent Composition Profile" focuses on the mapping of storage to storage elements, StorageVolume
and LogicalDisk. This profile enhances that picture by representing how spare physical storage
components like disk drives or purely logical constructs like LUNs or even host partitions, can be used to
provide redundancy for storage elements. The spare elements are represented as StorageExtents
themselves.

10 "Disk Drive Lite Profile" can be used to supplement this profile by explicitly listing the changes in
operational status resulting from the failure of disks and the affect of this failure on the StorageVolumes
or LogicalDisks they support. In conjunction with Storage Management Technical Specification, Part 3
Common Profiles, 1.8.0 Rev 4 22 Health Package and the RelatedElementCausingError association, a
client can tell, unambiguously the effect and cause of the storage component failure.

Fail Over is the name of the process by which the capacity provided by one StorageExtent is replaced by
that of the spare StorageExtent. The block contents of the original StorageExtent is copied to the

Figure 66 - Sparing Instance Diagram

Current Failover

Previous Failover

ComputerSystem

SpareConfigurationCapabilities ElementCapabilities

StorageExtent

failed

StorageExtent

StorageExtent

StorageRedundancySet

ConcreteDependency

ConcreteDependency

ConcreteDependency

MemberOfCollection

MemberOfCollection

StorageExtent

Spared

AffectedJobElement

AffectedJobElement

ConcreteJob

FailoverStorageExtentsCollection

MemberOfCollection

StorageExtent

(failed drive)

AffectedJobElement

StorageExtent

IsSpare

IsSpare

MemberOfCollection

StorageVolume or
LogicalDisk, or
StoragePool

HostedCollection
412

52

53

54

55

56

57

58

59

60

61

62

63

64
replacement StorageExtent. During this process a ConcreteJob shall be created to represent this process
and report the progress and status of the fail over.

The functionality provided by this profile includes:

• The representation of the current state of the spares whether they are not in use, are in use, or in transition
from not in use to being put into service. All three of these states can be present at once.

• The detection of the addition of another spare element and whether the implementation requires client
intervention to assign the spare element.

• Client initiated fail over. A client may cause the fail over process to start.

• Client initiated rebuild of Extent data.

• Client initiated check and rebuild of Extent parity.

11.1.3 Durable Names and Correlatable IDs of the Profile

The StorageVolumes are required to provide the correlatable ID, Name. See Storage Management
Technical Specification, Part 2 Common Architecture, 1.8.0 Rev 4 7.2, "Guidelines for SCSI Logical Unit
Names".

11.1.4 Sparing Model

StorageExtents are used as the unit of redundancy in this model. StorageExtents can be said to be a
grouping of capacity. For the question of what component of the system has failed, the StorageExtent
should be realized by a DiskDrive or some of component to which the failure is meaningful. This model
represents how the capacity is used in the protection of the data. Other models define how
StorageExtents are realized by other components or devices.

A spare is, functionally, the union of the StorageExtent representation and the associated component
representation that realizes the Extent. This profile uses this term in this union.

The sparing model provides for mechanisms to:

• Group StorageExtents that have failed.

• Group spares that can be used to replace failed components. The group of spares may be shared across
StorageVolumes, LogicalDisks, or StoragePools.

• Report what component is being spared or replaced by the spare

• Report the process of a fail over, sparing reconfiguration, storage extent rebuild, or parity check

• Report the capabilities of the Sparing implementation

The physical resources on which a StorageExtent is realized are components that may result in data loss
if they fail. If the physical resource is modeled, its storage shall be represented by a primordial
StorageExtent. This profile requires that the physical resource on which a spare extent is realized be
identifiable. As a consequence, if a StorageExtent is used as a spare, it shall either be a primordial
extent, or it shall have a ConcreteDependency association to one or more antecedent primordial
StorageExtents.

The StorageRedundancySet class is used to group spares. There may be a single
StorageRedundancySet per StorageVolume or LogicalDisk. Multiple StorageVolumes or LogicalDisks may
share a single StorageRedudancySet. In the first case, the spares grouping can be said to be dedicated
to that StorageVolume or LogicalDisk. In the second case, the spares grouping can be said to be global;
SNIA Technical Position 413

65

66

67

68

69

70

71

72

73
that is, the spares will be used for all the StorageVolumes or LogicalDisks that are associated to a
StorageRedundancySet. This is illustrated in Figure 67.

In the case where spares are not dedicated, the decision to group Extents with a given
StorageRedundancySet depends of the rules of the implementation. Some implementations require
particular types of spares to be used together. For example, some implementations may require that a
DiskDrive is spared by another DiskDrive of the same size and/or type. This profile does not model
DiskDrives. To implement this case, the implementer would model the StorageExtent associated to the
DiskDrive, a StorageRedundancySet, and associate StorageExtents to that StorageRedundancySet that
share the characteristics, whatever they may be, that permit these StorageExtents to be used as spares.

Figure 67 - Variations of RS per Storage Element

Global

Dedicated

StorageVolume or
LogicalDisk

StorageExtent

ConcreteComponent

StorageRedundancySet

MemberOfCollection

StorageExtent

StorageExtent

ConcreteComponent

ConcreteComponent MemberOfCollection

MemberOfCollection

StorageExtent

Failed

IsSpare

StorageVolume or
LogicalDisk

StorageExtent

ConcreteComponent

StorageRedundancySet

MemberOfCollection

StorageExtent

StorageExtent
ConcreteComponent

ConcreteComponent MemberOfCollection

MemberOfCollection

StorageExtent

IsSpare

StorageVolume or
LogicalDisk

StorageExtent

ConcreteComponent

StorageExtentConcreteComponent

MemberOfCollection
414

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106
If an implementation supports such rules then a StorageRedundancySet shall be created per rule. When
StorageVolumes or LogicalDisk are created or modified, the implementation can select the
StorageRedundancySet to associate to the created or modified storage element using on the
PackageRedundancy Goal. An implementation that supports global spares that supported both the 5,
"Block Services Package" and this profile, would match this Goal with StorageRedundancySet that had at
least that number of spares.

A StoragePool, StorageVolume, or LogicalDisk may be have one or more StorageExtents that provide
redundancy of its data. Storage elements for which this is the case shall participate in a
ConcreteDependency association with the StorageExtents that form its redundancy. These
StorageExtents shall participate MemberOfCollection associations to a RedundancySet. In turn, the
reference RedundancySet shall indicate the status of the redundancy. The StorageExtents that be used to
replace a StorageExtent whose realization has failed shall be associated to this StorageRedundancySet
via an IsSpare association. Once the substitution of the failed StorageExtent for the spare StorageExtent
started, the failed StorageExtent shall be associated to the spare StorageExtent via the Spared
association. This shall be the case until the process of substitution has completed. After which, the failed
StorageExtent shall participate in a MemberOfCollection with a FailoverStorageExtentsCollection but not
participate in a MemberOfCollection association with a StorageRedundancySet nor in a
ConcreteDependency association with any storage element. The failed StorageExtents are removed from
the FEC when the failed component on which they are based in removed from the system through a
means not defined in this profile, i.e., the drive FRU pulled from the array.

The FailoverExtentsCollection class is used to collect the spares that have failed. These are the
components that need to be diagnosed, repaired, and, possibly, replaced or assigned to the primordial
StoragePool.

The StorageConfigurationCapabilities class is used to report the capabilities of the implementation. Not
all sparing functionality is required. This class is used to report what methods are implemented. The
properties and methods of the class are specified later in this profile. Table 262 lists the action names for
the sparing methods. If a sparing method is supported synchronously, then the action name for the
method shall be present in SupportedSynchronousActions array. If a sparing method is supported
asynchronously, then the action name for the method shall be present in SupportedAsynchronousActions
array.

11.1.5 Modeling Fail Over, Past and Present

This section illustrates the requirements for modeling spare fail over in three cases, before the failure,
during the fail over, and after the fail over.

Table 262 - Supported Methods to Method Mapping

Action Method

Assign Spares SpareConfigurationService.AssignSpares

Unassign Spares SpareConfigurationService.UnassignSpares

Rebuild Storage Extent SpareConfigurationService.RebuildStorageExtent

Check Parity Consistency SpareConfigurationService.CheckParityConsistency

Repair Parity SpareConfigurationService.RepairParity

Fail Over StorageRedundancySet.Failover
SNIA Technical Position 415

107

108

109

110

111

112

113

114

115

116

117
Figure 68: "Before Failure" shows a dedicated RedundancySet with a single spare.

Once the failure has occurred, a ConcreteJob is created to represent the fail over process, as shown in
Figure 69.

The AffectJobElement association shall associate the LogicalDisk or StorageVolume that is being failed
over, the StorageExtent that has failed and is causing the fail over, and the spare StorageExtent. The
associations shall remain for some period of time as per the rules in the Storage Management Technical
Specification, Part 3 Common Profiles, 1.8.0 Rev 4 23 "Job Control Profile". For these rules consider the two
extents as Input values to the StorageRedundancySet.Failover() method.

This profile supports fail over initiated by the implementation or by the client. So that an observer can tell
what this fail over ConcreteJob is doing, the implementation shall model the ConcreteJob as if another
client initiated the fail over, even though the implementation did the initiation. In other words, the

Figure 68 - Before Failure

Figure 69 - During Failure

StorageExtent

StorageExtent

StorageRedundancySet

MemberOfCollection

StorageExtent

StorageExtent

ConcreteDependency

ConcreteDependency

ConcreteDependency MemberOfCollection

MemberOfCollection

StorageVolume,
LogicalDisk, or
StoragePool

IsSpare

StorageExtent

StorageExtent

StorageRedundancySet

MemberOfCollection

StorageExtent

StorageExtent

ConcreteDependency

ConcreteDependency

ConcreteDependency MemberOfCollection

MemberOfCollection

StorageVolume,
LogicalD isk, or
StoragePool

ConcreteJob

IsSpare

AffectedJobElement

AffectedJobElement

Spared

Failed

AffectedJobElement
416

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138
ConcreteJob shall be associated to the StorageRedundancySet associated to the two Extents in question
via the OwningJobElement association. The MethodResult instance, as defined in Storage Management
Technical Specification, Part 3 Common Profiles, 1.8.0 Rev 4 23 "Job Control Profile", shall contain the
StorageRedundancySet.Failover() method name and parameters.

Once the fail over is complete, the failed Extent shall no longed have a ConcreteDependency association
to StorageVolume or LogicalDisk that was once based on it. The spare StorageExtent shall now
participate in a MemberOfCollection associated to the StorageRedundancySet instead of the IsSpare
association. The failed over Volume or LogicalDisk shall now participate in a ConcreteDependency
relationship with the spare Extent. The failed Extent may now participate in a MemberOfCollection
association with the FailoverStorageExtentsCollection, illustrated in Figure 70.

EXPERIMENTAL

11.1.6 Sparing Configuration and Control

All six methods defined or used in this profile, AssignSpares, UnassignSpares, RebuildStorageExtent,
CheckParityConsistency, CheckStorageElement, and RepairParity can be initiated by the implementation
or the client. If the method execution is not instantaneous, then information about what method invocation
gave rise to the job follows the rules in Storage Management Technical Specification, Part 3 Common Profiles,
1.8.0 Rev 4 23 "Job Control Profile". These methods can also be initiated by the implementation itself. The
implementation shall represent the execution of the job, job name, and method parameters in said
manner even it initiated the Job. If the implementation supports this functionality but does not allow the
client to initiate the action, it shall still represent the execution of the functionality, as represented by a
method execution, in said manner.

The purpose of these rules to allow an observer to tell that, for example, a RepairParity task is executing.

EXPERIMENTAL

Figure 70 - After Failure

StorageExtent

StorageExtent

StorageRedundancySet

MemberOfCollection

StorageExtent

StorageExtent

ConcreteDependency

ConcreteDependency

ConcreteDependency
MemberOfCollection

MemberOfCollection

StorageVolume,
LogicalDisk, or
StoragePool

failed

MemberOfCollection

FalloverStorageExtentsCollection
SNIA Technical Position 417

139

140

141

142

143

144

145

146

147

148

149

150

151

152
153
154
155
156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171
11.2 Health and Fault Management Considerations

One of the primary reasons for this profile to allow a client to determine if the cause of performance
degradation of a block server is caused by spare fail over, volume rebuild, or parity repair.

There are several failure cases possible with this profile:

• There may be failures of the several configuration and control methods of this profile for reasons other than
the parameters provided by the client.

The StorageExtents used in the configuration and control methods may be invalid.

11.3 Cascading Conjurations

Not defined in this document.

11.4 Methods of the Profile

EXPERIMENTAL

11.4.1 AssignSpares

uint32 AssignSpares(
[Out] CIM_ConcreteJob REF Job
[In] CIM_StoragePool REF InPool
[In] CIM_StorageExtent REF InExtents[]
[In] CIM_StorageRedundancySet REF RedundancySet)

This method is used to assign spares to a particular RedundancySet. If there is more than one
StoragePool in this implementation, then the arguments to the method shall contain the references to
StorageExtents and references to the primordial StoragePools of which they are components. This
method shall not permit the assignment of spare from more than one StoragePool.

This method may return a number or result codes, many of which are used widely and documented in
CIM. The following documents the return codes that are unique to this method:

ValueMap { "0", "1", "2", "3", "4", "5", "6", "..", "4096",

 "4097", "4098", "4099", "4100..32767", "32768..65535" },

Values { "Job Completed with No Error", "Not Supported",

 "Unknown", "Timeout", "Failed", "Invalid Parameter",

 "In Use", "DMTF Reserved",

 "Method Parameters Checked - Job Started",

 "Multiple StoragePools",

 "Spares Are Not Compatible",

 "StorageExtent is in use",

 "Method Reserved", "Vendor Specific" }

• 4097, “Multiple StoragePools”, means the client passed Extents that are components of more than one
Primordial StoragePool.

• 4098, “Spares Are Not Compatible”, means the client pass Extents than may not be used together. There is
no mechanism at this time to tell a client, through the model, what spares can be used together.

• 4099, “StorageExtent is in use”, means that one or more of the Extents passes are already in use as a spare
or as part of a StorageVolume or LogicalDisk.

This method shall not return vendor specific return codes.
418

172

173

174

175

176

177

178

179

180

181
182
183
184

185

186

187

188

189

190

191
192
193
194

195

196

197

198

199

200

201

202
203
204

205

206

207

208

209

210

211

212
213
214
215
11.4.2 UnassignSpares

uint32 UnassignSpares(
[Out] CIM_ConcreteJob REF Job
[In] CIM_StoragePool REF InPool
[In] CIM_StorageExtent REF InExtents[])

This method is used to remove a spare from a StorageRedundancy and also unassign that Extent as a
spare. The unassigned spare may end up as a member of the FailoverStorageExtentsCollection. The
rules for the parameters and the same descriptions of assign spares are true for the parameters and
return codes shared between the two method definitions. This method shall not return vendor specific
return codes.

11.4.3 GetAvailableSpareExtents

uint32 GetAvailableExtents(
[In] CIM_StoragePool REF InPool<
[In] CIM_StorageRedundancySet REF RedundancySet,
[Out] CIM_StorageExtent REF AvailableExtents[])

This method returns references of available StorageExtents that may be as spares for the given
StorageRedundancySet and StoragePool. The referenced StorageRedundancySet shall provide
redundancy for the referenced StoragePool.

The method may return error codes. Many of the return codes are used widely and documented in CIM.
There are no return codes that are unique to this method. This method shall not return vendor specific
return codes.

11.4.4 FailOver

uint32 Failover(
[In] CIM_ManagedElement REF FailoverFrom
[In] CIM_ManagedElement REF FailoverTo)

This method is used to force a failover between StorageExtents. The FailoverFrom reference shall be a
reference to a StorageExtent that participates in a MemberOfCollection association with the
StorageRedundancySet instance on which this method is called. The FailoverTo reference shall be a
reference to a StorageExtent that participates in a IsSpare association with the StorageRedundancySet
instance on which this method is called.

This method may return the follow error codes. Many of the return codes are used widely and
documented in CIM. The following documents that return code semantics that are unique to this method.

ValueMap { "0", "1", "2", "3", "4", "..", "32768..65535" },
Values { "Completed with No Error", "Not Supported",
"Unknown/Unspecified Error", "Busy/In Use",
"Parameter Error", "DMTF Reserved", "Vendor Reserved" }]

• 3, "Unknown/Unspecified Error", means that the implementation failed to failover for some unspecified
reason.

• 4, "Busy/In use", means that the failover between the reference StorageExtents is already in progress.

11.4.5 RebuildStorageExtent

uint32 RebuildStorageExtent(
[Out] CIM_ConcreteJob REF Job
[In] CIM_StorageExtent REF Target)

This method is used to rebuild the data distribution on the passed Extent with the other member Extents
associated to a single StorageRedundancySet. If the Job execution fails, then use
ConcreteJob.GetError() to get the CIM_Error that states what the error was. In this case, the Target
Extent shall report the appropriate, non “OK”, OperationalStatus.
SNIA Technical Position 419

216

217

218

219

220
221
222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244
245
246

247

248

249

250

251

252

253

254

255

256

257

258

259

260
The method may return the following error codes. Many of the return codes are used widely and
documented in CIM. The following documents the return codes that are unique to this method. This
method shall not return vendor specific return codes.

ValueMap { "0", "1", "2", "3", "4", "5", "6", "..", "4096",

 "4097", "4098", "4099..32767", "32768..65535" },

Values { "Job Completed with No Error", "Not Supported",

 "Unknown", "Timeout", "Failed", "Invalid Parameter",

 "In Use", "DMTF Reserved",

 "Method Parameters Checked - Job Started",

 "Target is Not a Member of a StorageRedundancySet",

 "Rebuild already in Progress",

 "Method Reserved", "Vendor Specific" }

• 4097 "Target is Not a Member of a StorageRedundancySet", means that the Extent passed is not a member
of StorageRedundancySet

• 4098 "Rebuild already in Progress", means that a rebuild of the data and/or parity on the passed Extent or
one or more of the other member Extents of the same StorageRedundancySet is already in progress.

11.4.6 CheckParityConsistency

uint32 CheckParityConsistency(
[Out] CIM_ConcreteJob REF Job
[In] CIM_StorageExtent REF Target)

This method is used to check the consistency of the parity distribution on the passed Extent with the other
member Extents associated to a single StorageRedundancySet.. If the Job execution fails, then use
ConcreteJob.GetError() to get the Error that states what the error was. In this case, the Target Extent
shall report the appropriate, non “OK”, OperationalStatus. If method execution determines that the parity
is inconsistent, the ConcreteJob shall report successful completion and one of Operational Statuses of
the passed Extent shall be 6 “Error”.

The method may return the following error codes. Many of the return codes are used widely and
documented in CIM. The following documents the return codes that are unique to this method. This
method shall not return vendor-specific return codes.

ValueMap { "0", "1", "2", "3", "4", "5", "6", "..", "4096",

 "4097", "4098", "4099..32767", "32768..65535" },

Values { "Job Completed with No Error", "Not Supported",

 "Unknown", "Timeout", "Failed", "Invalid Parameter",

 "In Use", "DMTF Reserved",

 "Method Parameters Checked - Job Started",

 "Consistency Check Already in Progress",
"No Parity to Check",

 "Method Reserved", "Vendor Specific" }

• 4097 "Consistency Check Already in Progress", means that a check and rebuild of the data parity on the
passed Extent or one or more of the other member Extents of the same StorageRedundancySet is already in
progress.

• 4098 "No Parity to Check", means that the member Extents of the StorageRedundancySet are not built with
parity distribution. Recheck the Virtualization modeled.
420

261

262
263

264

265

266

267

268

269

270

271
272
273

274

275

276

277

278

279

280

281

282

283
284
285
286
287
288
289
290
291
292
293
294

295

296

297

298

299

300

301

302

303

304

305

306

307

308
11.4.7 RepairParity

uint32 RepairParity(
[In] CIM_ConcreteJob REF Job,
[Out] CIM_StorageExtent REF Target)

This method is used to rebuild of the parity distribution on the passed Extent with the other member
Extents associated to a single StorageRedundancySet. The intent is that this method would be run after
finding out that the CheckParityConsistency() reported that the Extent pair is inconsistent. If the Job
execution fails, then use ConcreteJob.GetError() to get the Error that states what the error was. In this
case, the Target Extents shall report the appropriate, non “OK”, OperationalStatus and HealthState.

The method may return error codes. Many of the return codes are used widely and documented in CIM.
There are no return codes that are unique to this method. This method shall not return vendor specific
return codes.

11.4.8 CheckStorageElement

uint32 CheckStorageElement(
[In
 Values {"Default", "Parity", "Bad Block",
"Replication"}
 ValueMap{"1","2","3","4"}]
uint16 CheckType,
[In
 Values {"Run One Time", "Continuous"}
 ValueMap{"1","2"}]
uint16 CheckMode,
[In] CIM_LogicalElement REF TargetElement,
[Out] CIM_ConcreteJob REF Job

This method requests that the reference target element be checked with a given check type and with a
given check mode. If a check mode of 1 "Run One Time" is requested, then the element check shall run
once. If a check mode of 2 "Continuous", then the element shall be checked and checked again until the
ConcreteJob instance, referenced by the Job parameter, is terminated.

The method may return the following error codes. Many of the return codes are used widely and
documented in CIM. The following documents the return codes that are unique to this method. This
method shall not return vendor specific return codes.

ValueMap { "0", "1", "2", "3", "4", "5", "6", "..", "4096",

 "4097", "4098", "4099..32767", "32768..65535" },

Values { "Job Completed with No Error", "Not Supported",

 "Unknown", "Timeout", "Failed", "Invalid Parameter",

 "In Use", "DMTF Reserved",

 "Method Parameters Checked - Job Started",

 "Storage Element Check Already in Progress",

 "Method Reserved", "Vendor Specific" }

• 4097 "Storage Element Check Already in Progress", means that a check on the passed Extent or one or more
of the other member Extents of the same StorageRedundancySet is already in progress.

EXPERIMENTAL

11.5 Use Cases

The sparing implementation may cause the sparing configuration changes (i.e., jobs start and run) on its
own in response to other clients.
SNIA Technical Position 421

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347
348

349

350
The number of StorageRedundancySets may change over time because the physical components,
realizing the spare StorageExtent, like disk drives are added or remove from the block server.
Additionally, purely logical realizations of the spare StorageExtent may change as well. The
StorageRedundancySets themselves once empty may remain in the model, but be empty, or may be
removed from the model entirely for this or other reasons.

The sparing implementation shall report the correct RedundancyStatus, either ‘Unknown’ 0, ‘Redundant’
1, or ‘Redundancy Lost’ 2. See the property description (11.6.16) for details.

11.6 CIM Elements

11.6.1 Overview

Table 263 describes the CIM elements for Disk Sparing.

Table 263 - CIM Elements for Disk Sparing

Element Name Requirement Description

11.6.2 CIM_AssociatedComponentExtent (Spare to
Storage Pool)

Conditional Conditional requirement: Implementation of the Extent
Composition profile.

11.6.3 CIM_ConcreteDependency (Extent to LogicalDisk) Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. Represents the
group of StorageExtents that form the redundancy of a
LogicalDisk.

11.6.4 CIM_ConcreteDependency (Extent to Pool) Mandatory Represents the group of StorageExtents that form the
redundancy of a StoragePool.

11.6.5 CIM_ConcreteDependency (Extent to
StorageVolume)

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory. Represents the
group of StorageExtents that form the redundancy of a
StorageVolume.

11.6.6 CIM_ElementCapabilities Optional Associates SpareConfigurationCapabilities with the Block
Server's ComputerSystem instance.

11.6.7 CIM_HostedCollection (ComputerSystem to
FailoverStorageExtentsCollection)

Optional Associates FailoverStorageExtentsCollection with the
Block Server's ComputerSystem instance.

11.6.8 CIM_HostedCollection (ComputerSystem to
RedundancySet)

Mandatory Associates StorageRedundancySet with the Block
Server's ComputerSystem instance.

11.6.9 CIM_HostedService (ComputerSystem to
SpareConfigurationService)

Optional Associates SpareConfigurationService with the Block
Server's ComputerSystem instance.

11.6.10 CIM_IsSpare Mandatory Represents the spare that may be used as a spare for any
StorageExtents that is not a spare.

11.6.11 CIM_LogicalDisk Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory.

11.6.12 CIM_MemberOfCollection Mandatory Represents the relationship between the StorageExtents
that form the redundancy of a StoragePool,
StorageVolume, or LogicalDisk.

11.6.13 CIM_Spared Mandatory Represents the relationship between the spare and the
StorageExtent that has failed and is being spared.

11.6.14 CIM_StorageExtent (Spare) Mandatory Represents the redundant or spare capacity.

11.6.15 CIM_StoragePool Mandatory Elements to Primordial and Concrete Pools.
422

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383
11.6.2 CIM_AssociatedComponentExtent (Spare to Storage Pool)

The referenced spare StorageExtent represents capacity has not been allocated, is allocated in part, or is
allocated in its entirety.

Requirement: Implementation of the Extent Composition profile.

Table 264 describes class CIM_AssociatedComponentExtent (Spare to Storage Pool).

11.6.3 CIM_ConcreteDependency (Extent to LogicalDisk)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Volume Management - LogicalDisk is mandatory.

Table 265 describes class CIM_ConcreteDependency (Extent to LogicalDisk).

11.6.4 CIM_ConcreteDependency (Extent to Pool)

Created By: Static

Modified By: Static

11.6.16 CIM_StorageRedundancySet Mandatory Represents the group of spare StorageExtents and
StorageExtents that these spares will substitute for case
of failure.

11.6.17 CIM_StorageVolume Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory. Commonly
known as a LUN but without the semantics of mapping to
a host (which is covered by Masking and Mapping).

11.6.18 CIM_FailoverStorageExtentsCollection Optional The collection of StorageExtents that have failed.

11.6.19 CIM_SpareConfigurationCapabilities Optional Instances of this class define the behavior supported by
this sparing implementation.

11.6.20 CIM_SpareConfigurationService Optional This service manages sparing and validates the data and
the parity for the StorageExtent Not instantiating the
service means that the service methods are supported.

Table 264 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Spare to Storage
Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The StoragePool.

PartComponent Mandatory The spare storage extent that is a component of the storage pool.

Table 265 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to LogicalDisk)

Properties Flags Requirement Description & Notes

Antecedent Mandatory An underlying Storage Extent.

Dependent Mandatory A Logical Disk.

Table 263 - CIM Elements for Disk Sparing

Element Name Requirement Description
SNIA Technical Position 423

384

385

386
Deleted By: Static

Requirement: Mandatory

Table 266 describes class CIM_ConcreteDependency (Extent to Pool).

11.6.5 CIM_ConcreteDependency (Extent to StorageVolume)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory.

Table 267 describes class CIM_ConcreteDependency (Extent to StorageVolume).

11.6.6 CIM_ElementCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 268 describes class CIM_ElementCapabilities.

11.6.7 CIM_HostedCollection (ComputerSystem to FailoverStorageExtentsCollection)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 266 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to Pool)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 267 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to StorageVolume)

Properties Flags Requirement Description & Notes

Antecedent Mandatory An underlying primordial Extent.

Dependent Mandatory A StorageVolume.

Table 268 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The hosting System.

Capabilities Mandatory The support spare configuration capabilities.
424

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403
Table 269 describes class CIM_HostedCollection (ComputerSystem to
FailoverStorageExtentsCollection).

11.6.8 CIM_HostedCollection (ComputerSystem to RedundancySet)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 270 describes class CIM_HostedCollection (ComputerSystem to RedundancySet).

11.6.9 CIM_HostedService (ComputerSystem to SpareConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 271 describes class CIM_HostedService (ComputerSystem to SpareConfigurationService).

11.6.10 CIM_IsSpare

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 269 - SMI Referenced Properties/Methods for CIM_HostedCollection (ComputerSystem to Failover-
StorageExtentsCollection)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory Indicates which FailoverStorageExtentsCollection are part of Disk Sparing
implementation.

Table 270 - SMI Referenced Properties/Methods for CIM_HostedCollection (ComputerSystem to Redun-
dancySet)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory Indicate which StorageRedundancySets are part of Disk Sparing
implementation.

Table 271 - SMI Referenced Properties/Methods for CIM_HostedService (ComputerSystem to SpareConfig-
urationService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The support spare configuration service.
SNIA Technical Position 425

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420
Table 272 describes class CIM_IsSpare.

11.6.11 CIM_LogicalDisk

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Volume Management - LogicalDisk is mandatory.

Table 273 describes class CIM_LogicalDisk.

11.6.12 CIM_MemberOfCollection

Created By: Static

Modified By: Static

Deleted By: Static

Table 272 - SMI Referenced Properties/Methods for CIM_IsSpare

Properties Flags Requirement Description & Notes

SpareStatus Mandatory

FailoverSupported Mandatory

Antecedent Mandatory A Spare Storage Extent.

Dependent Mandatory

Table 273 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User friendly name.

Name Mandatory OS Device Name.

NameFormat Mandatory Format for name.

ExtentStatus Mandatory

OperationalStatus Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks that make of this LogicalDisk.

IsBasedOnUnderlyingRedundancy Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Primordial Mandatory Shall be false.
426

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437
Requirement: Mandatory

Table 274 describes class CIM_MemberOfCollection.

11.6.13 CIM_Spared

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 275 describes class CIM_Spared.

11.6.14 CIM_StorageExtent (Spare)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 276 describes class CIM_StorageExtent (Spare).

11.6.15 CIM_StoragePool

Requirement: Mandatory

Table 274 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 275 - SMI Referenced Properties/Methods for CIM_Spared

Properties Flags Requirement Description & Notes

Antecedent Mandatory A reference to the StorageExtent that as replaced another StorageExtent.

Dependent Mandatory The StorageExtent that has failed and is being replaced.

Table 276 - SMI Referenced Properties/Methods for CIM_StorageExtent (Spare)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

HealthState Mandatory Reports the state of the StorageExtents underlying component.

OperationalStatus Mandatory Reports the operational status of the StorageExtent.

Primordial Mandatory A boolean that identifies whether the spare is primordial or concrete.
SNIA Technical Position 427

438

439

440

441

442

443

444

445

446
Table 277 describes class CIM_StoragePool.

11.6.16 CIM_StorageRedundancySet

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 278 describes class CIM_StorageRedundancySet.

11.6.17 CIM_StorageVolume

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage
Virtualizer- StorageVolume is mandatory.

Table 277 - SMI Referenced Properties/Methods for CIM_StoragePool

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

PoolID Mandatory A unique name in the context of this system that identifies this Pool.

Table 278 - SMI Referenced Properties/Methods for CIM_StorageRedundancySet

Properties Flags Requirement Description & Notes

InstanceID Mandatory

RedundancyStatus Mandatory The redundancy status shall be either 'Unknown' 0, 'Redundant' 2, or
'Redundancy Lost' 3. The implementation should report 2 or 3 most of the
time, although it may report 0 sometimes. It should report 2 when there is
at least one spare per the StorageRedundancySet. It should report 3 when
there are no more spares (via IsSpare association) per the
StorageRedundancySet.

TypeOfSet Mandatory 'Limited Sparing', 5, is the type of sparing supported in the profile.

MinNumberNeeded Mandatory

MaxNumberSupported Mandatory

Failover() Optional For block servers that do not do automatically fail over failed components,
this method is used to cause the fail over to occur. More commonly, block
server implementations automatically maintain the availability of their
capacity. In this case, the method would only be used to cause fail back to
occur, if that also does not occur automatically.
428

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461
Table 279 describes class CIM_StorageVolume.

11.6.18 CIM_FailoverStorageExtentsCollection

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 280 describes class CIM_FailoverStorageExtentsCollection.

11.6.19 CIM_SpareConfigurationCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 281 describes class CIM_SpareConfigurationCapabilities.

Table 279 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User friendly name.

Name Mandatory VPD 83 identifier for this volume (ideally a LUN WWN).

NameFormat Mandatory Format for name.

ExtentStatus Mandatory

OperationalStatus Mandatory

Primordial Mandatory Shall be false.

Table 280 - SMI Referenced Properties/Methods for CIM_FailoverStorageExtentsCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User friendly name.

Table 281 - SMI Referenced Properties/Methods for CIM_SpareConfigurationCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User friendly name.
SNIA Technical Position 429

462

463

464

465

466

467

468

469

470
11.6.20 CIM_SpareConfigurationService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

SupportedAsynchronousActions N Mandatory Enumeration indicating what operations will be
executed as asynchronous jobs. If an operation is
included in both this and
SupportedSynchronousActions then the underlying
implementation is indicating that it may or may not
create.

SupportedSynchronousActions N Mandatory Enumeration indicating what operations will be
executed without the creation of a job. If an operation
is included in both this and
SupportedAsynchronousActions then the underlying
instrumentation is indicating that it may or may not
create a job.

SystemConfiguredSpares Mandatory Set to true if this storage system automatically
configures spares. If set to false, the client shall use
the extrinsic methods AssignSpares and
UnassignSpares.

AutomaticFailOver Mandatory Set to true if this storage system automatically fails
over. If set to false, the client shall use the FailOver
extrinsic method, although that method may not be
supported.

MaximumSpareStorageExtents Mandatory States the maximum number of StorageExtents that
can be configured as spares for the entire block
server. A 0 means that all primordial StorageExtents
can be configured as spares.

Table 281 - SMI Referenced Properties/Methods for CIM_SpareConfigurationCapabilities

Properties Flags Requirement Description & Notes
430

Table 282 describes class CIM_SpareConfigurationService.

IMPLEMENTED

Table 282 - SMI Referenced Properties/Methods for CIM_SpareConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory Opaque identifier.

AssignSpares() Mandatory

UnassignSpares() Mandatory

GetAvailableSpareExtents() Mandatory

RebuildStorageExtent() Optional

CheckParityConsistency() Optional

RepairParity() Optional

CheckStorageElement() Optional
SNIA Technical Position 431

432

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
EXPERIMENTAL

12 Erasure Profile

12.1 Description

12.1.1 Synopsis

Profile Name: Erasure (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: StorageErasureService

Scoping Class: ComputerSystem

No Related Profiles defined in this document.

12.1.2 Overview

The Erasure Profile describes how data on a storage element (StorageVolume, LogicalDisk, or primordial
StorageExtent) may be erased. As data is replicated, migrated and archived throughout its lifecycle, there
is a need to ensure that residual and superseded copies or versions of the data that remain on storage
media are destroyed in line with business policies for privacy, confidentiality and security.

Erasure will be required whenever it is deemed that the data on a storage element is sufficiently sensitive
or of competitive value that the media cannot be reused, redeployed or made redundant without ensuring
that the data is destroyed.

As part of the data lifecycle, data will potentially be replicated and migrated several times throughout their
life before final destruction, as a result of media and technology change or management policies.

Common situations would include:

• Migration to secondary or tertiary archive storage followed by deletion of the source data

• Movement of data from a failing device to a spare.

• Migration and cut-over to new target media, retaining the source media for a "fall back" for some period then
reuse (or resale) of the source media.

12.1.3 Existing Erasure standards

There are numerous erasure standards in the industry. These techniques generally involve writing a bit
pattern to the storage media and in most cases require multiple passes of overwriting of these bit
patterns. The following is an incomplete list of erasure techniques to illustrate the variety that exists
today:

• HMG Infosec Standard 5, The Baseline Standard.

• HMG Infosec Standard 5, The Enhanced Standard.

• Peter Gutmann's algorithm.

• U.S.Department of Defense Sanitizing (DOD 5220.22-M)

• Bruce Schneier's algorithm.
SNIA Technical Position 433

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62
• Navy Staff Office Publication (NAVSO P-5239-26) for RLL.

• The National Computer Security Center (NCSC-TG-025).

• Air Force System Security Instruction 5020.

• US Army AR380-19.

• German Standard VSIT

• OPNAVINST 5239.1A.

Because there is such a wide variety of techniques, this profile does not dictate which technique shall be
used. The instrumentation shall tell the client which methods are supported. Since erasure of data on a
volume may be a lengthy process and will most likely be a background task, the volume may provide the
status of the erasure and may provide notification via an Indication of the erasure completion.

To support this profile, instrumentation shall provide a list of supported erasure methods in the
StorageErasureCapabilities.SupportedErasureMethods property. If the instrumentation supports erasing
a volume upon return to a storage pool, then the
StorageErasureCapabilities.CanEraseOnReturnToStoragePool property shall be set to true. If the
instrumentation does not support this capability, then the value shall be false (the default value). The
StorageErasureCapabilities shall be associated to the StorageErasureService via the ElementCapabilities
association.

If CanEraseOnReturnToStoragePool is true, then the StorageErasureCapabilities.DefaultErasureMethod
shall be used to erase StorageVolume or LogicalDisk elements, unless the
StorageErasureSetting.ErasureMethod is non-NULL. The instrumentation may provide a default value for
this property. A client may be able to change the StorageErasureCapabilities.DefaultErasureMethod and
StorageErasureSetting.ErasureMethod.

The erasure of StorageExtents is restricted to primordial extents only and shall be accomplished by
calling StorageErasureService.Erase explicitly. The CanEraseOnReturnToStoragePool shall only be used
for StorageVolumes and LogicalDisks.

To erase the volume explicitly, the user shall call the StorageErasureService.Erase method, passing in
the volume to erase and the erasure method to use. The erasure method shall be one of the erasure
methods the instrumentation supports. A NULL may be passed in as the ErasureMethod, in which case,
the instrumentation shall use the DefaultErasureMethod from the capabilities as the erasure method. To
erase a volume implicitly, it is required that the CanEraseOnReturnToStoragePool shall be true and that
the StorageErasureSetting associated to the volume has the EraseOnReturnToPool value set to true. If
these conditions are met, then when the user calls the ReturnToStoragePool method, the volume shall be
erased before being returned to the pool.

If a ConcreteJob has been started as a result of the erasure (either from calling Erase or
ReturnToStoragePool), then the ConcreteJob shall have an AffectedJobElement association to the
StorageVolume being erased.

Figure 71 shows the new properties and method introduced by this profile. While a StorageVolume is
shown, the same shall apply to LogicalDisk.
434

63

64

65

66

67

68

69

70

71

72

73
12.2 Health and Fault Management Considerations

Not defined in this document.

12.3 Cascading Considerations

Not applicable

12.4 Methods of the Profile

The Erase methodin the StorageErasureService, shown in Table 283, shall erase the contents of the
volume using the specified erasure method. The erasure methods that the instrumentation supports shall
be found in the StorageErasureCapabilities.SupportedErasureMethods property.

Figure 71 - Model Elements

ComputerSystem

StoragePool

StorageErasureCapabilities

SupportedErasureMethods[]
CanEraseOnReturnToStoragePool
DefaultErasureMethod

ElementCapabilities

HostedService

StorageErasureService

Erase(out CIM_ConcreteJob, in CIM_StorageExtent, in ErasureMethod)

HostedStoragePool

SystemDevice
StorageVolume

AllocatedFromStoragePool

StorageErasureSetting

ErasureMethod
EraseOnReturnToPool

ElementSettingData
SNIA Technical Position 435

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90
Table 283 - Erase Method

12.5 Use Cases

Not defined in this document.

12.6 CIM Elements

12.6.1 Overview

Table 284 describes the CIM elements for Erasure.

Method: Erase

Return Values:

Value Description

0: Job completed Job completed with no error

1: Not supported Method not supported

2: Unspecified Error

3: Timeout

4: Failed Refer to instance of CIM_Error

5: Invalid parameter Refer to instance of CIM_Error

6: In Use

7..4095 DMTF Reserved

4096: Job started REF returned to started ConcreteJob

Errors:

(status):registry:MessageID ErrorName:MessageArguments

Parameters:

Qualifiers Name Type Description/Values

OUT Job CIM_ConcreteJob REF Returned if job started.

IN, REQ Extent CIM_StorageExtent REF Extent (volume) to erase

IN, REQ Type uint16 Type of extent
(StorageVolume,
LogicalDIsk, or primordial
StorageExtent)

IN, REQ ErasureMethod uint32 Erasure method to use

Table 284 - CIM Elements for Erasure

Element Name Requirement Description

12.6.2 CIM_AllocatedFromStoragePool Mandatory AllocationFromStoragePool as defined in
the Array Profile.

12.6.3 CIM_LogicalDisk Conditional Conditional requirement: Referenced from
Volume Management - LogicalDisk is
mandatory

12.6.4 CIM_StoragePool Mandatory
436

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131
12.6.2 CIM_AllocatedFromStoragePool

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

Table 285 describes class CIM_AllocatedFromStoragePool.

12.6.3 CIM_LogicalDisk

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Volume Management - LogicalDisk is mandatory

Table 286 describes class CIM_LogicalDisk.

12.6.4 CIM_StoragePool

Created By: External

Modified By: External

12.6.5 CIM_StorageVolume Conditional Conditional requirement: Referenced from
Array - StorageVolume is mandatory or
Referenced from Storage Virtualizer -
StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller -
StorageVolume is mandatory

12.6.6 CIM_StorageErasureCapabilities Mandatory

12.6.7 CIM_StorageErasureService Mandatory

12.6.8 CIM_StorageErasureSetting Mandatory

Table 285 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory

Dependent Mandatory

Table 286 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

Table 284 - CIM Elements for Erasure

Element Name Requirement Description
SNIA Technical Position 437

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174
Deleted By: External

Requirement: Mandatory

Table 287 describes class CIM_StoragePool.

12.6.5 CIM_StorageVolume

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced from Host Hardware RAID Controller -
StorageVolume is mandatory

Table 288 describes class CIM_StorageVolume.

12.6.6 CIM_StorageErasureCapabilities

Created By: Static

Requirement: Mandatory

Table 289 describes class CIM_StorageErasureCapabilities.

Table 287 - SMI Referenced Properties/Methods for CIM_StoragePool

Properties Flags Requirement Description & Notes

Primordial Mandatory

TotalManagedSpace Mandatory

RemainingManagedSpace Mandatory

Table 288 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

Table 289 - SMI Referenced Properties/Methods for CIM_StorageErasureCapabilities

Properties Flags Requirement Description & Notes

ElementName Mandatory User friendly name for this instance of Capabilities.

InstanceID Mandatory Unique identifier for the instance.

ErasureMethods Mandatory Indicates erasure methods supported.

DefaultErasureMethod Mandatory Erasure method to use if none specified in the volume's setting.

CanEraseOnReturnToStoragePool Mandatory Indicates that the volume can be erased when deleted.

ElementTypesSupported Mandatory Supported element types for the Erase method. Valid values are
StorageVolume, LogicalDisk, and StorageExtent.
438

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214
12.6.7 CIM_StorageErasureService

Created By: Static

Requirement: Mandatory

Table 290 describes class CIM_StorageErasureService.

12.6.8 CIM_StorageErasureSetting

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

Table 291 describes class CIM_StorageErasureSetting.

EXPERIMENTAL

Table 290 - SMI Referenced Properties/Methods for CIM_StorageErasureService

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Unique identifer for the Service.

Erase() Mandatory This service contains the Erase method used to
erase storage elements.

Table 291 - SMI Referenced Properties/Methods for CIM_StorageErasureSetting

Properties Flags Requirement Description & Notes

ErasureMethod Mandatory Erasure method to use. Shall be one of the erasure methods
supported by the instrumentation.

EraseOnReturnToPool Mandatory Indicates if this volume should be erased when deleted.
Default is false.
SNIA Technical Position 439

440

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38
STABLE

13 Extent Composition Profile

13.1 Description

13.1.1 Synopsis

Profile Name: Extent Composition (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: StorageExtent

Scoping Class: ComputerSystem

Related Profiles: Not defined in this document.

13.1.2 Overview

The Extent Composition Profile allows an implementation that supports the Block Services package to
optionally provide an abstraction of how it virtualizes exposable block storage elements from the
underlying Primordial storage pool. The abstraction is presented to the client as a representative
hierarchy of extents. These extents are instances of CompositeExtents and StorageExtents linked by a
combination of CompositeExtentBasedOn and BasedOn associations. The foundation of the hierarchy is
a set of Primordial extents.

This profile is used optionally with the Array, Virtualization, Self-Contained NAS, NAS Head, and Volume
Management profiles.

A Primordial storage extent can represent a Disk Drive in the Array or Self-contained NAS, a downstream
virtualized Volume used by the Virtualizer or NAS Head Profiles, or a OS Logical Disk in the Volume
Management Profile.

An exposable block storage element as used in this profile is defined as a Storage Volume or a Logical
Disk.

In the presented hierarchy each extent (the dependent) is formed from those that it “precede” it (the
antecedents) by a process of either decomposition or composition.

13.1.3 Decomposition

Decomposition is used to allocate space from an antecedent extent, in order to form a new dependent
extent. This allocation may be partial or complete consumption. Complete consumption is the degenerate
case in which all space in the antecedent extent is used. In this case the decomposed dependent extent
may be either modeled even though it is one to one with the antecedent extent or omitted and the
antecedent extent used in its stead.

13.1.4 Composition

Composition is used to form an a dependent extent from antecedent extents for the purpose of either
concatenating the antecedent blocks to achieve a size goal, or to achieve a Quality Of Service goal such
as mirroring the antecedent extents for redundancy, striping the antecedent extents for performance, or
striping the antecedent extents with the addition of parity to achieve redundancy.

These extent “productions” can be assembled in a multi-layer hierarchy.
SNIA Technical Position 441

Block Services StoragePool hierarchy.

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76
13.1.5 Model Element Summary

This profile uses the following CIM Classes:

• LogicalDisk & StorageVolume - These are used to model the exposable block storage
element. These are as defined in the Block Services Package. The StorageVolume may also
be a Constituent Volume as defined by the Pools From Volumes Profile.

• StorageExtent (Intermediate or Pool Component) - Used to represent the decomposition
(partial allocation) of an Antecedent extent.

• StorageExtent (Remaining) - Used to represent the unused portion of an antecedent
StorageExtent (Pool Component).

• CompositeExtent (Composite Intermediate or Composite Pool Component) - Used to
represent the composition of several antecedent extents into a virtualized set of blocks with
desired size and Quality-Of-Service.

• BasedOn - Used to associate a Dependent and Antecedent extent in the profile hierarchy for
both composition and decomposition. It is also used in one special case as a one-to-one
(neither composing or decomposing), always associating the StorageVolume or LogicalDisk
to the antecedent CompositeExtent. This is because, as a sibling of StorageExtent and
LogicalDisk, CompositeExtent cannot be exposed directly.

• CompositeExtentBasedOn - A subclass of BasedOn that is used in a composition production
when the Dependent is a CompositeExtent which is describing striping; it contains Stripe
Depth information. Stripe Depth is the number of blocks written to an Antecedent extent
before moving on to the next extent Although this property is on the association class, its
values shall be the same for each instance of the association with the same Dependent
CompositeExtent.

DEPRECATED

• ConcreteComponent - Used to associate extents (Pool Component and Remaining) to
their parent StoragePool (See 13.1.6.2).

DEPRECATED

• AssociatedComponentExtent - Used to associate extents (Pool Component or Composite
Pool Component) to their parent StoragePool (See 13.1.6.2).

• StoragePool and AllocatedStoragePool are shown in instance diagrams for context but are
part of the Block Service package Read Only sub-package.

Refer to 13.6 "CIM Elements" for detailed class descriptions.

13.1.6 Relation to other Packages and Profiles

13.1.6.1 Block Services StoragePool hierarchy.

The Block Services package defines the model for the hierarchy of pools from the exposable storage
element to the Primordial Pool. The hierarchy defined in this profile parallels that pool hierarchy and is
layered so that the virtualization can be presented within the pool level in which it actually takes place.
442

 Component Extents

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92
13.1.6.2 Component Extents

Component Extents of a pool are the most dependent extents in the pool; they are also the only extents
that are directly manageable by the methods in the Block Services Package. They are also the only
extents that figure into the reconciliation of managed space in the pool (see 13.1.6.3).

Although a given implementation may choose a low level (i.e., detailed) or high-level presentation of how
it virtualizes a storage element from a pool, or how space in a pool is itself virtualized, the Pool
Component extents that are part of an exposable block storage element’s hierarchy shall be modeled
along with their associations to the parent pool.

13.1.6.3 Block Services Extent Conservation

The Block Services package describes the concept of Extent Conservation, which describes the result of
allocating storage from Pool Component extents using “Remain Space Extents”. These extents are not
modeled by the Extent Composition Profile, they are discoverable by the GetAvailableExtents method in
Block Services.

13.1.6.4 Block Services Common RAID Levels

The Block Services Package describes a set of RAID Levels and in addition, properties on StorageSetting
such as ExtentStripeLength and UserDataStripeDepth which allow creation of a subset of those RAID
levels, using CreateOrModifyElementFromElements.

However, the Extent Composition Profile is capable of describing general organizations, such as
heterogeneous, multi-layer RAID such as can be create by the Volume Management Profile. An example
of this would be a RAID5 mirrored against a RAID0, a RAID(5,0)+1. Another example would be a three
layer RAID organization such as a RAID10 where the bottom layer RAID1 members were concatenations
of available extents.
SNIA Technical Position 443

Block Services Common RAID Levels

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116
13.1.7 Remaining Extents

When a StorageExtent (or CompositeExtent) is based on only part of an underlying storage extent (a
partial allocation), the unused part of the underlying StorageExtent is represented by a Remaining
StorageExtent. This is illustrated in Figure 72.

Figure 72 shows two Remaining StorageExtents. Building from the bottom, there is a Pool Component
StorageExtent allocated from the Primordial StorageExtent. But this StorageExtent does not use all space
on the primordial extent. So a Remaining StorageExtent is shown to represent the unallocated space on
the primordial extent. The Remaining StorageExtent has a BaseOn association to the primordial extent to
indicate that it is unallocated space from the primordial extent. The Remaining Extent also has an
AssociatedRemainingExtent association to the same primordial StoragePool that the primordial
StorageExtent has its AssociatedComponentExtent association.

The Pool Component extent above the primordial storage extent also has a StorageExtent allocated from
it that is also a partial allocation. So, it too has a Remaining StorageExtent to represent the unallocated
space on the Pool Component StorageExtent. This Remaining StorageExtent has a BasedOn association
to the Pool Component StorageExtent and an AssociatedRemainingExtent association to the same
Concrete StoragePool that the Pool Component StorageExtent has its AssociatedComponentExtent
association.

Figure 72 - Remaining Extents in Extent Composition

Extent Composition

StoragePool (Primordial)

Primordial= true
(See Block Services)

ConcreteComponent &
AssociatedComponentExtent

Primordial: StorageExtent

Primordial= true
(See Referencing Profile)

BasedOn
(Bottom Level)

StorageVolume
(Allocated)

Primordial= false
ExtentDiscriminator=SNIA:Allocated

(See Referencing Profile)

AllocatedFromStoragePool

StoragePool (Concrete)

Primordial= false
(See Referencing Profile)

AllocatedFromStoragePool

StorageExtent
(Pool Component)

Primordial= false
ExtentDiscriminator=SNIA:Pool Component

StorageExtent
(Intermediate)

Primordial= false
ExtentDiscriminator=SNIA:Intermediate

CompositeExtent
(Composite Intermediate)

Primordial= false
ExtentDiscriminator=SNIA:Intermediateྴ

SNIA:Composite

BasedOn
(Mid Level)

BasedOn / CompositeBasedOn
(Mid Level)

BasedOn
(Top Level)

ConcreteComponent &
AssociatedComponentExtent

StorageExtent
(Remaining)

Primordial= false
ExtentDiscriminator=SNIA:Remaining

BasedOn
(Remaining)

ConcreteComponent &
AssociatedRemainingExtent

StorageExtent
(Remaining)

Primordial= false
ExtentDiscriminator=SNIA:Remaining

BasedOn
(Remaining)

ConcreteComponent &
AssociatedRemainingExtent
444

 Example Scenarios

117

118

119

120

121

122

123

124

125

126

127
For more information and detail on the use and application of Remaining StorageExtents see 5.1.15 for
extent conservation provisions.

13.1.8 Scenarios

13.1.8.1 Example Scenarios

The example scenarios are common abstractions of the use-cases that were used when this profile was
being defined. The scenarios are not intended to cover all possible variations of the use of Extent
Composition.

13.1.8.2 Volume Composition

Figure 73 shows extent composition when a single RAID QOS/Level is applied directly to the construction
of a StorageVolume. The Storage Volume or Logical Disk and the underlying CompositeExtent represent
the same virtual extent and range of blocks; The initial BasedOn association between them is a one-to-
one “dummy” association. The Storage Volume and Logical Disk classes do not have the necessary
properties to describe the RAID information and the CompositeExtent which is a sibling class of
StorageVolume and LogicalDisk, cannot be directly exposed. This Based on association does not
represent composition or decomposition, but it is possible for this profile to make use of the
decomposition function (i.e., complete consumption) to make this initial traversal.
SNIA Technical Position 445

Volume Composition

128

129

130

131

132

133

134

135

136

137
Figure 74 shows a single composition (such as a RAID5 or RAID1). Not shown is the scenario where
there may be two or more such back to back productions (such as a RAID10). Also not shown is the
scenario where the two productions may be in different concrete pools in the hierarchy. A RAID10 Volume
may be constructed as a RAID0 composition from a concrete pool that is itself a RAID1 pool (see
13.1.8.3).

In this scenario, note that the extents below the StorageVolume and the Component Extents are not part
of the pool, but allocated from it.

In fact this StorageVolume and its companion CompositeExtent could be composed from member extents
(labeled PartialAllocOfConcrete in the diagram) from different pools.

Figure 73 - Volume Composition from General QOS Pool

AssociatedComponentExtent & ConcreteComponent

 Extent Composition

Concrete:
StorageExtent (Pool Component)

ExtentDiscriminator= SNIA:Component
Primordial= false

Primordial= false
(See referencing profile)

ConcretePool:
StoragePool

ExtentDiscriminator= SNIA:Exported
Primordial= false
(See referencing profile)

StorageVolume / LogicalDisk

AllocatedFromStoragePool

ExtentDiscriminator= SNIA:Intermediateྴ�SNIA:Composite
Primordial= false

CompositeExtent (Composite Intermediate)

BasedOn/
CompositedExtentBasedOn

PartialAllocOfConcrete:
StorageExtent (Intermediate)

ExtentDiscriminator= SNIA:Intermediate
Primordial= false

BasedOn

Primordial= true
(See referencing profile)

Primordial:
StoragePool

AllocatedFromStoragePool

Primordial:
StorageExtent

Primordial= true
(See referencing profile)

BasedOn

(See referencing profile)

StorageSetting

ElementSettingData

Primordial:
StorageExtent

Primordial= true
(See referencing profile)

Concrete:
StorageExtent (Pool Component)

ExtentDiscriminator= SNIA:Component
Primordial= false

BasedOn

PartialAllocOfConcrete:
StorageExtent (Intermediate)

ExtentDiscriminator= SNIA:Intermediate
Primordial= false

...

BasedOn

...

...

BasedOn

AssociatedComponentExtent & ConcreteComponent
446

 Pool Composition

138

139

140

141

142

143

144
13.1.8.3 Pool Composition

Certain pools can be created or modified to contain one or more extents each with a single specific
quality of service. These extents are known as Raid Groups. The bound space in each of these RAID
Groups is represented by this profile as a single CompositeExtent at the top of an extent sub-hierarchy in
that pool. Volumes created from this type of Pool are partially allocated (decomposed) from the
CompositeExtent playing the role of the RAIDGroup. Figure 74 shows the Single QOS Pool Composition
(RAID Groups).

Figure 75 extends this scenario by allocating a child concrete pool from the RAID Group instead of a
Volume and then allocating the Volume from the child concrete. In this example the child pool contains a
single component extent that has a single Quality of Service (that of the parent RAID Group concrete

Figure 74 - Single QOS Pool Composition (RAID Groups)

AssociatedComponentExtent & ConcreteComponent

Extent Composition

Primordial= false
(See referencing profile)

ConcretePool:
StoragePool

AssociatedComponentExtent
& ConcreteComponent

ExtentDiscriminator= SNIA:Exported
Primordial= false
(See referencing profile)

StorageVolume

AllocatedFromStoragePool

ExtentDiscriminator= SNIA:Componentྴ �SNIA:Composite
Primordial= false

RAIDGroup:
CompositeExtent (Composite Pool Component)

BasedOn/
CompositedExtentBasedOn

BasedOn

Primordial= true
(See referencing profile)

Primordial:
StoragePool

AllocatedFromStoragePool

Primordial:
StorageExtent

Primordial= true
(See referencing profile)

(See referencing profile)

StorageSetting

ElementSettingData

Primordial:
StorageExtent

Primordial= true
(See referencing profile)

...

Complete
Consumption of

Primordials
SNIA Technical Position 447

Example RAID Compositions from Block Services

145

146

147

148

149

150
pool). The Storage Volume or Logical Disk is allocated or decomposed directly from the pool component
extent.

13.1.8.4 Example RAID Compositions from Block Services

13.1.8.4.1 Overview

Table 292 is an abridged version of the RAID Mapping table in Block Services. The table describes the
RAID levels commonly used at the time this version of SMI-S was released. Table 292 lists the subset of
those RAID Levels that can be modeled by using the Extent Composition Profile, and the properties used
to distinguish them.

Figure 75 - SIngle QOS Pool Composition - Two Concretes

AssociatedComponentExtent & ConcreteComponent

 Extent Composition

Primordial= false
(See referencing profile)

ConcretePool:
StoragePool

AssociatedComponentExtent
& ConcreteComponent

AllocatedFromStoragePool

ExtentDiscriminator= SNIA:Component ྴ� SNIA:Composite
Primordial= false

RAIDGroup:
CompositeExtent (Composite Pool Component)

BasedOn/
CompositedExtentBasedOn

Primordial= true
(See referencing profile)

Primordial:
StoragePool

AllocatedFromStoragePool

Primordial:
StorageExtent

Primordial= true
(See referencing profile)

Primordial:
StorageExtent

Primordial= true
(See referencing profile)

...

Primordial= false
(See referencing profile)

ConcretePool:
StoragePool

PartialAllocOfConcrete:
StorageExtent (Pool Component)

ExtentDiscriminator= SNIA:Component
Primordial= false

BasedOn
(Mid Level)

AssociatedComponentExtent
& ConcreteComponent

BasedOn
(Top Level)

StorageVolume

ExtentDiscriminator= SNIA:Exported
Primordial= false
(See referencing profile)

AllocatedFromStoragePool

Complete
Consumption of

Primordials
448

 Example RAID Compositions from Block Services

151

152

153

154

155
Following Table 292 are some example instance diagrams, showing the use of CompositeExtent,
StorageExtent, BasedOn and CompositeExtentBasedOn to represent the construction of many of the
RAID levels. In these cases there will be at most, two levels of CompositeExtent and
CompositeExtentBasedOn/BasedOn.

In complex compositions, such as RAID10, there is no intermediate decomposition modeled; each extent
Antecedent to 1. The character ‘N’ represents the variable for the total number of StorageExtents. top level
CompositeExtent is itself a CompositeExtent.

Table 292 - Supported Common RAID Levels

RAID Level Package

Redundancy

Data

Redundancy

Extent

Stripe

Length

User Data

Stripe

Depth

JBOD 0 1 1 Null

0 (Striping) 0 1 2 to N1

1. The character ‘N’ in the Extent Stripe Length column represents the vari-
able for the total number of StorageExtents.

Vendor

Dependent

1 1 2 to N2

2. The character ‘N’ in the Data Redundancy column represents the number
of complete copies of datas.

1 Null

10 1 2 to N 2 to N Vendor

Dependent

0+1 1 2 to N 2 to N Vendor

Dependent

3 or 4 1 1 3 to N Vendor

Dependent

4DP 2 1 4 to N Vendor

Dependent

5 (3/5)3

3. ‘3/5’ indicate RAID5 implementations that are sometimes called RAID5.

1 1 3 to N Vendor

Dependent

6, 5DP4

4. ‘DP’ is double parity.

2 1 4 to N Vendor

Dependent

15 2 2 to N 3 to N Vendor

Dependent

50 1 1 3 to N Vendor

Dependent

51 2 2 to N 3 to N Vendor

Dependent
SNIA Technical Position 449

Example RAID Compositions from Block Services

156

157

158

159

160

161

162

163
13.1.8.4.2 JBOD (Concatenation)

Figure 76 shows a partial instance diagram for a JBOD Volume or Pool, in which the Antecedent Extents
are concatenated.

13.1.8.4.3 RAID0 (Striping)

Figure 77 shows a partial instance diagram for a RAID0 Volume or Pool.

Figure 76 - Concatenation Composition

Figure 77 - RAID0 Composition

StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 0
NoSinglePointOfFailure = false
IsBasedOnUnderlyingRedundancy = false
IsConcatenated = true
ExtentStripeLength = 1
NumberOfBLocks = x
ExtentDiscriminator= SNIA:Composite
Primordial= false

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress StorageExtent

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 0
NoSinglePointOfFailure = false
IsBasedOnUnderlyingRedundancy = false
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x
ExtentDiscriminator= SNIA:Composite
Primordial= false

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

StorageExtent StorageExtent

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth
450

 Example RAID Compositions from Block Services
13.1.8.4.4 RAID1

Figure 78 shows a partial instance diagram for a RAID1 Volume or Pool.

13.1.8.4.5 RAID10

Figure 79 shows a partial instance diagram for a RAID10 Volume or Pool. In this example the Data and
Package Redundancy reflect the Quality of Service of the combined RAID Level, not just the top level
composition which by itself is a non-redundant stripeset. That is, the top level is a RAID0, but the
DataRedundancy value for the corresponding CompositeExtent is 2, reflecting two complete copies of the
data.

Figure 78 - RAID1 Composition

StorageExtent

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x
ExtentDiscriminator= SNIA:Composite
Primordial= false

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

StorageExtent

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress
SNIA Technical Position 451

Example RAID Compositions from Block Services

164

165

Figure 79 - RAID10 Composition

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 2
NumberOfBLocks = x
ExtentDiscriminator= SNIA:Composite
Primordial= false

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x
ExtentDiscriminator= SNIA:Composite
Primordial= false

StorageExtent StorageExtent StorageExtent StorageExtent

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x
ExtentDiscriminator= SNIA:Composite
Primordial= false

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress
452

 Example RAID Compositions from Block Services

166

167

168

169

170
13.1.8.4.6 RAID0+1

Figure 80 shows a partial instance diagram for a RAID0+1 Volume or Pool.

Figure 80 - RAID0+1 Composition

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
S tartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 0
NoS inglePointOfFailure = fa lse
IsBasedOnUnderly ingRedundancy = fa lse
IsConcatenated = fa lse
ExtentS tripeLength = 2
NumberOfBLocks = x
ExtentDiscriminator= SNIA :Composite
P rimordia l= fa lse

StorageExtent S torageExtent S torageExtent S torageExtent

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoS inglePointOfFailure = true
IsBasedOnUnderly ingRedundancy = true
IsConcatenated = fa lse
ExtentS tripeLength = 1
NumberOfBLocks = x
ExtentDiscriminator= SNIA :Composite
P rimordia l= fa lse

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 0
NoS inglePointOfFailure = fa lse
IsBasedOnUnderly ingRedundancy = fa lse
IsConcatenated = fa lse
ExtentS tripeLength = 2
NumberOfBLocks = x
ExtentDiscriminator= SNIA :Composite
Primord ia l= false

BasedOn

OrderIndex = 1
S tartingAddress
EndingAddress

BasedOn

OrderIndex = 2
S tartingAddress
EndingAddress

CompositeExtentBasedOn

OrderIndex = 2
S tartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth
SNIA Technical Position 453

Example RAID Compositions from Block Services

171

172

173

174

175

176
13.1.8.4.7 RAID4 or 5

Figure 81 shows a partial instance diagram for a RAID4 or 5 Volume or Pool.

Figure 81 - RAID4, 5 Composition

StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x
ExtentDiscriminator= SNIA:Composite
Primordial= false

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

StorageExtent StorageExtent

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth
454

 Example RAID Compositions from Block Services

177

178

179

180

181
13.1.8.4.8 RAID6, 5DP, and 4DP

Figure 82 shows a partial instance diagram for a RAID6, 5DP, or 4DP Volume or Pool. Note that the
PackageRedundancy is 2, indicating that two of the antecedent extents can fail simultaneously without
loss of data. Four extents are shown, the minimum required for these double parity RAID organizations.

13.1.8.4.9 RAID 15

Figure 83: "RAID15 Composition" shows a partial instance diagram for a RAID15 Volume or Pool. In this
example the Data and Package Redundancy reflect the Quality of Service of the combined RAID Level,
not just the top level composition which by itself is a simple RAID5.

Figure 82 - RAID 6, 5DP, 4DP

StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 2
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 4
NumberOfBLocks = x
ExtentDiscriminator= SNIA:Composite
Primordial= false

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

StorageExtent StorageExtent

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth

StorageExtent

CompositeExtentBasedOn

OrderIndex = 4
StartingAddress
EndingAddress
UserDataStripeDepth
SNIA Technical Position 455

Example RAID Compositions from Block Services

182

183

184

185

186

187

188
NOTE Only CompositeExtent members 1 and 3 of the Raid 5 layer are shown.

13.1.8.4.10 RAID50

Figure 84 shows a partial instance diagram for a RAID50 Volume or Pool. In this example the Data and
Package Redundancy reflect the Quality of Service of the combined RAID Level, not just the top level
composition which by itself is a non-redundant stripeset.

I

Figure 83 - RAID15 Composition

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

Com positeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

Com positeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy= true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x
ExtentD iscrim inator= SNIA:Com posite
Primordial= false

StorageExtent StorageExtent StorageExtent StorageExtent

Com positeExtent

DataRedundancy = 2
PackageRedundancy = 2
NoSinglePointO fFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x
ExtentD iscrim inator= SNIA:Com posite
Primordial= false

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointO fFailure = true
IsBasedOnUnderlyingRedundanc= true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x
ExtentD iscrim inator= SNIA:Composite
Prim ordial= false

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress
456

 Example RAID Compositions from Block Services

189

190

191

192

193

194

195

196

197
NOTE In the Raid 5 layer, CompositeExtent member 2 in each stripe member is not shown.

13.1.8.4.11 RAID51

Figure 85 shows a partial instance diagram for a RAID51 Volume or Pool. In this example the Data and
Package Redundancy reflect the Quality of Service of the combined RAID Level, not just the top level
composition which by itself is a simple mirror. That is, the top level is a RAID1, but the
PackageRedundancy is 2, indicating the QOS for the entire hierarchy.

NOTE In the Raid 5 layer, CompositeExtent member 2 in each mirror is not shown.

Figure 84 - RAID50 Composition

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x
ExtentDiscriminator= SNIA:Composite
Primordial= false

StorageExtent StorageExtent StorageExtent StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 2
NumberOfBLocks = x
ExtentDiscriminator= SNIA:Composite
Primordial= false

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x
ExtentDiscriminator= SNIA:Composite
Primordial= false

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth
SNIA Technical Position 457

Example RAID Compositions from Block Services

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232
13.2 Health and Fault Management Considerations

Not defined in this document.

13.3 Cascading Considerations

Not defined in this document.

13.4 Methods of the Profile

Not defined in this document.

13.5 Use Cases

13.5.1 Find the Primordial Extents used by a Storage Volume or Logical Disk

A storage administrator may want this information for several reasons:

Figure 85 - RAID51 Composition

Com pos iteEx tent

DataRedundancy = 2
PackageRedundancy = 2
NoSinglePointOfFailure = true
IsBasedOnUnderly ingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
Num berOfBLocks = x
ExtentDisc rim inator= SNIA:Compos ite
Prim ordial= false

Compos iteEx tentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

Com pos iteEx tentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

Com pos iteEx tent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderly ingRedundancy = true
IsConcatenated = false
Ex tentStripeLength = 3
Num berOfBLocks = x
Ex tentDisc rim inator= SNIA:Compos ite
Prim ordial= false

StorageExtent StorageExtent StorageExtent StorageExtent

Compos iteEx tent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderly ingRedundancy = true
IsConcatenated = false
Ex tentStripeLength = 3
Num berOfBLocks = x
Ex tentDisc rim inator= SNIA:Compos ite
Prim ordial= false

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

Compos iteEx tentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

Compos iteEx tentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth
458

 Example RAID Compositions from Block Services

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272
Failure Exposure: To understand what Drive or virtualized Volume failures may affect the health of a block
storage element, or conversely what block storage elements are affected by a given Drive failure.

Performance and Loading: To avoid locating frequently accessed Volumes on the same Disk Drive.

Utilization: To avoid locating portions of too many volumes on the same Drive while leaving other drives
under utilized.

13.6 CIM Elements

13.6.1 Overview

Table 293 describes the CIM elements for Extent Composition.

Table 293 - CIM Elements for Extent Composition

Element Name Requirement Description

13.6.2 CIM_AssociatedComponentExtent (Pool
Component to Concrete Pool)

Mandatory

13.6.3 CIM_AssociatedRemainingExtent (Pool to its
remaining extents)

Mandatory

13.6.4 CIM_BasedOn (Mid level BasedOn) Optional Associates a Storage Extent (Pool Component or
Intermediate) to underlying Storage Extents it is based
on.

13.6.5 CIM_BasedOn (Top level BasedOn) Mandatory Associates a StorageVolume (or LogicalDisk) to the
underlying Storage Extent it is based on.

13.6.6 CIM_CompositeExtent (Composite Intermediate) Optional Represents a Concrete StorageExtent that is a
composite and does not have an
AssociatedComponentExtent association to a
Concrete StoragePool.

13.6.7 CIM_CompositeExtent (Composite Pool
Component)

Optional Represents a Concrete StorageExtent that is a
composite and has an AssociatedComponentExtent
association to a Concrete StoragePool.

13.6.8 CIM_CompositeExtentBasedOn Optional Associates a Composite Extent representing a striping
simple RAID organization such as RAID 0 or RAID 5 to
the underlying Storage Extents that it virtualizes.

13.6.9 CIM_ConcreteComponent (Pool Component to
Concrete Pool)

Mandatory Deprecated. Associate the extents that are playing the
Pool Component role to their aggregating StoragePool.

13.6.10 CIM_ConcreteComponent (Remaining Extent to
Pool)

Mandatory Deprecated. Associate a remaining extent to the
StoragePool for which it represents unused space.

13.6.11 CIM_StorageExtent (Intermediate) Optional Represents a Concrete StorageExtent that is not a
composite and does not have an
AssociatedComponentExtent association to a
Concrete StoragePool.

13.6.12 CIM_StorageExtent (Pool Component) Optional Represents a Concrete StorageExtent that is not a
composite and has an AssociatedComponentExtent
association to a Concrete StoragePool.

13.6.13 CIM_StorageExtent (Remaining) Optional Represents a Concrete StorageExtent that identifies
unused space in a Concrete StoragePool and has an
AssociatedRemainingExtent association to that
Concrete StoragePool.
SNIA Technical Position 459

Example RAID Compositions from Block Services

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316
13.6.2 CIM_AssociatedComponentExtent (Pool Component to Concrete Pool)

The referenced StorageExtent represents capacity has not been allocated, is allocated in part, or is
allocated in its entirety.

Requirement: Mandatory

Table 294 describes class CIM_AssociatedComponentExtent (Pool Component to Concrete Pool).

13.6.3 CIM_AssociatedRemainingExtent (Pool to its remaining extents)

The referenced StorageExtent represents the capacity of the StorageExtent on which it is based that was
not used in resource allocation.

Requirement: Mandatory

Table 295 describes class CIM_AssociatedRemainingExtent (Pool to its remaining extents).

13.6.4 CIM_BasedOn (Mid level BasedOn)

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

13.6.14 CIM_SystemDevice (Composite Extent System) Optional Associates a CompositeExtent to a hosting computer
system.

13.6.15 CIM_SystemDevice (Storage Extent System) Optional Associates a StorageExtent to a hosting computer
system.

Table 294 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool Component to
Concrete Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The (non-empty) Concrete StoragePool.

PartComponent Mandatory The storage extent or composite extent that is a component of the
concrete storage pool.

Table 295 - SMI Referenced Properties/Methods for CIM_AssociatedRemainingExtent (Pool to its remain-
ing extents)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The (non-empty, Concrete or Primordial) StoragePool.

PartComponent Mandatory The storage extent that represents free space in the concrete storage
pool.

Table 293 - CIM Elements for Extent Composition

Element Name Requirement Description
460

 Example RAID Compositions from Block Services

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360
Table 296 describes class CIM_BasedOn (Mid level BasedOn).

13.6.5 CIM_BasedOn (Top level BasedOn)

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

Table 297 describes class CIM_BasedOn (Top level BasedOn).

13.6.6 CIM_CompositeExtent (Composite Intermediate)

Instances of this class with the discriminator of 'SNIA:Intermediate' and 'SNIA:Composite' are Concrete
StorageExtents that are a composite and do not have an AssociatedComponentExtent association to a
Concrete StoragePool.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 298 describes class CIM_CompositeExtent (Composite Intermediate).

Table 296 - SMI Referenced Properties/Methods for CIM_BasedOn (Mid level BasedOn)

Properties Flags Requirement Description & Notes

StartingAddress Optional

EndingAddress Optional

Dependent Mandatory The Storage Extent (Pool Component, Intermediate, Composite
Intermediate, Composite Pool Component or Remaining) that is
based on underlying extents.

Antecedent Mandatory The underlying extents. They may be intermediate or Pool
Components and they may be composite or uncomposed.

Table 297 - SMI Referenced Properties/Methods for CIM_BasedOn (Top level BasedOn)

Properties Flags Requirement Description & Notes

StartingAddress Optional

EndingAddress Optional

Dependent Mandatory The Storage Volume or Logical Disk that dependents on the
associated extent.

Antecedent Mandatory The extent on which the storage volume or logical disk is based.

Table 298 - SMI Referenced Properties/Methods for CIM_CompositeExtent (Composite Intermediate)

Properties Flags Requirement Description & Notes

Name CD Mandatory

SystemCreationClassName Mandatory

SystemName Mandatory
SNIA Technical Position 461

Example RAID Compositions from Block Services

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396
13.6.7 CIM_CompositeExtent (Composite Pool Component)

Instances of this class with the discriminator of 'SNIA:Pool Component' and 'SNIA:Composite' are
Concrete StorageExtents that are a composite and have an AssociatedComponentExtent association to a
Concrete StoragePool.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 299 describes class CIM_CompositeExtent (Composite Pool Component).

CreationClassName Mandatory

DeviceID Mandatory

ExtentStatus Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

NoSinglePointOfFailure Mandatory

IsBasedOnUnderlyingRedundancy Mandatory

IsConcatenated Mandatory

ExtentStripeLength Mandatory

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The number of usable blocks.

BlockSize Mandatory

Primordial Mandatory This shall be 'false' for extents instantiated in Extent Composition.

ExtentDiscriminator Mandatory Experimental. This is array of values that shall contain
'SNIA:Intermediate' and 'SNIA:Composite'.

Table 299 - SMI Referenced Properties/Methods for CIM_CompositeExtent (Composite Pool Component)

Properties Flags Requirement Description & Notes

Name CD Mandatory

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ExtentStatus Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

NoSinglePointOfFailure Mandatory

Table 298 - SMI Referenced Properties/Methods for CIM_CompositeExtent (Composite Intermediate)

Properties Flags Requirement Description & Notes
462

 Example RAID Compositions from Block Services

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437
13.6.8 CIM_CompositeExtentBasedOn

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 300 describes class CIM_CompositeExtentBasedOn.

13.6.9 CIM_ConcreteComponent (Pool Component to Concrete Pool)

Deprecated. Associate the extents that are playing the Pool Component role to their aggregating
StoragePool.This is Deprecated since its function is better covered by AssociatedComponentExtent.

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

IsBasedOnUnderlyingRedundancy Mandatory

IsConcatenated Mandatory

ExtentStripeLength Mandatory

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The number of usable blocks.

BlockSize Mandatory

Primordial Mandatory This shall be 'false' for extents
instantiated in Extent Composition.

ExtentDiscriminator Mandatory Experimental. This is array of values
that shall contain 'SNIA:Pool
Component' and 'SNIA:Composite'.

Table 300 - SMI Referenced Properties/Methods for CIM_CompositeExtentBasedOn

Properties Flags Requirement Description & Notes

StartingAddress Optional

EndingAddress Optional

OrderIndex Mandatory Indicates the order in which the antecedent extents have blocks striped
onto them.

UserDataStripeDepth Mandatory The number of blocks written to an Antecedent extent before moving on to
the next extent Although this property is on the association class, its
values shall be the same for each instance of the association with the
same Dependent CompositeExtent.

Dependent Mandatory The composite extent that is based on underlying extents.

Antecedent Mandatory The extents on which the composite extent is based. They may be
intermediate or pool component extents and they may be either other
composite extents or uncomposed extents.

Table 299 - SMI Referenced Properties/Methods for CIM_CompositeExtent (Composite Pool Component)

Properties Flags Requirement Description & Notes
SNIA Technical Position 463

Example RAID Compositions from Block Services

438

439

440

441

442
Table 301 describes class CIM_ConcreteComponent (Pool Component to Concrete Pool).

13.6.10 CIM_ConcreteComponent (Remaining Extent to Pool)

Deprecated.

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

Table 302 describes class CIM_ConcreteComponent (Remaining Extent to Pool).

13.6.11 CIM_StorageExtent (Intermediate)

Instances of this class with the discriminator of 'SNIA:Intermediate' are Concrete StorageExtents that are
not a composite and do not have an AssociatedComponentExtent association to a Concrete StoragePool.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 303 describes class CIM_StorageExtent (Intermediate).

Table 301 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Pool Component to Con-
crete Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The (non-empty) Concrete StoragePool.

PartComponent Mandatory The storage extent or composite extent that is a component of the
concrete storage pool.

Table 302 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Remaining Extent to Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The (non-empty) StoragePool.

PartComponent Mandatory The storage extent that represents unused space in the storage pool.

Table 303 - SMI Referenced Properties/Methods for CIM_StorageExtent (Intermediate)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ExtentStatus Mandatory

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The number of usable blocks.
464

 Example RAID Compositions from Block Services

443

444

445

446

447

448

449

450

451
13.6.12 CIM_StorageExtent (Pool Component)

Instances of this class with the discriminator of 'SNIA:Pool Component' are Concrete StorageExtents that
are not a composite and have an AssociatedComponentExtent association to a Concrete StoragePool.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 304 describes class CIM_StorageExtent (Pool Component).

13.6.13 CIM_StorageExtent (Remaining)

Instances of this class with the discriminator of 'SNIA:Remaining' are Concrete StorageExtents that are
not a composite and have an AssociatedRemainingExtent association to the Concrete StoragePool for
which they represent free space.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

BlockSize Mandatory

Primordial Mandatory This shall be 'false' for extents instantiated in Extent Composition.

ExtentDiscriminator Mandatory Experimental. This is array of values that shall contain
'SNIA:Intermediate'.

Table 304 - SMI Referenced Properties/Methods for CIM_StorageExtent (Pool Component)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ExtentStatus Mandatory

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The number of usable blocks.

BlockSize Mandatory

Primordial Mandatory This shall be 'false' for extents instantiated in Extent Composition.

ExtentDiscriminator Mandatory Experimental. This is array of values that shall contain 'SNIA:Pool
Component'.

Table 303 - SMI Referenced Properties/Methods for CIM_StorageExtent (Intermediate)

Properties Flags Requirement Description & Notes
SNIA Technical Position 465

Example RAID Compositions from Block Services

452

453

454

455

456

457

458

459

460

461

462

463

464
465

466

467

468

469
Table 305 describes class CIM_StorageExtent (Remaining).

13.6.14 CIM_SystemDevice (Composite Extent System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 306 describes class CIM_SystemDevice (Composite Extent System).

13.6.15 CIM_SystemDevice (Storage Extent System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 305 - SMI Referenced Properties/Methods for CIM_StorageExtent (Remaining)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ExtentStatus Mandatory

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The number of usable blocks.

BlockSize Mandatory

Primordial Mandatory This shall be 'false' for extents instantiated in
Extent Composition.

ExtentDiscriminator Mandatory Experimental. This is array of values that
shall contain 'SNIA:Remaining'.

Table 306 - SMI Referenced Properties/Methods for CIM_SystemDevice (Composite Extent System)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of Computer System.

PartComponent Mandatory A reference to an instance of CIM_CompositeExtent (Composite
Intermediate or Composite Pool Component) used in this profile.
466

 Example RAID Compositions from Block Services
Table 307 describes class CIM_SystemDevice (Storage Extent System).

STABLE

Table 307 - SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extent System)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of Computer System.

PartComponent Mandatory A reference to an instance of CIM_StorageExtent (Intermediate, Pool
Component or Remaining) used in this profile.
SNIA Technical Position 467

Example RAID Compositions from Block Services
468

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
STABLE

14 Masking and Mapping Profile

14.1 Description

14.1.1 Synopsis

Profile Name: Masking and Mapping (Component Profile)

Version: 1.8.0

Organization: SNIA

Central Class: ControllerConfigurationService

Scoping Class: ComputerSystem with Dedicated containing “15” (Block Server)

Related Profiles: Table 308 describes the related profiles for Masking and Mapping.

14.1.2 Overview

Many disk arrays provide an interface for the administrator to specify which initiators can access what
volumes through which target ports. The effect is that the given volume is only visible to SCSI commands
that originate from the specified initiators through specific sets of target ports. There may also be a
capability to select the SCSI Logical Unit Number as seen by an initiator through a specific set of ports.
The ability to limit access is called Device Masking; the ability to specify the device address seen by
particular initiators is called Device Mapping (For SCSI systems, these terms are known as LUN Masking
and LUN Mapping.)

Given a storage system with no LUN masking or mapping, all hosts/initiators see the same elements
when they discover a storage system. In a storage system supporting LUN Masking, logical units are
masked (hidden) from SCSI initiators (Host Bus Adaptors) by default. The administrator uses the Masking
and Mapping Profile to determine which logical units are visible (exposed) to specific initiators through
which target ports. The LUN masking and mapping interfaces allow an administrator to customize the
“view” of elements that are discovered. The effect is that the real storage system appears to be a number
of subsets - each subset exposing a view customized for a particular set of initiators.

The management model is built on these “views” of a storage system - each view is a subset of
components the administrator exposes to certain hosts - and the classes that model the authorization and
access rights.

The model described here is generalized to include access management in disks arrays, virtualization
systems, and routers used in tape libraries. The model is also generalized beyond just SCSI and Fibre
Channel implementations. Many of the examples and use cases refer to LUN masking in Fibre Channel
arrays, but the model is general.

Table 308 - Related Profiles for Masking and Mapping

Profile Name Organization Version Requirement Description

Job Control SNIA 1.5.0 Optional

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2
SNIA Technical Position 469

Overview

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73
14.1.3 Views and Paths

14.1.3.1 Overview

The key concepts for Device Masking and Mapping are view and path. A “view” is a list of logical units
exposed to a list of initiators through a list of target ports, modeled as SCSIProtocolController (SPC) with
associated LogicalDevices, StorageHardwareIDs, and SCSIProtocolEndpoints. The logical devices have
logical unit numbers and access permissions relative to the view, modeled as DeviceNumber and
DeviceAccess properties of the ProtocolControllerForUnit association. A full “path” is a combination of
one each logical unit, initiator port, and target port - the concept of path is independent from a CIM model,
but a view expresses a combinations of paths that comply with SCSI rules. In essence, an SPC serves as
a collection of paths - each initiator ID is granted access to each logical unit through each target port.

In addition, there are partial and invalid states. A partial path is a path missing associations to instances
of logical unit, initiator port, or target port. In practice, some arrays do not support partial paths and other
arrays support some, but not all, configurations with partial paths. An SPC lacking associations to logical
units, initiator ports, or target ports - as required by the underlying implementation - is in an invalid partial
path state.

An invalid view state is a combination of classes and associations in the provider that does not map to a
committed configuration of the underlying implementation. The 1.0 LUN Masking and Mapping interfaces
required clients to perform multiple transactions to achieve a valid view, forcing providers to maintain
invalid view states while waiting for the client to complete a sequence of transactions. This created non-
interoperability when the providers only supported transactions in a certain order, and when a second
client looked at the model before a sequence of transactions was completed.

An SPC with no instances of one type of association (to initiators, targets, or LUs) with support from the
instrumentation is in a valid partial path state. The result is that the SPC does not expose any valid SCSI
paths. Instrumentation may support these states as convenience to clients - allowing a client to quickly
activate/deactivate a configuration by adding/removing associations - or as an intermediate state
between multiple ExposePath or HidePath requests. It is not mandatory in SMI-S to support these partial
path states, but clients need to understand which partial path states are and are not valid.

14.1.3.2 Model Elements

The model uses three basic types of objects:

• LogicalDevice, the superclass of volumes and tape drives representing SCSI logical units

• SCSIProtocolController - models the “view” described in 14.1.3 "Views and Paths".

• SCSIProtocolEndpoint – models the SCSI protocol aspects of a port. A SCSIProtocolEndpoint is associated
to one or more ports (modeled as subclasses of LogicalPort). SCSIProtocolEnpoint and classes (such as
FCPort) representing ports are part of target port profiles.

These objects are related by two associations:

ProtocolControllerForUnit associates a SCSIProtocolController with its LogicalDevices; the controller-
relative address (such as a SCSI Logical Unit Number) is modeled as the DeviceNumber property of
ProtocolControllerForUnit.

SAPAvailableForElement associates a SCSIProtocolController to one or more SCSIProtocolEndpoints.

In this profile, the existence of a ControllerConfigurationService with a ConcreteDependency association
to a SCSIProtocolController governs the high-level device mapping and masking policy for that protocol
controller.
470

 Model Elements

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88
If the service does not exist, then regardless of host port, the policy is that
SAPAvailableForElementassociates SCSIProtocolController to all SCSIProtocolEndpoints that
represent SCSI target behavior (that is, have Role property set to “Target”).

If the service is present, then for a particular host port, the policy is that SAPAvailableForElement
connects a SCSIProtocolController to a SCSIProtocolEndpoint only when access is explicitly granted.

Figure 86 and Figure 87 depict an instance diagram of a generic storage system with dual-port access to
four logical devices and an implementation with no device mapping and masking services. All of the
LogicalDevices are exposed to all initiators with the same DeviceNumber. Figure 86: "Generic System
with no Configuration Service" depicts a configuration with no LUN Masking capabilities.

Figure 87: "Generic System with ControllerConfigurationService" depicts the same configuration in an
implementation with an ControllerConfigurationService defined. In this case, access to the
ProtocolController is denied to each host port unless it is specifically granted access.

The means to grant access is discussed in 14.4.1 "ExposePaths" and also in 14.4.2
"ExposePathsWithNameAndHostType".

Figure 86 - Generic System with no Configuration Service

Figure 87 - Generic System with ControllerConfigurationService

ProtocolController
ForUnit

LogicalDevice
LogicalDevice

SCSIProtocolController

LogicalDeviceLogicalDevice

SCSIProtocolController

ProtocolController
ForUnit

SCSIProtocolEndpoint

SCSIProtocolEndpoint

SAPAvailable
ForElement

SAPAvailable
ForElement

LogicalDevice
LogicalDevice
LogicalDevice
LogicalDevice

SCSIProtocolController

ProtocolControllerForUnit

ControllerConfigurationService

ConcreteDependency

SCSIProtocolEndpoint

SAPAvailable
ForElement

SAPAvailable

ForElement

SCSIProtocolEndpoint
SNIA Technical Position 471

SCSIProtocolController Views

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120
14.1.3.3 SCSIProtocolController Views

Device Masking limits the devices seen by particular host initiators (such as HBAs). For example, when a
host discovers a device (using SCSI Report LUNs and Inquiry commands), it may see two of four
LogicalDevices, other hosts may see no LogicalDevices, and yet other hosts may only see
LogicalDevices through a subset of target ports.

Device Mapping allows the same LogicalDevice to be assigned different DeviceNumber (LUN) as seen by
different host HBAs. This would allow each of four LogicalDevices to appear to be Logical Unit zero to
four different hosts.

An initiator sees a single view (SCSIProtocolController) through a target port. This view includes
LogicalDevices explicitly exposed to specified initiators and “default access” LogicalDevices (that are
exposed to all initiators).

An administrator can use the ControllerConfigurationService interfaces to create “views”
(SCSIProtocolControllers) of a storage system – each view exposes a subset of components that are
intended to behave as a cohesive subset. In particular, a view:

• is associated with a set of LogicalDevices;

• may be exposed to zero or more host ports;

• is associated with one or more target device ports;

• shall not be exposed through a particular host / target port pair that is in use by another view. (In other words,
a view corresponds to the logical unit inventory provided by SCSI REPORT LUNS and INQUIRY commands.

For systems where access is granted through all or no target ports (where
ProtocolControllerMaskingCapabilities.PortsPerView is set to “All Ports share the same View”), this rule is simpler
– an initiator StorageHardwareID shall not be associated with more than one view (SCSIProtocolController).

• each LogicalDevice in a view shall have a unique DeviceNumber (SCSI logical unit number);

• a LogicalDevice may be in multiple views, and in each may be assigned the same or different DeviceNumbers
(Logical Units);

The device uses the initiator port identifier to authorize access and to determine the view to present to the
HBA. The initiator ID (such as FC Port WWN) is modeled as a subclass of Identity called
StorageHardwareID. As used in this profile, AuthorizedSubject associates a AuthorizedPrivilege with a
StorageHardwareID. As used in this profile, AuthorizedTarget associates an AuthorizedPrivilege with a
SCSIProtocolController.

In this version of the profile, there is exactly a one-to-one-to-one relationship between AuthorizedSubject,
AuthorizedPrivilege, and AuthorizedTarget. In other words, for each StorageHardwareID associated to a
SCSIProtocolController, there will be unique instances of AuthorizedSubject, AuthorizedPrivilege, and
AuthorizedTarget

For each StorageHardwareID relationship to a SCSIProtocolController there shall also be an instance of
the AssociatedPrivilege association. The AssociatedPrivilege association is in addition to the instances of
AuthorizedPrivilege, AuthorizedSubject and AuthorizedTarget. AuthorizedPrivilege, AuthorizedSubject
and AuthorizedTarget are deprecated and will be removed in a future version of the specification. To
maintain backward compatibility with the previous versions of SMI-S, the implementation shall continue to
provide instances of these classes.
472

 Initiator ID Collections

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147
See Figure 88 for the relationship between these classes.

14.1.3.4 Initiator ID Collections

An implementation may optionally model collections of Initiator IDs. This is modeled as depicted in
Figure 88. If the implementation supports collection of initiator IDs, the instrumentation shall set
ProtocolControllerMaskingCapabilities.ProtocolControllerSupportsCollections to True.

14.1.3.5 Default View / Default Logical Unit Access

An implementation may expose some logical units to all initiators while restricting access to others. A
default LUN exposes the same SCSI logical unit to all initiators, so adding a default LUN requires that the
instrumentation assure that no existing logical-unit-view map uses that same logical unit address.
Whenever a new SCSIProtocolController is created, it is automatically attached to all default LUNs

This is modeled with a SCSIProtocolController that is associated via AuthorizedTarget to a
AuthorizedPrivilege that is associated via AuthorizedSubject to a StorageHardwareID with an Name
property set to null (not the zero-length string “”). These are known as default protocol controllers -
exposing a view that is granted by default to all initiators, regardless or masking rules. If the
implementation supports default protocol controllers, the instrumentation shall instantiate at least one
default protocol controller when the instrumentation starts. The instrumentation shall reject any client
attempt to delete a default protocol controller.

Only one null-name StorageHardwareID is allowed. It is associated to all default SPCs. No other
StorageHardwareIDs may be associated to default SPCs. A target port can be associated with at most
one default SPC.

For the one null-name StorageHardwareID that is related to each default SCSIProtocolController, there
shall be one instance of the AssociatedPrivilege association.

If ProtocolControllerMaskingCapabilities.PortsPerView is not set to “All Ports share the same View”, the
instrumentation may support multiple default protocol controllers, but a target port shall not be associated
to more than one default protocol controller.

A client requests a logical unit be given default access by associating with the default protocol controller
using ExposeDefaultLUs method. The instrumentation shall ensure that the requested unit number is not
used in any SCSIProtocolController connected to target ports associated with the default protocol
controller. If the unit number is available, the logical unit is attached to the default protocol controller and

Figure 88 - Relationship of Initiator IDs, Endpoints, and Logical Units

Logica lDevice
(StorageVolum e)

SCSIProtoco lContro ller

AuthorizedPrivilege

System SpecificCollection
(optional)

AuthorizedTarget

M em berOfCollection

StorageHardwareID

AuthorizedSubject

* *1

*

*

1

SCSIProtoco lEndpoin t

Protoco lContro lle r
ForUnit

*

*

SAPAvailable
ForElem ent

Associa tedPrivilege

1

1

SNIA Technical Position 473

Arbitrary Logical Units

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186
all the other protocol controllers that share its target ports. Similarly, a client requests default access be
removed from a logical unit by calling HideDefaultLUs, passing in a reference to the default protocol
controller and the logical unit’s ID.

14.1.3.6 Arbitrary Logical Units

If the implementation supports logical units for management (rather than storage), they shall be modeled
with SCSIArbitraryLogicalUnit. If these management units are exposed regardless of masking access
then they shall be associated to the default protocol controller.

14.1.3.7 Read-only verses Read-Write access

ExposePaths (and ExposePathsWithNameAndHostType) includes a DeviceAccesses parameter that is
used to set the DeviceAccess property of ProtocolControllerForUnit association.

14.1.3.8 Read-Only Volumes

An implementation may model a volume that is readable, but not writable to any initiator by setting
StorageVolume.Access to “Readable” (1).

14.1.3.9 Finding Volumes that are not Mapped

A StorageVolume is considered mapped if it is exposed to an initiator. Instrumentation shall inform clients
whether a volume is or is not mapped using the “In-Band Access Granted” value in
StorageVolume.ExtentStatus array property. If a volume is associated with one or more protocol
controllers and one of the associated protocol controllers is associated with one or more
StorageHardwareIDs, the instrumentation shall set “In-Band Access Granted” in ExtentStatus. Otherwise,
“In-Band Access Granted” shall not be set.

14.1.3.10 Limits on Map counts per Logical Unit

ProtocolControllerMaskingCapabilities.MaximumMapCount is the maximum number of times the
underlying implementation allows a logical unit to be mapped (in other words, the maximum number of
ProtocolControllerForUnit associations that can be associated to the logical unit represented by the
LogicalDevice subclass. The instrumentation sets this to 0 if it has no limit.

14.1.3.11 Deactivated Logical Units

Instrumentation may describe inaccessibility of a logical unit through a path using
ProtocolControllerForUnit.AccessState. This property may be read, but not written by clients. Possible
values are Active, Inactive, “Replication In Progress”, and “Mapping Inconsistency”.

Since default protocol controllers were not defined in SMI-S 1.0, a client could have created a
configuration that does not comply with the SMI-S 1.1.0 semantics (which are intended to mimic SCSI's).
Similarly, a non-compliant configuration could have been created using non-SMI-S interfaces.
Instrumentation may set AccessState to “Mapping Inconsistency” to express these states. A client request
to set a valid mapping configuration using ExposePaths (or ExposePathsWithNameAndHostType) should
clear this state and reset AccessState to Active.
474

 SCSIProtocolController Properties

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205
14.1.3.12 SCSIProtocolController Properties

There are two clarifications to the property descriptions in Table 309. If the implementation supports
partial path SPCs, the intrinsic DeleteInstance is used to delete an SPC with no full paths. If
DeleteInstance is called to delete an SPC with full paths, the instrumentation shall return CIM Error with
CIM_ERR_FAILED status code.

14.1.3.13 Initiator Setting Data

Some storage systems allow a customer (or host-side agent) to provide information about OS hosting
initiators. The storage system uses this information to provide OS-specialized behavior (for example,
SCSI responses). Being able to identify the OS-specific operating mode ("host mode") of an element (i.e.,
FCPort or SCSIProtocolController) is essential because there are variances in SCSI communications
between different operating systems or even different versions of the same operating system, and having
the incorrect “host mode” will cause operations to have degraded performance or even fail. This
information is modeled as StorageClientSettingData. StorageClientSettingData.ClientTypes[] is an array
of OS names. This array property allows a single StorageClientSettingData instance to apply to multiple
OS Types. The StorageClientSettingData instances shall be scoped to a particular ComputerSystem
because a CIM server hosting multiple devices will need to distinguish the valid StorageClientSettingData
instances for one array from another.

The instrumentation should provide a meaningful name for each StorageClientSettingData instance;
typically this will be names already exposed via existing management tools and documentation.

Table 309 - SCSIProtocolController Property Description

Property Description Impact on ExposePaths
(see 1)

Impact on HidePaths

SPCAllowsNoLUs It is valid to have no
LogicalDevices associated
with an SPC

If true, LUNames,
DeviceNumbers, and
DeviceAccesses may be
null. If false, LUNames and
DeviceAcceses shall be
non-null; DeviceNumbers
depends on
ClientSelectableDeviceNu
mbers

If true, then all associated
LogicalDevices may be
specified in LUNames. If
false and client specifies
names of all associated
LUs in LUNames, then see
2

SPCAllowsNoTargets It is valid to have no target
ports associated with an
SPC

If true, TargetPortIDs may
be null. If false,
TargetPortIDs shall be
non-null.

If true, then all associated
target ports may be
specified in TargetPortIDs.
If false, and client specifies
names of all associated
target ports in
TargetPortIDs, then see 2

SPCAllowsNoInitiators In is valid to have no
initiator port IDs associated
with an SPC

If true, InitiatorPortIDs may
be null. If false,
InitiatorPortIDs shall be
non-null.

If true, then all associated
initiator port IDs may be
specified in
InitiatorPortIDs. If false,
and client specifies names
of all associated initiator
port IDs in InitatorPortIDs,
then see 2

1. This only applies to the "Create a new view" use case for ExposePaths. Note: The method
ExposePathsWithNameAndHostType can also be used in place of ExposePaths.

2. The result of this HidePaths request would be an invalid partial path state; therefore, the instrumentation shall delete
the SPC and all its associations.
SNIA Technical Position 475

Initiator Setting Data

206

207

208

209

210

211

212

213

214

215

216

217
StorageClientSettingData instances are not created by clients; any storage system that provides OS type
behavior advertises these instances (via EnumerateInstance and GetInstance) and associates them
(using ElementSettingData) with elements previous configured with the setting behavior.

A client can associate StorageHardwareIDs to a StorageClientSettingData instance (when a customer or
host agent maps an initiator to an OS type). This is done by specifying the Setting parameter to
CreateStorageHardwareID). A client can also associate an StorageClientSettingData instance to a
storage system element (such as a Port, a SCSIProtocolController, or a StorageVolume) to request that
this element exhibit the setting-specific behavior. This is done by creating a new ElementSettingData
association from the element to the StorageClientSettingData instance using the intrinsic CreateInstance
method. If any ElementSettingData association between the element and a StorageClientSettingData
instance already exists, it shall be deleted by the client before calling CreateInstance. Figure 89 provides
an example.

Figure 89 - StorageClientSettingData Model

StorageClientSettingData

ClientTypes[] = "AIX",
"Solaris", "Solaris"

ElementSettingData

FCPort FCPort

ElementSettingData

StorageClientSettingData

ClientTypes[] = "Windows"

ElementSettingData

FCPort FCPort

ElementSettingData

StorageHardwareID

ID="5100123412341234"

StorageHardwareID

ID="5100123412341235"

StorageHardwareID

ID="5100123412341236"

ElementSettingData

ElementSettingData
ElementSettingData

StorageHardwareID

ID="5100123412341237"

ElementSettingData

StorageHardwareID

ID="5100123412341236"

ElementSettingData

StorageHardwareID

ID="5100123412341255"

ElementSettingData

Array:
ComputerSystem

Element
Setting
Data

Element
Setting
Data
476

 Durable Names and Correlatable IDs of the Profile

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234
Figure 90: "Entire Model" depicts the entire model (except for the above discussion regarding
StorageClientSettingData).

14.1.3.14 Durable Names and Correlatable IDs of the Profile

The Masking and Mapping Profile uses the durable names/correlatable ID for logical devices as defined
by the parent profile. See Storage Management Technical Specification, Part 2 Common Architecture, 1.8.0 Rev
4 7.4, "Guidelines for Port Names"

14.1.3.15 Instrumentation Requirements

If a PrivilegeManagementService is not present, then all access is provided through the
ControllerConfigurationService. If an PrivilegeManagementService is present, then access shall be
specifically granted.

A LogicalDevice may have ProtocolControllerForUnit associations to multiple SCSIProtocolControllers -
this models a device shared by different subject sets.

Clients may need to know the range of possible unit numbers supported by a storage system. The agent
should set SCSIProtocolController.MaxUnitsControlled.

EXPERIMENTAL

The two CIM_ProtocolControllerMaskingCapabilities properties (SupportedSynchronousMethods and
SupportAsynchronousMethods) describe the methods that are supported by the instrumentation. These
enumerations indicate what operations will be executed as asynchronous jobs or synchronously. If an
operation is included in both, then the underlying implementation is indicating that it may or may not

Figure 90 - Entire Model

Target Ports
profiles

ProtocolControllerSAPAvailable
ForElement

SCSIProtocol
Endpoint

LogicalDevice
(e.g. StorageVolume)ProtocolController

ForUnit

AuthorizedPrivilege

SystemSpecificCollection

AuthorizedTarget

StorageHardwareID

MemberOfCollection

ControllerConfigurationService

CIM_ProtocolController
MaskingCapabilities

Privilege
ManagementService

StorageHardwareID
ManagementService

ComputerSystem
HostedService

HostedService

Hosted
Service

ConcreteDependency

ConcreteDependency

Element
Capabilities

*

Concrete
Dependency

ConcreteDependency

CIM_StorageClient
SettingData

ElementSettingData

Hosted
Collection

AssociatedPrivilege

AuthorizedPrivilege
SNIA Technical Position 477

Element Naming

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273
create a job. If an operation is not included in either, then the instrumentation does not implement that
method. If an instrumentation does not support all of the methods as defined by this profile, these
properties can help a client determine if there is sufficient support to manage masking and mapping. Any
instrumentation that does not support the required methods of this profile shall not be considered
compliant even if these properties are supported.

14.1.3.16 Element Naming

The name of a ProtocolController, StorageHardwareID, GatewayPathID, or SystemSpecificCollection may
be changed. The existence of the EnabledLogicalElementCapabilities instance associated to the element
indicates that the element can be named. If ElementNameEditSupported is set to TRUE, then the
ElementName of the associated element name may be modified.

The MaxElementNameLen property indicates the maximum supported ElementName length, and the
ElementNameMask property provides the regular expression that expresses the limits of the name; see
14.6.21 for the class definition for EnabledLogicalElementCapabilities for details for this property.

Since the ElementNameMask can describe the maximum length of the ElementName, any length defined
in the regexp is in addition to the restriction defined in MaxElementNameLen (causing the smaller value
to be the maximum length).

EXPERIMENTAL

The SupportedElementNameCodeSet property of the ImplementationCapabilities instance (associated to
top-level ComputerSystem) indicates the supported character code set for the ElementName.

To determine if the implementation supports supplying the ElementName during creation of an element,
such as a SCSIProtocolController or a StorageHardwareId, see the method
GetElementNameCapabilities in section 14.4.11.2.

EXPERIMENTAL

14.2 Health and Fault Management Considerations

Not defined in this document.

14.3 Cascading Considerations

Not defined in this document.

14.4 Methods of the Profile

14.4.1 ExposePaths

14.4.1.1 Overview

ExposePaths performs the mapping and masking operation in one method call. It exposes a list of SCSI
logical units (such as RAID volumes or tape drives) to a list of initiators through a list of target ports,
through one or more SCSIProtocolControllers (SPCs).

There are two modes of operation, create and modify. If a NULL value is passed in for the SPC, then the
instrumentation will create at least one SPC that satisfies the request. Depending upon the
instrumentation capabilities, more than one SPC may be created. (e.g. if
ProtocolControllerMaskingCapabilities.OneHardwareIDPerView is true and more than one initiatorID was
passed in, then one SPC per initiatorID will be created). If an SPC is passed in, then the instrumentation
attempts to add the new paths to the existing SPC. Depending upon the instrumentation capabilities, this
may result in the creation of additional SPCs. The instrumentation shall return an error if honoring this
request would violate SCSI semantics.
478

 Overview

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314
For creating an SPC, the parameters that need to be specified are dependent upon the SPCAllows*
properties in ProtocolControllerMaskingCapabilities. If SPCAllowsNoLUs is false, the caller shall specify
a list of LUNames. If it is true, the caller may specify a list of LUNames or may pass in null. If
SPCAllowsNoTargets is false and PortsPerView is not 'All Ports share the same view' the caller shall
specify a list of TargetPortIDs. If it is true, the caller may specify a list of TargetPortIDs or may pass in
null. If SPCAllowsNoInitiators is false, the caller shall specify a list of InitiatorPortIDs. If it is true, the
caller may specify a list of InitiatorPortIDs or may pass in null. If LUNames is not null, the caller shall
specify the DeviceAccess for each logical unit. If the provider's ProtocolControllerMaskingCapabilities
ClientSelectableDeviceNumbers property is TRUE then the client shall either provide a list of device
numbers (LUNs) to use for the paths to be created or pass in NULL. If is false, the client shall pass in
NULL for this parameter.

The LUNames, DeviceNumbers, and DeviceAccesses parameters are mutually indexed arrays - any
element in DeviceNumbers or DeviceAccesses will set a property relative to the LogicalDevice instance
named in the corresponding element of LUNames. LUNames and DeviceAccesses shall have the same
number of elements. DeviceNumbers shall be null (asking the instrumentation to assign numbers) or have
the same number of elements as LUNames. If these conditions are not met, the instrumentation shall
return a 'Invalid Parameter' status.

For modifying an SPC, there are three specific use cases identified. The instrumentation shall support
these use cases. Other permutations are allowed, but are vendor-specific. The use cases are: Add LUs to
a view, Add initiator IDs to a view, and Add target port IDs to a view.

Add LUs to a view requires that the LUNames parameter not be null and that the InitiatorIDs and
TargetPortIDs parameters be null. DeviceNumbers may be null if ClientSelectableDeviceNumbers is
false. DeviceAccesses shall be specified.

Add initiator IDs to a view requires that the LUNames parameter be null, that the InitiatorIDs not be null,
and that the TargetPortIDs parameters be null. DeviceNumbers and DeviceAccesses shall be null.

Add target port IDs to a view requires that the LUNames and InitiatorPortIDs parameters be null and is
only possible is PortsPerView is 'Multiple Ports Per View'. DeviceNumbers and DeviceAccess shall also
be null.

If a client calls ExposePaths specifying logical units already associated to the SPC and specifies different
DeviceNumber or DeviceAccesses values, the instrumentation shall change these properties in the
appropriate ProtocolControllerForUnit instance(s).

When calling ExposePaths where an entry (e.g., LogicalDevice) does not exist, then ExposePaths shall
fail and report an error.

There are four valid use cases for ExposePaths - create plus the three modify use cases above. These
four use cases and the requirements for parameters are summarized in Table 310.

Table 310 - ExposePath Use Cases

Parameters/
use cases

LUNames InitiatorP
ortIDs

TargetPortIDs DeviceNumbers DeviceAccesses ProtocolContr
ollers (on

input)

Create a new
view

See 1) See 1) See 1)

See 2)

See 3) Mandatory, see 4) NULL

Add LUs to a
view

Mandatory NULL NULL See 3) Mandatory, see 4) contains a single
SPC ref

Add initiator IDs
to a view (see 5)

NULL Mandatory NULL NULL NULL contains a single
SPC ref
SNIA Technical Position 479

Uint32 ExposePaths

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335
The relevant rules of SCSI semantics are:

- an SPC shall not be exposed through a particular host/target port pair that is in use by another SPC. (In
other words, an SPC and its associated logical units and ports together correspond to the logical unit
inventory provided by SCSI REPORT LUNS and INQUIRY commands)

- each LogicalDevice associated to an SPC shall have a unique ProtocolControllerForUnit DeviceNumber
(logical unit number)

The instrumentation shall report an error if the client request would violate one of these rules.

If the instrumentation provides PrivilegeManagementService, the results of setting DeviceAccesses shall
be synchronized with PrivilegeManagementService as described in the ProtocolControllerForUnit
DeviceAccess description (18.8.27 "CIM_ProtocolControllerForUnit").

Implementations that support SCSIProtocolController naming and setting the SCSIProtocolController
Host Type can implement the ExposePathsWithNameAndHostType method, as defined in section 14.4.2.

14.4.1.2 Uint32 ExposePaths

OUT CIM_ConcreteJob REF Job

Reference to the job (may be null if no job started)

IN string LUNames[]

An array of IDs of logical unit instances. The LU instances need to already exist. The members of this array
shall match the Name property of LogicalDevice instances that represent SCSI logical units. See
Table 310, “ExposePath Use Cases,” for situations where this parameter may be null.

IN string InitiatorPortIDs[]

IDs of initiator ports. If existing StorageHardwareID instances exist, they shall be used. If no
StorageHardwareID instance matches, then one is implicitly created. See Table 310, “ExposePath Use
Cases,” for situations where this parameter may be null. InitiatorPortIDs shall follow durable naming
requirements for that port type. See Storage Management Technical Specification, Part 2 Common
Architecture, 1.8.0 Rev 4 7.4, "Guidelines for Port Names".

Add target port
IDs to a view
(see 6)

NULL NULL Mandatory NULL NULL contains a single
SPC ref

Vendor-specific As long as all the previous use cases are implemented, the instrumentation may support other vendor-specific
combinations of parameters.

1.Dependent on values of new SPCAllowsNo* capability properties described below
2.If PortsPerView is "All ports share same view", TargetPortIDs parameter shall be null.
3.If ClientSelectableDeviceNumbers is true, shall either be null or have same number of
 elements as LUNames. If ClientSelectableDeviceNumbers is false, shall be null.
4.shall have same number of elements as LUNames
5.Only valid if OneHardwareIDPerView is false
6.Only valid if PortsPerView is "Multiple Ports per View"

Table 310 - ExposePath Use Cases (Continued)

Parameters/
use cases

LUNames InitiatorP
ortIDs

TargetPortIDs DeviceNumbers DeviceAccesses ProtocolContr
ollers (on

input)
480

 InitiatorPortID Format

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378
IN string TargetPortIDs[]

IDs of target ports. See Table 310, “ExposePath Use Cases,” for situations where this parameter may be
null. See Storage Management Technical Specification, Part 2 Common Architecture, 1.8.0 Rev 4 7.4,
"Guidelines for Port Names". This refers to the Port Name for Fibre Channel, SAS Address for SAS and
iSCSI Target Name for iSCSI.

IN string DeviceNumbers[]

A list of logical unit numbers to assign to the corresponding logical unit in the LUNames parameter. (within
the context of the elements specified in the other parameters). If the LUNames parameter is null, then this
parameter shall be null. Otherwise, if this parameter is null, all LU numbers are assigned by the hardware
or instrumentation. This shall be formatted as unseparated uppercase hexadecimal digits, with no leading
“0x”.

IN uint16 DeviceAccesses[]

A list of permissions to assign to the corresponding logical unit in the LUNames parameter. This specifies
the permission to assign within the context of the elements specified in the other parameters. Setting this
to 'No Access' assigns the DeviceNumbers for the associated initiators, but does not grant read or write
access. If the LUNames parameter is not null then this parameter shall be specified.

IN/OUT CIM_SCSIProtocolController REF ProtocolControllers[]

An array of references to SCSIProtocolControllers (SPCs). On input, this can be null, or contain exactly
one element; if null on input, the instrumentation will create one or more new SPC instances.

On output, this will be either null (if a job was created) or the set of SPCs affected (those created or
modified). or those having some part of the ‘view’ modified, e.g. such as association being created or an
AuthorizedPrivilege being created). If a job was started, references to the SPCs affected will be found by
following the AffectedJobElement association from the job.

14.4.2 ExposePathsWithNameAndHostType

The method ExposePathsWithNameAndHostType is an expanded version of ExposePaths, with additional
parameters, namely, ElementName (a scalar of type string) and StorageClientSettingData (a scalar of
type Reference).

ExposePathsWithNameAndHostType allows clients to supply the SCSIProtocolController names into the
path exposure operations, as well as to specify the "host information" for a newly created
SCSIProtocolController. The host information allows the storage array to “better” prepare the storage
elements with the operating system specific requirements.

The boolean property
ProtocolControllerMaskingCapabilities.ExposePathsWithNameAndHostTypeSupported indicates if the
implementation supports the method ExposePathsWithNameAndHostType.

14.4.2.1 InitiatorPortID Format

An InitiatorPortID supplied to the ExposePathsWithNameAndHostType method may optionally be
preceded by the associated Node WWN and a colon (":") separator. For example, "NodeWWN :
PortWWN".

NOTE Without the colon separator, it is assumed that the supplied InitiatorPortID is the PortWWN – this is to maintain backward
compatibility with the existing implementations.

14.4.2.2 uint32 ExposePathsWithNameAndHostType

The method ExposePathsWithNameAndHostType includes all parameters of the method ExposePaths
with the following additional parameters:
SNIA Technical Position 481

Overview

379

380

381

382

383
384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420
IN string ElementName

The string to be used in the ElementName of the new ProtocolController.

If more than one SCSIProtocolController is created, the supplied ElementName will be used as the prefix
for subsequent SCSIProtocolControllers’ ElementName. For example, if ElementName is “Foo”, the
subsequent ElementNames may be "Foo_1", "Foo_2", "Foo_3", etc.

IN CIM_StorageClientSettingData REF ClientSettingData

A reference to the StorageClientSettingData containing the OSType appropriate for this initiator. If left
NULL, the instrumentation assumes a standard OSType - i.e., that no OS-specific behavior for this initiator
is defined.

On path creation, multiple SCSIProtocolControllers may be created (depending on the implementation).
This means, the supplied StorageClientSettingData is applied to all created SCSIProtocolControllers.

For path modifications, since only one SCSIProtocolController may be supplied (as required by
ExposePaths) the supplied StorageClientSettingData only affects the supplied SCSIProtocolController.

 See section 14.4.1.2 for the description of ExposePaths parameters.

14.4.3 HidePaths

14.4.3.1 Overview

HidePaths is the inverse of ExposePaths. It hides a list of SCSI logical units (such as RAID volumes or
tape drives) from a list of initiators through a list of target ports, through one or more
SCSIProtocolControllers (SPCs).

When hiding logical units, there are three specific use cases identified. The instrumentation shall support
these use cases. Other permutations are allowed, but are vendor-specific. The use cases are: Remove
LUs from a view, Remove initiator IDs from a view, and Remove target port IDs from a view.

Remove LUs from a view requires that the LUNames parameter not be null and that the InitiatorIDs and
TargetPortIDs parameters be null.

Remove initiator IDs from a view requires that the LUNames parameter be null, that the InitiatorIDs not be
null, and that the TargetPortIDs parameters be null.

Remove target port IDs from a view requires that the LUNames and InitiatorPortIDs parameters be null.

The disposition of the SPC when the last logical unit, initiator ID, or target port ID is removed depends
upon the ProtocolControllerMaskingCapabilites SPCAllowsNo* properties. If SPCAllowsNoLUs is false,
then the SPC is automatically deleted when the last logical unit is removed. If SPCAllowsNoTargets is
false, then the SPC is automatically deleted when the last target port ID is removed. If
SPCAllowsNoInitiators is false, then the SPC is automatically deleted when the last initiator port ID is
removed. In all other cases, the SPC needs to be explicitly deleted via the DeleteInstance intrinsic
function or via the DeleteProtocolController method. The use cases for HidePaths() are summarized in
Table 311.

Table 311 - HidePaths Use Cases

Parameters/use cases LUNames InitiatorPortIDs TargetPortIDs ProtocolController
(on input) see 1

Remove LUs from a view Mandatory NULL NULL contains a single SPC ref

Remove initiator IDs from a view NULL Mandatory NULL contains a single SPC ref
482

 uint32 HidePaths

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448
When calling HidePaths where the Port, SPC, StorageHardwareID, or StorageVolume exist, but the
association(s) that are being modified don't exist (e.g. calling HidePaths for a volume that is not currently
exposed), then HidePaths may return success. The rationale for returning success is the net result of the
operation is the same whether or not the association exists, so it is not necessarily considered an error

However, when calling HidePaths where an entry (e.g. Port) does not exist, then HidePaths shall return
an error. The difference between this and the above case is that the above has just a connection between
instances missing, while this case has an actual instance missing. The net result of the HidePaths
operation would be different because HidePaths does not delete the instance (with the exception of the
AuthorizedPrivilege), just the association between instances.

14.4.3.2 uint32 HidePaths

OUT CIM_ConcreteJob REF Job

Reference to the job (may be null if no job started)

IN string LUNames[]

An array of IDs of logical unit instances. The LU instances need to already exist. See Table 311,
“HidePaths Use Cases,” for situations where this parameter may be null.

IN string InitiatorPortIDs[]

IDs of initiator ports. See Table 311, “HidePaths Use Cases,” for situations where this parameter may be
null.

IN string TargetPortIDs[]

IDs of target ports. See Table 311, “HidePaths Use Cases,” for situations where this parameter may be
null.

IN/OUT CIM_SCSIProtocolController REF ProtocolControllers[]

An array of references to SCSIProtocolControllers (SPCs). On input, this can be null, or contain exactly
one element. The instrumentation will attempt to remove associations (LUNames, InitiatorPortIDs, or
TargetPortIDs) from this SPC. Depending upon the specific implementation, the instrumentation may need
to create new SPCs with a subset of the remaining associations.

On output, this will be either null (if a job was created or if the SPC was automatically removed per the
SPCAllowsNo* rules) or the set of SPCs affected (those created or modified). If a job was started,

Remove target ports from a view
(see 2)

NULL NULL Mandatory contains a single SPC ref

Hide full paths from a view Mandatory Mandatory Mandatory contains a single SPC ref

Vendor-specific As long as all the previous use cases are implemented, the instrumentation may support
other vendor-specific combinations of parameters.

1. On output, the provider returns a list of refs to SPCs that have been affected (those created or modified or those having some
part of the ‘view’ modified, e.g. such as association being created or deleted an AuthorizedPrivilege being created or
deleted).Will be NULL if the SPC is automatically deleted as a result of one or more of the SPCAllowsNoLUs,
SPCAllowsNoTargets, or SPCAllowsNoInitiators conditions being met as a result of the HidePaths operation.

2. Only valid if PortsPerView is "Multiple Ports per View"

Table 311 - HidePaths Use Cases (Continued)

Parameters/use cases LUNames InitiatorPortIDs TargetPortIDs ProtocolController
(on input) see 1
SNIA Technical Position 483

Overview

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490
references to the SPCs affected will be found by following the AffectedJobElement association from the
job.

14.4.4 ExposeDefaultLUs

14.4.4.1 Overview

ExposeDefaultLUs is similar to ExposePaths, except ExposeDefaultLUs works with 'default view' SPCs.
The 'default view' SPC exposes logical units to all initiators. This SPC is identified by an association to a
StorageHardwareID with Name property set to the empty string. ExposeDefaultLUs exposes a list of SCSI
logical units (such as RAID volumes or tape drives) through a 'default view' SCSIProtocolController (SPC)
through a list of target ports.

As with ExposePaths, there are two modes of operation, create and modify. If a NULL value is passed in
for the SPC, then the instrumentation will attempt to create a new default view. If PortsPerView is 'All
Ports share the same view', then there is at most one default view SPC. If PortsPerView is not 'All Ports
share the same view', then there may be multiple default view SPCs as long as different ports are
associated with each. If an SPC is passed in, then the instrumentation adds the new paths to the existing
SPC. The instrumentation may return an error if honoring this request would violate SCSI semantics.

For creating a default view SPC, the parameters that need to be specified are dependent upon the
SPCAllows* properties in ProtocolControllerMaskingCapabilities. If SPCAllowsNoLUs is false, the caller
shall specify a list of LUNames. If it is true, the caller may specify a list of LUNames or may pass in null.
If SPCAllowsNoTargets is false, the caller shall specify a list of TargetPortIDs. If it is true, the caller may
specify a list of TargetPortIDs or may pass in null. If LUNames is not null, the caller shall specify the
DeviceAccess for each logical unit. If the provider's ProtocolControllerMaskingCapabilities
ClientSelectableDeviceNumbers property is TRUE then the client shall either provide a list of device
numbers (LUNs) to use for the paths to be created or pass in NULL. If is false, the client shall pass in
NULL for this parameter.

The LUNames, DeviceNumbers, and DeviceAccesses parameters are mutually indexed arrays - any
element in DeviceNumbers or DeviceAccesses will set a property relative to the LogicalDevice instance
named in the corresponding element of LUNames. LUNames and DeviceAccesses shall have the same
number of elements. DeviceNumbers shall be null (asking the instrumentation to assign numbers) or have
the same number of elements as LUNames. If these conditions are not met, the instrumentation shall
return a 'Invalid Parameter' status.

For modifying an SPC, there are two specific use cases identified. The instrumentation shall support one
and the other is required depending on a how a property is set. Other permutations are allowed, but are
vendor-specific.

The required use case is - Add LUs to a default view. Add LUs to a default view requires that the
LUNames parameter not be null and that the TargetPortIDs parameters be null. DeviceNumbers may be
null if ClientSelectableDeviceNumbers is false. DeviceAccesses shall be specified.

Add target port IDs to a default view is only valid if PortsPerView is set to 'Multiple Ports per View'. It
requires that the LUNames, DeviceNumbers, and DeviceAccesses shall also be null. The use cases for
ExposeDefaultLUs() are summarized in Table 312.

Table 312 - Use Cases for ExposeDefaultLUs

Parameters /use
cases

LUNames TargetPortIDs DeviceNumbers DeviceAccesses ProtocolControllers
(on input)

Create a new default
view (see 1)

See 2) See 2) See 3) Mandatory, see 4) Shall be null

Add LUs to a view Mandatory Shall be null See 3) Mandatory, see 4) Shall contain a single
SPC ref
484

 uint32 ExposeDefaultLUs

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512
The relevant rules of SCSI semantics are:

• An SPC shall be exposed through a particular host/target port pair that is in use by another SPC. (In other
words, an SPC and its associated logical units and ports together correspond to the logical unit inventory
provided by SCSI REPORT LUNS and INQUIRY commands)

• Each LogicalDevice associated to an SPC shall have a unique ProtocolControllerForUnit DeviceNumber
(logical unit number).

The instrumentation shall report an error if the client request would violate one of these rules.

If the instrumentation provides PrivilegeManagementService, the results of setting DeviceAccesses shall
be synchronized with PrivilegeManagementService as described in the ProtocolControllerForUnit
DeviceAccess description (18.8.27 "CIM_ProtocolControllerForUnit").

If the instrumentation supports ExposeDefaultLUs then it shall also support HideDefaultLUs.

14.4.4.2 uint32 ExposeDefaultLUs

OUT CIM_ConcreteJob REF Job

Reference to the job (may be null if no job started)

IN string LUNames[]

An array of IDs of logical unit instances. The LU instances shall already exist. The members of this array
shall match the Name property of LogicalDevice instances that represent SCSI logical units. See
Table 312, “Use Cases for ExposeDefaultLUs,” for situations where this parameter may be null.

IN string TargetPortIDs[]

IDs of target ports. See Table 312, “Use Cases for ExposeDefaultLUs,” for situations where this parameter
may be null.

IN string DeviceNumbers[]

A list of logical unit numbers to assign to the corresponding logical unit in the LUNames parameter. (within
the context of the elements specified in the other parameters). If the LUNames parameter is null, then this
parameter shall be null. Otherwise, if this parameter is null, all LU numbers are assigned by the hardware
or instrumentation. Each element shall be formatted as unseparated uppercase hexadecimal digits, with
no leading “0x”.

Add target port IDs to
a view (see 5)

Shall be null Mandatory Shall be null Shall be null Shall contain a single
SPC ref

Vendor-Specific As long as all the previous use cases are implemented, the instrumentation may support other vendor-
specific combinations of parameters.

1. Only valid if PortsPerView is not "All Ports share the same View"

2. Dependent on values of SPCAllows* capability properties described above

3. If ClientSelectableDeviceNumbers is true, shall either be null or have same number of elements as LUNames. If
ClientSelectableDeviceNumbers is false, shall be null.

4. Shall have same number of elements as LUNames

5. Only valid if PortsPerView is "Multiple Ports per View"

Table 312 - Use Cases for ExposeDefaultLUs

Parameters /use
cases

LUNames TargetPortIDs DeviceNumbers DeviceAccesses ProtocolControllers
(on input)
SNIA Technical Position 485

Overview

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553
IN uint16 DeviceAccesses[]

A list of permissions to assign to the corresponding logical unit in the LUNames parameter. This specifies
the permission to assign within the context of the elements specified in the other parameters. Setting this
to 'No Access' assigns the DeviceNumbers for the associated initiators, but does not grant read or write
access. If the LUNames parameter is not null then this parameter shall be specified.

IN/OUT CIM_SCSIProtocolController REF ProtocolControllers[]

An array of references to SCSIProtocolControllers (SPCs). On input, this can be null, or contain exactly
one element; there may be multiple references on output. If null on input, the instrumentation will create
one or more new SPC instances.

On output, this will be either null (if a job was created) or the set of SPCs affected (those created or
modified). If a job was started, references to the SPCs affected will be found by following the
AffectedJobElement association from the job.

14.4.5 HideDefaultLUs

14.4.5.1 Overview

HideDefaultLUs is similar to HidePaths, except HideDefaultLUs works with 'default view' SPCs. The
'default view' SPC exposes logical units to all initiators. This SPC is identified by an association to a
StorageHardwareID with Name property set to the empty string. HideDefaultLUs hides a list of SCSI
logical units (such as RAID volumes or tape drives) through a 'default view' SCSIProtocolController (SPC)
through a list of target ports.

HideDefaultLUs is the inverse of ExposeDefaultLUs. It hides a list of SCSI logical units (such as RAID
volumes or tape drives) from a list of initiators through a list of target ports, through one or more
SCSIProtocolControllers (SPCs).

When hiding logical units, there are two specific use cases identified. The use cases are: Remove LUs
from a default view and Remove target port IDs from a default view. Remove LUs from a default view
requires that the LUNames parameter not be null and that the TargetPortIDs parameter be null. Remove
target port IDs from a default view is required if PortsPerView is Multiple Ports per view. It requires that
the LUNames parameter be null.

The instrumentation shall support the Remove LUs case and shall support the remove target port IDs if
PortsPerView is set to 'Multiple Ports per View'. Other permutations are allowed, but are vendor-specific.

If both LUNames and TargetIDs parameters are non-null and
ProtocolControllerMaskingCapabilities.MaximumMapCount is 0, then the instrumentation shall create
new SPCs and change associations as necessary to meet the client request and maintain the relevant
rules of SCSI in the ExposeDefaultLUs description. If both LUNames and TargetIDs parameters are non-
null and ProtocolControllerMaskingCapabilities.MaximumMapCount is greater than 0, then any client that
cannot be honored by changing associations to the specified SPC shall receive a 'Maximum Map Count
Error' response. The use cases for HideDefaultLUs are summarized in Table 313

Table 313 - Use Cases for HideDefaultLUs

parameters/
use cases

LUNames TargetPortIDs ProtocolController (on input)

Remove LUs from a default view Mandatory Shall be null Mandatory

Remove target ports from a view
(see 1)

Shall be null Mandatory Mandatory
486

 uint32 HideDefaultLUs

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582
The disposition of the SPC when the last logical unit or target port ID is removed depends upon the
ProtocolControllerMaskingCapabilites SPCAllows* properties. If SPCAllowsNoLUs is false, then the SPC
is automatically deleted when the last logical unit is removed. If SPCAllowsNoTargets is false, then the
SPC is automatically deleted when the last target port ID is removed. In all other cases, the SPC shall be
explicitly deleted via the DeleteInstance intrinsic function.

If the instrumentation supports HideDefaultLUs then it shall also support ExposeDefaultLUs.

14.4.5.2 uint32 HideDefaultLUs

OUT CIM_ConcreteJob REF Job

Reference to the job (may be null if no job started)

IN string LUNames[]

An array of IDs of logical unit instances. The LU instances shall already exist. See Table 313, “Use Cases
for HideDefaultLUs,” for situations where this parameter may be null.

IN string TargetPortIDs[]

IDs of target ports. See Table 313, “Use Cases for HideDefaultLUs,” for situations where this parameter
may be null.

IN/OUT CIM_SCSIProtocolController REF ProtocolControllers[]

An array of references to SCSIProtocolControllers (SPCs). On input, this shall contain exactly one
element. The instrumentation will attempt to remove associations (LUNames or TargetPortIDs) from this
SPC. Depending upon the specific implementation, the instrumentation may need to create new SPCs with
a subset of the remaining associations.

On output, this will be either null (if a job was created or if the SPC was automatically removed per the
SPCAllowsNo* rules) or the set of SPCs affected (those created or modified). If a job was started,
references to the SPCs affected will be found by following the AffectedJobElement association from the
job.

14.4.6 CreateStorageHardwareID

14.4.6.1 Overview

CreateStorageHardwareID creates a StorageHardwareID and the ConcreteDependency association
between this service and the new StorageHardwareID.

14.4.6.2 Uint32 CreateStorageHardwareID

StorageHardwareIDs can either be explicitly created using the CreateStorageHardwareID method, or will
be implicitly created through the use of ExposePaths or ExposePathsWithNameAndHostType methods.

IN string ElementName

The ElementName of the new StorageHardwareID instance.

Vendor-specific As long as all the previous usecases are implemented, the instrumentation may
support other vendor-specific combinations of parameters.

1. Only valid if PortsPerView is "Multiple Ports per View"

Table 313 - Use Cases for HideDefaultLUs

parameters/
use cases

LUNames TargetPortIDs ProtocolController (on input)
SNIA Technical Position 487

Overview

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619
IN string StorageID

StorageID is the value used by the SecurityService to represent identity - in this case, a hardware
worldwide unique port name for Fibre Channel, the SAS name for SAS initiator ports, or the iSCSI Target
Name (IQN or EQN) for iSCSI initiators. Names shall conform to the relevant technical positions from
IEEE, IETF or ISO/ANSI. See Storage Management Technical Specification, Part 2 Common Architecture,
1.8.0 Rev 4 Section 7.4 for further details.

IN Uint16 IDType

The type of the StorageID property.

IN string OtherIDType

The type of the storage ID, when IDType is 'Other'.

IN CIM_StorageClientSettingData REF Setting

REF to the StorageClientSettingData containing the OSType appropriate for this initiator. If left NULL, the
instrumentation assumes a standard OSType - i.e., that no OS-specific behavior for this initiator is defined.
If the specified Setting is already associated with the HardwareID, the method should treat this as a “no-
op”.

OUT CIM_StorageHardwareID REF HardwareID

REF to the new StorageHardwareID instance. If the StorageID already exists, the method shall return the
existing StorageHardwareID unless a different Setting was specified. In that case, the implementation may
create a new StorageHardwareID to represent that combination of StorageID and Setting.

14.4.7 DeleteStorageHardwareID

14.4.7.1 Overview

DeleteStorageHardwareID deletes a StorageHardwareID and the ConcreteDependency association
between the ID and the service. If the StorageHardwareID still has associations to AuthorizedPrivilege
instances (and thus to ProtocolControllers), then this method shall return an error. The reason is that
deleting it without deleting the associations would cause an invalid model. Deleting the Association and
AuthorizedPrivilege and SPC would be a very unexpected side effect. The client shall call HidePaths()
first to delete these associations.

14.4.7.2 Uint32 DeleteStorageHardwareID

IN CIM_StorageHardwareID REF HardwareID

REF to the StorageHardwareID to delete

14.4.8 CreateHardwareIDCollection

14.4.8.1 Overview

Create a group of StorageHardwareIDs as a new instance of SystemSpecificCollection. This is useful to
define a set of authorized subjects that can access volumes in a disk array. This method allows the client
to make a request of a specific Service instance to create the collection and provide the appropriate class
name. When these capabilities are standardized in CIM/WBEM, this method can be deprecated and
intrinsic methods used. In addition to creating the collection, this method causes the creation of the
HostedCollection association (to this service's scoping system) and MemberOfCollection association to
members of the IDs parameter.

14.4.8.2 uint32 CreateHardwareIDCollection

IN string ElementName
488

 Overview

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658
The ElementName to be assigned to the created collection.

IN string HardwareIDs[]

Array of strings containing representations of references to StorageHardwareID instances that will become
members of the new collection.

OUT CIM_SystemSpecificCollection REF Collection

The new instance of SystemSpecificCollection that is created.

14.4.9 AddHardwareIDsToCollection

14.4.9.1 Overview

Create MemberOfCollection instances between the specified Collection and the StorageHardwareIDs.
This method allows the client to make a request of a specific Service instance to create the associations.
When these capabilities are standardized in CIM/WBEM, this method can be deprecated and intrinsic
methods used.

14.4.9.2 uint32 AddHardwareIDsToCollection

IN string HardwareIDs[]

Array of strings containing representations of references to StorageHardwareID instances that will become
members of the collection.

IN CIM_SystemSpecificCollection REF Collection

The Collection which groups the StorageHardwareIDs.

EXPERIMENTAL

14.4.10 DeleteProtocolController

14.4.10.1 Overview

DeleteProtocolController deletes the ProtocolController and all associations connected directly to this
ProtocolController. It shall also delete any AuthorizedPrivilege instances associated to this
ProtocolController as otherwise they would be left dangling. Since this profile does not have the notion of
child ProtocolControllers, the DeleteChildrenProtocolControllers parameter shall be false. If the
DeleteLogicalUnits parameter is True, the provider also deletes LogicalDevice instances associated via
ProtocolControllerForUnit to this ProtocolController. LogicalDevice instances shall only be deleted when
they are not part of any other ProtocolControllerForUnit associations. Whether or not the volumes may be
deleted shall be determined by the instrumentation's support for the ReturnToStoragePool method in
Block Services.

14.4.10.2 Uint32 DeleteProtocolController(

 IN CIM_ProtocolController REF ProtocolController

 ProtocolController to be deleted.

IN boolean DeleteChildrenProtocolControllers

If true, the management instrumentation provider will also delete 'child' ProtocolControllers (i.e., those
defined as Dependent references in instances of AssociatedProtocolController where this
ProtocolController is the Antecedent reference). Also, all direct associations involving the 'child'
ProtocolControllers will be removed.
SNIA Technical Position 489

Overview

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699
IN boolean DeleteUnits

If true, the management instrumentation provider will also delete LogicalDevice instances associated via
ProtocolControllerForUnit, to this ProtocolController and its children. (Note that 'child' controllers will only
be affected if the DeleteChildrenProtocolControllers input parameter is TRUE). LogicalDevice instances
are only deleted if there are NO remaining ProtocolControllerForUnit associations, to other
ProtocolControllers.

14.4.11 GetElementNameCapabilities

14.4.11.1 Overview

This method of the ProtocolControllerMaskingCapabilities class indicates if the implementation supports
element naming during creation of an element.

Additionally, this method indicates the supported methods to modify the ElementName of existing storage
elements.

14.4.11.2 uint32 GetElementNameCapabilities(

 [IN,

 ValueMap { "2", "3", "..", "0x8000.." },

 Values { "StorageHardwareID", "SCSIProtocolController",

 "DMTF Reserved", "Vendor Specific" }]

 uint16 ElementType,

 [IN]

 CIM_ManagedElement REF Goal,

 [OUT,

 ValueMap { "2", "3", "4",

 "..", "32768..65535" },

 Values { "ElementName can be supplied during creation",

 "ElementName can be modified with InvokeMethod",

 "ElementName can be modified with intrinsic method",

 "DMTF Reserved", "Vendor Specific" }]

 uint16 SupportedFeatures[],

 [OUT]

 uint16 MaxElementNameLen,

 [OUT]

 string ElementNameMask);

The parameters are:

• ElementType: (required) This enumeration specifies the type of object.

• Goal: Currently this parameter is not used in this profile and it can be set to Null.

• SupportedFeatures: This OUT parameter is an array indicating what methods can accept the element name
for creation or modification of a storage element. For example, the value of "ElementName can be supplied
during creation" indicates the method such as
ControllerConfigurationService.ExposePathsWithNameAndHostType accepts the ElementName when
creating a new SCSIProtocolController. An empty array indicates ElementNaming for ElementType is not
supported.

• MaxElementNameLen: This OUT parameter specifies the maximum supported ElementName length.
490

 uint32 GetElementNameCapabilities(

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733
734

735

736

737

738
• ElementNameMask: This OUT parameter expresses the restrictions on ElementName. The mask is
expressed as a regular expression. See DMTF standard ABNF with the Management Profile Specification
Usage Guide, Annex C for the regular expression syntax permitted. Since the ElementNameMask can
describe the maximum length of the ElementName, any length defined in the regexp is in addition to the
restriction defined in MaxElementNameLen (causing the smaller value to be the maximum length). If NULL, it
indicates no restrictions on the ElementName.

This method returns the following statuses:

0 - "Completed with No Error"

The method has completed immediately with no errors.

1 - "Not Supported"

This method is not supported at this time.

3 - "Timeout"

4 - "Failed"

5 - "Invalid Parameter"

One or more of the parameters are invalid

EXPERIMENTAL

14.5 Use Cases

Not defined in this version of the standard.
SNIA Technical Position 491

uint32 GetElementNameCapabilities(

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780
14.6 CIM Elements

14.6.1 Overview

Table 314 describes the CIM elements for Masking and Mapping.

Table 314 - CIM Elements for Masking and Mapping

Element Name Requirement Description

14.6.2 CIM_AssociatedPrivilege Mandatory

14.6.3 CIM_AuthorizedPrivilege Mandatory

14.6.4 CIM_AuthorizedSubject Mandatory

14.6.5 CIM_AuthorizedTarget Mandatory

14.6.6 CIM_ConcreteDependency (Associates
ControllerConfiguirationService and ProtocolController)

Mandatory

14.6.7 CIM_ConcreteDependency (Associates
PrivilegeManagementService and AuthorizedPrivilege)

Mandatory

14.6.8 CIM_ConcreteDependency (Associates
StorageHardwareIDManagementService and
StorageHardwareID)

Mandatory

14.6.9 CIM_ConcreteDependency (Associates
StorageHardwareIDManagementService and
SystemSpecificCollection)

Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs.

14.6.10 CIM_ControllerConfigurationService Mandatory

14.6.11 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
ControllerConfigurationService)

Optional Associates EnabledLogicalElementCapabilities with
ControllerConfigurationService.

14.6.12 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
ProtocolController)

Optional Expressed the ability for the element to be named or
have its state changed.

14.6.13 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
StorageHardwareID)

Optional Associates EnabledLogicalElementCapabilities to
StorageHardwareID.

14.6.14 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
StorageHardwareIDManagementService)

Optional Associates EnabledLogicalElementCapabilities with
StorageHardwareIDManagementService.

14.6.15 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
SystemSpecificCollection)

Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs. Associates
EnabledLogicalElementCapabilities and
SystemSpecificCollection.

14.6.16 CIM_ElementCapabilities (System to
ProtocolControllerMaskingCapabilities)

Mandatory

14.6.17 CIM_ElementSettingData (Associates
ComputerSystem and StorageClientSettingData)

Mandatory

14.6.18 CIM_ElementSettingData (Associates Port and
StorageClientSettingData)

Optional

14.6.19 CIM_ElementSettingData (Associates
ProtocolController and StorageClientSettingData)

Optional

14.6.20 CIM_ElementSettingData (Associates
StorageHardwareID and StorageClientSettingData)

Optional
492

 uint32 GetElementNameCapabilities(

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823
14.6.21 CIM_EnabledLogicalElementCapabilities Optional This class is used to express the naming and
possible requested state change possibilities for
storage elements.

14.6.22 CIM_HostedCollection Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs.

14.6.23 CIM_HostedService (Associates
ComputerSystem and ControllerConfigurationService)

Mandatory

14.6.24 CIM_HostedService (Associates
ComputerSystem and PrivilegeManagementService)

Mandatory

14.6.25 CIM_HostedService (Associates
ComputerSystem and
StorageHardwareIDManagementService)

Mandatory

14.6.26 CIM_MemberOfCollection Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs.

14.6.27 CIM_PrivilegeManagementService Mandatory

14.6.28 CIM_ProtocolController Mandatory

14.6.29 CIM_ProtocolControllerForUnit Mandatory

14.6.30 CIM_ProtocolControllerMaskingCapabilities Mandatory

14.6.31 CIM_SAPAvailableForElement Mandatory

14.6.32 CIM_StorageClientSettingData Mandatory

14.6.33 CIM_StorageHardwareID Mandatory

14.6.34 CIM_StorageHardwareIDManagementService Mandatory

14.6.35 CIM_SystemSpecificCollection Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs.

14.6.36 CIM_SystemDevice (System to
ProtocolController)

Mandatory This association links ProtocolController to the
scoping system.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ProtocolController

Mandatory Creation of a ProtocolController.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ProtocolController

Mandatory Deletion of a ProtocolController.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ProtocolControllerForUnit

Mandatory Creation of a ProtocolControllerForUnit association.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ProtocolControllerForUnit

Mandatory Deletion of a ProtocolControllerForUnit association.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ProtocolControllerForUnit

Mandatory Modification of a ProtocolControllerForUnit
association (e.g. changing DeviceNumber).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_AuthorizedSubject

Mandatory Creation of an AuthorizedSubject association.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_AuthorizedSubject

Mandatory Deletion of an AuthorizedSubject association.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageHardwareID

Mandatory Creation of a HardwareID.

Table 314 - CIM Elements for Masking and Mapping

Element Name Requirement Description
SNIA Technical Position 493

uint32 GetElementNameCapabilities(

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868
14.6.2 CIM_AssociatedPrivilege

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 315 describes class CIM_AssociatedPrivilege.

14.6.3 CIM_AuthorizedPrivilege

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageHardwareID

Mandatory Deletion of a HardwareID.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_SAPAvailableForElement

Mandatory Creation of a SAPAvailableForElement.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_SAPAvailableForElement

Mandatory Deletion of a SAPAvailableForElement.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM31'

Mandatory There is a change in the membership of a masking
group.

Table 315 - SMI Referenced Properties/Methods for CIM_AssociatedPrivilege

Properties Flags Requirement Description & Notes

Subject Mandatory The Subject of the associated privilege

Target Mandatory The Target of the associated privilege.

UseKey Mandatory Opaque and unique identifier.

PrivilegeGranted Mandatory Indicates if the privilege is granted or not.

Activities Mandatory For SMI-S, shall be 5,6 ('Read' and Write').

Table 314 - CIM Elements for Masking and Mapping

Element Name Requirement Description
494

 uint32 GetElementNameCapabilities(

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914
Table 316 describes class CIM_AuthorizedPrivilege.

14.6.4 CIM_AuthorizedSubject

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 317 describes class CIM_AuthorizedSubject.

14.6.5 CIM_AuthorizedTarget

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 318 describes class CIM_AuthorizedTarget.

14.6.6 CIM_ConcreteDependency (Associates ControllerConfiguirationService and ProtocolCon-
troller)

Created By: Static

Table 316 - SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifer.

ElementName Optional User friendly name.

PrivilegeGranted Mandatory Indicates if the privilege is granted or not.

Activities Mandatory For SMI-S, shall be 5,6 ('Read' and Write').

Table 317 - SMI Referenced Properties/Methods for CIM_AuthorizedSubject

Properties Flags Requirement Description & Notes

PrivilegedElement Mandatory The Subject for which Privileges are granted or denied.

Privilege Mandatory The Privilege either granted or denied to an Identity or group of Identities
collected by a Role.

Table 318 - SMI Referenced Properties/Methods for CIM_AuthorizedTarget

Properties Flags Requirement Description & Notes

TargetElement Mandatory The target set of resources to which the Privilege applies.

Privilege Mandatory The Privilege affecting the target resource.
SNIA Technical Position 495

uint32 GetElementNameCapabilities(

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958
Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 319 describes class CIM_ConcreteDependency (Associates ControllerConfiguirationService and
ProtocolController).

14.6.7 CIM_ConcreteDependency (Associates PrivilegeManagementService and AuthorizedPrivi-
lege)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 320 describes class CIM_ConcreteDependency (Associates PrivilegeManagementService and
AuthorizedPrivilege).

14.6.8 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and Stor-
ageHardwareID)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 321 describes class CIM_ConcreteDependency (Associates
StorageHardwareIDManagementService and StorageHardwareID).

Table 319 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates ControllerCon-
figuirationService and ProtocolController)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 320 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates PrivilegeMan-
agementService and AuthorizedPrivilege)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 321 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHard-
wareIDManagementService and StorageHardwareID)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
496

 uint32 GetElementNameCapabilities(

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005
14.6.9 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and Sys-
temSpecificCollection)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 322 describes class CIM_ConcreteDependency (Associates
StorageHardwareIDManagementService and SystemSpecificCollection).

14.6.10 CIM_ControllerConfigurationService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 323 describes class CIM_ControllerConfigurationService.

14.6.11 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ControllerConfiguration-
Service)

Created By: Static

Modified By: Static

Deleted By: Static

Table 322 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHard-
wareIDManagementService and SystemSpecificCollection)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 323 - SMI Referenced Properties/Methods for CIM_ControllerConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Unique identifer for the Service.

ExposePaths() Conditional Conditional requirement: ExposePaths and HidePaths are
required if ExposePathsSupported is NULL or set to True.

HidePaths() Conditional Conditional requirement: ExposePaths and HidePaths are
required if ExposePathsSupported is NULL or set to True.

ExposeDefaultLUs() Optional

HideDefaultLUs() Optional

DeleteProtocolController() Optional
SNIA Technical Position 497

uint32 GetElementNameCapabilities(

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050
Requirement: Optional

Table 324 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
ControllerConfigurationService).

14.6.12 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ProtocolController)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 325 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
ProtocolController).

14.6.13 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareID)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 326 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageHardwareID).

Table 324 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to ControllerConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 325 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to ProtocolController)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory

Table 326 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to StorageHardwareID)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory
498

 uint32 GetElementNameCapabilities(

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091
14.6.14 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareIDMan-
agementService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 327 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageHardwareIDManagementService).

14.6.15 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to SystemSpecificCollec-
tion)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 328 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
SystemSpecificCollection).

14.6.16 CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 327 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to StorageHardwareIDManagementService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 328 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to SystemSpecificCollection)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory
SNIA Technical Position 499

uint32 GetElementNameCapabilities(

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129
Table 329 describes class CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities).

14.6.17 CIM_ElementSettingData (Associates ComputerSystem and StorageClientSettingData)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 330 describes class CIM_ElementSettingData (Associates ComputerSystem and
StorageClientSettingData).

14.6.18 CIM_ElementSettingData (Associates Port and StorageClientSettingData)

Created By: CreateInstance

Modified By: Static

Deleted By: DeleteInstance

Requirement: Optional

Table 331 describes class CIM_ElementSettingData (Associates Port and StorageClientSettingData).

14.6.19 CIM_ElementSettingData (Associates ProtocolController and StorageClientSettingData)

Created By: CreateInstance

Modified By: Static

Deleted By: DeleteInstance

Requirement: Optional

Table 329 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (System to ProtocolControll-
erMaskingCapabilities)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory

Table 330 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ComputerSys-
tem and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

Table 331 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Port and Stor-
ageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory
500

 uint32 GetElementNameCapabilities(

1130

1131

1132

1133
Table 332 describes class CIM_ElementSettingData (Associates ProtocolController and
StorageClientSettingData).

14.6.20 CIM_ElementSettingData (Associates StorageHardwareID and StorageClientSettingData)

Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateStorageHardwareID

Modified By: Static

Deleted By: Extrinsic: CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID

Requirement: Optional

Table 333 describes class CIM_ElementSettingData (Associates StorageHardwareID and
StorageClientSettingData).

14.6.21 CIM_EnabledLogicalElementCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 334 describes class CIM_EnabledLogicalElementCapabilities.

Table 332 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ProtocolControl-
ler and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

Table 333 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates StorageHardwa-
reID and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

Table 334 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Flags Requirement Description & Notes

ElementName Mandatory The moniker for the instance.

ElementNameEditSupported Mandatory Denotes whether an storage element can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name.
See MOF for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and
format for the element name. See MOF for details.

RequestedStatesSupported Optional Expresses the states to which this element may be changed
using the RequestStateChange method. If this property, it may
be assumed that the state may not be changed.
SNIA Technical Position 501

uint32 GetElementNameCapabilities(
14.6.22 CIM_HostedCollection

Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 335 describes class CIM_HostedCollection.

14.6.23 CIM_HostedService (Associates ComputerSystem and ControllerConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 336 describes class CIM_HostedService (Associates ComputerSystem and
ControllerConfigurationService).

14.6.24 CIM_HostedService (Associates ComputerSystem and PrivilegeManagementService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 337 describes class CIM_HostedService (Associates ComputerSystem and
PrivilegeManagementService).

Table 335 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 336 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
ControllerConfigurationService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 337 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
PrivilegeManagementService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
502

 uint32 GetElementNameCapabilities(

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151
14.6.25 CIM_HostedService (Associates ComputerSystem and StorageHardwareIDManagement-
Service)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 338 describes class CIM_HostedService (Associates ComputerSystem and
StorageHardwareIDManagementService).

14.6.26 CIM_MemberOfCollection

Created By: Extrinsics: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection,
CIM_StorageHardwareIDManagementService.AddHardwareIDsToCollection

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 339 describes class CIM_MemberOfCollection.

14.6.27 CIM_PrivilegeManagementService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 340 describes class CIM_PrivilegeManagementService.

Table 338 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
StorageHardwareIDManagementService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 339 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory

Table 340 - SMI Referenced Properties/Methods for CIM_PrivilegeManagementService

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory The scoping System CreationClassName.

CreationClassName Mandatory The name of the concrete subclass.

SystemName Mandatory The scoping System Name.
SNIA Technical Position 503

uint32 GetElementNameCapabilities(

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174
14.6.28 CIM_ProtocolController

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 341 describes class CIM_ProtocolController.

14.6.29 CIM_ProtocolControllerForUnit

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Requirement: Mandatory

Name Mandatory Uniquely identifies the Service.

ElementName Mandatory User friendly name.

AssignAccess() Mandatory

RemoveAccess() Mandatory

Table 341 - SMI Referenced Properties/Methods for CIM_ProtocolController

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory The scoping System CreationClassName.

CreationClassName Mandatory The name of the concrete subclass.

SystemName Mandatory The scoping System's Name.

DeviceID Mandatory Unique name for the ProtocolController.

Table 340 - SMI Referenced Properties/Methods for CIM_PrivilegeManagementService

Properties Flags Requirement Description & Notes
504

 uint32 GetElementNameCapabilities(

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192
Table 342 describes class CIM_ProtocolControllerForUnit.

14.6.30 CIM_ProtocolControllerMaskingCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 343 describes class CIM_ProtocolControllerMaskingCapabilities.

Table 342 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be formatted as
unseparated uppercase hexadecimal digits, with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as exposed
through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI logical unit (for example, a Block Services
StorageVolume).

Table 343 - SMI Referenced Properties/Methods for CIM_ProtocolControllerMaskingCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifer.

ElementName Mandatory User-friendly name.

ValidHardwareIdTypes Mandatory A list of the valid values for StrorageHardwareID.IDType.

PortsPerView Mandatory Indicates the way that ports per view (ProtocolController) are
handled.

ClientSelectableDeviceNumbers Mandatory Indicates whether the client can specify the DeviceNumbers
parameter when calling
ControllerConfigurationService.ExposePaths().

OneHardwareIDPerView Mandatory Set to true if this storage system limits configurations to a
single subject hardware ID per view.

PrivilegeDeniedSupported Mandatory Set to true if this storage system allows a client to create a
Privilege instance with PrivilegeGranted set to FALSE.

UniqueUnitNumbersPerPort Mandatory Indicates whether different ProtocolContollers attached to a
SCSIProtocolEndpoint can expose the same unit numbers
(e.g., multiple LUN 0s) or if the numbers need to be unique.

ProtocolControllerSupportsCollections Optional Indicates the storage system supports
SystemSpecificCollections of StorageHardwareIDs.

OtherValidHardwareIDTypes Conditional Conditional requirement: Properties required when
ValidHardwareIDTypes includes 1 (Other).An array of strings
describing types for valid StorageHardwareID.IDType. Used
when the ValidHardwareIdTypes includes Other.

MaximumMapCount Mandatory The maximum number of ProtocolControllerForUnit
associations that can be associated with a single
LogicalDevice (for example, StorageVolume). Zero indicates
there is no limit.
SNIA Technical Position 505

uint32 GetElementNameCapabilities(

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208
14.6.31 CIM_SAPAvailableForElement

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Requirement: Mandatory

Table 344 describes class CIM_SAPAvailableForElement.

14.6.32 CIM_StorageClientSettingData

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

SPCAllowsNoLUs Mandatory Set to true if a client can create an SPC with no
LogicalDevices.

SPCAllowsNoTargets Mandatory Set to true if a client can create an SPC with no target
SCSIProtocolEndpoints.

SPCAllowsNoInitiators Mandatory Set to true if a client can create an SPC with no
StorageHardwareIDs.

SPCSupportsDefaultViews Mandatory Set to true if it the instrumentation supports default view SPCs
that exposes logical units to all initiators.

ExposePathsSupported Optional Set to true if this storage system supports the ExposePaths
and HidePaths methods.

SupportedAsynchronousActions Mandatory Indicates which operations will result in a Job being created.

SupportedSynchronousActions Mandatory Indicates which operations will execute without a Job being
created.

GetElementNameCapabilities() Optional

Table 344 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

AvailableSAP Mandatory

ManagedElement Mandatory

Table 343 - SMI Referenced Properties/Methods for CIM_ProtocolControllerMaskingCapabilities

Properties Flags Requirement Description & Notes
506

 uint32 GetElementNameCapabilities(
Table 345 describes class CIM_StorageClientSettingData.

14.6.33 CIM_StorageHardwareID

Created By: Extrinsics: CIM_StorageHardwareIDManagementService.CreateStorageHardwareID,
CIM_ControllerConfigurationService.ExposePaths

Modified By: Static

Deleted By: Extrinsic: CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID

Requirement: Mandatory

Table 346 describes class CIM_StorageHardwareID.

14.6.34 CIM_StorageHardwareIDManagementService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 347 describes class CIM_StorageHardwareIDManagementService.

Table 345 - SMI Referenced Properties/Methods for CIM_StorageClientSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

ElementName Mandatory A user-friendly name.

ClientTypes Mandatory Array of OS names.

Table 346 - SMI Referenced Properties/Methods for CIM_StorageHardwareID

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

StorageID N Mandatory The worldwide unique ID.

IDType Mandatory StorageID type. Values may be 1|2|3|4|5|7 (Other or PortWWN or
NodeWWN or Hostname or iSCSI Name or SAS Address).

Table 347 - SMI Referenced Properties/Methods for CIM_StorageHardwareIDManagementService

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Uniquely identifies the Service.

CreateStorageHardwareID() Mandatory

DeleteStorageHardwareID() Mandatory
SNIA Technical Position 507

uint32 GetElementNameCapabilities(
14.6.35 CIM_SystemSpecificCollection

Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 348 describes class CIM_SystemSpecificCollection.

14.6.36 CIM_SystemDevice (System to ProtocolController)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 349 describes class CIM_SystemDevice (System to ProtocolController).

STABLE

CreateHardwareIDCollection() Optional

AddHardwareIDsToCollection() Optional

Table 348 - SMI Referenced Properties/Methods for CIM_SystemSpecificCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

ElementName Mandatory A user-friendly name.

Table 349 - SMI Referenced Properties/Methods for CIM_SystemSpecificCollection

Properties Flags Requirement Description & Notes

PartComponent Mandatory A reference to an instance of
CIM_ProtocolControllerr.

GroupComponent Mandatory A reference to the scoping computer
system.

Table 347 - SMI Referenced Properties/Methods for CIM_StorageHardwareIDManagementService

Properties Flags Requirement Description & Notes
508

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
EXPERIMENTAL

15 Storage Server Asymmetry Profile

15.1 Description

15.1.1 Synopsis

Profile Name: Storage Service Asymmetry (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: CIM_StorageServerAsymmetryCapabilities

Scoping Class: ComputerSystem with Dedicated containing “15” (Block Server)

Related Profiles: Table tbd describes the related profiles for Storage Server Asymmetry.

Table 350 describes the related profiles for Storage Server Asymmetry.

15.1.2 Overview

High-availability storage servers using multiple redundant storage processors exhibit a range of
interrelated behavior involving load-balancing, ports, and failover. This profile provides for management
of these aspects.

Many such systems have the concept of a storage resource (either a RAID group or a storage volume)
having an assignment to, or affinity for, one of the storage processors in a redundant set. This affinity
may have one or more underlying architectural reasons for existing. Examples are both front-end (target)
port connectivity with and between processors, cache processing, virtualization (RAID) processing, or
connectivity partitioning of back end resources.

When the storage processor for which the storage resource has affinity fails, the resource is taken over
by one of the other processors in the redundancy set

When both storage processors are healthy, the ports on the storage processor for which the storage
resource as affinity provide full bandwidth access to the resource. The ports on the “other” storage
processors provide full, limited, or standby access, depending on implementation

15.1.3 Relationship to Multiple Computer System Profile

This profile is a component profile and extends the functionality of the Multiple Computer System Profile,
which in turn references this profile as a supported profile. This profile requires the use of the Multiple
Computer System Profile.

A separate profile was created for two purposes. Firstly, the functionality of Asymmetric Access is largely
storage-related and since the MCS is a common profile, the asymmetry functions are specified
separately. Secondly, although some asymmetric behavior may be modeled using provisions under the

Table 350 - Related Profiles for Storage Server Asymmetry

Profile Name Organization Version Requirement Description

Multiple Computer System SNIA 1.2.0 Mandatory
SNIA Technical Position 509

Overview

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86
Multiple Computer System Profile regarding aggregating resources to the lowest level ComputerSystem
that represents availability, many implementations aggregate all resources to the top-level
ComputerSystem, even though these implementations exhibit asymmetric behavior. These resources
include CIM_StorageVolumes, CIM_StoragePools, CIM_ProtocolControllers, CIM_ProtocolEndpoints,
and the CIM_StorageConfiguration and CIM_ControllerConfiguration services. CIM_LogicalPorts are
usually aggregated to the lower level systems that represent the storage processors.

Asymmetric behavior is modeled through constructs in this profile and is independent of SystemDevice
and Hosting associations in Multiple Computer System.

15.1.4 Relationship to Masking and Mapping Profile

The Masking and Mapping Profile provides the means to expose storage volumes to initiators through
front-end ports. In systems with asymmetric behavior, Masking and Mapping alone does not provide for
determining whether the action of the ExposePaths method will result in the creation of a path that is
primary, secondary, or standby from a performance standpoint.

This profile is does not formally extend Masking and Mapping but augments it’s functionality by providing
the model constructs to support this determination by a client. It does this with model relationships
directly between groups of front-end ports (which are represented by subclasses of
CIM_ProtocolEndpoint) and groups of storage resources, independent of the implementation of Mapping
and Masking “View” CIM_ProtocolControllers. This is necessary because some implementations may not
generate “primary” and “standby” view/mappings for the ports on each storage processor but instead
share common view controllers between storage processors, making it impossible to use the “view”
CIM_ProtocolController to group ports with volumes.

15.1.5 Relationship to T10

This profile supports the passive management of the functionality defined in the Target Port Group
Access States clause of the T10 SPC-4 specification.

15.1.6 Behavior, Characteristics, and Capabilities

15.1.6.1 Overview

The behavioral use cases for redundant systems are used to derive asymmetry characteristics which in
turn are used to distill capabilities for the profile that allow a client to interpret the asymmetric model
objects.

15.1.6.2 Port Failover

The first differentiator to consider when trying to classify asymmetric behavior is target port failover
behavior. Front-end ports on storage processors in a redundancy set exhibit either transparent or non-
transparent behavior when the supporting storage processor fails

Transparent

In transparent failover, a storage processor can support multiple virtual ports, that is the ports that it
normally has, and the functionality of ports from a failed storage processor in the same redundancy set.
Stated another way, when a storage processor fails, its ports don’t fail, they fail over to a healthy storage
processor. This mode is called transparent because the host sees only a transient loss of access to the
port. The port itself is still present after the failover.

Non-Transparent

In this type of architecture, the ports supported by a storage processor fail when the processor fails.
Access to the storage volumes that were exposed through the failed ports is provided through ports on a
surviving processor.
510

 Port Asymmetry

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106
15.1.6.3 Port Asymmetry

Healthy storage servers have variant functionality with respect to access to volumes through ports on
different storage processors. This may be related to the affinity of such volumes (or the pools to which
they belong) to storage processors as described in 15.1.6.4 "Storage Resource Affinity". In some
systems, there is “full” bandwidth access to a volume through both ports on processor A and ports on
processor B. This is actually symmetric access. In other cases, access to a volume is full bandwidth
access through ports on the storage processor (“this”) for which the volumes have affinity and “reduced”
bandwidth access through ports on the “other” processor. The third variation is the there is no access at
all, other than inquiry type commands, through ports on the “other” processor, until the processor for
which the volumes have affinity fails. This functionality is reflexive in that there is full access to volumes
having affinity for the “other” processor through ports on that processor, while there is reduced access or
no access to volumes affinitied to “other” through ports on “this”.

15.1.6.4 Storage Resource Affinity

Storage resource affinity is the behavior that in many redundant servers, storage resources, either
individual volumes or RAID groups (also called RAID sets or RAID ranks) and thus the volumes allocated
from them, have an affinity for a given storage processor in a redundancy set. This affinity may stem from
allocation of non-dual ported drives to a processor or assignment of these resources to a processor for
cache or RAID processing architectural considerations. Managing this affinity is necessary on redundant
systems as part of a static load balancing strategy. This is true even when the front-end ports exhibit
symmetric access behavior, because assigning all resources to one storage processor may degrade the
overall system throughput.
SNIA Technical Position 511

Classes

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151
15.1.7 Model

15.1.7.1 Classes

15.1.7.1.1 Newly Introduced Classes

This profile introduces five new classes. These include one capabilities class, two collections, and two
associations, shown in Figure 91.

15.1.7.1.2 Asymmetry Capabilities

This class contains properties that enable a client to determine the combination of asymmetry
characteristics implemented by the subject storage system. More specifically, they guide the client
algorithms in interpretation of the instances of the asymmetry classes and associations. The capabilities
are detailed in 15.6 "CIM Elements".

15.1.7.1.3 TargetPortGroup

This sub-class of CIM_SystemSpecificCollection aggregates the instances of CIM_ProtocolEndpoint or its
subclasses that represent the ports on a storage processor (represented by CIM_ComputerSystem). The
ports are aggregated because their relationship to the storage processors for failover and to the storage
resources for accessibility are the same.

Whether ProtocolEndpoint is used directly or one of its subclasses is used depends on which Target Port
component profile is implemented by the storage server.

Because CIM_TargetPortGroup ISA CIM_SystemSpecificCollection there shall be an instance of
CIM_HostedCollection from each instance of CIM_TargetPortGroup to the instance of

Figure 91 - Storage Asymmetry Class Hierarchy

CIM_SystemSpecificCollection

CIM_TargetPortGroup

CIM_Dependency

CIM_StorageResourceLoadGroup

CIM_AsymmetricAccessibility CIM_StorageProcessorAffinity

CIM_Capabilities

CIM_StorageServerAsymmetryCapabilities
512

 Instance Diagrams

152

153

154

155

156

157

158

159

160

161

162

163

164
CIM_ComputerSystem in the referencing Multiple Computer System Profile that represents the Top-Level
System.

15.1.7.1.4 Multiple Hierarchical TargetPortGroups

Some Target Port profiles, such as the ISCS Target Port Profile, may have a hierarchy of
ProtocolEndpoints. Each layer of ProtocolEndpoints in the hierarchy that can have affinity for a storage
processor may be aggregated by a separate TargetPortGroup. This enables a client to determine which
lower-level ProtocolEndpoints in the hierarchy may be used to create upper-level ProtocolEndpoints with
the desired affinity. An example is the need to select TCPProtocolEndpoints with the same affinity for a
storage processor when attempting to create an iSCSIProtocolEndpoint for that same processor.

15.1.7.1.5 StorageResourceLoadGroup

This sub-class of CIM_SystemSpecificCollection aggregates either the storage volumes or storage pools
that have the same affinity for a storage processor. What type of storage resource is aggregated depends
on whether the pools have affinity or are common between processors and just the individual volumes
have affinity. There is a capabilities property to specify this. There is one static instance of
StorageResourceLoadGroup for each storage processor, with a single exception described in 15.1.7.1.6.

Because CIM_StorageResourceLoadGroup ISA CIM_SystemSpecificCollection there shall be an instance
of CIM_HostedCollection from each instance of CIM_StorageResourceLoadGroup to the instance of
CIM_ComputerSystem in the referencing Multiple Computer System Profile that represents the Top-Level
System.

15.1.7.1.6 Single Volume Accessibility Override.

Some implementations allow for the normal “healthy” accessibility to a Storage Volume on the “other”
storage processor through ports on “this” storage processor to be overridden. Normally in an asymmetric
system this accessibility is “Standby” or “Active-NonOptimized”. This override gives Active-Optimized, or
full bandwidth access to this single volume.

This is modeled by an additional instance of StorageResourceLoadGroup that collects the subject volume
together with an instance of AsymmetricAccessibility that associates that special
StorageResourceLoadGroup with the TargetPortGroup. The properties on AsymmetricAccessibility reflect
the override. This profile does not support the action that creates or removes the override. Methods of
this profile that relate to assignment of affinity operate on the default static instance of
StorageResourceLoadGroup only.

15.1.7.1.7 StorageProcessorAffinity

This sub-class of CIM_Dependency associates instances of StorageResourceLoadGroup in a
Redundancy Set to each instance of CIM_ComputerSystem representing a storage processor. Primary
and Active properties are used to surface what the affinity is in both healthy and failed situations, and
which storage processor owns the resource group which is where the Load Group will fail back to.

15.1.7.1.8 Asymmetric Accessibility

This sub-class of CIM_Dependency associates instances of StorageResourceLoadGroup in a
Redundancy Set to each instance of CIM_TargetPortGroup in the same RedundancySet. The
AccessiblityState surfaces both the current and normal (healthy) accessibility of volumes in the
LoadGroup from ports in the Port Group.

15.1.7.2 Instance Diagrams

15.1.7.2.1 Overview

Figure 92 through Figure 96 show various asymmetry use cases. They are extensions of the MCS model,
but for readability do not show Hosting and SystemDevice relationships. All instances are scoped to the
top-level system.
SNIA Technical Position 513

Instance Diagrams

165

166
Figure 92 shows the Asymmetry instances in context of the Multiple Computer System Profile for a dual
redundant storage server.

Figure 92, Figure 93, Figure 94, and Figure 95 do not show the RedundancySet-related classes.

15.1.7.2.2 Multiple Tiers of Systems

Not shown is a system that has three tiers (see 25 Multiple Computer System Profile in Storage
Management Technical Specification, Part 3 Common Profiles, 1.8.0 Rev 4). This type of system may
aggregate storage processors into more than one redundant-failover sub-system. These subsystems are
then clustered in a non-failover, but load-balancing relationship to form the top-level storage server. In
this type of system, StorageProcessorAffinity associations would be contained within failover
subsystems, but AsymmetricAccessibility associations may span subsystem boundaries to reflect mid-
level load-balancing paths.

15.1.7.2.3 Non-Transparent Asymmetry Cases

Figure 93: "Ports Do Not Failover, Healthy" and Figure 94: "Ports Do Not Failover, Failed Controller" are
instance diagrams that show the model for healthy and failed situations in a non-transparent port
implementation. Because the ports and thus the Target Port Group do not failover, there is no need for a

Figure 92 - Asymmetry with MCS

StorageServer:
ComputerSystem

Top-level

StorageProcessor A:
ComputerSystem

StorageProcessor B:
ComputerSystem

Component
CS

Component
CS

LogicalElement LogicalElement

ProtocolEndpointProtocolEndpoint

StorageProcessorAffinity

TargetPortGroup

StorageResource
LoadGroupMOC

MOC

AsymmetricAccessibility

StorageResource
LoadGroup

TargetPortGroup

MOC

MOC

StorageProcessorAffinity

StorageProcessorAffinity

StorageProcessorAffinity StorageProcessorAffinity

StorageProcessorAffinity

AsymmetricAccessibility

AsymmetricAccessibility

AsymmetricAccessibility

StorageProcessorAffinity
StorageProcessorAffinity

RedundancySetMemberOf
Collection

ConcreteIdentity

MemberOf
Collection
514

 Instance Diagrams
StorageResourceAffinity association from the Target Port Group on the storage processor to which the
ports belong to the “Other” storage processor.

Figure 93 - Ports Do Not Failover, Healthy

StorageServer:
ComputerSystem

Top-levelStorageProcessor A:
ComputerSystem

StorageProcessor B:
ComputerSystem

Component
CS

Component
CS

LogicalElement LogicalElement

ProtocolEndpointProtocolEndpoint

StorageProcessorAffinity
IsPrimary=true
IsActive=true

TargetPortGroup

StorageResource
LoadGroupMOC

MOC

AsymmetricAccessibility
State=

ActiveOptimized

StorageResource
LoadGroup

TargetPortGroup

MOC

MOC

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity,
IsPrimary=false
IsActive=falseStorageProcessorAffinity,

IsPrimary=false
IsActive=false

AsymmetricAccessibility
State=

ActiveOptimized
| ActiveNonOptimized

| Standby

AsymmetricAccessibility
State=

ActiveOptimized
| ActiveNonOptimized

 | Standby

AsymmetricAccessibility
State=

ActiveOptimized
SNIA Technical Position 515

Instance Diagrams

167

168

169

170
Figure 94 - Ports Do Not Failover, Failed Controller

StorageServer:
ComputerSystem

Top-levelStorageProcessor A:
ComputerSystem

StorageProcessor B:
ComputerSystem

Component
CS

Component
CS

LogicalElement LogicalElement

ProtocolEndpointProtocolEndpoint

StorageProcessorAffinity
IsPrimary=true
IsActive=true

TargetPortGroup

StorageResource
LoadGroupMOC

MOC

AsymmetricAccessibility
State=

Unavailable

StorageResource
LoadGroup

TargetPortGroup

MOC

MOC

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=false

StorageProcessorAffinity,
IsPrimary=false

IsActive=trueStorageProcessorAffinity,
IsPrimary=false
IsActive=false

AsymmetricAccessibility
State=

ActiveNonOptimized

AsymmetricAccessibility
State=

Unavailable

AsymmetricAccessibility
State=

ActiveNonOptimized
516

 Instance Diagrams

171

172

173

174

175

176

177

178

179

180

181

182

183
15.1.7.2.4 Transparent Asymmetry Cases

Figure 95: "Ports Failover, Healthy" and Figure 96: "Ports Failover, Failed Controller" are instance
diagrams that show the model for healthy and failed situations in a transparent failover port
implementation.

Figure 95 - Ports Failover, Healthy

StorageServer:
ComputerSystem

Top-levelStorageProcessor A:
ComputerSystem

StorageProcessor B:
ComputerSystem

Component
CS

Component
CS

LogicalElement LogicalElement

ProtocolEndpointProtocolEndpoint

StorageProcessorAffinity
IsPrimary=true
IsActive=true

TargetPortGroup

StorageResource
LoadGroupMOC

MOC

AsymmetricAccessibility
State=

ActiveOptimized

StorageResource
LoadGroup

TargetPortGroup

MOC

MOC

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity,
IsPrimary=false
IsActive=falseStorageProcessorAffinity,

IsPrimary=false
IsActive=false

AsymmetricAccessibility
State=

ActiveOptimized
| ActiveNonOptimized

AsymmetricAccessibility
State=

ActiveOptimized
| ActiveNonOptimized

AsymmetricAccessibility
State=

ActiveOptimized

StorageProcessorAffinity
IsPrimary=false
IsActive=falseStorageProcessorAffinity,

IsPrimary=false
IsActive=false
SNIA Technical Position 517

Instance Diagrams

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219
15.2 Health and Fault Management Consideration

Not defined in this document.

15.3 Cascading Considerations

Not defined in this document.

15.4 Methods of the Profile

15.4.1 Assign Storage Resource Affinity

This profile specific method of CIM_StorageConfigurationService starts a job to assign affinity of a
StoragePool(s) or StorageVolume(s) to a storage processor. At the conclusion of the operation, the
resource will be a associated by CIM_MemberOfCollection to the StorageResourceLoadGroup with the
primary affinity for the specified storage processor. The existing instance of CIM_MemberOfCollection to
the existing StorageResourceLoadGroup is deleted.

Support for this method is indicated by the presence of an instance of
StorageServerAsymmetryCapabilities in which the property StorageResourceAffinityAssignable is 'true'. If
0 is returned, the function completed successfully and no ConcreteJob instance was required. If 4096/
0x1000 is returned, a job will be started to assign the element. The Job's reference will be returned in the
output parameter Job.

Figure 96 - Ports Failover, Failed Controller

StorageServer:
ComputerSystem

Top-levelStorageProcessor A:
ComputerSystem

StorageProcessor B:
ComputerSystem

Component
CS

Component
CS

LogicalElement LogicalElement

ProtocolEndpointProtocolEndpoint

StorageProcessorAffinity
IsPrimary=true
IsActive=true

TargetPortGroup

StorageResource
LoadGroupMOC

MOC

AsymmetricAccessibility
State=

ActiveNonOptimized

StorageResource
LoadGroup

TargetPortGroup

MOC

MOC

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=false

StorageProcessorAffinity
IsPrimary=true
IsActive=false

StorageProcessorAffinity
IsPrimary=false

IsActive=trueStorageProcessorAffinity
IsPrimary=false
IsActive=false

AsymmetricAccessibility
State=

ActiveNonOptimized

AsymmetricAccessibility
State=

ActiveNonOptimized

AsymmetricAccessibility
State=

ActiveNonOptimized

StorageProcessorAffinity
IsPrimary=false

IsActive=trueStorageProcessorAffinity
IsPrimary=false
IsActive=false
518

 Instance Diagrams

220

221

222

223
224

225

226

227

228

229

230

231

232

233

234

235
236

237

238

239

240

241

242
243

244

245

246

247

248

249

250

251

252

253
254

255

256

257

258

259

260

261

262

263

264

265
AssignStorageResourceAffinity

 IN, string ResourceType

This specifies whether the resource is a StorageVolume (= 2) or StoragePool (= 3).

 OUT, CIM_ConcreteJob REF JOB,

Reference to a job which may be created (may be null if job completed).

 IN, CIM_ComputerSystem REF StorageProcessor

Reference to the storage processor to which to assign the resource.

 IN, CIM_LogicalElement REF StorageResources[]

Array of references to storage resource instances to be assigned.

Return Codes

 Completed with No Error - 0

 Not Supported - 1

 Unknown - 2

 Timeout - 3

 Failed - 4

 Invalid Parameter - 5

 In Use - 6

 Method Parameters Checked - Job Started - 4096

 Size Not Supported - 4097

15.5 Use Cases

Not defined in this document.

15.6 CIM Elements

15.6.1 Overview

Table 351 describes the CIM elements for Storage Server Asymmetry.

Table 351 - CIM Elements for Storage Server Asymmetry

Element Name Requirement Description

15.6.2 CIM_AsymmetricAccessibility Mandatory This association indicates the accessibility of
StorageVolumes in the StorageResourceLoadGroup
through ports in the associated TargetPortGroup.

15.6.3 CIM_ElementCapabilities (To Top-level
ComputerSystem)

Mandatory

15.6.4 CIM_HostedCollection (Top-Level System to
Load Group)

Mandatory Associates the instances of StorageResourceLoadGroup
to the Top-Level ComputerSystem. Enables a Client to
find these groups without first traversing to each Storage
Processor ComputerSystem.
SNIA Technical Position 519

Instance Diagrams

266

267

268
269

270

271

272

273

274

275

276

277

278

279

280

281

282

283
284

285

286

287

288

289
15.6.5 CIM_HostedCollection (Top-Level System to
Port Group)

Mandatory Associates the instances of TargetPortGroup to the Top-
Level ComputerSystem. Enables a Client to find these
groups without first traversing to each Storage Processor
ComputerSystem.

15.6.6 CIM_MemberOfCollection (SATA Target Port
Group)

Conditional Conditional requirement: Requires TargetPortGroup to
aggregate CIM_ProtocolEndpoint. Used to aggregate
SATA Target Ports in a Target Port Group.

15.6.7 CIM_MemberOfCollection (SB Target Port
Group)

Conditional Conditional requirement: Requires TargetPortGroup to
aggregate CIM_SBProtocolEndpoint. Used to aggregate
SB Target Ports in a Target Port Group.

15.6.8 CIM_MemberOfCollection (SCSI Target Port
Group)

Conditional Conditional requirement: Requires TargetPortGroup to
aggregate CIM_SCSIProtocolEndpoint or Requires
TargetPortGroup to aggregate
CIM_SCSIProtocolEndpoint or Requires TargetPortGroup
to aggregate CIM_SCSIProtocolEndpoint or Requires
TargetPortGroup to aggregate
CIM_SCSIProtocolEndpoint. Used to aggregate DA, FC,
SPI, or SAS Target Ports in a Target Port Group.

15.6.9 CIM_MemberOfCollection (Storage Resource
Load Group aggregating Storage Pools)

Conditional Conditional requirement: Requires
StorageResourceLoadGroup to aggregate
CIM_StoragePool. Aggregates Storage Pools in a
Storage Resource Load Group.

15.6.10 CIM_MemberOfCollection (Storage Resource
Load Group aggregating Storage Volumes)

Conditional Conditional requirement: Requires
StorageResourceLoadGroup to aggregate
CIM_StorageVolume. Aggregates Storage Volumes in a
Storage Resource Load Group.

15.6.11 CIM_MemberOfCollection (iSCSI Target Port
Group)

Conditional Conditional requirement: Requires TargetPortGroup to
aggregate CIM_iSCSIProtocolEndpoint. Used to
aggregate iSCSI Target Ports in a Target Port Group.

15.6.12 CIM_StorageConfigurationService Optional

15.6.13 CIM_StorageProcessorAffinity
(StorageResourceLoadGroup)

Mandatory Indicates a processing affinity and state between a
TargetPortGroup and a ComputerSystem representing a
storage processor in a redundant storage server. The
processor can host the group in either a healthy or failover
state. Instances of this association are static, one for each
combination of StorageResourceLoadGroup and
ComputerSystem in the RedundancySet.

15.6.14 CIM_StorageProcessorAffinity (Target Port
Group)

Mandatory Indicates a processing affinity and state between a
TargetPortGroup and a ComputerSystem representing a
storage processor in a redundant storage server. The
processor can host the group in either a healthy or failover
state. Instances of this association are static, one for each
combination of StorageResourceLoadGroup and
ComputerSystem in the RedundancySet.

Table 351 - CIM Elements for Storage Server Asymmetry

Element Name Requirement Description
520

 Instance Diagrams
15.6.15 CIM_StorageResourceLoadGroup (Load
Groups)

Mandatory StorageResourceLoadGroup aggregates either the
StoragePools or the individual StorageVolumes that have
the same affinity for a storage processor. The affinity of
this group may change during failover or failback/rebind
from one storage processor to another in a storage
server. StorageResourceLoadGroup has a instance of the
StorageProcessorAffinity association to each instance of
CIM_ComputerSystem representing a storage processor
that may host the StorageResourceLoadGroup in either a
healthy or failover state. Each instance of
StorageResourceLoadGroup in a storage server is also
associated to each instance of TargetPortGroup in the
server by the AsymmetricAccessibility class.

15.6.16 CIM_StorageServerAsymmetryCapabilities Mandatory This class defines the asymmetric characteristics and
capabilities of a redundant storage server. The properties
in this class guide client algorithms in the interpretation of
the instances of StorageResourceLoadGroup,
TargetPortGroup, StorageProcessorAffinity, and
AsymmetricAccessibility, and also determining support for
methods that affect assignment of storage resources to
storage processors.

15.6.17 CIM_TargetPortGroup (Port Groups) Mandatory TargetPortGroup aggregates the ProtocolEndpoints
representing a group of target ports in a storage server.
The ProtocolEndpoints may be a subclass of
CIM_ProtocolEndpoint as appropriate for the type of
target port implemented by the storage server. The target
ports are aggregated because they have the same affinity
for an associated storage processor for failover and the
same accessibility state to storage resources in a given
StorageResourceLoadGroup. The TargetPortGroup may
have either a fixed affinity for a storage processor within
the server or an affinity that changes during failover from
one storage processors to another. TargetPortGroup has
a instance of the StorageProcessorAffinity association to
each instance of CIM_ComputerSystem representing a
storage processor that may host the TargetPortGroup in
either a healthy or failover state. Each instance of
TargetPortGroup in a storage server is also associated to
each instance of StorageResourceLoadGroup in the
server by the AsymmetricAccessibility class.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageProcessorAffinity
AND
SourceInstance.CIM_StorageProcessorAffinity::IsActi
ve <>
PreviousInstance.CIM_StorageProcessorAffinity::IsA
ctive

Mandatory CQL -Change in Affinity of a
StorageResourceLoadGroup.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_AsymmetricAccessibility
AND
SourceInstance.CIM_AsymmetricAccessibility::Curre
ntAccessState <>
PreviousInstance.CIM_AsymmetricAccessibility::Curr
entAccessState

Mandatory CQL -Modification of accessibility to a storage element.

Table 351 - CIM Elements for Storage Server Asymmetry

Element Name Requirement Description
SNIA Technical Position 521

Instance Diagrams

290

291

292

293

294
15.6.2 CIM_AsymmetricAccessibility

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Mandatory

Table 352 describes class CIM_AsymmetricAccessibility.

15.6.3 CIM_ElementCapabilities (To Top-level ComputerSystem)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Mandatory

Table 353 describes class CIM_ElementCapabilities (To Top-level ComputerSystem).

15.6.4 CIM_HostedCollection (Top-Level System to Load Group)

Created By: Static

Modified By: Static

Table 352 - SMI Referenced Properties/Methods for CIM_AsymmetricAccessibility

Properties Flags Requirement Description & Notes

CurrentAccessState Mandatory This property indicates the current accessibility state of volumes in the
StorageResourceLoadGroup through ports in the TargetPortGroup. With
the exception of Unavailable', the states are those defined by the T10
SPC-4 Target Port Group Access States clause. 2(Unavailable): The
volumes are not accessible in any way. 3(Standby): No data access to the
volume is possible. Status and other non-data access commands are
available. 4(Active Non-Optimized): Data access to the volume is available
at less than full bandwidth. 5(Active Optimized): Data access to the
volume is available at full bandwidth.

NormalAccessState Mandatory This property indicates the accessibility state of volumes in the
StorageResourceLoadGroup through ports in the TargetPortGroup when
the primary storage processor hosting the groups is healthy. With the
exception of 'Unavailable', the states are those defined by the T10 SPC-4
Target Port Group Access States clause. 2(Unavailable): The volumes are
not accessible in any way. 3(Standby): No data access to the volume is
possible. Status and other non-data access commands are available.
4(Active Non-Optimized): Data access to the volume is available at less
than full bandwidth. 5(Active Optimized): Data access to the volume is
available at full bandwidth.

Antecedent Mandatory The Port Group.

Dependent Mandatory The Storage Resource Load Group.

Table 353 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (To Top-level ComputerSys-
tem)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The Top-level Storage Sever ComputerSystem.

Capabilities Mandatory StorageServerAsymmetryCapabilities.
522

 Instance Diagrams

295

296

297

298

299

300

301

302

303

304

305

306
Deleted By: Static

Requirement: Mandatory

Table 354 describes class CIM_HostedCollection (Top-Level System to Load Group).

15.6.5 CIM_HostedCollection (Top-Level System to Port Group)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 355 describes class CIM_HostedCollection (Top-Level System to Port Group).

15.6.6 CIM_MemberOfCollection (SATA Target Port Group)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Requires TargetPortGroup to aggregate CIM_ProtocolEndpoint.

Table 356 describes class CIM_MemberOfCollection (SATA Target Port Group).

15.6.7 CIM_MemberOfCollection (SB Target Port Group)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Requires TargetPortGroup to aggregate CIM_SBProtocolEndpoint.

Table 354 - SMI Referenced Properties/Methods for CIM_HostedCollection (Top-Level System to Load
Group)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 355 - SMI Referenced Properties/Methods for CIM_HostedCollection (Top-Level System to Port
Group)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 356 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (SATA Target Port Group)

Properties Flags Requirement Description & Notes

Collection Mandatory The Target Port Group.

Member Mandatory The SATA Target Ports.
SNIA Technical Position 523

Instance Diagrams

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323
Table 357 describes class CIM_MemberOfCollection (SB Target Port Group).

15.6.8 CIM_MemberOfCollection (SCSI Target Port Group)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Requires TargetPortGroup to aggregate CIM_SCSIProtocolEndpoint or Requires
TargetPortGroup to aggregate CIM_SCSIProtocolEndpoint or Requires TargetPortGroup to aggregate
CIM_SCSIProtocolEndpoint or Requires TargetPortGroup to aggregate CIM_SCSIProtocolEndpoint.

Table 358 describes class CIM_MemberOfCollection (SCSI Target Port Group).

15.6.9 CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage Pools)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Requires StorageResourceLoadGroup to aggregate CIM_StoragePool.

Table 359 describes class CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage
Pools).

15.6.10 CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage Volumes)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Requires StorageResourceLoadGroup to aggregate CIM_StorageVolume.

Table 357 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (SB Target Port Group)

Properties Flags Requirement Description & Notes

Collection Mandatory The Target Port Group.

Member Mandatory The SB Target Ports.

Table 358 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (SCSI Target Port Group)

Properties Flags Requirement Description & Notes

Collection Mandatory The Target Port Group.

Member Mandatory The DA, FC, SPI, or SAS Target Ports.

Table 359 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Resource Load
Group aggregating Storage Pools)

Properties Flags Requirement Description & Notes

Collection Mandatory The Storage Resource Load Group.

Member Mandatory The StoragePools.
524

 Instance Diagrams

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341
Table 360 describes class CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage
Volumes).

15.6.11 CIM_MemberOfCollection (iSCSI Target Port Group)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Requires TargetPortGroup to aggregate CIM_iSCSIProtocolEndpoint.

Table 361 describes class CIM_MemberOfCollection (iSCSI Target Port Group).

15.6.12 CIM_StorageConfigurationService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 362 describes class CIM_StorageConfigurationService.

Table 360 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Resource Load
Group aggregating Storage Volumes)

Properties Flags Requirement Description & Notes

Collection Mandatory The Storage Resource Load Group.

Member Mandatory The Storage Volumes.

Table 361 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (iSCSI Target Port Group)

Properties Flags Requirement Description & Notes

Collection Mandatory The Target Port Group.

Member Mandatory The iSCSI Target Ports.

Table 362 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

AssignStorageResourceAffinity() Optional Start a job to assign affinity of a StoragePool(s) or
StorageVolume(s) to a storage processor. At the conclusion of
the operation, the resource will be a member of the
StorageResourceLoadGroup with the primary affinity for the
specified storage processor. Support for this method is
indicated by the presence of an instance of
StorageServerAsymmetryCapabilites in which the property
StorageResourceAffinityAssignable is 'true'. If 0 is returned, the
function completed successfully and no ConcreteJob instance
was required. If 4096/0x1000 is returned, a job will be started
to assign the element. The Job's reference will be returned in
the output parameter Job.
SNIA Technical Position 525

Instance Diagrams

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359
15.6.13 CIM_StorageProcessorAffinity (StorageResourceLoadGroup)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Mandatory

Table 363 describes class CIM_StorageProcessorAffinity (StorageResourceLoadGroup).

15.6.14 CIM_StorageProcessorAffinity (Target Port Group)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Mandatory

Table 364 describes class CIM_StorageProcessorAffinity (Target Port Group).

Table 363 - SMI Referenced Properties/Methods for CIM_StorageProcessorAffinity (StorageResource-
LoadGroup)

Properties Flags Requirement Description & Notes

IsPrimary Mandatory This property is set to true if the TargetPortGroup is hosted by the storage
processor when the processor is healthy. It is set to false if the group can
be hosted by the processor when the primary storage processor for the
group has failed. For each StorageResourceLoadGroup, one instance of
StorageProcessorAffinity will have IsPrimary=true, the rest will have
IsPrimary=false.

IsActive Mandatory This property is set to true if the StorageResourceLoadGroup is currently
being hosted by the storage processor.

Antecedent Mandatory The storage processor for which the Storage Resource Load Group has
affinity.

Dependent Mandatory The Storage Resource Load Group.

Table 364 - SMI Referenced Properties/Methods for CIM_StorageProcessorAffinity (Target Port Group)

Properties Flags Requirement Description & Notes

IsPrimary Mandatory This property is set to true if the TargetPortGroup is hosted by
the storage processor when the processor is healthy. It is set to
false if the group can be hosted by the processor when the
primary storage processor for the group has failed. For each
StorageResourceLoadGroup, one instance of
StorageProcessorAffinity will have IsPrimary=true, the rest will
have IsPrimary=false.

IsActive Mandatory This property is set to true if the TargetPortGroup is currently
being hosted by the storage processor.

Antecedent Mandatory The storage processor for which the Port Group has affinity.

Dependent Mandatory The Target Port Group.
526

 Instance Diagrams

360

361

362

363

364

365

366

367

368

369

370
15.6.15 CIM_StorageResourceLoadGroup (Load Groups)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 365 describes describes CIM_StorageResourceLoadGroup (Load Groups.

.

15.6.16 CIM_StorageServerAsymmetryCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 366 describes class CIM_StorageServerAsymmetryCapabilities.

Table 365 - SMI Referenced Properties/Methods for CIM_StorageResourceLoadGroup (Load Groups.

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key.

Table 366 - SMI Referenced Properties/Methods for CIM_StorageServerAsymmetryCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key.

StorageResourceSymmetryCapability Mandatory If this property is set to Symmetric it indicates that the
StoragePools or StorageVolumes are processed in a
distributed load-balanced manner between storage
processors. If this property is set to Asymmetric it indicates
that the StoragePools or StorageVolumes are have a
primary affinity for one storage processor.

StorageResourceType Mandatory If this property is set to StorageVolume it indicates that the
StoragePools have symmetric behavior(or no affinity) and
that the Volumes have affinity for one storage processor or
the other. If this property is set to StoragePool it indicates
that a StoragePool as well as the Volumes allocated from it
have affinity for one storage processor or the other.

StorageResourceAffinityAssignable Mandatory Set to true if this storage system allows the client to specify
which storage processor a storage resource is assigned to,
either using one of the CreateOrModify methods or the
AssignStorageResourceAffinity method on
StorageConfigurationService.
SNIA Technical Position 527

Instance Diagrams

371

372

373

374

375

376

377

378

379

380

381

382
15.6.17 CIM_TargetPortGroup (Port Groups)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 367 describes CIM_TargetPortGroup (Port Groups).

EXPERIMENTAL

PortGroupFailoverBehavior Mandatory This property specifies whether a storage server supports
transparent or non-transparent failover of TargetPortGroups.
If this value is 2(Port Group Fails), a TargetPortGroup will
have a single StorageProcessorAffinity association to the
storage processor it belongs to and will fail with. If this
property has a value of 3, the TargetPortGroup will have a
StorageProcessorAffinity association to each storage
processor that can host it's function, and the properties on
the association will indicate both which processor is primary
and which is currently hosting the ports in the group.

TargetPortSymmetryCapability Mandatory This property indicates the normal(healthy) state
accessibility to volumes both in the
StorageResourceLoadGroup on the same storage processor
as a TargetPortGroup, and to volumes in
StorageResourceLoadGroups on 'other' storage processors
in the redundant server. If this values is 2(Symmetric): There
is equal bandwidth access to volumes on all storage
processors through target ports on this storage processor. If
this value is 3(Asymmetric Non-Optimized): There is full
bandwidth access to volumes in the
StorageResourceLoadGroup on the same storage processor
as the TargetPortGroup and degraded bandwidth access to
volumes in the StorageResourceLoadGroups on the 'other'
storage processors. If this value is 4(Asymmetric No
Access): There is full bandwidth access to volumes in the
StorageResourceLoadGroup on the same storage processor
as the TargetPortGroup and no access to volumes on 'other'
storage processors.

Table 367 - SMI Referenced Properties/Methods for CIM_TargetPortGroup (Port Groups)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key.

Table 366 - SMI Referenced Properties/Methods for CIM_StorageServerAsymmetryCapabilities

Properties Flags Requirement Description & Notes
528

1

2

3

4

5

6

7

8

9

10

11

12

13

14
IMPLEMENTED

16 Storage Virtualizer Profile

16.1 Synopsis

Profile Name: Storage Virtualizer (Autonomous Profile)

Version: 1.8.0

Organization: SNIA

Central Class: ComputerSystem

Scoping Class: ComputerSystem

Related Profiles: Table 368 describes the related profiles for Storage Virtualizer.

Table 368 - Related Profiles for Storage Virtualizer

Profile Name Organization Version Requirement Description

Access Points SNIA 1.3.0 Optional

Block Server Performance SNIA 1.7.0 Optional

Block Storage Views SNIA 1.7.0 Optional Experimental.

CKD Block Services SNIA 1.7.0 Optional Experimental.

Disk Drive Lite SNIA 1.7.0 Optional

Erasure SNIA 1.7.0 Optional Experimental.

Storage Server Asymmetry SNIA 1.7.0 Optional Experimental.

Volume Composition SNIA 1.8.0 Optional Experimental.

Storage Element
Protection

SNIA 1.8.0 Optional Experimental.

Copy Services SNIA 1.5.0 Optional Deprecated

Device Credentials SNIA 1.3.0 Optional

Job Control SNIA 1.5.0 Optional

Location SNIA 1.4.0 Optional

Masking and Mapping SNIA 1.8.0 Optional

Group Masking and
Mapping

SNIA 1.8.0 Optional

Software SNIA 1.4.0 Optional

Multiple Computer System SNIA 1.2.0 Optional

Disk Sparing SNIA 1.7.0 Optional

Extent Composition SNIA 1.7.0 Optional

Block Services SNIA 1.8.0 Mandatory

Physical Package SNIA 1.5.0 Mandatory

Health SNIA 1.2.0 Mandatory
SNIA Technical Position 529

15

16

17

18

19

20

21
16.2 Description

Storage virtualizers act like RAID arrays but can use storage provided by systems external to the storage
virtualizer and local disks. A storage virtualizer system combines both remote and local storage to create
a seamless pool. The virtualization system allocates volumes from the pool for host systems to use.

The basic virtualizer system profile provides a read-only view of the system. The various profiles
indicated in Figure 97: "Storage Virtualizer Package Diagram" extend this description and also enable
configuration. Refer to 16.6 for more information on these optional extensions. This profile also includes
the mandatory 26 Physical Package Package (in Storage Management Technical Specification, Part 3
Common Profiles, 1.8.0 Rev 4) that describes the physical layout of the system and includes product
identification information. The modeling in this document is split into various sections that describe how
to model particular elements of an storage virtualizer system.

Thin Provisioning SNIA 1.8.0 Optional

Replication Services SNIA 1.8.0 Optional

Operational Power SNIA 1.7.0 Optional Experimental.

Launch In Context DMTF 1.0.0 Optional Experimental. See DSP1102,
version 1.0.0

iSCSI Target Ports SNIA 1.8.0 Support for at
least one is
mandatory.FC Target Ports SNIA 1.7.0

FCoE Target Ports SNIA 1.7.0 Experimental.

SAS Target Ports SNIA 1.7.0

SB Target Ports SNIA 1.7.0 Experimental.

FC Initiator Ports SNIA 1.7.0 Optional.

FCoE Initiator Ports SNIA 1.7.0 Experimental.

iSCSI Initiator Ports SNIA 1.7.0

SAS Initiator Ports SNIA 1.7.0

SB Initiator Ports SNIA 1.7.0 Experimental.

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2

Table 368 - Related Profiles for Storage Virtualizer

Profile Name Organization Version Requirement Description
530

Figure 97: "Storage Virtualizer Package Diagram" illustrates the relationship between the packages
related to the Storage Virtualizer Profile.

16.3 Instance Diagrams

16.3.1 Overview

The diagrams used in this document are 'Instance' diagrams implying the actual classes that you
implement rather than the class hierarchy diagrams often used to show CIM models. This is felt to be
easier to understand. Refer to the DMTF MOF files for information on class inheritance information and
full information on the properties and methods used.

Figure 98 is an instance diagram of a simple Storage Virtualization system.

Figure 97 - Storage Virtualizer Package Diagram

L o catio n

M askin g & M ap p in g

Co p y S erv ices

S to rag e V ir tu alizatio n P ro file

M u ltip le S ystem

Access P o in ts

S o ftw are

Blo ck S ervices
P h ysica lP ackag e

HostedS ervice

Com puterS ystem P ackage

HostedA ccessP oint

Com ponentCS

P hysica lE lem entLocation

Insta lledS oftwareIdentity

In itiato rP o rts

T arg etP o rts

Jo b Co n tro l

Cascad in g
(Dep recated)

Disk Dr ive
L ite

S to rag e
S erver

Asym m etry

S ystem Device

S ystem Device

HostedCollection

Blo ck S erver
P erfo rm an ce

Device
Cred en tia ls

Rep licatio n
S erv ices

T h in
P ro vis io n in g

Concre teCom ponent

E xten t
Co m p o sitio n

B asedO n

ConcreteCom ponent

V o lu m e
Co m p o sitio n

S to rag e
E lem en t

P ro tectio n

E rasu re
SNIA Technical Position 531

22

23

24

25

26

27

28

29

30

31

32

33

34
Figure 98 - Storage Virtualizer System Instance

ProtocolController

StorageVolume

LUID: //VPD pg 83 ID
DefaultAccessMode

StorageExtent
(Imported Extents)

Primordial= true
ExtentDiscriminator= SNIA:Pool Component ྴ
SNIA:Imported

StoragePool

AllocatedFromStoragePool

StorageSetting

ElementSettingData

AllocatedFromStoragePool

ComputerSystem

Dedicated[x] =
'Storage Virtualizer'

HostedStoragePool

Port

StorageSetting

ElementSettingData

ProtocolEndpoint

ProtocolControllerForUnit

SAPAvailableForElement DeviceSAPImplementation

Target Port Profile

Generic Initiator Ports
Profile

Block Services Package

LogicalPort

Initiator:
SCSIProrocolEndpoint

StorageVolume

Name: //VPD pg 83 ID
DefaultAccessMode

SystemDevice

HostedAccessPoint

Target:
SCSIProrocolEndpoint

SCSIInitiatorTarget
LogicalUnitPath

DeviceSAP
Implementation

SystemDevice

LogicalIdentity

Masking/Mapping Profile

StorageExtent
(Primordial D isk Drive Extent)

ConcreteComponent &
AssociatedComponentExtent

DiskDrive

Physical Package

DiskDrive Lite

ProtocolController

SCSIArbitraryLogicalUnit

SystemDevice

ProtocolControllerForUnit

ImplementationCapabilities

ElementCapabilities
532

35

36

37

38

39

40

41

42

43
EXPERIMENTAL

16.3.2 Primordial StorageExtent Dependency

The StorageElementExtentDependency and ResourcePoolExtentDependency associations show the
direct associations between the “imported” primordial storage extents and dependent storage elements
(such as StorageVolumes) and resource pools (such as StoragePools), respectively.

Figure 99 shows the StorageElementExtentDependency association between an imported primordial
StorageExtent and a dependent StorageVolume. Additionally, the figure shows the
ResourcePoolExtentDependency association between two imported primordial storage extents and a
dependent StoragePool.

Figure 100 shows the ResourcePoolExtentDependency associations to a storage pool hierarchy. In this
figure, Pool2 is allocated from Pool1. Pool1 is dependent on Extents 1 and 2, however, Pool2 is only
dependent on Extent 2.

Figure 99 - Dependency to Primordial StorageExtents

Volume 1:
StorageVolume

Pool 1:
StoragePool

AllocatedFromStoragePool

Extent 2: StorageExtent

// Primordial
// Imported

ResourcePoolExtentDependency

StorageElementExtentDependency

Extent1: StorageExtent

// Primordial
// Imported

ResourcePoolExtentDependency

Antecedent AntecedentAntecedent

Dependent

DependentDependent
SNIA Technical Position 533

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83
EXPERIMENTAL

16.3.3 Storage Virtualization System

The Virtualization system is modeled using the ComputerSystem class with the “Dedicated” properties set
to ‘BlockServer’ and “StorageVirtualizer”. If the “Dedicated” property also contains “Storage”, then the
virtualizer also functions as an Array. The model allows the system to be a cluster or contain redundant
components, but the components act as a single system. The ComputerSystem class and common
Multiple Computer System Profile model this.

EXPERIMENTAL

The capabilities of the Storage Virtualizer implementation are identified in an instance of
CIM_ImplementationCapabilities, which is associated to the top level Storage Virtualizer
ComputerSystem via ElementCapabilities. This includes information on the capacity optimization
techniques supported by the Storage Virtualizer.

EXPERIMENTAL

Figure 100 - Primordial Extent Dependency and Pool Hierarchy

Volume 1:
StorageVolume

Pool 1:
StoragePool

AllocatedFromStoragePool

Extent 2: StorageExtent

// Primordial
// Imported

ResourcePoolExtentDependency

Extent 1: StorageExtent

// Primordial
// Imported

ResourcePoolExtentDependency

AntecedentAntecedent

Dependent

DependentDependent

Pool 2:
StoragePool

AllocatedFromStoragePool

ResourcePoolExtentDependency

Dependent

StorageElementExtentDependency

Note:
Pool 2 is allocated
from Pool 1.

Antecedent
534

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113
The StoragePool classes in the center of the diagram represents the mapping from array storage to
volumes for host access. The pool is hosted on the ComputerSystem and services to control it are host
on the same controller. The StorageExtent at the bottom of the screen represents the storage from
external arrays used by the mapping. These StorageExtents are connected to the pool using the
ConcreteComponent association. The SCSIProtocolController with the ProtocolControllerAccessesUnit
association to the StorageVolume are provided for clients convenience (and compatibility with SMI-S 1.0).

StorageVolumes at the upper right are the volumes created from the StoragePool and are accessible from
hosts. The associations to the SCSIProtocolController and to the Port indicate ports the volume is
mapped to. The StorageVolumes are described by the StorageSetting class connected by the
ElementSettingData association.

16.3.4 Disk Drive Lite

The Disk Drive Lite Profile is optional. It should be used to model storage local to the storage virtualizer
system. The Disk Drive Lite model includes a StorageExtent instance that represents the storage of the
disk drive. If the Disk Drive Lite Profile is implemented, the StorageExtent shall be associated to a
primordial pool. It may share a primordial pool with external storage or it can have its own primordial pool.

16.3.5 Controller Software

Information on the installed controller software is represented by the optional Software Profile. This is
linked to the controller using an InstalledSoftwareIdentity association.

16.3.6 Device Management Access

Most devices now have a web GUI to allow device specific configuration. This is modeled using the
common profile “Access Point”.

16.3.7 Physical Modeling

The physical aspects of the storage virtualizer ComputerSystem are represented by the Storage
Management Technical Specification, Part 3 Common Profiles, 1.8.0 Rev 4 Package 26 "Physical Package
Package" and the optional Storage Management Technical Specification, Part 3 Common Profiles, 1.8.0 Rev 4
24 "Location Profile", which provide more details.

16.3.8 Services

The system hosts services used to control the configuration of the system’s resources. These services
are optional and modeled by 5 "Block Services Package", 9 "Copy Services Profile", and 23 "Job Control
Profile".

16.3.9 Ports

An implementation of the storage virtualizer shall implement at least one Target Ports Profile and may
implement one or more of the Initiator Ports Profiles. However, this specification does not specify any
particular port type be supported. In either target or initiator cases, the ports could be FC or iSCSI. All
port profiles are documented in Storage Management Technical Specification, Part 3 Common Profiles, 1.8.0
Rev 4.

The storage virtualizer ConcreteComponent StorageExtent instances shown in the Initiator Ports Profile
are the optional remote LogicalDevice instances from Initiator Ports. However, these StorageExtents are
mandatory in the Storage Virtualizer Profile.
SNIA Technical Position 535

114

115

116
EXPERIMENTAL

16.3.10 Model Element Summary

This Profile defines the following CIM Classes (and their uses):

ComputerSystem (Top Level System) - This is the top level ComputerSystem of the Storage Virtualizer,
distinguished by the Dedicated Property of ‘15’ and ‘21’. In addition, if the value ‘3’ is present, the
virtualizer provide array functionality.

ComputerSystem (Shadow) - This is the ComputerSystem(s) to which the Storage Virtualizer cascades.
The Dedicated Property may be ‘3’ and ‘15’, if the virtualizer cascades to an Array. If the dedicated is ‘3’,
‘15’ and ‘21’, the virtualizer cascades to another virtualizer.

SCSIArbitraryLogicalUnit - To represent a LUN address for receiving SCSI commands.

SCSIProtocolController - To represent wide-open mapping of volumes (in the absence of the Masking and
Mapping Profile).

StorageExtent (Imported Extents) - Used to represent the volumes that have been imported from external
devices.

StorageVolume (Shadow) - Used to represent the volumes that are imported to the Storage Virtualizer.

EXPERIMENTAL

16.4 Health and Fault Management

Defined in the included profiles.

EXPERIMENTAL

16.5 Storage Virtualizer Support for Cascading

The classes identified in this section identify the elements of Storage Virtualizer support for the cascading
function.

Figure 101: "Virtualizer, Cascading and Initiator Ports" shows the relationship between the Storage
Virtualizer and the elements that support cascading of elements to other block server profiles. For
example, cascading is required when the virtualizer imports logical units from arrays.

Each imported array is modeled in the virtualizer with a shadow ComputerSystem; the arrays’ logical
units are modeled using shadow StorageVolume instances. These are depicted in Figure 101:
"Virtualizer, Cascading and Initiator Ports" in the box labeled “Cascading Support”.

Each shadow ComputerSystem (representing an array) is associated to the Storage Virtualizer
ComputerSystem using a Dependency association. StorageVolume models an Array logical unit and is
associated to storage virtualizer ConcreteComponent StorageExtent via the LogicalIdentity association.
The StorageExtent represents the virtualizer’s view of logical units imported from arrays. The
StorageExtents are local resources. The shadow ComputerSystem and StorageVolumes contain the
correlatable IDs needed to map virtualizer resources to equivalent objects in an Array Profile.
536

117

118
The AllocatedResources collection identifies the shadow StorageVolumes that are actually allocated to
the StorageVirtualizer for its use. Optionally, the implementation may also have a RemoteResources
collection that identifies all the storage volumes it can see on the SAN.

EXPERIMENTAL

16.6 Methods of the Profile

Not defined in this document.

Figure 101 - Virtualizer, Cascading and Initiator Ports

Cascading Support

Block Services Package

Initiator Ports Profile

StorageVolume

LUID: //VPD pg 83 ID
DefaultAccessMode

StorageExtent
(Imported Extents)

Primordial= true
ExtentDiscriminator= SNIA:Pool
Component ྴ�SNIA:Imported

StoragePool

AllocatedFromStoragePool

StorageSetting

ElementSettingData

AllocatedFromStoragePool

ComputerSystem

Dedicated[x] =
'Storage Virtualizer'

HostedStoragePool

StorageSetting

ElementSettingData

LogicalPort

Initiator:
SCSIProtocolEndpoint

SystemDevice

HostedAccessPoint

Target:
SCSIProtocolEndpoint

SCSIInitiatorTarget
LogicalUnitPath

DeviceSAP
Implementation

SystemDevice

ComputerSystem (Shadow)

OtherIdentifyingInfo= Shadow
IdentifyingDescriptions= SNIA:DetailedType

ConcreteComponent &
AssociatedComponentExtent

StorageVolume (Shadow)

LUID: //VPD pg 83 ID
DefaultAccessMode
ExtentDiscriminator= Shadow

LogicalIdentity

SystemDevice

Dependency

AllocatedResources

ElementType=�
CollectionDiscriminator= SNIA:Imported Volumes

MemberOfCollection

HostedCollection
SNIA Technical Position 537

Summary

119

120

121

122

123

124

125

126

127

128

129
16.7 Use Cases

EXPERIMENTAL

16.7.1 Discover the Capacity Optimization Support in an Storage Virtualizer

16.7.1.1 Summary

From a list of available Storage Virtualizer devices, determine which devices support any capacity
optimization techniques.

16.7.1.2 Basic Course of Events

1) Administrator identifies an available virtualizer device.

2) Administrator determines if the virtualizer advertises implementation capabilities.

3) System responds with an implementation capabilities.

4) Administrator inspects the capacity optimization techniques supported by the virtualizer

16.7.1.3 Alternative Paths

none

16.7.1.4 Exception Paths

FAILED:

• The Storage Virtualizer System does not report implementation capabilities

• The Storage Virtualizer System reports implementation capabilities, but reports “none” for supported capacity
optimizations.

16.7.1.5 Triggers

Device selection for provisioning storage for an application.

16.7.1.6 Assumptions

The administrator has a list of candidate storage virtualizer system names for doing provisioning.

16.7.1.7 Preconditions

The systems are available.

EXPERIMENTAL

16.8 CIM Elements

Table 369 describes the CIM elements for Storage Virtualizer.

Table 369 - CIM Elements for Storage Virtualizer

Element Name Requirement Description

16.8.1 CIM_AssociatedComponentExtent (Pool Component
to Primordial Pool)

Conditional Conditional requirement: Implementation of the Extent
Composition profile.

16.8.2 CIM_ComputerSystem (Shadow) Mandatory Experimental. 'Top level' system that represents a
block storage device (e.g., an Array).
538

 Preconditions

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153
16.8.3 CIM_ComputerSystem (Top Level System) Mandatory 'Top-level' system that represents the whole virtualizer.
Associated to RegisteredProfile.

16.8.4 CIM_ConcreteComponent (Imported Extents to
Primordial Pool)

Mandatory Used to associate StorageExtents that are playing the
Pool Component role to a Primordial StoragePool.

16.8.5 CIM_Dependency (Systems) Mandatory Experimental. This associates the block storage (e.g.,
Array) System to the Storage Virtualizer System.

16.8.6 CIM_ElementCapabilities
(ImplementationCapabilities to System)

Optional Experimental. Associates the conformant Storage
Virtualizer ComputerSystem to the
CIM_ImplementationCapabilities supported by the
implementation.

16.8.7 CIM_HostedCollection (Allocated Resources) Mandatory Experimental. This would associate the
AllocatedResources collection to the top level system
for the Storage Virtualizer.

16.8.8 CIM_HostedCollection (Remote Resources) Conditional Experimental. Conditional requirement: This is required
if CIM_RemoteResources is modeled. This would
associate the RemoteResources collection to the top
level system for the Storage Virtualizer.

16.8.9 CIM_ImplementationCapabilities
(ImplementationCapabilities)

Optional Experimental. The capabilities of the profile
implementation.

16.8.10 CIM_LogicalIdentity (Shadow Storage Volume) Mandatory Experimental. Associates a Storage Virtualizer
StorageExtent to a shadow instance of an (imported)
StorageVolume.

16.8.11 CIM_MemberOfCollection (Allocated Resources) Mandatory Experimental. This supports collecting
StorageVolumes. This is required to support the
AllocatedResources collection.

16.8.12 CIM_MemberOfCollection (Remote Resources) Optional Experimental. This supports collecting all Shadow
instances of StorageVolume that the Storage Virtualizer
has available to use. This is optional when used to
support the RemoteResources collection (the
RemoteResources collection is optional).

16.8.13 CIM_ProtocolControllerForUnit (Arbitrary LU for All
LUNs View)

Conditional Conditional requirement: Elements that are mandatory
if Masking and Mapping is not implemented.

16.8.14 CIM_ProtocolControllerForUnit (Storage volumes for
All LUNs View)

Conditional Conditional requirement: Elements that are mandatory
if Masking and Mapping is not implemented.

16.8.15 CIM_RemoteServiceAccessPoint (Shadow) Optional Experimental. CIM_RemoteServiceAccessPoint
represents the management interface to a Shadow
system.

16.8.16 CIM_ResourcePoolExtentDependency
(PoolExtentDepedency)

Conditional Conditional requirement: Implementation of the Extent
Composition profile.

16.8.17 CIM_SAPAvailableForElement Conditional Experimental. Conditional requirement: This is required
if CIM_RemoteServiceAccessPoint is modeled.
Represents the association between a
RemoteServiceAccessPoint and the Shadow (e.g.,
Array) System to which it provides access.

16.8.18 CIM_SCSIArbitraryLogicalUnit (Arbitrary LU) Optional A SCSI Logical Unit that exists only for management of
the virtualizer.

16.8.19 CIM_SCSIProtocolController (All LUNs View) Conditional Conditional requirement: Elements that are mandatory
if Masking and Mapping is not implemented.

Table 369 - CIM Elements for Storage Virtualizer

Element Name Requirement Description
SNIA Technical Position 539

Preconditions

154

155
16.8.1 CIM_AssociatedComponentExtent (Pool Component to Primordial Pool)

The referenced primordial imported StorageExtent represents capacity has not been allocated, is
allocated in part, or is allocated in its entirety.

Requirement: Implementation of the Extent Composition profile.

16.8.20 CIM_StorageElementExtentDependency
(ElementExtentDependency)

Conditional Conditional requirement: Implementation of the Extent
Composition profile.

16.8.21 CIM_StorageExtent (Imported Extents) Mandatory Used to represent the storage imported from external
arrays and used as ConcreteComponents of Primordial
StoragePools.

16.8.22 CIM_StorageVolume (Shadow) Mandatory Experimental. A shadow copy of a remote
StorageVolume that is imported to the Storage
Virtualizer.

16.8.23 CIM_SystemDevice (Shadow StorageVolumes) Mandatory Experimental. This association links shadow
StorageVolumes to the scoping (Shadow) system (of
the array). This is used to associate the shadow
StorageVolunmes with the System that manages them.

16.8.24 CIM_SystemDevice (System to
SCSIArbitraryLogicalUnit)

Conditional Conditional requirement: Elements that are mandatory
if SCSIArbitraryLogicalUnit is instantiated. This
association links SCSIArbitraryLogicalUnit to the
scoping system.

16.8.25 CIM_SystemDevice (System to
SCSIProtocolController)

Conditional Conditional requirement: Elements that are mandatory
if Masking and Mapping is not implemented. This
association links SCSIProtocolController to the scoping
system.

16.8.26 CIM_SystemDevice (System to StorageExtent) Mandatory This association links the primordial imported
StorageExtent to the scoping system.

16.8.27 CIM_AllocatedResources Mandatory Experimental. This is a SystemSpecificCollection for
collecting StorageVolumes that are being used by the
Storage Virtualizer (e.g., StorageVolumes that the
Virtualizer is using as Imported Primordial Extents).

16.8.28 CIM_RemoteResources Optional Experimental. This is a SystemSpecificCollection for
collecting StorageVolumes that may be allocated by
the Storage Virtualizer profile (e.g., StorageVolumes
that may be allocated to support a Storage Virtualizer
primordial storage pool).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Creation of a ComputerSystem instance.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Deletion of a ComputerSystem instance.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::OperationalStatus <>
PreviousInstance.CIM_StorageVolume::OperationalStatus

Mandatory CQL -Modification of OperationalStatus of a Storage
Volume instance.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::OperationalStatus
<>
PreviousInstance.CIM_ComputerSystem::OperationalStatus

Mandatory CQL -Modification of OperationalStatus of a
ComputerSystem instance.

Table 369 - CIM Elements for Storage Virtualizer

Element Name Requirement Description
540

 Preconditions
Table 370 describes class CIM_AssociatedComponentExtent (Pool Component to Primordial Pool).

EXPERIMENTAL

16.8.2 CIM_ComputerSystem (Shadow)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 371 describes class CIM_ComputerSystem (Shadow).

EXPERIMENTAL

16.8.3 CIM_ComputerSystem (Top Level System)

Created By: Static

Table 370 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool Component to
Primordial Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Primordial StoragePool.

PartComponent Mandatory The imported storage extent that is a component of the primordial storage
pool.

Table 371 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Shadow)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory Unique identifier for the shadow system. E.g., IP address.

ElementName Mandatory User friendly name.

OtherIdentifyingInfo C Mandatory At least one of the indices of this array should contain any of the valid
system name formats. Another index should contain the string 'Shadow'.

IdentifyingDescriptions C Mandatory For system names this array property should contain the NameFormat of
the system name (e.g., 'Ipv4 Address' if the OtherIdentifyInfo is an IPv4
address). In the index for the OItherIdentifyingInfo string 'Shadow' the
IdentifyingDescriptions entry should be 'SNIA:DetailedType'.

OperationalStatus Mandatory Overall status of the shadow system, as seen by the Storage Virtualizer.

NameFormat Mandatory Format for Name property.

Dedicated Mandatory Indicates that this computer system is dedicated to operation as a block
storage system (e.g., an Array).

PrimaryOwnerContact M Optional Contact details for owner.

PrimaryOwnerName M Optional Owner of the shadow system.
SNIA Technical Position 541

Preconditions
Modified By: Static

Deleted By: Static

Requirement: Mandatory

Shall be associated to RegisteredProfile using ElementConformsToProfile association. The
RegisteredProfile instance shall have RegisteredName set to 'Storage Virtualizer',
RegisteredOrganization set to 'SNIA', and RegisteredVersion set to '1.6.0'.

Table 372 describes class CIM_ComputerSystem (Top Level System).

16.8.4 CIM_ConcreteComponent (Imported Extents to Primordial Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 373 describes class CIM_ConcreteComponent (Imported Extents to Primordial Pool).

Table 372 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name C Mandatory Unique identifier for the storage virtualizer. E.g., IP address or a
FC WWN.

ElementName Mandatory User friendly name.

OtherIdentifyingInfo C Mandatory

IdentifyingDescriptions C Mandatory

OperationalStatus Mandatory Overall status of the storage virtualizer.

NameFormat Mandatory Format for Name property.

Dedicated Mandatory The values 15 and 21 indicate that this computer system is
dedicated to operation as a storage virtualizer.

The values 3, 15 and 21 indicate that this computer system is
dedicated to operation as an array, as well as a storage virtualizer.

PrimaryOwnerContact M Optional Contact details for owner.

PrimaryOwnerName M Optional Owner of the storage virtualizer.

Table 373 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Imported Extents to Primor-
dial Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A Primordial StoragePool.

PartComponent Mandatory The imported StorageExtent.
542

 Preconditions

156

157

158
EXPERIMENTAL

16.8.5 CIM_Dependency (Systems)

CIM_Dependency is an association between a shadow System (e.g., Array) and the Storage Virtualizer
top level System (ComputerSystem). The specific nature of the dependency is determined by
associations between resources (imported StorageExtents) of the Storage Virtualizer system and
resources (StorageVolumes) of the shadow system.

CIM_Dependency is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 374 describes class CIM_Dependency (Systems).

16.8.6 CIM_ElementCapabilities (ImplementationCapabilities to System)

Associates the conformant Storage Virtualizer ComputerSystem to the CIM_ImplementationCapabilities
supported by the implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 375 describes class CIM_ElementCapabilities (ImplementationCapabilities to System).

16.8.7 CIM_HostedCollection (Allocated Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Storage Virtualizer profile, it is used to associate the
Allocated Resources to the top level Computer System of the Storage Virtualizer.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Table 374 - SMI Referenced Properties/Methods for CIM_Dependency (Systems)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Storage Virtualizer top level System.

Dependent Mandatory The shadow System (e.g., system of the Array device).

Table 375 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities
to System)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The ImplementationCapabilities.

ManagedElement Mandatory The conformant Storage Virtualizer ComputerSystem that has
ImplementationCapabilities.
SNIA Technical Position 543

Preconditions

159

160

161

162

163

164

165

166

167

168

169

170

171
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 376 describes class CIM_HostedCollection (Allocated Resources).

16.8.8 CIM_HostedCollection (Remote Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Storage Virtualizer Profile, it is used to associate the
Remote Resources to the top level Computer System of the Storage Virtualizer.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: This is required if CIM_RemoteResources is modeled.

Table 377 describes class CIM_HostedCollection (Remote Resources).

16.8.9 CIM_ImplementationCapabilities (ImplementationCapabilities)

The capabilities (features) of the profile implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 376 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Top Level System of the Storage Virtualizer.

Dependent Mandatory The AllocatedResources collection of shadow storage volumes.

Table 377 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Top Level System of the Storage Virtualizer.

Dependent Mandatory The RemoteResources collection of shadow storage volumes.
544

 Preconditions

172
173

174

175

176

177

178

179

180

181

182
183
184

185

186

187

188

189
Table 378 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

16.8.10 CIM_LogicalIdentity (Shadow Storage Volume)

Associates local StorageExtent to a shadow instance of an (imported) StorageVolume.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 379 describes class CIM_LogicalIdentity (Shadow Storage Volume).

16.8.11 CIM_MemberOfCollection (Allocated Resources)

This use of MemberOfCollection is to collect all allocated shadow StorageVolume instances (in the
AllocatedResources collection).

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 378 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the implementation capability of an
implementation.

ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.

SupportedCapacityOptimizations Mandatory This array of strings lists the capacity optimization techniques that
are supported by the implementation. Valid string values are "none"
| "SNIA:Thin Provisioning" | "SNIA:Data Compression" |
"SNIA:Data Deduplication".

SupportedViews Mandatory This array of strings lists the view classes that are supported by the
implementation. Valid string values are "none" |
"SNIA:VolumeView" | "SNIA:DiskDriveView" | "SNIA:ExposedView"
| "SNIA:MaskingMappingView" |
"SNIA:MappingProtocolControllerView" | "SNIA:StoragePoolView" |
"SNIA:ReplicaPairView" .

Table 379 - SMI Referenced Properties/Methods for CIM_LogicalIdentity (Shadow Storage Volume)

Properties Flags Requirement Description & Notes

SystemElement Mandatory This is a reference to the shadow (imported) StorageVolume.

SameElement Mandatory This is a reference to the Storage Virtualizer StorageExtent that maps to
the shadow (imported) StorageVolume.
SNIA Technical Position 545

Preconditions

190

191

192
193

194

195

196

197

198

199

200
201
202

203

204

205

206

207

208
Table 380 describes class CIM_MemberOfCollection (Allocated Resources).

16.8.12 CIM_MemberOfCollection (Remote Resources)

This use of MemberOfCollection is to collect all shadow StorageVolume instances (in the
RemoteResources collection). Each association (and the RemoteResources collection, itself) is created
through external means.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 381 describes class CIM_MemberOfCollection (Remote Resources).

EXPERIMENTAL

16.8.13 CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 382 describes class CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View).

Table 380 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)

Properties Flags Requirement Description & Notes

Member Mandatory A shadow storage volume (one with ExtentDiscriminator='SNIA:Shadow').

Collection Mandatory The AllocatedResources collection of shadow storage volumes.

Table 381 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)

Properties Flags Requirement Description & Notes

Member Mandatory A shadow storage volume (one with ExtentDiscriminator='SNIA:Shadow').

Collection Mandatory The RemoteResources collection of shadow storage volumes.

Table 382 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Arbitrary LU for All
LUNs View)

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be formatted as
unseparated uppercase hexadecimal digits, with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as exposed
through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI Arbitrary logical unit.
546

 Preconditions

209

210

211

212
213
214

215

216

217

218

219

220

221

222
223
224

225

226

227

228

229
16.8.14 CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 383 describes class CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View).

EXPERIMENTAL

16.8.15 CIM_RemoteServiceAccessPoint (Shadow)

CIM_RemoteServiceAccessPoint is an instance that provides access information for accessing the actual
Shadow (e.g., Array) system via a management interface.

CIM_RemoteServiceAccessPoint is not subclassed from CIM_ServiceAccessPoint.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 384 describes class CIM_RemoteServiceAccessPoint (Shadow).

EXPERIMENTAL

Table 383 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Storage volumes for
All LUNs View)

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be formatted as
unseparated uppercase hexadecimal digits, with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as exposed
through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI logical unit (for example, a Block Services
StorageVolume).

Table 384 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint (Shadow)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory The CIM Class name of the Computer System hosting the management
interface.

SystemName Mandatory The name of the Computer System hosting the management interface.

CreationClassName Mandatory The CIM Class name of the management interface.

Name Mandatory The unique name of the management interface.
SNIA Technical Position 547

Preconditions

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247
16.8.16 CIM_ResourcePoolExtentDependency (PoolExtentDepedency)

The referenced imported primordial StorageExtent and its dependent resource pools.

Requirement: Implementation of the Extent Composition profile.

Table 385 describes class CIM_ResourcePoolExtentDependency (PoolExtentDepedency).

EXPERIMENTAL

16.8.17 CIM_SAPAvailableForElement

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: This is required if CIM_RemoteServiceAccessPoint is modeled.

Table 386 describes class CIM_SAPAvailableForElement.

EXPERIMENTAL

16.8.18 CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 385 - SMI Referenced Properties/Methods for CIM_ResourcePoolExtentDependency (PoolExtentDe-
pedency)

Properties Flags Requirement Description & Notes

Dependent Mandatory The dependent storage pool.

Antecedent Mandatory The imported storage extent that is a component of the
primordial storage pool.

Table 386 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Shadow System.

AvailableSAP Mandatory The service access point of the shadow system.
548

 Preconditions

248

249

250

251

252

253

254

255

256
Table 387 describes class CIM_SCSIArbitraryLogicalUnit (Arbitrary LU).

16.8.19 CIM_SCSIProtocolController (All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 388 describes class CIM_SCSIProtocolController (All LUNs View).

16.8.20 CIM_StorageElementExtentDependency (ElementExtentDependency)

The referenced imported primordial StorageExtent and its dependent elements.

Requirement: Implementation of the Extent Composition profile.

Table 389 describes class CIM_StorageElementExtentDependency (ElementExtentDependency).

Table 387 - SMI Referenced Properties/Methods for CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifer.

ElementName Mandatory User-friendly name.

Name Mandatory

OperationalStatus Mandatory

Table 388 - SMI Referenced Properties/Methods for CIM_SCSIProtocolController (All LUNs View)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

Table 389 - SMI Referenced Properties/Methods for CIM_StorageElementExtentDependency (ElementEx-
tentDependency)

Properties Flags Requirement Description & Notes

Dependent Mandatory The dependent element.

Antecedent Mandatory The imported storage extent that is a
component of the primordial storage pool.
SNIA Technical Position 549

Preconditions

257

258

259

260

261

262

263

264
16.8.21 CIM_StorageExtent (Imported Extents)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 390 describes class CIM_StorageExtent (Imported Extents).

EXPERIMENTAL

16.8.22 CIM_StorageVolume (Shadow)

A shadow copy of a remote StorageVolume that is imported to the Storage Virtualizer. If the Storage
Virtualizer has access to the leaf profile, the data in this class should reflect what the Storage Virtualizer
obtains from that profile. If the referencing profile does not have access to the leaf profile, then this
should be filled out as best can be done.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 391 describes class CIM_StorageVolume (Shadow).

Table 390 - SMI Referenced Properties/Methods for CIM_StorageExtent (Imported Extents)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory

ExtentStatus Mandatory

OperationalStatus Mandatory

Primordial Mandatory This shall be true for extents instantiated in the Storage Virtualizer.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain 'SNIA:Pool
Component' and 'SNIA:Imported'.

Table 391 - SMI Referenced Properties/Methods for CIM_StorageVolume (Shadow)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory
550

 Preconditions

265

266
267

268

269

270

271

272

273
16.8.23 CIM_SystemDevice (Shadow StorageVolumes)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name CD Mandatory The identifier for this volume. If the Storage Virtualizer has
access to the CIM Server for the device that exports the
storage volume, then this should be the Name property as
reported by the CIM Server. If the Storage Virtualizer does not
have access to the CIM Server for the device, then it should be
one of the names supported for storage volumes.

OtherIdentifyingInfo CD Optional Additional correlatable names. Specific values should be
values that may be correlated with the names reported by the
device that exports the storage volume.

IdentifyingDescriptions Conditional Required if OtherIdentifyingInfo was provided.

NameFormat Mandatory The type of identifier in the Name property.

NameNamespace Mandatory The namespace that defines uniqueness for the NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting
or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the parent
StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRedundancy Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Conditional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

ExtentDiscriminator Mandatory This shall be 'SNIA:Shadow'.

Table 391 - SMI Referenced Properties/Methods for CIM_StorageVolume (Shadow)

Properties Flags Requirement Description & Notes
SNIA Technical Position 551

Preconditions

274

275
276

277

278

279

280

281

282

283

284

285

286

287

288

289
Table 392 describes class CIM_SystemDevice (Shadow StorageVolumes).

EXPERIMENTAL

16.8.24 CIM_SystemDevice (System to SCSIArbitraryLogicalUnit)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if SCSIArbitraryLogicalUnit is instantiated.

Table 393 describes class CIM_SystemDevice (System to SCSIArbitraryLogicalUnit).

16.8.25 CIM_SystemDevice (System to SCSIProtocolController)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 394 describes class CIM_SystemDevice (System to SCSIProtocolController).

16.8.26 CIM_SystemDevice (System to StorageExtent)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 392 - SMI Referenced Properties/Methods for CIM_SystemDevice (Shadow StorageVolumes)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Shadow Computer System that contains this StorageVolume.

PartComponent Mandatory The storage volume that is managed by a computer system.

Table 393 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIArbitraryLogical-
Unit)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 394 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIProtocolControl-
ler)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory
552

 Preconditions

290

291

292

293

294

295

296

297
Table 395 describes class CIM_SystemDevice (System to StorageExtent).

EXPERIMENTAL

16.8.27 CIM_AllocatedResources

An instance of a default CIM_AllocatedResources defines the set of StorageVolumes that are allocated
and in use by the Storage Virtualizer.

CIM_AllocatedResources is subclassed from CIM_SystemSpecificCollection.

At least one instance of the CIM_AllocatedResources shall exist for a Storage Virtualizer Profile and shall
be hosted by one of its ComputerSystems (typically the top level ComputerSystem.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 396 describes class CIM_AllocatedResources.

16.8.28 CIM_RemoteResources

An instance of a default CIM_RemoteResources defines the set of shadow StorageVolumes that are
available to be used by the Storage Virtualizer.

CIM_RemoteResources is subclassed from CIM_SystemSpecificCollection.

One instance of the CIM_RemoteResources would exist and shall be hosted by the top level
ComputerSystems of the Storage Virtualizer Profile.

Created By: Static

Table 395 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageExtent)

Properties Flags Requirement Description & Notes

PartComponent Mandatory The imported StorageExtent.

GroupComponent Mandatory The scoping ComputerSystem.

Table 396 - SMI Referenced Properties/Methods for CIM_AllocatedResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the AllocatedResources collection (e.g., Allocated
StorageVolumes).

ElementType Mandatory The type of remote resources collected by the AllocatedResources
collection.

For this version of SMI-S, the only value supported is '3' (StorageVolume).

CollectionDiscriminator Mandatory An array of strings indicating the purposes of the collection of elements.
This shall contain 'SNIA:Imported Volumes'.
SNIA Technical Position 553

Preconditions

298

299

300

301

302

303

304

305
Modified By: Static

Deleted By: Static

Requirement: Optional

Table 397 describes class CIM_RemoteResources.

EXPERIMENTAL

IMPLEMENTED

Table 397 - SMI Referenced Properties/Methods for CIM_RemoteResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the RemoteResources collection (e.g., Remote
Storage Volumes).

ElementType Mandatory The type of remote resources collected by the RemoteResources
collection. This shall be '3' (StorageVolume).

CollectionDiscriminator Mandatory An array of strings indicating the purposes of the collection of elements.
This shall contain 'SNIA:Imported Volumes'.
554

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
EXPERIMENTAL

17 Volume Composition Profile

17.1 Description

17.1.1 Synopsis

Profile Name: Volume Composition (Component Profile)

Version: 1.8.0

Organization: SNIA

Central Class: CIM_StorageElementCompositionService

Scoping Class: ComputerSystem where Dedicated contains “15” (Block Server)

Related Profiles: Table 398 describes the related profiles for Volume Composition.

17.1.2 Overview

Some Arrays and Storage Virtualizers as well as Volume Managers have the ability to combine together
existing storage volumes to make them appear to be one, bigger, volume. These are called composite
volumes in this version of the specification. This is different from the approach shown in the Block
Services Package which shows how to create StorageExtents and StoragePools. This profile shows how
to create StorageVolumes from volumes that are already allocated from the Storage Pool and exposed.
These volumes may not necessarily be mapped to a port or masked to a host. These volumes can come
from the same or different storage pools. Often the rules to determine which volumes can be combined
with other volumes are quite complex and can vary even across a vendor's own product line. Once these
elements are combined together, only one storage element is visible and the rest of the storage elements
are hidden and cannot be exposed. When the composite storage element is dissolved, the hidden
StorageVolumes reappear.

The Volume Composition Profile describes how instrumentation would combine exposable storage
elements into other exposable storage elements. Storage Elements in this context are Storage Volumes
or Logical Disks, although for this version of the specification, only StorageVolumes are supported.

This profile introduces a number of new methods and capabilities. The existing methods in the
StoragePool and StorageConfigurationService classes (CreateOrModifyElementFromStoragePool,
CreateOrModifyElementFromElements, ReturnToStoragePool) were found to be inadequate or attached
to the wrong class (i.e., StoragePool) to support the desired functionality. For this reason new methods
with a composition-specific focus are introduced, instead of extending or overloading the usage of
existing methods.

Table 398 - Related Profiles for Volume Composition

Profile Name Organization Version Requirement Description

Extent Composition SNIA 1.7.0 Mandatory

Block Services SNIA 1.8.0 Mandatory

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2
SNIA Technical Position 555

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
17.1.3 Relationship to Block Services Package

This profile makes use of the Block Services Package model and the applicable methods. Block Services
shows how StorageExtents and StoragePools may be constructed from StoragePools and ultimately how
StorageExtents may be exposed as a storage element (StorageVolume or LogicalDisk). This profile uses
the StorageVolume, StorageExtent, and StoragePool classes in essentially the same ways as Block
Services This profile does not discuss how to create or delete StoragePools. It does maintain the concept
that a StorageVolume is allocated from a StoragePool as shown by the AllocatedFromStoragePool
association, although it does extend by allowing a StorageVolume to be allocated from multiple
StoragePools. It also maintains the concept that a StorageVolume has a BasedOn association to an
underlying StorageExtent. Because of this, the capacity calculations as defined in the Block Services
Package shall continue to produce the correct results.

17.1.4 Relationship to Extent Composition

This profile is a component profile and extends the functionality of the Extent Composition profile, which
in turn references this profile as a supported profile. This profile requires the use of the Extent
Composition Profile.

Extent Composition shows the hierarchical relationships between StorageVolumes and StorageExtents.
This profile shows how to model composite storage elements (composite StorageVolumes). Extent
Composition does not define any methods. This profile defines methods to perform composition and
decomposition of composite StorageVolumes.

17.1.5 Model

To model these composite volumes, this profile shall define the use of CompositeExtent to represent the
“composition” characteristics of the volume. A composite StorageVolume shall have a BasedOn
association to the Antecedent CompositeExtent. That CompositeExtent shall have
CompositeExtentBasedOn or BasedOn relationships to the underlying extents (from potentially multiple
pools) that comprise the StorageVolume. These underlying extents could, in turn, be CompositeExtents.
556

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94
If the volume is a composite from multiple pools, there shall be one AllocatedFromStoragePool
association to each pool. SpaceConsumed shall show applicable space consumed from each pool. The
general class model looks like Figure 102: "Volume Composition Class Mode".

One important thing to note about the class model is that the CompositeExtent is not associated via
ConcreteComponent to the StoragePool.

The client can use the StorageElementCompositionCapabilities to determine which features of this profile
are supported. The first property is to check is SupportsComposites, which will be set to true if the
instrumentation supports creating and modifying composites. The client should also check
MaxCompositeSize and MaxCompositeElements to determine the bounds for composite creation. Since
there are a number of differences in the way vendors have implemented creation and modification, the
client should check the CompositionCharacteristics array to understand which creation and modification
options the instrumentation supports. The SupportedAsynchronousActions and
SupportedSynchronousActions indicate which methods are supported and whether or not a job is started
when the method is invoked. An entry in both arrays indicates a job may be started in some cases but not
in others. SupportedStorageElements indicates the types of storage elements that may be used. For this
version of the specification, only StorageVolumes are supported. The CompositionMethodsSupported
indicates which of the different ways of creating a composite (simple concatenation, striping across
elements, concatenate and stripe, etc.) are supported by the instrumentation. Lastly,
CompositeSourcesSupported is used to indicate the source of storage elements when they are not
explicitly specified in the call to CreateOrModifyCompositeElement. The client can examine the

Figure 102 - Volume Composition Class Mode

StorageVolume

CompositeExtent

StorageExtent

StoragePool

BasedOn

BasedOn

ConcreteComponent

AllocatedFromStoragePool
ComputerSystem SystemDevice

HostedService

ElementCapabilities

StorageElementCompositionService

StorageElementCompositionCapabilities

SystemDevice

Block Services

StorageSetting

1

1

1

1 11

1

1

*

1

*

Extent Composition

ElementSettingData 1

*

SNIA Technical Position 557

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122
CompositionCharacteristics property to determine which options are permitted. See Table 399 for a
summary of those possible values.

17.1.6 Quality of Service (QoS) Considerations

It is a requirement of Block Services that each StorageVolumes have an associated StorageSetting. This
StorageSetting defines a requested ‘service level’ in terms of data and package redundancy. The
currently achieved value is found in the StorageVolume itself.

When a composite is created, it shall have an associated StorageSetting as regular StorageVolumes do.
It shall also track the current ‘service level’ achieved in the StorageVolume properties as specified by
Block Services. However, the resulting ‘service level’ needs to be determined. Determining what this
resulting ‘service level’ will depend upon the parameters passed in to CreateOrModifyCompositeElement.
If only InElements is passed in, the ‘service level’ of the StorageVolume shall be determined by the
instrumentation. If Goal or RepresentativeElement is passed in, the instrumentation shall attempt to meet
the ‘service level’ specified by the Goal or RepresentativeElement instead of InElements (if InElements is
non-NULL).

17.1.7 Composite Stripe Length and Depth

This profile supports the creation of composites where the elements are either concatenated together,
striped, or concatenated and striped. To provide this information, this profile utilizes a StorageSetting that
contains additional information about any striping done on the composite.
StorageSetting.ExtentStripeLength describes the number of underlying storage elements in a composite

Table 399 - CompositionCharacteristics Property

Value Description

CompositionIsDestructive Any data that exists on the elements will be destroyed when the composite is
created

CanCompositeComposites It is possible to use an existing composite as an element to a new composite

CanModifyComposite An existing composite can be modified by adding or removing one or more elements

CompositeElementsMustBeSameSize All elements used to create/modify a composite shall be the same size

CompositeElementsMustBeSameRAID/QoS All elements used to create/modify a composite shall have the same RAID or QoS
level

DecompositionDeletesElements When the composite is dissolved, the component elements (e.g. StorageVolumes)
are deleted

CanAddToComposite Elements can be added to a composite in any position

CanAppendToComposite Elements can only be added at the end of a composite.

CanRemoveFromComposite Elements can be removed from a composite

CompositeAdditionIsDestructive Adding elements to a composite results in loss of data

CompositeRemovalIsDestructive Removing elements from a composite results in loss of data

EXPERIMENTAL

CompositeAdditionCanPreserveData Adding elements to a composite can preserve data

CompositionCanPreserveData Any data that exists on the member volumes can be preserved while creating the
composite volume.

EXPERIMENTAL
558

 Example 1

123

124

125

126

127

128

129
volume that data is striped across. For any volumes not participating in the stripe, data is linearly written
to the remaining volumes. This property only applies to composites that have a CompositeType of "Stripe
elements” or "Concatenate and stripe elements". In the case of "Stripe elements", this value shall be
equal to the number of elements in the composite. In the case of "Concatenate and stripe elements",
ExtentStripeLength shall be equal to the number of striped elements and not the number of concatenated
elements. In other words, for "Concatenate and stripe elements", ExtentStripeLength would be equivalent
to the total number of volumes in the composite minus the number of concatenated elements.

The StorageSetting class also defines the UserDataStripeDepth property. This property defines the
number bytes written to an individual striped volume in a composite volume before data is written to the
next volume in the stripe. This property only applies to Composite Volumes that have a CompositeType of
"Stripe elements” or "Concatenate and stripe elements". Furthermore, for a composite volume there is no
relationship between StorageSetting.ExtentStripeLength and StorageSetting.UserDataStripeDepth, which
collectively with StorageSetting.ParityLayout describe the RAID level of storage elements. As an
example, consider the case where you have a 4-volume composition with 3 striped and 1 concatenated
volumes. In this example, UserDataStripeDepth bytes of data are written alternatively to the first 3
volumes until they fill up. Then all the writes go to the last volume.

The CompositeExtent properties are also affected by the stripe length. The
CompositeExtent.ExtentStripeLength shall be set to 1 when the CompositeType is “Concatenate
elements”, n for “Stripe elements”, and (n minus number of concatenated volumes) for “Concatenated and
stripe elements”; where n is the number of members of a composite volume.
CompositeExtent.IsConcatenated shall be set to true for CompositeType “Concatenate elements” and
“Concatenated and stripe elements”, false otherwise. PackageRedundancy shall be set to zero as there is
no package redundancy in the CompositeExtent. IsBasedOnUnderlyingRedundancy shall be set to true if
all of the composite volumes’ IsBasedOnUnderlyingRedundancy property is set to true, false otherwise.
NoSinglePointOfFailure shall be set to false as the CompositeExtent represents a single point of failure
for the composite volume.

17.1.8 Examples

17.1.8.1 Example 1

Figure 103 shows how a composite volume may be created. For simplification, the value of the
StorageExtent.BlockSize property is 1 and the associations to the underlying primordial StoragePool
have been omitted, along with the StorageSettings associated to the volumes. In some implementations,
there may be intermediate extents between the volume and the ConcreteComponent StorageExtent.

In this example, we have four StorageExtents of 40 blocks each that are combined into a concrete
storage pool of 160 blocks and four storage volumes allocated from the pool, each consuming 40 blocks.
The remaining space in the pool is 0 blocks.
SNIA Technical Position 559

Example 1

130

131

132

133

134

135

136

Next, a composite volume is created by calling CreateOrModifyCompositeElement using three of the
volumes (V1, V2, and V3). The result, shown in Figure 104, is the creation of a composite volume with the
name V1 whose size is now 120 blocks and volumes V2 and V3 are now inaccessible. The volume V4 is
unchanged. A CompositeExtent is added and is the Antecedent of a BasedOn association to the
StorageVolume. In turn, the BasedOn associations that were going from volumes V1, V2, and V3 from
extents SE1, SE2, and SE3 are now associated from the extents to the CompositeExtent.

Figure 103 - Example 1 Step 1

V1: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

Apool: StoragePool

Primordial = false
TotalManagedSpace = 160
RemainingManagedSpace = 0

V4: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

V3: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

V2: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

SE1: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE4: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE3: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE2: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

BasedOn BasedOn BasedOn BasedOn

ConcreteComponent

ConcreteComponentConcreteComponent

ConcreteComponent

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40
560

 First Alternative to Example 1

137

138

139

140

141

142

143

144
17.1.8.2 First Alternative to Example 1

Figure 105 shows how the StorageSetting would be set when two volumes are turned into a composite. In
this example, the volumes have a BasedOn relationship to a CompositeExtent. These volumes partially
consume the underlying extent. Not shown in the diagram are the other StorageVolumes that consume
the rest of the extent. In this example, the first volume, V1, has a DataRedundancy of 2 and a
PackageRedundancy of 1. The second volume, V2, has a DataRedundancy of 1 and a
PackageRedundancy of 0

Figure 104 - Example 1 Step 2

V1: StorageVolume

NumberOfBlocks = 120
ConsumableBlocks = 120

Apool: StoragePool

Primordial = false
TotalManagedSpace = 160
RemainingManagedSpace = 0

V4: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

SE1: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

BasedOn

BasedOn

BasedOn
BasedOn

ConcreteComponent

ConcreteComponent

ConcreteComponent ConcreteComponent

AllocatedFromStrorgePool
SpaceConsumed=120 AllocatedFromStrorgePool

SpaceConsumed=40

C1: CompositeExtent

NumberOfBlocks = 120
ConsumableBlocks = 120
ExtentStripeLength=1
PackageRedundancy=0

BasedOn

SE4: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE3: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE2: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40
SNIA Technical Position 561

First Alternative to Example 1

145

146

147

148

149
.

As shown in Figure 106, after composition, the two volumes are combined into a single volume, V1, with
a size equal to the sum of the prior two volumes. The StorageSetting of composite volume has been set to
the lowest StorageSetting of the “before” volumes, which in this case is the StorageSetting from volume
V2, for a DataRedundancy of 1 and a PackageRedundancy of 0. Also note that (partial) StorageExtents
have been added between the CompositeExtent representing the composite volume (CE1-2) and the
underlying CompositeExtents from before (CE1 and CE2). This is to preserve the consumption
information of the original volumes.

Figure 105 - First Alternative Example - Before Composition

V1: StorageVolume

NumberOfBlocks = 10
ConsumableBlocks = 10

V2: StorageVolume

NumberOfBlocks = 20
ConsumableBlocks = 20

CE1: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

CE2: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn BasedOn

S1: StorageSetting

DataRedundancy=2
PackageRedundancy=1
ParityLayout=NULL

ElementSettingData

S2: StorageSetting

DataRedundancy=1
PackageRedundancy=0
ParityLayout=NULL

ElementSettingData
562

 Second Alternative to Example 1

150

151

152

153

154
17.1.8.3 Second Alternative to Example 1

Figure 107 also shows an alternative extent model. In this example, the volumes have a BasedOn
relationship to a CompositeExtent that in turn is based on an underlying StorageExtent (e.g. a
ConcreteComponent of a concrete StoragePool). These volumes wholly consume the underlying extent.
In this example, both volumes have a DataRedundancy of 2 and a PackageRedundancy of 1.

Figure 106 - First Alternative Example - After Composition

V1: StorageVolume

NumberOfBlocks = 30
ConsumableBlocks = 30

CE1: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

CE2: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

CSS1: StorageSetting

DataRedundancy=1
PackageRedundancy=0
ParityLayout=NULL
StripeLength=0
StripeDepth=0

ElementSettingData

BasedOn

CE1-2: CompositeExtent

NumberOfBlocks = 30
ConsumableBlocks = 30
ExtentStripeLength=1
PackageRedundancy=0

BasedOn BasedOn

PE1: StorageExtent

NumberOfBlocks = 10
ConsumableBlocks = 10

PE2: StorageExtent

NumberOfBlocks = 20
ConsumableBlocks = 20

BasedOnBasedOn
SNIA Technical Position 563

Second Alternative to Example 1

155

156

157

158

159
After composition, as shown in Figure 108, the two volumes are combined into a single volume, V1, with
a size equal to the sum of the prior two volumes. The StorageSetting of the composite volume has been
set to the StorageSetting of the “before” volumes, which in this case is a DataRedundancy of 2 and a
PackageRedundancy of 1. Also note that the volume is now based on a single CompositeExtent (CE2 has
been removed), which is now based on the previous two underlying StorageExtents.

Figure 107 - Second Alternative Example - Before Composition

V1: StorageVolume

NumberOfBlocks = 50
ConsumableBlocks = 50

V2: StorageVolume

NumberOfBlocks = 50
ConsumableBlocks = 50

CE1: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

CE2: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn BasedOn
S1: StorageSetting

DataRedundancy=2
PackageRedundancy=1
ParityLayout=NULL

ElementSettingData

S2: StorageSetting

DataRedundancy=2
PackageRedundancy=1
ParityLayout=NULL

ElementSettingData

SE1: StorageExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

SE2: StorageExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn BasedOn
564

 Example 2

160

161

162

163

164

165

166

167

168
17.1.8.4 Example 2

In this example, shown in Figure 109, a composite volume is built from volumes from two concrete
storage pools. The configuration is the same as in the first example, except now there are two concrete
StoragePools. Volumes V1 and V2 and extents SE1 and SE2 are associated to StoragePool A, and
volumes V3 and V4 and extents SE3 and SE4 are associated to StoragePool B.

Figure 108 - Second Alternative Example - After Composition

V1:StorageVolume

NumberOfBlocks = 100
ConsumableBlocks = 100

CE1: CompositeExtent

NumberOfBlocks = 100
ConsumableBlocks = 100
ExtentStripeLength=1
PackageRedundancy=0

BasedOn

ElementSettingData

SE1: StorageExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

SE2: StorageExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn BasedOn

CSS1: StorageSetting

DataRedundancy=2
PackageRedundancy=1
ParityLayout=NULL
StripeLength=0
StripeDepth=0
SNIA Technical Position 565

Example 2

169

170

171

172

173

174

175

176

177

178

179

Like the example shown in Figure 108, three volumes are combined into a composite volume, leaving one
original volume. In this case, the composite volume has an AllocatedFromStoragePool association to
each of the pools from which it was created. The SpaceConsumed property in the association is set to the
space used from that particular pool. In this case, since two extents were consumed from StoragePool A
and one from StoragePool B, the AllocatedFromStoragePool.SpaceConsumed for StoragePool A is 80
blocks and the AllocatedFromStoragePool.SpaceConsumed for StoragePool B is 40 blocks. The
CompositeExtent has BasedOn associations to the underlying StorageExtents in each pool. Figure 110:
"Example 2 - After Composition" shows the resulting model.

Figure 109 - Example 2 - Before Composition

V1: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

PoolA: StoragePool

Primordial = false
TotalManagedSpace = 80
RemainingManagedSpace = 0

V4: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

V3: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

V2: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

SE1: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

BasedOn BasedOn BasedOn BasedOn

ConcreteComponent

ConcreteComponentConcreteComponent ConcreteComponent

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40

PoolB: StoragePool

Primordial = false
TotalManagedSpace = 80
RemainingManagedSpace = 0

StoragePool A StoragePool B

SE4: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE3: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE2: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40
566

 Example 2

180

181

182

183

184
17.2 Striped and Concatenated Composite Volumes

The profile supports a composite volume that consists of striping across some constituent elements and
concatenation among the remaining constituent elements, or vice versa. For example, Figure 111 shows
the model for a composite volume that combines striping and concatenation. In this example, a composite
volume consisting of “vol1” and “vol2” existed. Then, the composite volume was expanded using “vol3”
and composite type of Concatenate. Therefore, the expanded composite volume now has a composition
of “Concatenate+Stripe”. It is also possible to start with a composite volume that has a composite type of
Concatenate and expand it with two ore more volumes that are Striped. In this case, the composition is
still considered “Concatenate+Stripe”.

Use the method 17.5.7 "GetCompositeElements" to determine which constituent elements are striped and
which ones are concatenated.

Figure 110 - Example 2 - After Composition

V1: StorageVolume

NumberOfBlocks = 120
ConsumableBlocks = 120

PoolA: StoragePool

Primordial = false
TotalManagedSpace = 80
RemainingManagedSpace = 0

V4: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

SE1: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

BasedOn

BasedOn BasedOn

BasedOn

ConcreteComponent

ConcreteComponentConcreteComponent ConcreteComponent

AllocatedFromStrorgePool
SpaceConsumed=80

AllocatedFromStrorgePool
SpaceConsumed=40

PoolB: StoragePool

Primordial = false
TotalManagedSpace = 80
RemainingManagedSpace = 0

C1: CompositeExtent

NumberOfBlocks = 120
ConsumableBlocks = 120

BasedOn

AllocatedFromStrorgePool
SpaceConsumed=40

StoragePool A StoragePool B

SE4: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE3: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE2: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40
SNIA Technical Position 567

Example 2

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

17.3 Health and Fault Management Consideration

Not defined in this document.

17.4 Cascading Considerations

Not defined in this document.

Figure 111 - Striping and Concatenation

V1: StorageVolume

NumberOfBlocks = 125
ConsumableBlocks = 125
IsComposite=true

CE1: CompositeExtent

NumberOfBlocks = 100
ConsumableBlocks = 100
DataRedundancy=1
PackageRedundancy=1
ParityLayout=NULL
ExtentStripeLength=2
ExtentStripeDepth=N
IsConcatenated=false

SE1: StorageExtent (was
Vol1)

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn

SE2: StorageExtent (was
Vol2)

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn

SE3: StorageExtent (was
Vol3)

NumberOfBlocks = 25
ConsumableBlocks = 25

BasedOn

CE2: CompositeExtent

NumberOfBlocks = 125
ConsumableBlocks = 125
DataRedundancy=1
PackageRedundancy=0
ParityLayout=NULL
ExtentStripeLength=1
IsConcatenated=True

BasedOn BasedOn
568

 Creating a Composite

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252
17.5 Methods of the Profile

17.5.1 Overview

Table 400 describes the methods of the profile.

17.5.2 CreateOrModifyCompositeElement

This method is found in the StorageElementCompositionService. It creates or modifies a composite
element. Only like elements (e.g., StorageVolumes) can be combined. In this version of the specification,
only StorageVolumes may be used to create composite elements.

This method attempts to support vendors’ sometimes complicated algorithms for creating and modifying
composite storage elements, while simplifying it as much as possible. The key parameters are the Goal,
RepresentativeElement, Size, InElements[], and TheElement. Setting one or more of these values will
influence what the other values of these key parameters may be. These combinations will be described
later in this clause. Of the other parameters, they are fairly self-explanatory and are described in Table
401. For this version of the specification, ElementType shall only be “StorageVolume”.

The Goal parameter specifies a set of generic QoS settings to use when creating the composite. The
RepresentativeElement parameter is intended as a more detailed goal or QoS target for the composite.
Because vendors have complex rules to create composites, it can be difficult to map those to the
standard QoS settings that might be expressed in the usual setting properties. By passing in a
representative element, the client is indicating to the instrumentation that it should use additional vendor-
specific information about that storage element when trying to create a composite. This allows for better
interoperability because it hides those vendor rules, while still supporting vendor needs. If Goal or
RepresentativeElement is non-null, then the other shall be null. InElements[] can also be used to deduce
QoS setting to use in case neither Goal or RepresentativeElement is specified. In this case, the QoS for
the composite element will be the lowest common denominator of the QoS values for the InElements
array.

17.5.2.1 Creating a Composite

When creating a new composite storage element, there are two distinct modes of operation. Regardless
of which mode is used, the following values shall apply:

Table 400 - Method Summary

Method Created Instances Modified Instances Deleted Instances

CreateOrModifyCompositeElement StorageVolume

CompositeExtent

StorageVolume

CompositeExtent

StorageVolume

CompositeExtent

ReturnElementToElements StorageVolume

CompositeExtent

StorageVolume

CompositeExtent

StorageVolume

CompositeExtent

GetAvailableElements N/A N/A N/A

GetCompositeElements N/A N/A N/A

GetSupportedStripeLengths N/A N/A N/A

GetSupportedStripeLengthRange N/A N/A N/A

GetSupportedStripeDepths N/A N/A N/A

GetSupportedStripeDepthRange N/A N/A N/A

RemoveElementsFromElement StorageVolume

CompositeExtent

StorageVolume

CompositeExtent

N/A
SNIA Technical Position 569

Modifying a Composite

253

254

255

256

257

258

259
• The TheElement parameter shall be NULL;

• ElementName may be specified if the instrumentation supports naming of composite
elements;

• CompositeType may be specified if the instrumentation supports the setting of this
parameter.;

• Job will be non-NULL upon the method return if a Job was created.

The two creation use cases are the following:

• Pass in a non-empty list of extents (e.g., StorageVolumes) in InElements[] and a NULL Size parameter. The
RepresentativeElement and Goal parameters may be NULL as the instrumentation will pick up the QoS goal
from the InElements. If RepresentativeElement is not NULL, the instrumentation shall attempt to satisfy the
QoS settings in the RepresentativeElement. It shall fail if it cannot create a composite that satisfies that QoS.
If Goal is not NULL, the instrumentation shall attempt to satisfy the QoS settings in the Goal. It shall fail if it
cannot create a composite that satisfies that Goal. The user may specify RepresentativeElement or Goal, but
not both. The ElementSource parameter shall be NULL.

• Pass in a Size and a NULL InElements parameter. In this case, the instrumentation shall find the elements to
use, based on the value of the ElementSource parameter, which may be NULL, indicating the instrumentation
will determine the source of the elements. Goal or RepresentativeElement shall be specified. If
RepresentativeElement is not NULL, the instrumentation shall attempt to satisfy the QoS settings in the
RepresentativeElement. It shall fail if it cannot create a composite that satisfies that QoS. If Goal is not NULL,
the instrumentation shall attempt to satisfy the QoS settings in the Goal. It shall fail if it cannot create a
composite that satisfies that Goal. The user may specify RepresentativeElement or Goal, but not both. The
size of the composite created shall be equal to or greater than the Size passed in.

17.5.2.2 Modifying a Composite

When modifying a composite, the client should examine the supported capabilities of the instrumentation
before modifying a composite, as certain operations may result in data loss, depending upon the
capabilities of the instrumentation.

Modifying a composite is similar to creation, with a few differences. The key difference is that TheElement
shall be specified. ElementName may be specified if the instrumentation supports naming of composite
elements. CompositeType may be specified if the instrumentation supports the setting of this parameter.
Job will be non-NULL upon the method return if a Job was created.

The two modification use cases are the following:

• Pass in a non-empty list of extents (e.g., StorageVolumes) in InElements[] and a NULL Size parameter. The
RepresentativeElement and Goal parameters may be NULL as the instrumentation will pick up the QoS goal
from the existing composite and the InElements. If RepresentativeElement is not NULL, the instrumentation
shall attempt to satisfy the QoS settings in the RepresentativeElement. It shall fail if it cannot modify the
composite to satisfies that QoS. If Goal is not NULL, the instrumentation shall attempt to satisfy the QoS
settings in the Goal. It shall fail if it cannot modify a composite to satisfy that Goal. The user may specify
RepresentativeElement or Goal, but not both. If the Size parameter is NULL, the Instrumentation shall modify
the composite size to be the current size plus the sum of the ConsumableBlocks times BlockSize of the
InElements[] entries. The ElementSource parameter shall be NULL.

• Pass in a Size and a NULL InElements parameter. In this case, the instrumentation shall find the elements to
use, based on the value of the ElementSource parameter, which may be NULL, indicating the instrumentation
will determine the source of the elements. Goal or RepresentativeElement shall be specified. If
RepresentativeElement is not NULL, the instrumentation shall attempt to satisfy the QoS settings in the
RepresentativeElement. It shall fail if it cannot modify the composite to satisfy that QoS. If Goal is not NULL,
the instrumentation shall attempt to satisfy the QoS settings in the Goal. It shall fail if it cannot modify a
570

 Modifying a Composite

260

261

262

263

264

265

266
composite to satisfy that Goal. The user may specify RepresentativeElement or Goal, but not both. The size
of the composite created shall be equal to or greater than the Size passed in. If Size is smaller than the
current composite size, this may mean that volumes in the composite may remove from the composite.

Table 401 describes the return values for the CreateOrModifyCompositeElement method.

Table 401 - CreateOrModifyCompositeElement

Method: CreateOrModifyCompositeElement

Return Values:

Value Description

0: Success Job completed with no error.

1: Not Supported Not supported

2: Unknown Unknown error occurred

3: Timeout Timeout

4: Failed Method failed.

5: Invalid Parameter

6: In Use Element is in use and cannot be modified

4096: Method Parameters Checked - Job
started

Job was started

4097: Size Not supported

Parameters:

Qualifiers Name Type Description/Values

IN ElementName string End-user relevant name for the element created

IN ElementType uint16 Type of element being created

OUT Job REF ConcreteJob Reference to the job created

IN Goal REF ManagedElement The QoS requirements for the composite
element to maintain. This parameter may be
null. If both Goal and RepresentativeElement
are null, the implementation selects an
appropriate Goal from the InElements. When a
StorageSetting is used, this will include the
stripe length and depth.

IN RepresentativeEleme
nt

REF StorageExtent The instrumentation will use this parameter +
Size or InElements to determine the elements
used to construct the composite. This parameter
may be NULL. If both Goal and
RepresentativeElement are null, the
implementation selects an appropriate Goal
from the InElements.

IN/OUT Size uint64 Unit: bytes

As an input parameter Size specifies the desired
size. If NULL, then InElements shall be supplied.
If not NULL, this parameter will supply a new
size when creating or modifying an existing
element.

As an output parameter Size specifies the size
achieved.
SNIA Technical Position 571

Modifying a Composite

267

268

269

270

271

272
IN InElements[] REF StorageExtent The elements from which to create the
composite element. If this parameter is NULL
then Size shall be non-NULL.

Once the elements are combined, they will be
removed from the model and replaced with a
single element.

For some instrumentation, this may be one of
the InElements, so in effect, all but one are
removed.

IN/OUT TheElement REF LogicalElement When used to create a composite, this shall be
NULL

Upon modification, this shall specify an existing
composite element. The method will then modify
the specified element. Upon completion (unless
a Job is started), a reference to the resulting
element shall be returned

IN CompositeType uint16 Type of composite element to create. Possible
values are Concatenate, Stripe,

Concatenate+Stripe, Vendor specific.

If NULL, the instrumentation will decide

IN ElementSource uint16 Tell the instrumentation where to get the
elements. Only applies when Size is specified
and not InElements. Otherwise it shall be NULL.

Possible values are:

1. Use existing elements only

2. Create new elements only

3. Can use existing or create new or both

4. Instrumentation decides

If NULL, the instrumentation will decide.

Table 401 - CreateOrModifyCompositeElement

Method: CreateOrModifyCompositeElement
572

 Modifying a Composite

273

274

275

276

277

278

279

280

281
EXPERIMENTAL

17.5.3 CreateOrModifyCompositeElementFromStoragePool

This method extends CreateOrModifyCompositeElement to support new parameters like PreserveData,
HelperElement, InPools and NumberOfDevices with additional value support for ElementType as
described in Table 402 .

Table 402 - CreateOrModifyCompositeElementFromStoragePool

Method: CreateOrModifyCompositeElementFromStoragePool

Return Values:

Value Description

0: Success Job completed with no error.

1: Not Supported Not supported

2: Unknown Unknown error occurred

3: Timeout Timeout

4: Failed Method failed.

5: Invalid Parameter

6: In Use Element is in use and cannot be modified

4096: Method Parameters Checked - Job
started

Job was started

4097: Size Not supported

Parameters:

Qualifiers Name Type Description/Values

IN ElementName string End-user relevant name for the element created

IN ElementType uint16 Type of element being created.

Valid values are:

“2” (StorageVolume), “3” (LogicalDisk),

"4" (ThinlyProvisionedStorageVolume),

"5" (LocalMirror),

"6" (ThinLocalMirror),

"7" (LocalSnap), "8" (ThinLocalSnap)

"9" (ThinLocalMirrorPersistent), “10”

(FullyProvisionedStorageVolume).

OUT Job REF ConcreteJob Reference to the job created

IN Goal REF ManagedElement The QoS requirements for the composite
element to maintain. This parameter may be
null. If both Goal and RepresentativeElement
are null, the implementation selects an
appropriate Goal from the InElements. When a
StorageSetting is used, this will include the
stripe length and depth.
SNIA Technical Position 573

Modifying a Composite

282

283

284

285

286

287
IN RepresentativeEleme
nt

REF StorageExtent The instrumentation will use this parameter +
Size or InElements to determine the elements
used to construct the composite. This parameter
may be NULL. If both Goal and
RepresentativeElement are null, the
implementation selects an appropriate Goal
from the InElements.

IN/OUT Size uint64 Unit: bytes

As an input parameter Size specifies the desired
size. If NULL, then InElements shall be supplied.
If not NULL, this parameter will supply a new
size when creating or modifying an existing
element.

As an output parameter Size specifies the size
achieved.

IN InElements[] REF StorageExtent The elements from which to create the
composite element. If this parameter is NULL
then Size shall be non-NULL.

Once the elements are combined, they will be
removed from the model and replaced with a
single element.

For some instrumentation, this may be one of
the InElements, so in effect, all but one are
removed.

IN/OUT TheElement REF LogicalElement When used to create a composite, this shall be
NULL

Upon modification, this shall specify an existing
composite element. The method will then modify
the specified element. Upon completion (unless
a Job is started), a reference to the resulting
element shall be returned

IN CompositeType uint16 Type of composite element to create. Possible
values are Concatenate, Stripe,

Concatenate+Stripe, Vendor specific.

If NULL, the instrumentation will decide

IN ElementSource uint16 Tell the instrumentation where to get the
elements. Only applies when Size is specified
and not InElements. Otherwise it shall be NULL.

Possible values are:

1. Use existing elements only

2. Create new elements only

3. Can use existing or create new or both

4. Instrumentation decides

If NULL, the instrumentation will decide.

IN PreserveData boolean When a composite is created or expanded, the
data on the member volumes is not preserved
by default. If this parameter is set to true, the
implementation will try to preserve the data.

Table 402 - CreateOrModifyCompositeElementFromStoragePool

Method: CreateOrModifyCompositeElementFromStoragePool
574

 Modifying a Composite

288

289

290

291

292

293

294

295

296

297

298

299

300

301
EXPERIMENTAL

17.5.4 RemoveElementsFromElement

This method is found in the StorageElementCompositionService. It removes selected elements from a
composite volume. Note that the elements returned may not match the elements that went into the
composite (e.g., VPD page 83h information may not be the same). Also, removing a member element
from a composite element may impact the data stored on the remaining members (see Table 399,
“CompositionCharacteristics Property,”). Removing all members is the same as calling
ReturnElementToElements.

Table 403 describes the return values for the RemoveElementsFromElement method.

IN HelperElement REF StorageExtent If specified, it indicates an element that can be
used as a helper element for certain operations,
such as expanding a composite with data
preservation.

IN InPools[] REF StoragePool Pools(s) where the composite volume has to be
created. If not specified, system selects the
appropriate pools.

IN NumberOfDevices uint32 Number of composite volumes to be created.

Table 403 - RemoveElementsFromElement

Method: RemoveElementsFromElement

Return Values:

Value Description

0: Success Job completed with no error.

1: Not Supported Not supported

2: Unknown Unknown error occurred

3: Timeout Timeout

4: Failed Method failed.

5: Invalid Parameter

6: In Use Element is in use and cannot be modified

4096: Method Parameters Checked - Job
started

Job was started

Parameters:

Qualifiers Name Type Description/Values

OUT Job REF ConcreteJob Reference to the job created

INOUT TheElement REF StorageVolume Composite element to modify. Returns element
in case object path changes as a result of
removal

Table 402 - CreateOrModifyCompositeElementFromStoragePool

Method: CreateOrModifyCompositeElementFromStoragePool
SNIA Technical Position 575

Modifying a Composite

302

303

304

305

306

307

308

309

310

311

312
17.5.5 ReturnElementToElements

This method is found in the StorageElementCompositionService. It dissolves a composite into its
constituent elements. Note that the elements returned may not match the elements that went into the
composite (e.g., VPD page 83h information may not be the same).

Table 404 describes the return values for the ReturnElementToElements method.

17.5.6 GetAvailableElements

This method, found in the StorageElementCompositionService, queries the set of pools passed in and
returns a set of elements (volumes or logical disks) that can be composed together based on the
specified goal and element passed in. Since there are usually complicated vendor-specific rules for
creating these composite volumes, using the representative element can supply more vendor-specific
information than there would be in a interoperable setting. The client can then use some or all of this list
in a call to CreateOrModifyCompositeElement().

In this version of the specification, only StorageVolumes shall be supported as the ElementType.

IN InElements[] REF StorageExtent The elements to remove from the composite
element. These may be found by calling

GetCompositeElements or keeping track of the
elements that went into the composite.

Table 404 - ReturnElementToElements

Method: ReturnElementToElements

Return Values:

Value Description

0: Success Job completed with no error.

1: Not Supported Method not supported

2: Unknown Unknown error occurred

3: Timeout Operation timed out

4: Failed Operation failed

5: Invalid Parameter Invalid parameter

6: In use Element is in use and cannot be dissolved

4096: Method Parameters Checked - Job
started

Job was started

Parameters:

Qualifiers Name Type Description/Values

OUT Job REF ConcreteJob Reference to the job created

IN TheElement REF LogicalElement The composite element to dissolve

OUT OutElements[] REF StorageExtent Elements the composite was dissolved into

Table 403 - RemoveElementsFromElement

Method: RemoveElementsFromElement
576

 Modifying a Composite

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329
Table 405 describes the return values for the GetAvailableElements method.

17.5.7 GetCompositeElements

This method is found in the StorageElementCompositionService. It is used to query an existing composite
element to determine the component elements that make up that composite element (i.e., the “parents” of
a composite element). If the method is executed under control of a job, examine the AffectedJobElement
associations for the list of the constituent elements after the job completes.

Table 405 - GetAvailableElements

Method: GetAvailableElements

Return Values:

Value Description

0: Success Job completed with no error.

1: Not Supported Method not supported

2: Unknown Unknown error occurred

3: Timeout Operation timed out

4: Failed Operation failed

5: Invalid Parameter Invalid parameter

6: In use Element is in use and cannot be dissolved

4096: Method Parameters Checked - Job
started

Job was started

Parameters:

Qualifiers Name Type Description/Values

OUT Job REF ConcreteJob Reference to the job created

IN InPools[] REF StoragePool List of pools to look in

IN Goal REF StorageSetting The QoS goal requirements for the composite
element. Can be NULL. If it is NULL, then
RepresentativeElement shall be non-NULL

IN ElementType uint16 Enumeration indicating the type of element
being created or modified

Values:

2: StorageVolume

3: LogicalDisk

IN RepresentativeEleme
nt

REF StorageExtent Serves as a guide to help the instrumentation
determine which elements to return. It shall be a
member of one of the pools passed in. This may
be NULL, only if Goal is non-NULL

OUT Candidates[] REF StorageExtent The elements that can be used to create the
composite element. These will be an array of
references to StorageVolumes or LogicalDisks.
SNIA Technical Position 577

Modifying a Composite

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375
Table 406 describes the return values for the GetCompositeElements method.

17.5.8 GetSupportedStripeLengths

This method is found in the StorageElementCompositionService. This method returns the list of possible
stripe lengths which can be used in the property StorageSetting.ExtentStripeLength supplied, as the
Goal, to the CreateOrModifyCompositeElement method. Note that different implementations may support
either the GetSupportedStripeLengths or the GetSupportedStripeLengthRange method. If the system only
supports a range of lengths, then the return value will be set to 3.

Table 407 describes the return values for the GetSupportedStripeLengths method.

Table 406 - GetCompositeElements

Method: GetCompositeElements

Return Values:

Value Description

0: Success Method completed with no error.

1: Not Supported Method not supported

2: Unknown Unknown error occurred

3: Timeout Operation timed out

4: Failed Operation failed

5: Invalid Parameter Invalid parameter

6: In use Element is in use and cannot be accessed

4096: Method Parameters Checked - Job
started

Job was started

Parameters:

Qualifiers Name Type Description/Values

OUT Job REF ConcreteJob Reference to the job created

IN TheElement REF StorageExtent The element to query

IN RequestType uint16 Possible values are:

Immediate -- return the immediate “parent” of
TheElement.

Primordial -- return dependent storage extents
of TheElement at the lowest extent hierarchy.

OUT OutElements[] REF StorageExtent The elements that comprise the composite.

OUT OutElementTypes[] uint16 A parallel array to OutElements array. Possible
values:

Member of Stripe Set, and

Member of Concatenation

Table 407 - GetSupportedStripeLengths

Method: GetSupportedStripeLengths

Return Values

Value Description
578

 Modifying a Composite

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402
403

404
405

406

407

408

409

410

411

412

413

414

415

416

417
17.5.9 GetSupportedStripeLengthRange

This method is found in the StorageElementCompositionService. For systems that support a range of
stripe lengths for composite volumes, this method can be used to retrieve the range of possible stripe
lengths which can be used in the property StorageSetting.ExtentStripeLength supplied, as the Goal, to
the CreateOrModifyCompositeElement method. Note that different implementations may support either
the GetSupportedStripeLengths or the GetSupportedStripeLengthRange method. If the system only
supports discrete values, then the return value will be set to 3.

Table 408 describes the return values for the GetSupportedStripeLengthRange method.

0 Method completed with no error.

1 Method not supported

2 ElementType not supported

3 Use GetSupportedStripeLengthRange instead

Parameters

Qualifiers Name Type Description/Values

IN ElementType uint16 Type of element

OUT StripeLengths[] uint64 List of supported stripe
Lengths

Table 408 - GetSupportedStripeLengthRange

Method: GetSupportedStripeLengthRange

Return Values

Value Description

0 Method completed with no error.

1 Method not supported

2 ElementType not supported

3 Use GetSupportedStripeLengths instead

Parameters

Qualifiers Name Type Description/Values

IN ElementType uint16 Type of element

OUT MinimumStripeLength uint64 Minimum ExtentStripeLength
for a composite element

OUT MaximumStripeLength uint64 Maximum ExtentStripeLength
for a composite element

OUT StripeLengthDivisor uint64 Composite element’s stripe
length shall be a multiple of
this value

Table 407 - GetSupportedStripeLengths

Method: GetSupportedStripeLengths
SNIA Technical Position 579

Modifying a Composite

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459
17.5.10 GetSupportedStripeDepths

This method is found in the StorageElementCompositionService. This method returns the list of possible
stripe depths which can be used in the property StorageSetting.UserDataStripeDepth supplied, as the
Goal, to the CreateOrModifyCompositeElement method for systems that support discrete stripe depths.
For systems that require the stripe depth to be on a given boundary, such as 512, the stripe length will be
rounded up to the next higher value that is a multiple of the required boundary. Note that different
implementations may support either the GetSupportedStripeDepths or the
GetSupportedStripeDepthRange method. If the system only supports a range of stripe depths, then the
return value will be set to 3.

Table 409 describes the return values for the GetSupportedStripeDepths method.

17.5.11 GetSupportedStripeDepthRange

This method is found in the StorageElementCompositionService. For systems that support a range of
stripe depths for composite volumes, this method can be used to retrieve the range of possible stripe
depths which can be used in the property StorageSetting.UserDataStripeDepth supplied, as the Goal, to
the CreateOrModifyCompositeElement method. Note that different implementations may support either
the GetSupportedStripeDepths or the GetSupportedStripeDepthRange method. If the system only
supports discrete values, then the return value will be set to 3.

Table 410 describes the return values for the GetSupportedStripeDepthRange method.

Table 409 - GetSupportedStripeDepths

Method: GetSupportedStripeDepths

Return Values

Value Description

0 Method completed with no error.

1 Method not supported

2 ElementType not supported

3 Use GetSupportedStripeDepthRange instead

Parameters

Qualifiers Name Type Description/Values

IN ElementType uint16 Type of element

OUT StripeDepths[] uint64 List of supported stripe depths

Table 410 - GetSupportedStripeDepthRange

Method: GetSupportedStripeDepthRange

Return Values

Value Description

0 Method completed with no error.

1 Method not supported

2 ElementType not supported

3 Use GetSupportedStripeDepths instead

Parameters
580

 Modifying a Composite

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496
497

498
499

500

501

502

503
17.6 Use Cases

17.6.1 Indications

When storage elements are combined into a composite or a composite is dissolved, indications shall be
sent. When a composite is created, the instrumentation shall send an InstDelete indication for all volumes
that no longer exist as StorageVolumes. The AllocatedFromStoragePool association shall be deleted, as
well as the ElementSettingData association and its associated StorageSetting. Indications shall not be
required to be sent for those deletions. If the storage element still exists but is no longer accessible, the
provider may send an InstModification indication for the StorageVolume depending upon whether or not
there are any changes to the storage element itself. If the instrumentation creates a new storage element,
then it shall send an InstCreation indication for the new element. If the instrumentation modifies an
existing element and it becomes the element to represent a composite, an InstModification indication
shall be sent. InstModification indications for the AllocatedFromStoragePool association,
ElementSettingData association, and associated StorageSetting shall not be not required.

When a composite is dissolved, the instrumentation shall send an InstCreation indication for each storage
element created. It shall send an InstDeletion indication if the composite element is deleted and an
InstModification indication if the composite element is merely modified. Indications for the
AllocatedFromStoragePool associations, ElementSettingData associations, and associated
StorageSettings that are created, deleted, or modified as a result of the dissolution of the composite shall
not be required.

The user is advised to check the StorageSetting for the storage elements they are interested in after
composite creation or deletion as those settings may have changed from what they were before.

17.6.2 Recipes

No recipes are defined in this version of the standard.

Qualifiers Name Type Description/Values

IN ElementType uint16 Type of element

OUT MinimumStripeDepth uint64 Minimum
UserDataStripeDepth for a
composite element

OUT MaximumStripeDepth uint64 Maximum
UserDataStripeDepth for a
composite element

OUT StripeDepthDivisor uint64 Composite element’s stripe
depth shall be a multiple of
this value

Table 410 - GetSupportedStripeDepthRange

Method: GetSupportedStripeDepthRange
SNIA Technical Position 581

Modifying a Composite

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540
17.7 CIM Elements

17.7.1 Overview

Table 411 describes the CIM elements for Volume Composition.

17.7.2 CIM_CompositeExtent

Created By: Extrinsic

Modified By: Extrinsic

Deleted By: Extrinsic

Requirement: Mandatory

Table 412 describes class CIM_CompositeExtent.

Table 411 - CIM Elements for Volume Composition

Element Name Requirement Description

17.7.2 CIM_CompositeExtent Mandatory

17.7.3 CIM_CompositeExtentBasedOn (Volume Composition) Mandatory

17.7.4 CIM_ElementCapabilities Mandatory

17.7.5 CIM_ElementSettingData Mandatory

17.7.6 CIM_HostedService (Associates ComputerSystem and the
ElementCompositionService)

Mandatory

17.7.7 CIM_StorageElementCompositionCapabilities Mandatory

17.7.8 CIM_StorageElementCompositionService Mandatory

17.7.9 CIM_StorageSetting Mandatory

17.7.10 CIM_StorageVolume Conditional Conditional requirement: Storage Volumes
used as storage elements.

SELECT * FROM CIM_InstModification WHERE SourceInstance
ISA CIM_StorageVolume

Conditional Conditional requirement: Storage Volumes
used as storage elements. Modification of
a StorageVolume upon creation or deletion
of a composite.

Table 412 - SMI Referenced Properties/Methods for CIM_CompositeExtent

Properties Flags Requirement Description & Notes

IsConcatenated Mandatory Indicates data is concatenated across extents in the group.

BlockSize Mandatory Size in bytes of the blocks which form this StorageExtent.

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The maximum number of blocks, of size BlockSize, which are
available for consumption.

SystemCreationClassName Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.
582

 Modifying a Composite

541

542

543

544

545

546

547

548
17.7.3 CIM_CompositeExtentBasedOn (Volume Composition)

Created By: Extrinsics: CreateOrModifyCompositeElement, ReturnElementToElements

Modified By: External

Deleted By: Extrinsics: CreateOrModifyCompositeElement, ReturnElementToElements

Requirement: Mandatory

Table 413 describes class CIM_CompositeExtentBasedOn (Volume Composition).

17.7.4 CIM_ElementCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 414 describes class CIM_ElementCapabilities.

17.7.5 CIM_ElementSettingData

Created By: Extrinsics: CreateOrModifyCompositeElement, ReturnElementToElements

Modified By: Static

Deleted By: Extrinsics: CreateOrModifyCompositeElement, ReturnElementToElements

Requirement: Mandatory

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Unique identifer for the Service.

Table 413 - SMI Referenced Properties/Methods for CIM_CompositeExtentBasedOn (Volume Composition)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 414 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory

Table 412 - SMI Referenced Properties/Methods for CIM_CompositeExtent

Properties Flags Requirement Description & Notes
SNIA Technical Position 583

Modifying a Composite

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566
Table 415 describes class CIM_ElementSettingData.

17.7.6 CIM_HostedService (Associates ComputerSystem and the ElementCompositionService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 416 describes class CIM_HostedService (Associates ComputerSystem and the
ElementCompositionService).

17.7.7 CIM_StorageElementCompositionCapabilities

Created By: Static

Requirement: Mandatory

Table 417 describes class CIM_StorageElementCompositionCapabilities.

Table 415 - SMI Referenced Properties/Methods for CIM_ElementSettingData

Properties Flags Requirement Description & Notes

ManagedElement Mandatory StorageVolume or LogicalDisk.

SettingData Mandatory The composite setting data object associated with the composite element.

Table 416 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
the ElementCompositionService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 417 - SMI Referenced Properties/Methods for CIM_StorageElementCompositionCapabilities

Properties Flags Requirement Description & Notes

ElementName Mandatory User friendly name for this instance of Capabilities.

InstanceID Mandatory Unique identifier for the instance.

SupportsComposites Mandatory Indicates if instrumentation supports composite elements.

MaxCompositeSize Mandatory Indicates the largest composite element that can be created in bytes.

MaxCompositeElements Mandatory Indicates the most elements that can be combined into a composite
element.

CompositionCharacteristics Mandatory Composition characteristics supported by this system.

SupportedAsynchronousActions Mandatory Indicates which methods are executed asynchronously.

SupportedSynchronousActions Mandatory Indicates which methods are executed synchronously.
584

 Modifying a Composite
17.7.8 CIM_StorageElementCompositionService

Created By: Static

Requirement: Mandatory

Table 418 describes class CIM_StorageElementCompositionService.

SupportedStorageElements Mandatory Managed element types that can be composited. Currently can be "2"
(StorageVolume) or "4" (ThinStorageVolume) or "5" (LocalMirror) or
"6" (ThinLocalMirror) or "7" (LocalSnap) or "8" (ThinLocalSnap) or "9"
(ThinLocalMirrorPersistent) or "10" (FullyProvisionedStorageVolume)

CompositionMethodsSupported Mandatory Composition methods supported.

CompositeSourcesSupported Mandatory Composition sources supported.

SupportsCompositeNaming Mandatory Can the user name the composite.

SupportsRepresentativeElement Mandatory Can the user specify the RepresentativeElement in
CreateOrModifyComposite and GetAvailableElements.

EXPERIMENTAL

SupportsInPools Mandatory Can the user specify the pools in which to create the composite.

EXPERIMENTAL

Table 418 - SMI Referenced Properties/Methods for CIM_StorageElementCompositionService

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Unique identifer for the Service.

CreateOrModifyCompositeElement() Mandatory This method creates or modifies a composite element.
Only like elements (e.g. StorageVolumes) can be
combined.

ReturnElementToElements() Mandatory Dissolve the composite. All elements in the composite are
restored.

RemoveElementsFromElement() Optional Removes one or more constituent elements from a
composite volume.

GetAvailableElements() Optional This method queries the set of pools passed in and returns
a set of volumes or logical disks that can be composed
together based on the specified goal and element passed
in.

Table 417 - SMI Referenced Properties/Methods for CIM_StorageElementCompositionCapabilities

Properties Flags Requirement Description & Notes
SNIA Technical Position 585

Modifying a Composite
17.7.9 CIM_StorageSetting

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 419 describes class CIM_StorageSetting.

GetCompositeElements() Optional Returns list of volumes/logical disks that were combined
into this composite volume. Since (usually) all but one of
these volumes/logical disks disappear when the
composite is created, this is an essential method to help
the client figure out what is in the composite. Remember
that a particular client may not have been the one to create
the composite.

GetSupportedStripeLengths Optional This method returns the list of possible stripe lengths
which can be used in the property StorageSetting.
ExtentStripeLength supplied, as the Goal, to the
CreateOrModifyCompositeElement method.

GetSupportedStripeLengthRange Optional This method can be used to retrieve the range of possible
stripe lengths which can be used in the property
StorageSetting.ExtentStripeLength supplied, as the Goal,
to the CreateOrModifyCompositeElement method.

GetSupportedStripeDepths() Optional This method returns the list of possible stripe depths
(a.k.a. stripe size) to use in the
CreateOrModifyCompositeElement method.

GetSupportedStripeDepthRange() Optional This method returns the range of possible stripe depths
(a.k.a. stripe size) to use in the
CreateOrModifyCompositeElement method.

CreateOrModifyCompositeElementFromStora
gePool()

Optional This method extends CreateOrModifyCompositeElement
to support new parameters like PreserveData,
HelperElement, InPools and NumberOfDevices with
additional value support for ElementType.

Table 419 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In addition, the
user-friendly name can be used as a index property for a search of query.
(Note: Name does not have to be unique within a namespace.).

NoSinglePointOfFailure Mandatory Indicates the desired value for No Single Point of Failure. Possible values
are false = single point of failure, and true = no single point of failure.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

Table 418 - SMI Referenced Properties/Methods for CIM_StorageElementCompositionService

Properties Flags Requirement Description & Notes
586

 Modifying a Composite
17.7.10 CIM_StorageVolume

Created By: Extrinsic: ReturnElementToElements

Modified By: External

Deleted By: Extrinsics: CreateOrModifyCompositeElement, ReturnElementToElements

Requirement: Storage Volumes used as storage elements.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional Number of underlying StorageVolumes in a composite volume that data is
striped across.

ExtentStripeLengthMin Optional ExtentStripeLengthMin describes the minimum acceptable stripe length.

ExtentStripeLengthMax Optional ExtentStripeLengthMax describes the maximum acceptable stripe length.

ParityLayout Optional ParityLayout describes the desired parity layout. The value may be 1 or 2
(Non-rotated Parity or Rotated Parity).

UserDataStripeDepth Optional The number of bytes forming a stripe (aka stripe size).

UserDataStripeDepthMin Optional UserDataStripeDepthMin describes the minimum acceptable stripe depth.

UserDataStripeDepthMax Optional UserDataStripeDepthMax describes the maximum acceptable stripe
depth.

ChangeableType Mandatory This property informs a client if the setting can be modified. It also tells the
client how long this setting is expected to remain in the model. If the
implementation allows it, the client can use the property to request that the
setting's existence be not transient.

StorageExtentInitialUsage Optional The Usage value to be used when creating a new storage element.

StoragePoolInitialUsage Optional The Usage value to be used when creating a new storage pool.

Table 419 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes
SNIA Technical Position 587

Modifying a Composite
Table 420 describes class CIM_StorageVolume.

EXPERIMENTAL

Table 420 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks as reported by the hardware.

ConsumableBlocks Mandatory The number of usable blocks.

ExtentStatus Mandatory

OperationalStatus Mandatory
588

1

2
3
4
5
6
7
8

9

10

11

12

13

14

15

16

17

18

19

20
DEPRECATED

18 Volume Management Profile

See last version of this profile, in SMI-S Version 1.6.1.

DEPRECATED
SNIA Technical Position 589

590

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41
EXPERIMENTAL

19 Storage Element Protection Profile

19.1 Description

19.1.1 Synopsis

Profile Name: Storage Element Protection (Component Profile)

Version: 1.8.0

Organization: SNIA

Central Class: StorageProtectionService

Scoping Class: ComputerSystem where Dedicated contains “15” (Block Server)

Related Profiles: Not defined in this document.

19.1.2 Overview

The Storage Element Protection Profile defines classes and methods for managing access permission to
a storage element—either a storage volume or logical disk. This profile also defines how long the
protection shall stay in effect. It allows a client to protect data as required by changeable business and
operational policies. Clients may modify access to a storage element for various reasons, including:

• Regulatory Compliance - Ensure that vital records are available, unaltered (immutable) and protected from
accidental or malicious destruction. The degree of exposure and the retention period depend on the nature
of the records.

• Protection of Fixed Content - Maintain in “Read-only” mode between cyclic refreshes of the data content.

• Protection of Recovery Assets - Protect data from accidental reuse. For example, make recovery logs
“Read-only” or immutable.

• Reclamation of Expired (Archive) Capacity - After migration, delete or destroy data when elements are
released for re-use.

19.1.3 Use Cases

In a typical scenario, a storage element is allocated with Read/Write permission. At a later time, when the
element holds data that requires protection, the access permission is changed to Read-only with a
retention period.

Changes in regulations, audit or litigation may require that the storage element be retained for a longer
period. In this case, the retention period may be extended or alternatively set to a "never to expire" value.
This new setting retains the current protection for an indefinite period--until litigation is resolved, for
example.

Company policy may dictate that archived data, although still protected and retained for legal purposes,
be unavailable even for Read-only. In this case, the element may be hidden from read-and-write access.
It will be visible only to a storage administrator.

19.1.4 Functionality

A management application will interact with this profile in two ways—(1) the management application can
retrieve and modify the access permission attribute and (2) the management application may define the
period for which the access permission will remain in effect (the retention period). During the retention
SNIA Technical Position 591

42

43

44

45

46

47

48

49

50
period, other functions shall be disabled to prevent the storage element from being reformatted, erased or
otherwise (logically) destroyed. While this retention period is in effect, the access permission cannot be
modified except to make it more restrictive. Once this period expires, the access permissions remain in
effect, but they may now be modified. The management application may extend this retention period but
shall not be able to shorten it.

19.1.5 Class Model

In order to support the desired protection functionality, this profile defines a new method, Protect, for the
StorageProtectionService class. This method allows the client to set the protection-related configurations
of a storage element, either a StorageVolume or LogicalDisk. When first called for a storage element, it
creates a StorageProtectionSetting instance with the client requested configuration and associates it to
the target element by the ElementStorageProtectionSettingData association. If the target element already
has a StorageProtectionSetting associated via ElementStorageProtectionSettingData, then it modifies the
properties of the existing instance of StorageProtectionSetting, as shown in Figure 112: "Storage
Element Protection Class Model". After the retention period has expired and every protection

configuration has been released, the StorageProtectionSetting instance will not automatically be removed
by the instrumentation. However a state change indication will be sent to the management application so
that it may remove the instance by using the DeleteInstance operation if needed.

Figure 112 - Storage Element Protection Class Model

ComputerSystem

StorageVolume
or

LogicalDisk

SystemDevice

StorageProtectionSetting

HostedService

ElementCapabilities

1 *
1

*

ElementStorageProtectionSettingData

1

1

StorageProtectionService

Protect()

StorageProtectionCapabilities
592

51

52

53

54

55

56
Table 421 shows properties this profile defines for the StorageProtectionCapabilities class, which
indicates the capability of the element protection feature of the associated StorageProtectionService,
including the granularity of the retention period.

This profile also defines a new Setting class, StorageProtectionSetting, which contains the protection-
related properties for a particular StorageVolume or LogicalDisk storage element, shown in Table 422.
This class is associated to a storage element instance via the ElementStorageProtectionSettingData
association. A client can retrieve the protection-related configurations and statuses of a StorageVolume
or LogicalDisk by traversing the ElementStorageProtectionSettingData association if it exists. If that
association is not found, no protection management is applied for the StorageVolume or LogicalDisk.

Table 421 - Properties for StorageProtectionCapabilities

Property Flags Type Descriptions & Notes

ProtectionTimeGranularity uint16 Granularity for the time period of
StorageProtectionSetting.RemainingProtectionTime.

Possible values are: 0 (Unknown), 1 (Other), 2 (Second), 3 (Minute),
4 (Hour), 5 (Day)

SupportedStorageElementFeatures uint16[] Enumeration indicating which storage elements can be protected.
Possible values:

1 - StorageVolume Protection

2 - LogicalDisk Protection

SupportedSynchronousActions uint16[] One of SupportedSynchronousActions or
SupportedAsynchronousActions shall be implemented. Methods
that will not create a job. Possible values:

1 - Storage Element Protection

SupportedAsynchronousActions uint16[] One of SupportedSynchronousActions or
SupportedAsynchronousActions shall be implemented. Methods
that will create a job. Possible values:

1 - Storage Element Protection

Table 422 - Properties for StorageProtectionSetting

Property Flags Type Descriptions & Notes

ProtectionControlled boolean Whether the storage element is under protection control or not. If
this property is FALSE that indicates the storage device has
protection feature or used to has but currently the service has been
withdrawn or not available to obtain protection attributes by some
accident.

Access uint16 Read and write accessibility of the storage element.

1: Read/Write Enabled

2: Read Only

3. Write Once

4: Read/Write Disabled

While it is not possible to use Protect() to transition to "Write Once",
it’s still needed for correct reporting of status
SNIA Technical Position 593

57

58

59

60

61

62
19.1.6 Access permission

The overall state of the StorageVolume or LogicalDisk protection is indicated by the combination of
several properties. Table 423, Table 424, Table 425, Table 426, and Table 427 show the possible values
of each property listed in Table 422. These tables apply to properties in the StorageProtectionSetting
class.

InquiryProtection Uint16[] Protected responses for SCSI inquiry commands.

1: No SCSI Inquiry Protection

2: Inquiry Disabled

3: Zero Capacity Returned

This property is utilized in the protection of a StorageVolume and it
is optional to implement

DenyAsCopyTarget boolean Whether the storage element can be specified as a copy target or
not. If this property is TRUE then this storage element will not be
selectable as a target of copy pair

LUNMappingConfigurable boolean Whether LU assignment to the storage element is configurable or
not. This property is utilized in the protection of a StorageVolume
and is optional to implement

ProtectExpirationSpecified uint16 Duration type of the storage element protection.

1: None

2: Limited Expiration

3: Permanent

RemainingProtectionTime datetime Amount of remaining time before a management application can
change the access permission.

Table 423 - Values for ProtectionControlled

Value Description

TRUE Storage element is under protection control.

FALSE Storage element is NOT under protection control.

Table 424 - Values for Access

Value Description

0 (Unknown) Accessibility status is unknown.

1 (Read/Write Enabled) Both read and write commands are allowed.

2 (Read Only) Read command is allowed; write command is prohibited.

3 (Write Once) Read command is allowed; overwrite command is
prohibited.

4 (Read/Write Disabled) Both read and write commands are prohibited.

Table 422 - Properties for StorageProtectionSetting

Property Flags Type Descriptions & Notes
594

63

64

65

66

67

68

69

19.1.7 Retention period

The Retention period (the amount of time that the settings are to remain locked) is also indicated by the
combination of several properties. Table 428 and Table 429 show the meaning of each property value.
These tables apply to properties in the StorageProtectionSetting class.

Table 425 - Values for InquiryProtection

Value Description

0 (Unknown) Status is unknown

1 (No SCSI Inquiry Protection) Protection method by the SCSI inquiry commands is not
performed

2 (Inquiry Disabled) All SCSI inquiry commands are rejected

3 (Zero Capacity Returned) Size 0 is returned as a reply of SCSI read capacity
command

Table 426 - Values for DenyAsCopyTarget

Value Description

TRUE Storage element can not be specified as a copy target

FALSE Storage element can be specified as a copy target

Table 427 - Values for LUNMappingConfigurable

Value Description

TRUE LU assignment to the storage volume is configurable

FALSE LU assignment to the storage volume is not
configurable

Table 428 - Values for ProtectExpirationSpecified

Value Description

0 (Unknown) Status is unknown.

1 (None) The protection duration is not specified.

2 (Limited Expiration) The protection expires after the time period

3 (Permanent) The protection is permanent
SNIA Technical Position 595

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85
There are two ways to designate the duration of access permission, shown in Figure 113: "Retention
Time Line":

• Expiration Date - Defines a future date/time when access permission may be modified.

• Remaining Retention Period - Defines the remaining length of time for access permission.

The use of an Expiration Date requires a reference to an agreed-upon reference clock. Without a trusted
external date/time reference, the retention period will be open to spoofing, conflicts between individual
component clocks (e.g., server and storage) and time zones issues. The inevitable nuances of individual
implementations may require variations in the client application.

The use of Remaining Retention Period does not require a reference clock. There is no question of
interpretation of whether or when the retention period will expire - it is either zero (expired) or not. The
implementation is the responsibility of the provider and is hidden from the client. Providers may
implement the retention function that works best for that provider, while remaining interoperable.

19.1.8 Protection State Transition

Figure 114: "Protection State Transition DIagram" shows storage element protection state transition.
When the retention period is not specified or expired, the storage element may transition to any state
except Write Once permission by using the Protect method. Once a retention period is specified to a
storage element, it may transition to a more restricted state only via the Protect method. It may transition
to the other states only when the retention period has expired. Generally a storage element starts with a
protection state of "Access = Read/Write Enabled, Retention = None/Expired" and Protect is used to set

Table 429 - Values for RemainingProtectionTime

Value Description

datetime Amount of remaining time before a management application can change the access permission. It is a dynamic
value which keeps decreasing by the time progress until it reaches the datetime equivalent of 0. The value will be
decreased by the time period indicated by the StorageProtectionCapabilities.ProtectionTimeGranularity property

Figure 113 - Retention Time Line

S e t R e a d-W rite E n a b le d

R e m a in in g R e te n tio n P e rio d

N o w R e te n tio n P e rio d E x p ire s

S e t R e a d O n ly
w ith R e te n tio n P e rio d

L o ck e d

R e a d O n ly

R e a d /W rite E n a b le d
596

 Step 1: StorageVolume not protected

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101
the protection to be more restrictive. If the storage element is write-once media such as a CD-ROM it will
have a protection state of "Access = Write Once, Retention = Permanent".

19.1.9 Sample Usage Scenario

19.1.10 Overview

Figure 115: "Step 1 - Initial State", Figure 116: "Step 2 - Volume Set to Read-only", Figure 117: "Step 3 -
Second Volume Set to Read-only", Figure 118: "Step 4 - Volume Set to Read/Write Disabled", and Figure
119: "Step 5 Volume Access Changed" show the progression of a typical usage scenario for

StorageVolume protection.

19.1.10.1 Step 1: StorageVolume not protected

Figure 115: "Step 1 - Initial State" shows the initial state of a StorageVolume that does not have
protection enabled yet. In this situation, no instance of StorageProtectionSetting exists. However, it
shows that the instrumentation has the capability to support the setting of the element protection
properties because the StorageProtectionCapabilities SupportedStorageElementFeatures property
includes the value 1 (StorageVolume Protection) and the SupportedAsynchronousActions property
includes the value 1 (Storage Element Protection). The StorageProtectionCapabilities instance also has a
value of 5 (Day) for the ProtectionTimeGranularity property which indicates the retention period specified
on this device will be decreased by the granularity of a day.

Figure 114 - Protection State Transition DIagram

Access = R /W Enabled
Re ten tion = None / E xpired

Access = W rite Once
Re ten tion = Pe rmanen t

Access = Read On ly
R e ten tion = Lim ited E xpiration

Access = Read On ly
R eten tion = None / E xpired

Access = Read On ly
Re ten tion = Pe rmanen t

Access = R/W D isabled
Re ten tion = Limited Expiration

Access = R/W D isabled
Re ten tion = None / Expired

Access = R/W D isabled
Re ten tion = Pe rmanent

Protec t() w ith longer period

Tim e Passage

eve ry state
e xcept W rite OnceProtec t()

Protec t()

Protec t()

Protec t()

Protec t() w ith sam e or longer per iod

Protec t()

Tim e Passage

Protec t()

Protec t() w ith longer per iod

Protec t()
SNIA Technical Position 597

Step 2: Volume Set to Read-only

102

103

104

105

106

107

108
19.1.10.2 Step 2: Volume Set to Read-only

In Figure 116: "Step 2 - Volume Set to Read-only", the StorageVolume is set to Read-only permission for
a specific period of time. In this example, there are two StorageVolumes, 'V1' and 'V2'. By using the
Protect() method of StorageProtectionService, volume 'V1' is set to Read-only access permission and a
365-day retention period. This operation creates new instance of StorageProtectionSetting ('SPS1') and
associates it with the target StorageVolume 'V1'. After the Protect method completes, the Access property
is now set to the value 2 (Read Only), and the RemainingProtectionTime is set to the value of 365 days.

Figure 115 - Step 1 - Initial State

ComputerSystem

StorageVolume

SystemDevice

StorageProtectionService

Protect()
HostedService

StorageProtectionCapabilities

SupportedStorageElementfeatures = { 1, 2 }
SupportedAsynchronousActions = { 1 }
ProtectionTimeGranularity = 5

ElementCapabilities
598

 Step 3: Second Volume Set to Read-only

109

110

111

112

113

114

115

116
19.1.10.3 Step 3: Second Volume Set to Read-only

Figure 117: "Step 3 - Second Volume Set to Read-only" shows Set Read-only permission to another
StorageVolume 'V2' after some amount of time.

After 30 days, the client decides to protect StorageVolume 'V2' by setting it to Read-only with a retention
time of 365 days, same as ‘V1’. A new instance of StorageProtectionSetting is created by the
instrumentation to the target StorageVolume ‘V2’. A single StorageProtectionSetting instance will not be
shared because it has a different RemainingProtectionTime although both are configured with the same
access permission.

Figure 116 - Step 2 - Volume Set to Read-only

ComputerSystem

V1: StorageVolume

SystemDevice

SPS1 : StorageProtectionSetting

ProtectionControlled = TRUE
Access = 2
InquiryProtection = {}
DenyAsCopyTarget = FALSE

LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 365 days

StorageProtectionService

Protect()

HostedService

StorageProtectionCapabilities

ElementCapabilities

ElementStorageProtectionSettingData

V2: StorageVolume

SystemDevice
SNIA Technical Position 599

Step 4: Volume Set to Read/Write Disabled

117

118

119

120

121

122

123

124
.

19.1.10.4 Step 4: Volume Set to Read/Write Disabled

Figure 118: "Step 4 - Volume Set to Read/Write Disabled" shows access permission of StorageVolume
'V1' changed to Read/Write Disabled.

Within the retention period, the access permission may not be changed except to be made more
restricted. Because StorageVolume 'V1' was set to Read-only permission, it is possible to modify it to
Read/Write Disabled permission within its retention period because this setting is more restrictive than
Read-only.

Figure 117 - Step 3 - Second Volume Set to Read-only

ComputerSystem

V1: StorageVolume

SystemDevice

SPS1: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 2
InquiryProtection = {}
DenyAsCopyTarget = FALSE

LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 335 days

StorageProtectionService

Protect()

HostedService

StorageProtectionCapabilities

ElementCapabilities

ElemenStorageProtectionSettingData

V2: StorageVolume

SystemDevice

SPS2: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 2
InquiryProtection = {}

DenyAsCopyTarget = FALSE
LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 365 days

ElementProtectionSettingData
600

 Step 5: Volume Access Change

125

126

127

128

129

130

131
19.1.10.5 Step 5: Volume Access Change

Figure 119: "Step 5 Volume Access Changed" shows change of access permission of StorageVolume 'V1'
to “Read/Write Enabled” after expiration.

After the passage of the specified time, the retention period of StorageVolume will expire. Therefore, its
access permission can be modified to any level. The StorageProtectionSetting instance is not
automatically deleted when the retention period has expired. The StorageVolume maintains its access
permission configuration.

Figure 118 - Step 4 - Volume Set to Read/Write Disabled

ComputerSystem

V1: StorageVolume

SystemDevice

SPS1: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 4
InquiryProtection = {}
DenyAsCopyTarget = FALSE

LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 305 days

StorageProtectionService

Protect()

HostedService

StorageProtectionCapabilities

ElementCapabilities

ElementStorageProtectionSettingData

V2: StorageVolume

SystemDevice

SPS2: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 2
InquiryProtection = {}

DenyAsCopyTarget = FALSE
LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 335 days

ElementStorageProtectionSettingData
SNIA Technical Position 601

Step 5: Volume Access Change

132

133

134

135

136

137
19.2 Health and Fault Management Consideration

Not defined in this standard

19.3 Cascading Considerations

Not applicable

19.4 Methods of the Profile

19.4.1 Protect

This method, defined in Table 430, is found in the StorageProtectionService. It configures the protection
attributes of StorageVolumes and LogicalDisks, which prevents them from being modified for a specific
period of time. Values specified for this method shall be set as properties of the StorageProtectionSetting
instance that is associated to the specified StorageVolume or LogicalDisk. This method can be used to
extend the retention period, but not decrease it. The instrumentation shall always create a new instance

Figure 119 - Step 5 Volume Access Changed

ComputerSystem

V1: StorageVolume

SystemDevice

SPS1: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 1
InquiryProtection = {}
DenyAsCopyTarget = FALSE

LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 0 days

StorageProtectionService

Protect()

HostedService

StorageProtectionCapabilities

ElementCapabilities

ElementStorageProtectionSettingData

V2: StorageVolume

SystemDevice

SPS2: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 2
InquiryProtection = {}

DenyAsCopyTarget = FALSE
LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 30 days

ElementStorageProtectionSettingData
602

 Step 5: Volume Access Change

138

139

140

141

142

143

144

145

146
of StorageProtectionSetting when protection is first applied, but it shall reuse the existing setting when
modifying the protection setting.

Table 430 - The Protect Method

Method: Protect

Return Values:

Value Description

0: Success Method completed with no error.

1: Not Supported Method is not supported

2: Unspecified Error Unspecified error

3: Timeout Timeout happened during processing

4: Failed Method failed.

5: Invalid Parameter Specified parameter is not allowed

6: Invalid State Transition Specified access permission or retention period is not allowed in the current
status.

4096: Method parameters checked - job started A Job was started

Errors:

Not defined in this standard

Parameters:

Qualifiers Name Type Description/Values

OUT Job CIM_Job REF Reference to the job created, if any

IN Element CIM_StorageExtent REF StorageVolume or LogicalDisk to be
configured.

IN ElementType uint16 The type of element being protected.

1: StorageVolume

2: LogicalDisk

IN Access uint16 Read and write accessibility of the storage
element.

1: Read/Write Enabled

2: Read Only

4: Read/Write Disabled

Note that it is not possible to transition to
"3: Write Once" from other state

IN InquiryProtection uint16[] The inquiry protection method for SCSI
inquiry commands.

1: No SCSI Inquiry Protection

2: Inquiry Disabled

3: Zero Capacity Returned

This may be specified when protecting a
StorageVolume
SNIA Technical Position 603

Step 5: Volume Access Change

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166
19.4.2 ProtectWithEndoints

This method, defined in Table 427, is similar to the Protect method with the additional parameter,
Endpoints, to specify the Access to be applied to the specific endpoints/ports. The method creates or
modifies the StorageProtectionSetting associated to the StorageVolume or LogicalDisk. This method is
called to protect the StorageVolume or LogicalDisk against modification for a specific period of time.
Values specified for this method will be set as properties of the StorageProtectionSetting instance that is
associated to the specified StorageVolume or LogicalDisk. This method can be used to extend the
retention period, but not decrease it..

IN DenyAsCopyTarget boolean Whether the storage element can be
specified as a copy target or not. If this
property is TRUE then the storage
element will not be selectable as a target
of copy pair

IN LUNMappingConfigure boolean Whether LU assignment to the
StorageVolume is configurable or not. This
may be specified when protecting a
StorageVolume

IN ProtectExpirationType uint16 Duration type of the storage element
protection.

1: None

2: Limited Expiration

3: Permanent

IN TimePeriod datetime Amount of remaining time before a
management application can change the
access permission

Table 431 - The ProtectWithEndpoints Method

Method: ProtectWithEndpoints

Return Values:

Value Description

0: Success Method completed with no error.

1: Not Supported Method is not supported

2: Unspecified Error Unspecified error

3: Timeout Timeout happened during processing

4: Failed Method failed.

5: Invalid Parameter Specified parameter is not allowed

6: Invalid State Transition Specified access permission or retention period is not allowed in the current
status.

4096: Method parameters checked - job started A Job was started

Errors:

Not defined in this standard

Table 430 - The Protect Method

Method: Protect
604

 Step 5: Volume Access Change

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202
Parameters:

Qualifiers Name Type Description/Values

OUT Job CIM_Job REF Reference to the job created, if any

IN Element CIM_StorageExtent REF StorageVolume or LogicalDisk to be
configured.

IN ElementType uint16 The type of element being protected.

1: StorageVolume

2: LogicalDisk

IN Access uint16 Read and write accessibility of the storage
element.

1: Read/Write Enabled

2: Read Only

4: Read/Write Disabled

Note that it is not possible to transition to
"3: Write Once" from other state

IN InquiryProtection uint16[] The inquiry protection method for SCSI
inquiry commands.

1: No SCSI Inquiry Protection

2: Inquiry Disabled

3: Zero Capacity Returned

This may be specified when protecting a
StorageVolume

IN DenyAsCopyTarget boolean Whether the storage element can be
specified as a copy target or not. If this
property is TRUE then the storage
element will not be selectable as a target
of copy pair

IN LUNMappingConfigure boolean Whether LU assignment to the
StorageVolume is configurable or not. This
may be specified when protecting a
StorageVolume

IN ProtectExpirationType uint16 Duration type of the storage element
protection.

1: None

2: Limited Expiration

3: Permanent

IN TimePeriod datetime Amount of remaining time before a
management application can change the
access permission

IN Endpoints CIM_ProtocolEndpoint REF[] “Access” to be applied to specific
endpoints/ports. If null, “Access” is applied
to all endpoints/ports.

Table 431 - The ProtectWithEndpoints Method

Method: ProtectWithEndpoints
SNIA Technical Position 605

Step 5: Volume Access Change

203

204

205
206

207
208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241
19.5 Client Considerations and Recipes

Not defined in this document.

19.6 CIM Elements

Table 432 describes the CIM elements for Storage Element Protection.

19.6.1 CIM_ElementCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 433 describes class CIM_ElementCapabilities.

19.6.2 CIM_HostedService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 432 - CIM Elements for Storage Element Protection

Element Name Requirement Description

19.6.1 CIM_ElementCapabilities Mandatory Associates the capabilities to the service.

19.6.2 CIM_HostedService Mandatory Associates the service to the system providing the
service.

19.6.3 CIM_ElementStorageProtectionSettingData Mandatory CIM_ElementProtectionSettingData represents the
association between the storage element to be protected
and applicable protection setting.

19.6.4 CIM_StorageProtectionCapabilities Mandatory

19.6.5 CIM_StorageProtectionService Mandatory

19.6.6 CIM_StorageProtectionSetting Mandatory CIM_StorageProtectionSetting class holds properties for
the protection-related configuration and statuses of a
storage element. It is associated to the StorageVolume or
LogicalDisk class by CIM_ElementProtectionSettingData.
A management application can retrieve the protection-
related information by traversing the
ElementProtectionSettingData association. If is not found,
it indicates no protection management is applied for the
storage element.

Table 433 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The service.

Capabilities Mandatory The associated capabilities.
606

 Step 5: Volume Access Change

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261
262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280
Table 434 describes class CIM_HostedService.

19.6.3 CIM_ElementStorageProtectionSettingData

Created By: Extrinsic: Protect

Modified By: Static

Deleted By: External

Requirement: Mandatory

Table 435 describes class CIM_ElementStorageProtectionSettingData.

19.6.4 CIM_StorageProtectionCapabilities

Created By: Static

Requirement: Mandatory

Table 436 describes class CIM_StorageProtectionCapabilities.

19.6.5 CIM_StorageProtectionService

Created By: Static

Requirement: Mandatory

Table 434 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Dependent Mandatory The protection service.

Antecedent Mandatory The system providing the service.

Table 435 - SMI Referenced Properties/Methods for CIM_ElementStorageProtectionSettingData

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The storage element to be protected.

SettingData Mandatory The protection setting and status of the storage element.

Table 436 - SMI Referenced Properties/Methods for CIM_StorageProtectionCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key.

ProtectionTimeGranularity Mandatory Granularity for the time period of
StorageProtectionSetting.RemainingProtectionTime. 0:
Unknown 1: Other 2: Second 3: Minute 4: Hour 5: Day.

SupportedStorageElementFeatures Mandatory Value for storage element protection. 1 (StorageVolume
Protection), 2 (LogicalDisk protection).

SupportedSynchronousActions Conditional Conditional requirement: One of SupportedSynchronousActions
or SupportedAsynchronousActions shall be implemented. Value
for storage element protection. 1 (Storage Element Protection).

SupportedAsynchronousActions Conditional Conditional requirement: One of SupportedSynchronousActions
or SupportedAsynchronousActions shall be implemented. Value
for element protection. 1 (Storage Element Protection).
SNIA Technical Position 607

Step 5: Volume Access Change

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299
Table 437 describes class CIM_StorageProtectionService.

19.6.6 CIM_StorageProtectionSetting

Created By: Extrinsic: Protect

Modified By: Extrinsic: Protect

Deleted By: DeleteInstance

Requirement: Mandatory

Table 438 describes class CIM_StorageProtectionSetting.

EXPERIMENTAL

Table 437 - SMI Referenced Properties/Methods for CIM_StorageProtectionService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory Key

CreationClassName Mandatory Key

SystemName Mandatory Key

Name Mandatory Key

Protect() Mandatory Configures the protection attributes of the storage element and prevent
modification for a specific period of time. Values specified for this method
will be set as properties of StorageProtectionSetting instance which is
associated to the specified storage element. This method can be used to
extend the retention period, but not for decreasing it.

ProtectWithEndpoints() Optional Same as Protect, but with a parameter for restricting access to specific
endpoints

Table 438 - SMI Referenced Properties/Methods for CIM_StorageProtectionSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key.

ProtectionControlled Optional Whether the storage element is under protection control or not.

Access Mandatory Read and write accessibility of the StorageVolume. 0: Unknown 1: Read/
Write Enabled 2: Read Only 3: Write Once 4: Read/Write Disabled.

InquiryProtection Conditional Conditional requirement: Storage Volumes used as storage elements.
StorageVolume protection method for SCSI inquiry commands. 0:
Unknown 1: No SCSI Inquiry Protection 2: Inquiry Disabled 3: Zero
Capacity Returned.

DenyAsCopyTarget Optional Whether the storage element can be specified as a copy target or not.

LUNMappingConfigurable Conditional Conditional requirement: Storage Volumes used as storage elements.
Whether LU assignment to the StorageVolume is configurable or not.

ProtectionExpirationSpecified Mandatory Duration type of the storage element protection. 1: None 2: Limited
Expiration 3: Permanent.

RemainingProtectionTime Mandatory Amount of remaining time before a management application can change
the access permission.
608

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
r

IMPLEMENTED

20 Replication Services Profile

20.1 Description

20.1.1 Synopsis

Profile Name: Replication Services (Component Profile)

Version: 1.8.0

Organization: SNIA

Central Class: ReplicationService

Scoping Class: ComputerSystem

Related Profiles: Table 439 describes the related profiles for Replication Services.

20.1.2 Overview

The Replication Services, a component profile, specifies attributes and methods to copy data from a
source element to a target element. The copy operations may be performed on elements from the same
storage system or across a connection to a different storage system. Elements may be placed into a
group in order to facilitate copy operations on many elements at the same time. The elements of a group
may be declared as Consistent.

Two types of synchronization views are supported. A replica may be synchronized to the current view of
the source element or may be synchronized to a point-in-time view. Snapshots and clones always
represent a point-in-time view, while a mirror represents a current view.

Two copy operation modes are supported -- synchronous and asynchronous. In the synchronous mode,
the write operations to the source elements are reflected to the target elements before signaling the host
that a write operation is complete. In the asynchronous mode, the host is signaled as soon as the write
operations to the source elements are complete; however, the writes to the target elements may take
place at a later time.

Replication Services supports local and remote replication. Local replication specifies that both the
source and target elements are contained in a single managed system, such as an array platform.
Remote replication specifies the source and the target elements are contained in separate systems. For
remote replication, the client may interact with both the source and the target systems; however, the
client only invokes the replication methods to a single Replication Service.

Table 439 - Related Profiles for Replication Services

Profile Name Organization Version Requirement Description

Block Services SNIA 1.8.0 Mandatory

Copy Services SNIA 1.5.0 Mandatory Deprecated. This profile will be removed in the
next version of this standard.

Job Control SNIA 1.5.0 Optional

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2
SNIA Technical Position 609

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
Replication Services supports “copying” thinly provisioned elements. Unlike fully provisioned elements, a
thinly provisioned element has fewer actual allocated storage blocks than the advertised capacity of the
element.

Replication Services supports "copying" compressed storage elements. A compressed element does
content compression in 'real time' when it is written to the volume, then the data is stored compressed,
and then uncompressed when it is read back. A compressed element has fewer actual allocated storage
blocks than the capacity of the original content.

The Replication Service supports copy operations to and from undiscovered resources. An undiscovered
resource is an addressable entity without a known object model.

Replication Services includes the methods to create the necessary access point and shared secret
instances that may be required for copy operations to remote resources.

The Replication Service generally relies on the underlying implementation to perform the actual copy
operations. However, the profile can expose the “copy methodology” if that information is available.

EXPERIMENTAL

The profile also exposes the TokenizedClone capabilities of the implementation. TokenizedClone is also
known as Offloaded Data Transfer (ODX). With TokenizedClone, the calling application or operating
system will initiate a copy operation by first requesting a "token" from the array by issuing an Offload
READ operation. The token in this context encapsulates the information about the data in the storage
sub-system. The calling application or operating system can then issue an Offload WRITE operation
using this token. The storage sub-system that issued the token will know what data to replicate, replicate
that data, and then acknowledge the completed operation back to the calling application or operating
system.

The specification for TokenizedClone can be found in the T10 specification
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-059r8.pdf

EXPERIMENTAL

Throughout this profile, there are specific references to class properties and methods pertaining to each
section. Refer to 20.7 "CIM Elements" for a complete list of all properties and methods, including their
description.

20.1.3 Key Features

The following is a brief list of key features of the Replication Services:

• The ability to specify individual or Groups of elements to manage replication

• The ability to copy to and from undiscovered resources

• The ability to support Consistency Management

• The ability to handle local and remote replication seamlessly

• The ability to replicate Thinly Provisioned elements

• The ability to offer different Copy Methodologies

• The ability to efficiently retrieve replication relationships

• The ability to reduce the potential to receive many unwanted indications
610

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83
20.1.4 Replication Services and Copy Services Profiles

The Replication Services Profile extends the functionality of the Copy Services Profile by including
enhanced local replication for thinly provisioned storage objects, remote replication, and support for
replication groups and consistency groups.

Any action taken via a Copy Services conformant interface shall be reflected correctly in the applicable
Replication Services properties. Furthermore, any action taken via a Replication Services conformant
interface shall be reflected correctly in the applicable Copy Services properties, as if the similar action
was taken by the Copy Services. Refer to 20.5.5 "Replication Services and Copy Services Properties and
Methods Mapping" for mapping between Copy Services specific properties and properties introduced for
Replication Services.

20.1.5 Key Components

Table 440 shows a list of key classes used by Replication Services. Refer to 20.5 "Methods of the Profile"
and “CIM Elements” for additional details on methods and properties of these classes.

Clients should refer to 20.6 "Use Cases" for a list of steps to follow to utilize the replication service.

20.1.6 Replication Services Discovery

Figure 120 depicts the Replication Services discovery instance diagram.

Table 440 - Key Classes

Class Name Notes

ReplicationService The main class for Replication Services. It contains methods for replication and group
management, for example, CreateGroup, CreateElementReplica, CreateGroupReplica,
ModifyReplicaSynchronization.

ReplicationServiceCapabilities Contains a set of properties and methods that describe the capabilities of the service, for
example, SupportedReplicationTypes, GetSupportedFeature.

ReplicationGroup Represents a group of elements participating in replication activities.

ReplicationSettingData Contains options to customize replication operations, for example, pairing of group elements,
TargetElementSupplier, CopyMethodology, ThinProvisioningPolicy, StorageCompressionPolicy.

ReplicationEntity Represents information about an addressable entity without a known object model.

GroupSynchronized Associates source and target groups.

StorageSynchronized Associates source and target elements.
SNIA Technical Position 611

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103
The single instance of the class ReplicationService and its methods provide the mechanism for creating
and managing replicas.

Replication Services relies on the Block Services Package for storage pool manipulations and capacity
related indications; and on the Storage Element Protection Profile for changing the protection of
elements. The profile also relies on Cascading Profile, Masking and Mapping Profile, and Device
Credential Profile for access to the remote resources.

20.1.7 Replication Services Capabilities

The single instance of the class ReplicationServiceCapabilities and its methods describe the various
capabilities of the service. Clients should examine the ReplicationServiceCapabilities instance and invoke
its methods to determine the specific capabilities of a replication service implementation.

20.1.8 SyncTypes

SyncTypes describe the replication policy supported by the profile. The following SyncTypes are defined:

Mirror: Creates and maintains a synchronized mirror copy of the source. Writes done to the source
element are reflected to the target element. The target element remains dependent on the source element.

Snapshot: Creates a point-in-time, virtual image of the source element. The target element remains
dependent on the source element. Identical blocks in the source and target elements are shared via
implementation-dependent means, to achieve space savings compared to full copies. Snapshots are

commonly known as delta replicas.1

Clone: Creates a point-in-time, independent, copy of the source element.

TokenizedClone: The storage sub-system utilizes tokens to create clones.

Figure 120 - Replication Services Discovery

1. Industry usage of the term snapshot varies widely. In this specification, it is used to mean a delta snapshot as defined
in the SNIA Dictionary.

ComputerSystem

// Array

ReplicationService

HostedService

ReplicationServiceCapabilities

ElementCapabilities
612

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
Synchronized replication indicates that updates to a source element are reflected to the target element.
The mode determines whether the target element is updated immediately, in the case of synchronous
mode, or some time later, in the case of asynchronous mode.

Table 441 compares the SyncTypes and the relationships between the source and target elements. It is a
quick reference for the clients to determine the appropriate SyncType for the intended target results.

With respect to "Relation of Target to Source," Dependent indicates the target element shall remain
associated with the source element; Independent indicates the target element can exist without the
source element.

With respect to “Target is Virtual copy of the Source,” the target element is not a “physical” copy of the
source element, instead the system holds a collection of mapping information that map the target element
data to the source element data.

20.1.9 Modes

The mode controls when the write operations are performed. The following modes are defined:

Synchronous: The writer waits until the write operations are committed to both the source and target
elements; or to both the source element and a target related entity, such as pointer tables.

Asynchronous: The writer waits until the write operations are committed to the source elements only. In
this mode, there can be a delay before the write operations are committed to the target elements.

EXPERIMENTAL

 Adaptive: Allows the implementation to switch between synchronous and asynchronous modes,
 based on the speed of the connection, etc.

Active: Both source and target elements are simultaneously accessible to clients, thus offering increased
data availability and data access performance. In the event of a failure of either the primary or the
secondary site, clients can seamlessly continue to access the surviving site.

EXPERIMENTAL

20.1.10 Locality of Target Elements

Locality specifies the relationship between the source and the target elements. Replication Services
defines the following localities:

Local: indicates the source and target elements are contained in a single managed system.

Table 441 - Comparing SyncTypes

SyncType Relation of
Target to
Source

Updates
 to Source
Reflected
to Target

Target
 is Point-
 In-Time

Copy

Target
 is self-

contained

Target is
Virtual copy
of Source

Target’s
 space

consumption

Mirror Dependent Yes No Yes-after Split/
Detach

No Same as source

Snapshot Dependent No Yes No Yes Less than source

Clone Independent No Yes Yes No Same as source
SNIA Technical Position 613

133
 Remote: indicates the source and target elements are contained in separate managed systems. In this
case, the service will rely on a networking protocol for the copy operations.

The networking protocols are modeled using ProtocolEndpoint, which enables a replication service to
reach a remote element. The property ProtocolEndpoint.ProtocolIFType specifies the protocol type, for
examples, TCP, Fibre Channel, Other, etc.

Locality is important because it advertises the capability of replication service. For example, the property
ReplicationServiceCapabilities.SupportedReplicationType may have values such as “Synchronous Mirror
Local” and “Synchronous Mirror Remote.”

Figure 121 and Figure 122 show the local and remote instance diagrams, respectively.

Figure 121 - Local Replica

ComputerSystem

Name:
SanJose

StorageVolume1
(source)

SystemName:
SanJose

ReplicationService

HostedService

StorageVolume2
(target)

SystemName:
SanJose

StorageSynchronized

SystemDevice SystemDevice

Local Replication
614

134

135

136

137

138

139

140

141

142

143

144

145

146
Each RemoteReplicationCollection can have one or more paths to the remote system. As long as one of
these paths to the remote system is up, the property RemoteReplicationCollection.ConnectivityStatus
indicates “UP”.

Instances of RemoteReplicationCollection may statically be created by the implementation, or clients may
be required to create such instances by invoking the extrinsic method
CreateRemoteReplicationCollection. Clients subsequently can manipulate instances of
RemoteReplicationCollection by invoking the intrinsic method ModifyInstance and/or the extrinsic
methods AddToRemoteReplicationCollection and RemoveFromRemoteReplicationCollection.

The RemoteReplicationCollection abstracts the details of network connections to a remote system to
allow clients to focus on whether a remote system is reachable or not. For example, the Figure 123,
“Remote Replication over two Paths” shows the local system has two connections to a remote system. As
long as one connection is functioning, there are replication operations between the local and the remote
system.

Figure 122 - Remote Replica

ComputerSystem

Name:
 SanJose

StorageVolume1
(source)

SystemName:
 SanJose

ReplicationService

HostedService

StorageVolume2
(target)

SystemName:
Boston

StorageSynchronized

Remote Replication

SystemDevice

ProtocolEndpoint

OperationalStatus: OK,
Error
ProtocolIFType: TCP,
HTTP, Fibre Channel,
Other

ServiceAffectsElement

RemoteReplicationCollection

Connectiv ityStatus: Up, Down,
Unknown
Active: True

HostedCollection

MemberOfCollection

HostedAccessPoint

Remote System in BostonLocal System in San Jose

Network TrafficSAPAvailableForElement

MemberOfCollection
SNIA Technical Position 615

147

148

149

150

151
Storage elements, such as storage volumes, are added to the RemoteReplicationCollection using the
appropriate CreateElementReplica or CreateGroupReplica methods.

Figure 124, “Expanded Remote Replica” shows a local system and two remote systems. The remote
elements are associated to a remote ComputerSystem. In this configuration, all the replication operations
utilize a single connection (ProtocolEndpoint) to all remote systems

Figure 123 - Remote Replication over two Paths

ComputerSystem

Name:
 SanJose

ReplicationService

HostedService

StorageVolume2
(target)

SystemName:
 Boston

Remote Replication

ProtocolEndpoint

OperationalStatus: OK,
Error
ProtocolIFType: TCP,
HTTP, Fibre Channel,
Other

ServiceAffectsElement

RemoteReplicationCollection

ConnectivityStatus: Up, Down,
Unknown
Active: True

HostedCollection

HostedAccessPoint

Remote System in Boston

Local System in San Jose

Network Traffic

ProtocolEndpoint

OperationalStatus: OK,
Error
ProtocolIFType: TCP,
HTTP, Fibre Channel,
Other

Remote System in Boulder
StorageVolume3

(target)

SystemName:
Boulder

ProtocolEndpoint

OperationalStatus: OK,
Error
ProtocolIFType: TCP,
HTTP, Fibre Channel,
Other

ProtocolEndpoint

OperationalStatus: OK,
Error
ProtocolIFType: TCP,
HTTP, Fibre Channel,
Other

Network Traffic

RemoteReplicationCollection

ConnectivityStatus: Up, Down,
Unknown
Active: True

HostedCollection

HostedAccessPoint

ServiceAffectsElement

MemberOfCollection

MemberOfCollection
616

152

153

154

155

156

157

158

159
20.1.11 Remote Replication

Remote replication may require access information such as an RemoteServiceAccessPoint instance for
the remote resources. See 20.3 "Cascading Considerations" for additional information.

20.1.12 Undiscovered Resources

An undiscovered resource is any addressable entity without a known object model. Generally, clients
identify an undiscovered resource using one or more of the following:

• WWN (World Wide Name)

• URI (Uniform Resource Identifier)

Figure 124 - Expanded Remote Replica

Shadow Model for Boston Array

Computer SystemProtocolEndpoint

HostedAccessPoint

SystemDevice

StorageVolume

Shadow Model for Boulder Array

Computer SystemProtocolEndpoint

HostedAccessPoint

SystemDevice
StorageVolume

Computer System

ProtocolEndpoint

HostedAccessPoint

SystemDevice

StorageVolume

StorageVolume

StorageSynchronized

StorageSynchronized

SystemDevice

RemoteReplicationCollection

MemberOf
Collection

MemberOf
Collection

MemberOf
Collection

Model for array in San Jose with remote
replication in place for arrays in Boston and

Boulder

Dependency

Dependency

HostedCollection
SNIA Technical Position 617

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180
• IP Address

• Remote ComputerSystem Objectpath

• Remote Filesystem Objectpath

In all cases, the assumption is that the underlying implementation "knows" how to perform the copy
operation.

The Replication Service includes the necessary methods to create and manage the instances
representing undiscovered resources. See the class ReplicationEntity (in 20.7 "CIM Elements") and the
method AddReplicationEntity (20.5.3.15). Also in the replication service capabilities the absence of
“Requires full discovery of target ComputerSystem“in the SupportedFeatures property indicates the
service supports undiscovered resources.

Figure 125 shows an instance of ReplicationEntity and its association to ReplicationService.

An instance of the StorageSynchronized association identifies the source and the target elements of a
copy operation even in the case where the source or the target element is an instance of
ReplicationEntity, which is a ManagedElement. Additionally, the
StorageSynchronized.UndiscoveredElement property may indicate which elements in the copy operation
are “undiscovered”. The possible values are:

• SystemElement -- the source element.

• SyncedElement -- the target element.

• Both -- both the source and the target elements.

Figure 126 shows an example of a StorageSynchronized association where the source element is a
StorageVolume and the target element is a ReplicationEntity.

Figure 125 - An instance of ReplicationEntity

Figure 126 - StorageSynchronized and ReplicationEntity

ReplicationEntity

InstanceID: xyz
Type: WWN
EntityID: 0011223344556677

ReplicationService

ServiceAffectsElement

ReplicationEntity

// Remote Target
InstanceID: xyz
Type: WWN
EntityID: 0011223344556677

StorageVolume

// Local Source
DeviceID: 123

StorageSynchronized
618

 Overview

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207
20.1.13 Multi-hop Replication

In multi-hop replication, the target element of one copy operation can simultaneously be the source for
another copy operation. As shown in Figure 127, multi-hop replication involves at least three elements.

If an implementation supports multi-hop replication, the supported features capabilities will indicate
“Multi-hop element replication”. Furthermore, the implementation may need to know that the client is
planning to add additional hops in subsequent operations. In this case, the replication capabilities would
indicate “Multi-hop requires advance notice”. In response to this capability, the client in creating the first
replica, shall set the property ReplicationSettingData.Multihop appropriately (see 20.7 "CIM Elements" for
details on Multi-hop specification). The capabilities method GetSupportedMaximum indicates the
maximum number of hops supported by the implementation.

20.1.14 Groups

20.1.14.1 Overview

Replication Services utilizes Groups of elements to manage replication activities that include more than
one source or target element in a copy operation. A major advantage of using groups is that an operation,
such as fracture, (see 20.5.4.9 "GetSupportedOperations") may be performed on the group as a whole,
instead of fracturing individual element pairs one by one.

The optional ReplicationGroup class represents a collection of ordered storage elements.

Key features of replication groups are:

• A group can be the source and/or the target of a copy operation.

• Elements of a group may be optionally declared Consistent.

• A group may optionally be declared as temporary (Persistent = false).

• A group may contain zero elements (an empty group).

Replication Services includes methods to create and delete a group, and methods to add elements or pair
of elements to an existing group(s) or to remove elements from a group.

EXPERIMENTAL

Certain copy operations such as copying one source element to many target elements (one-to-many) may
result in the service creating a system-generated group to keep track of all the target elements. The

Figure 127 - Multi-hop Replication

StorageVolum e

// Hop 1 Source

S torageVolum e

// Hop 1 Target
// Hop 2 Source

S torageSynchronized

M ultihop Replication

S torageVolum e

// Hop 2 Target

S torageSynchronized
SNIA Technical Position 619

Composite Groups

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234
service may delete system-generated groups that are no longer associated with a copy operation.
Deleting a system-generated group may or may not affect the elements associated with the group (see
the ReplicationGroup.MemberPolicy property, Table 493 - "SMI Referenced Properties/Methods for
CIM_ReplicationGroup").

An implementation may always place the target elements (even one target element) in a system-
generated group -- see ReplicationServiceCapabilities, Table 495 - "SMI Referenced Properties/Methods
for CIM_ReplicationServiceCapabilities".

EXPERIMENTAL

The method ReplicationService.CreateGroupReplica() is used to copy a group of elements. The property
ReplicationSettingData.Pairing determines the pairing of the source and the target elements. Possible
values are: Exact order and Optimum. Exact order means the first element of the source group is copied
to the first element of the target group, the second element of the source group is copied to the second
element of the target group, and so on. Optimum means in order to minimize any resource and data flow
contentions, if possible, pair the source and the target elements in such a way that they are on different
data paths.

An implementation may allow the target group to have more (or fewer) elements than the source group.

See the ReplicationServiceCapabilities.GetSupportedReplicationSettingData() method for Pairing and for
UnequalGroupsAction capabilities.

Figure 128 shows group instances and the associated storage volumes.

The association between ReplicationGroup and its storage elements (e.g. StorageVolume) is
OrderedMemberOfCollection to maintain the order of the storage elements to facilitate pairing of the
source and the target group elements.

20.1.14.2 Composite Groups

A Composite Group is a group that includes storage elements from multiple storage arrays.

Figure 128 - Group Instances

ReplicationGroup

// Source Group

StorageVolume

// One or more
source elements

OrderedMemberOfCollection

StorageVolume

// One or more target
elements

StorageSynchronized

ReplicationGroup

// Target Group

OrderedMemberOfCollection

GroupSynchronized
620

 Consistency Groups

235

236

237

238

239

240

241

242

243

244

245
20.1.14.3 Consistency Groups

20.1.14.3.1 Application Consistent View

A Consistency Group is a set of elements that have an "Application Consistent View." Application
Consistent View is a set of elements that collectively represent some resource in a known state.

Block Storage Systems can only maintain state as to whether a group of elements is “sequentially
consistent” or not.

The instrumentation may support consistency groups for a given copy type and mode. The
CreateGroupReplica method allows a client to specify the target group to be consistent.

20.1.14.3.2 Sequentially Consistent

A group of target elements is considered to be "sequentially consistent” if each element is updated in the
same order as the application updates the corresponding source elements. Sequentially Consistent is
also known as Dependent Write Consistency.

Figure 129 shows the target elements that have a sequentially consistent view at all times. Once the
connection between volume2 and volume5 fails, all subsequent copy operations to the target elements
stop, therefore maintaining the consistency of the target elements.

Figure 129 - Sequentially Consistent Example

StorageVolume1

W1, W4, W7

StorageVolume2

W2, W5, W8

StorageVolume4

W1

StorageVolume5

W2

Source Group Target Group

StorageVolume3

W3, W6

StorageVolume6

W3

break

Because of the break between
volumes 2 and 5, suspend data
transfers between the remaining
volumes.

Order of writes to source:
W1, W2, W3;
W4, W5, W6;
W7, W8

Consistent view given W1,
W2, W3
(Target elements are
sequentially consistent at
W3 Point-In-Time)

After W3
copy
SNIA Technical Position 621

Overview

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270
20.1.15 Associations

20.1.15.1 Overview

Replication Services utilizes a number of stateful associations to associate source and target groups,
source and target elements, and, when necessary, the individual elements to their corresponding point-in-
time aspect.

Because the TokenizedClone operations are not initiated or controlled by the methods of the profile, there
will not be a StorageSynchronized (or GroupSynchronized) association between the elements involved in
a TokenizedClone operation.

Figure 130 shows the associated groups with equal number of source and target elements.

20.1.15.2 GroupSynchronized Association

This association relates source and target groups, or, for a one-to-many relationship, relates a source
element to a target group. The association’s property ConsistencyEnabled indicates whether the target
elements are required to be Consistent or not.

Within a group, the SyncType and Mode properties of all subordinate StorageSynchronized associations
between the source and the target elements shall be the same. The SyncType and Mode properties of the
GroupSynchronized association shall also be the same as the SyncType and Mode properties of
subordinate StorageSynchronized associations.

This association relates the individual source and target elements. The association’s property CopyState
indicates the current state of the association. Some possible values of CopyState are Initialized or
Synchronized.

A StorageSynchronized association can participate in only one pair of related replication groups.

Figure 130 - Associated Groups and Elements

StorageVolume1

StorageSynchronized

StorageVolume2

StorageVolume3

StorageVolume4
StorageSynchronized

GroupSynchronized

Source Group Target Group

CIM_ReplicationGroup extends
CIM_Collection

Property ConsistencyEnabled = true or false
622

 SettingsDefineState Association and SynchronizationAspect Instance

271

272

273

274

275

276

277

278

279

280

281
20.1.15.3 SettingsDefineState Association and SynchronizationAspect Instance

The SettingsDefineState associates an element (e.g., a StorageVolume), or a group of elements (e.g. a
ReplicationGroup), to a SynchronizationAspect. An instance of SynchronizationAspect includes
properties for the date and time of the point-in-time copy and a reference to the source element (see
Figure 131). The association is particularly useful for Clones (targets) and Snapshots (source) that do not
have a StorageSynchronized association to another storage element. In the case of Clones, the
StorageSynchronized association is removed (generally, following the provider’s restart) after the copy
operation completes. As for Snapshots, it is possible to create a point-in-time snapshot copy of an
element, or a group of elements, without having a target element (using the method
CreateSynchronizationAspect). In this mode, the target elements are added at a later time (using the
method ModifySettingsDefineState). Creating a SynchronizationAspect of a Snapshot is particularly
useful when a client wants to capture a point-in-time copy at a given time; however, the client wants to
create the actual target element at a later time, perhaps when it is more convenient.

.

The instrumentation may also offer the ability to further copy an existing SynchronizationAspect using the
CreateSynchronizationAspect method and supplying the existing SynchronizationAspect as the
“SourceElement” (see Figure 132).

Figure 131 - SettingsDefineState Association

Figure 132 - A new instance of SynchronizationAspect

StorageVolume or
ReplicationGroup

Source or Target Element

SynchronizationAspect

datetime WhenPointInTime
REF SourceElementSettingsDefineState

StorageVolume or
ReplicationGroup

Source or Target Element

SynchronizationAspect

datetime WhenPointInTime
REF SourceElement

Note: For example,
represents the 10:00AM
point-in-time.

SettingsDefineState

SynchronizationAspect

datetime WhenPointInTime
REF SourceElement

Note: Copied at 11:00AM,
but represents the 10:00AM
point-in-time.

SettingsDefineState
SNIA Technical Position 623

SettingsDefineState Association and SynchronizationAspect Instance

282

283

284

285

286

287

288

289
If an instance of a SynchronizationAspect is associated to a group of elements, the property
“WhenPointInTime” applies to all elements of the group, indicating the point-in-time copy of all elements
is created at the same exact time.

If an instance of SynchronizationAspect is associated to a group of elements, the members of the group
also have their own associated instances of SynchronizationAspect. The group’s SynchronizationAspect
is associated to its “dependent” instances of SynchronizationAspect via the SettingsAffectSettings
association (see Figure 133).

SettingsDefineState may also be applied to Mirror targets; as such, the property
SynchronizationAspect.WhenPointInTime would have the date and time of when the mirror relationship
was fractured (or split).

In all cases, the SettingsDefineState association may not persist across the provider’s restarts.
Furthermore, an instance of a SynchronizationAspect shall be removed if the SourceElement is deleted.

Figure 134 is an instance diagram for a clone target element and its associated SynchronizationAspect
instance. Once the clone target element becomes synchronized, the StorageSynchronized association is
removed and the property SynchronizationAspect.CopyState has a value of “Operation Completed.”

Figure 133 - SynchronizationAspect of a Group of elements

ReplicationGroup

// Source Group

StorageVolume

// One or more
source elements

OrderedMemberOfCollection

SynchronizationAspect

datetime WhenPointInTime
REF SourceElement
(StorageVolume)SettingsDefineState

SynchronizationAspect

datetime WhenPointInTime
REF SourceElement
(ReplicationGroup)

SettingsAffectSettings

SettingsDefineState
624

 One-to-Many Association

290

291

292

293

294

295

296
20.1.15.4 One-to-Many Association

Using a replication group, Replication Services allows for one source element to be copied to many target
elements.

As shown in Figure 135, one source element is associated to more than one target element. With
ConsistencyEnabled set to true, if the link to a target element is broken, all subsequent copy operations
to all other target elements are suspended. This ensures all the target elements contain the same exact
data.

Figure 134 - SynchronizationAspect Instance

StorageVolume

// Source

StorageVolume

// Target
// Clone

SettingsDefineState

StorageSynchronized

Before

SynchronizationAspect

// SyncStatus: Operation In Progress
// WhenPointInTime
// SourceElement ObjectPath

StorageVolume

// Source

StorageVolume

// Target
// Clone

SettingsDefineState

After

SynchronizationAspect

// SyncStatus: Operation Completed
// WhenPointInTime
// SourceElement ObjectPath

Once synchronization is reached, StorageSynchronized association is removed.
SNIA Technical Position 625

CopyState Transitions

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322
20.1.16 Operations on List of Synchronizations

Primarily for scalability reasons, an implementation optionally may offer the ability to perform an
operation, such as fracture, on a list of synchronization associations. The list of synchronization
associations may be a collection of independent associations or a subset of the StorageSynchronized
associations linking a source replication group and a target replication group. The method
ModifyListSynchronization and GetSupportedListOperations are used for list modifications.

20.1.17 State Management For Associated Replicas

20.1.17.1 CopyState Transitions

Both mirror and snapshot replicas maintain stateful associations with source elements. In the case of
clone replicas, the replication associations to the source elements exist while the copy operation is in
progress.

The CopyState property of the replication association identifies the state, while the ProgressStatus
property of the same association indicates the “status” of the copy operation to reach the requested
CopyState, which is indicated in the property RequestedCopyState. For example, CopyState might have a
value of “UnSynchronized”, while ProgressStatus might have a value of “Synchronizing”, also known as
“sync-in-progress”. In all cases, when creating a replica element, the desired CopyState, as reflected in
the property RequestedCopyState, is Synchronized, which indicates the replica element has the same
data as the source element. The RequestedCopyState property will contain “Not Applicable” once the
requested CopyState is achieved.

The GroupSynchronized association between the source and target groups also includes the CopyState
properties. If all values of StorageSynchronized.CopyState of source and target associations are the
same (i.e., Synchronized), GroupSynchronized.CopyState will also have the same value. On the other
hand, any mismatch in the StorageSynchronized.CopyState values, will render the
GroupSynchronized.CopyState property to have a value of Mixed.

Figure 135 - One-to-Many Association

StorageVolume1

StorageSynchronized

StorageVolume2

StorageVolume3

StorageSynchronized

GroupSynchronized

Source Element

Target Group

Property ConsistencyEnabled = true or false
626

 CopyState Transitions

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339
Unplanned states, such as Broken, Aborted, or Partitioned can be entered from any other state and
generally indicate an unusual circumstance. Recovery from the Broken or Partitioned state may be
automatic once the error condition is resolved, or it may require a client to intervene with a “Resync”
operation (see 20.5.4.3 "GetSupportedFeatures"), or a “Resume” operation. Continuing from an Aborted
state requires a client to intervene with a Resync operation. In this situation, the implementation may
indicate a Resync operation is required by the setting the ProgressStatus to "Waiting for resync".
Additionally, the copy operation may be temporarily stopped due to system or connection bandwidth. In
this case the ProgressStatus will be set to “Pending.” See 20.5.4.3 "GetSupportedFeatures".

If after the error condition is resolved, the CopyState indicates “Suspended” state, in order to resume the
copy operation it is necessary for the client to issue a “Resume” operation.

If the CopyState indicates “Invalid”, generally, it means the storage system is unable to determine the
state of the copy operation. In this situation, the client needs to “detach” and ‘re-establish” the replication
relationship.

Use the method ReplicationServiceCapabilities.GetSupportedCopyStates to determine the possible
CopyStates. The CopyStates have been normalized in such a way that they may apply to all SyncTypes.

Table 442 describes the supported CopyStates.

Table 442 - CopyStates Values

CopyState value Description

Initialized The source and target elements are associated. The copy operation has not started -- no data flow.

Synchronized The “copy operation” is complete. The target element is an “exact replica” of the source element.

Unsynchronized Not all the source element data has been “copied” to the target element.

Fractured The target element was abruptly split from its source element -- consistency is not guaranteed.

Split The target element was gracefully (or systematically) split from its source element -- consistency is
guaranteed.

Suspended Data flow between the source and target elements has stopped. Writes to source element are held
until a resume operation is completed.

Broken Replica is not a valid view of the source element. OperationalStatus of replica may indicate an Error
condition. This state generally indicates an error condition such as broken connection.

Failedover Reads and writes to/from the target element. Source element is not “reachable”.

Inactive Copy operation has stopped, writes to source element will not be sent to target element.

Prepared Initialization is completed, the copy operation has started, however, the data flow has not started.

Aborted The copy operation is aborted with the Abort operation. Use the Resync Replica operation to restart
the copy operation.

Skewed The target has been modified and is no longer synchronized with the source element or the point-in-
time view. Use the Resync Replica operation to resynchronize the source and target elements.

Mixed Applies to the CopyState of GroupSynchronized. It indicates the StorageSynchronized associations of
the elements in the groups have different CopyState values.

Partitioned The state of replication relationship can not be determined, for example, due to a connection problem.

Invalid The array is unable to determine the state of the replication relationship, for example, after the
connection is restored; however, either source or target element has an unknown status.

Restored The data was copied from the target element to the source element.
SNIA Technical Position 627

CopyState Transitions

340

341

342

343
Figure 136 shows the CopyState transitions. The dashed arrow lines represent automatic transitions.
They transition unconditionally when the target element is ready to move to the next state. The solid
arrow lines represent the transitions as the result of a requested operation (using, for example,
ModifyReplicaSynchronization). The label of the solid arrow line indicates the requested operation.

The “create” methods normally start with the Initialized state. However, it is possible to use the
WaitForCopyState parameter of the create method to force the CopyState to the Inactive or Prepared
628

 Synchronized CopyState

344

345

346

347

348

349

350

351

352

353

354

355
state after the initialization is complete. In this case, CopyState will remain in Inactive or Prepared state
until such time a Modify method is used to Activate the synchronization.

20.1.17.2 Synchronized CopyState

Synchronized state for the Mirror and Clone SyncTypes indicates all data has been copied from the
source element to the target element. For the Snapshot SyncType, because the target element is a virtual

Figure 136 - CopyState Transitions

Exit

Initialized

Unsynchronized

Fractured

Synchronized

Fracture

Inactive

Suspended

Suspend

Suspend

Activate

Resume

Split

Split

Failedover

Failover

Resync

Detach

Detach

ReturnToResourcePool

Deactivate

Entry

Exit

Deactivate

Exit

Detach

Resync

Failback

Create*Replica may
specify WaitForCopyState

= Inactive or Prepared
Note: Dashed arrow lines represent triggerless transition. They fire

unconditionally when target element is ready to move to the next state.

General flow: Initialized, Unsynchronized, Synchronized.

(Synchronized
Clone Target
Detaches
Relationship)

Exit

Dissolve

Prepared

Activate

Unprepare

SkewedResync

Restored
Restore

Fracture

Detach
SNIA Technical Position 629

Synchronized CopyState
point-in-time view of the source element, the Synchronized CopyState indicates all the metadata
(pointers/mapping information) for the snapshot have been created. Synchronization for the snapshots is
achieved rapidly in comparison to synchronization of Mirrors or Clones.

Depending on implementation, the clone target element detaches automatically when the target element
becomes synchronized; otherwise, the client needs to explicitly request a detach operation. See the
method ReplicationServiceCapabilities.tures in 20.5.4.3.

Figure 137 shows a sampling of the CopyState transitions and the corresponding ProgressStatus
changes. In a steady state condition, for example, the CopyState has a value of “Synchronized”, and at
the same time the ProgressStatus has a value of “Completed”.
630

 Synchronized CopyState

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398
Figure 137 - Sample CopyState and ProgressStatus Transitions

Resyncing

Completed

Initializing

Detaching

Fracturing

Synchronizing

Completed

Completed

Legend:

ProgressStatus

Initialized

Unsynchronized

Synchronized

Fractured

Fracture

Resync

Entry

ExitCopyState

Detach

Automatic
Transition

Operation
SNIA Technical Position 631

Synchronized CopyState

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439
20.1.18 Unsynchronized and Skewed CopyStates

Unsynchronized CopyState indicates the target element is not an exact copy of the source element (or
the source’s point-in-time). The copy operation automatically continues until the synchronization between
the source element (or its point-in-time) and the target element is reached.

The Skewed CopyState is similar to the Unsynchronized CopyState except that the synchronized
relationship remains in the Skewed state until a client issues the Resync operation
(ModifyReplicaSynchronization or ModifyListSynchronization invoke methods). As an example:
Committing write operations to a Snapshot target element causes the source and the target elements to
become Skewed.

20.1.19 Accessibility to Associations and Elements

There are two cases that should be considered:

Case 1: The method completes successfully without returning a job. The created replication associations
(StorageSynchronized and GroupSynchronized for Mirror and Snapshot copy types) and the newly
created target elements shall be accessible. The StorageSynchronized or GroupSynchronized
associations between source and target elements for the Clone copy type may not be accessible after
synchronization is achieved; however, there will be a SettingsDefineState association (if supported)
between the newly copied target element and a SynchronizationAspect instance.

Case 2: The method returns the status of “Job Started”. The AffectedJobElement association associates
the concrete job to the target element (or group), unless there is no target element (or group) such as
CreateSynchronizationAspect or when the target element (or group) is deleted (ReturnToResourcePool).
In this case, the AffectedJobElement points to the source element (or group). To ensure the replication
association is accessible, the CopyState of the association has to have at least reached the Initialized
state. To guarantee accessibility to associations and elements, specify the WaitForCopyState when
issuing the methods CreateElementReplica and CreateGroupReplica.

20.1.20 Host Access Restrictions

Generally, exposing both the source and replica to the same host may cause problems due to a duplicate
volume signature. At a minimum, the signature of a replica should be changed before the replica is
exposed to the same host as the source element.

Managing host access to source and target elements can be managed by using services described in 14
Masking and Mapping Profile.

The method ReplicationServiceCapabilities.GetSupportedCopyStates for each CopyState additionally
returns information as to whether a replica is host accessible (boolean) for the given CopyState.

20.1.21 Read Only Elements

Clients can request a newly created target element to be “Read Only” to the host. For example, to create
a “Read Only” target element, as a parameter, supply a ReplicationSettingData object with ReadOnly = 3
to a method such as ReplicationService.CreateElementReplica. As a result of this request, the
StorageSynchronized association’s ReadOnly property will have a value of 3 to indicate the
SynchedElement (i.e., the target element) is read only to the host.

The implementation may also support the ability for the clients to make the source element “Read Only”
to the host, before the copy operation begins to ensure there is no change in the source element’s data
while the data is being copied. Once the copy operation completes and the StorageSynchronized
association between the source and the target elements is removed, the replication service will remove
the “Read Only” state of the source element.
632

 Synchronized CopyState

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480
Refer to the GetSupportedReplicationSettingData (section 20.5.4.17) and
GetDefaultReplicationSettingData (section 20.5.4.18) methods of the ReplicationServiceCapabilities
class to determine whether the implementation supports Read Only elements.

The implementation may have also implemented the Storage Element Protection Profile to allow clients to
set the state of the elements to “Read Only” etc.

20.1.22 Deleting the Target Elements

Mirror, Clone, and Snapshot target elements that are no longer in a synchronization association are
deleted using the StorageConfigurationService.ReturnToStoragePool method. However, the Snapshot
target elements that are in a synchronization association are deleted using the
ReplicationService.ModifyReplicaSynchronization (or ModifyListSynchronization) method with the
“Return To ResourcePool” operation parameter, which also removes the synchronization association.

20.1.23 Completion of Long Operations

There are two ways of indicating the completion of long running operations when a replica element is
created or modified:

Option 1: Generally, the long running operations are performed under the control of a job. The client can
monitor the progress of the job by polling the job’s status and percent complete, or by subscribing to job
related indications.

Option 2: Subscribe to receive indications when the CopyState of StorageSynchronized (or
GroupSynchronized) changes.

Clients may utilize both options simultaneously. To avoid receiving many indications, it is recommended
for the clients to utilize indication queries that are constrained by the object path of the appropriate
replication association.

If a replication operation was specified using a WaitForCopyState parameter and the method is executing
under the control of a job, the job “waits” until at least the CopyState is reached, at which point the job
considers the operation complete. However, depending on the specified WaitForCopyState, the copy
operation may continue until a steady state is achieved. For example, in the Figure 136, “CopyState
Transitions” diagram, Inactive and Synchronized states are considered steady states; whereas Initialized
and Unsynchronized are transient states.

During the copy operation, the AffectedJobElement association associates the job to the target element
or to the target group. In case an operation does not have a target element (e.g.
CreateSynchronizationAspect), the AffectedJobElement is the source element.

20.1.24 Managing Background Copy

By default, replication service performs the copy operations in the background. In other words, the
methods such as CreateElementReplica, start the copy operation (or start a job) and return while the
copy operation is in progress. To perform a copy operation in the foreground, the method may specify the
WaitForCopyState of Synchronized, in which case the call will not return until the copy operation is
complete.

Alternatively, the methods CreateElementReplica and CreateGroupReplica may specify the
WaitForCopyState of Inactive if the ReplicationType supports it. In this case, the copy operation is not
started until the inactive synchronization is activated (using the ModifyReplicaSynchronization or
ModifyListSynchronization methods).
SNIA Technical Position 633

Overview

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501
20.1.25 Managing CopyPriority

A client may be able to manipulate the CopyPriority of a StorageSynchronized association -- see the
ReplicationServiceCapabilities.tures method in 20.7 "CIM Elements", which would indicate “Adjustable
CopyPriority”.

CopyPriority allows a client to manage the copy I/O rate and the priority of peer I/O operations relative to
host I/O operations. Before the copy operation starts, the CopyPriority may be specified in
ReplicationSettingData parameter supplied to the CreateElementReplica or CreateGroupReplica. After
the copy operation starts, the StorageSynchronized.CopyPriority property may be modified by invoking
the intrinsic ModifyInstance method.

The CopyPriority values are:

• Low - copy operation lower priority than host I/O.

• Same - copy operation has the same priority as host I/O.

• High - copy operation has higher priority than host I/O.

• Urgent - copy operation to be performed as soon as possible, regardless of the host I/O requests

In a group copy operation, adjusting the CopyPriority of one StorageSynchronized association belonging
to the group shall cause the CopyPriority of the remaining group StorageSynchronized associations to be
adjusted likewise.

20.1.26 Using StorageSettings for Replicas

The StorageSetting class has several properties used to create and manage replicas. Instances of this
class are used as the goal parameter for the methods of this profile. The extrinsic method
CIM_StorageCapabilities.CreateSetting is used to create a setting and the intrinsic method
ModifyInstance is used to adjust the properties of a created StorageSetting. See 5 "Block Services
Package" for the details of creating and modifying a storage setting.

20.1.27 Finding and Creating Target Elements

The extrinsic method ReplicationService.GetAvailableTargetElements is used to locate the available
target elements for a given source and SyncType. The implementation may also support creating target
elements if the appropriate target elements are not supplied and/or are not available. The implementation
may require the client to create specialized elements to be used as a target of a copy operation. The
specialized elements have a specific values in their Usage property. Certain types of specialized
elements can be provided by changing the Usage property of existing elements. Refer to 5 "Block
Services Package" for creating (specialized) elements and modifying the Usage value of existing
elements.

Refer to 20.5.4.17 "GetSupportedReplicationSettingData" and 20.5.4.3 "GetSupportedFeatures" to
determine if the implementation automatically creates target elements, and if specialized elements are
required for the desired SyncType.

20.1.28 Using StoragePools (e.g. ResourcePools) for Replicas

20.1.28.1 Overview

Replicas are allocated from storage pools (e.g. resource pools). The implementation may require
specialized storage pools to contain delta replicas (changed tracks of snapshots) or the “write intent log”
files. The specialized storage pools have a specific value in their Usage property, for example, “Reserved
as a Delta Replica Container“, “Reserved for Local Replication Services“, or “Reserved for Remote
Replication Services”.
634

 Delta Replica StoragePools

502

503
20.1.28.2 Delta Replica StoragePools

Depending on the implementation, the Snapshot targets may require a fixed space consumption or
variable space consumption. Refer to 20.5.4.3 "GetSupportedFeatures" to determine if a specialized
resource pool is required.

There are three types of delta replica pool access:

• “Any” - specialized storage pools are not required for delta replicas. The implementation creates delta
replicas based on the fixed space consumption model and the client can select any storage pool as a
container.

• “Shared” - a single shared storage pool is the container for all delta replicas. This type of storage pool is
always preexisting and may be located with the GetElementBasedOnUsage method. The client may need to
add space to this type of storage pool.

• “Exclusive” - each source element requires an exclusive, special storage pool for associated delta replicas. If
the storage pool already exists, it is associated to the source element with a ReplicaPoolForStorage
association. If the storage pool does not exist, the client creates the storage pool.

• “Multiple” - “multiple specialized, exclusive pools may exist or may be created.“

Figure 138 and Figure 139 show the fixed and variable space consumption for the Snapshot targets,
respectively. If the implementation supports fixed space consumption, the DeltaReservation properties
are set by the client to the appropriate values for a new snapshot. The values are set in the associated
StorageSetting element to be passed as a goal parameter to the CreateElementReplica method (or
CreateGroupReplica or CreateSynchronizationAspect methods). For variable space consumption, there
are no special properties to set by the client.

Figure 138 - Fixed Space Consumption

StorageVolume

// target element
NumberOfBlocks = N
BlockSize = M
DeltaReservation = D

StorageSynchronized

StorageExtent (optional)

// container element
NumberOfBlocks = S1
BlockSize = M
ConsumableBlocks = S2

BasedOn

StorageVolume

// source element
NumberOfBlocks = N
BlockSize = M
DeltaReservation = 0

StartingAddress = A
EndingAddress = A + SpaceConsumed/M - 1

StoragePool

// container element
// any concrete pool
TotalManagedSpace = S3
RemainingManagedSpace = S4

AllocatedFromStoragePool
SpaceConsumed = (N*M*D)/100 rounded up to nearest multiple of M

StorageSetting

DeltaReservationMin = D1
DeltaReservationGoal = D2
DeltaReservationMax = D3

ElementSettingData

CopyType = Snapshot
SNIA Technical Position 635

Delta Replica StoragePools

504

505

506

507

508

509

510

511

512

513

514

515

516

517
20.1.29 Provider Configurations for Remote Replication

Remote replication involves a minimum of two peer system instances. There are two possible provider
configurations for controlling remote replication service access points:

Configuration 1: One instance of the provider controls both peers. A client interfaces to one SMI-S server
and CIMOM. The only stitching required between arrays is a StorageSynchronized (and
GroupSynchronized) association between storage elements in separate arrays.

Configuration 2: A separate instance of the provider controls each peer system. Each provider has its
own SMI-S server/CIMOM instance. Clients are required to interact with two providers: the provider
controlling the source element and the provider controlling the target element. See the method
ReplicationServiceCapabilities.tures in 20.5.4.3 "GetSupportedFeatures" for the capability “Remote
resource requires remote CIMOM“.

The remote replication model allows connections that are bi-directional or uni-directional. By default,
connections to remote systems are bi-directional, unless it is stated otherwise. Refer to 20.5.4.19
"GetSupportedConnectionFeatures".

Figure 139 - Variable Space Consumption

StorageSynchronized

StorageVolume

// target element
NumberOfBlocks = N
BlockSize = M

StoragePool

// container element
// delta replica pool
TotalManagedSpace = S
RemainingManagedSpace = variable
LowSpaceWarningThreshold = T2
Usage =
٪ Reserved as a Delta Replica Container

AllocatedFromStoragePool

StorageVolume

// source element
NumberOfBlocks = N
BlockSize = M

SpaceConsumed = variable

CopyType = Snapshot

ReplicaPoolForStorage
636

 Delta Replica StoragePools

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555
20.1.30 Thinly Provisioned Elements

Replication Services supports “copying” thinly provisioned elements. Depending on the underlying
implementation, it is possible to copy a thinly provisioned source element to a thinly provisioned target
element or alternatively to a fully provisioned target element. Other combinations may be advertised in
the capabilities.

If an implementation supports more than one combination of source and target provisioning, clients may
use the ReplicationSettingData parameter of the CreateElementReplica or CreateGroupReplica to
request a specific combination. Clients can set the property
ReplicationSettingData.ThinProvisioningPolicy for the desired results.

Refer to the capabilities for the allowable combinations supported by the implementation. See 20.5.4.13
"GetSupportedThinProvisioningFeatures", 20.5.4.12 "GetSupportedSettingsDefineStateOperations" and
20.5.4.18 "GetDefaultReplicationSettingData".

EXPERIMENTAL

20.1.31 Data Compressed Elements

Replication Services supports "copying" compressed elements. Depending on the underlying
implementation, it is possible to copy a compressed source element to a compressed target element or
alternatively to a fully provisioned target element. Other combinations may be advertised in the
capabilities. It's also possible to combine the capability of thinly provisioning and compressed
provisioning for one storage element.

As the capacity usage of compression in replication:

• When the replication is from a compressed source to a compressed target, it will be a normal volume
replication, so the capacity allocation for the target is as same as the normal allocation in volume replication;

• When the replication is from a compressed source to an uncompressed target, the data on the source will be
uncompressed in memory and written onto the target, so the capacity to be allocated to the target will be the
capacity of data after uncompression;

• When the replication is from an uncompressed source to a compressed target, the data on the source will be
compressed in memory and written onto the target, so the capacity to be allocated to the target will be the
capacity of data after compression;

If an implementation supports more than one combination of source and target provisioning, clients may
use the ReplicationSettingData parameter of the CreateElementReplica or CreateGroupReplica to
request a specific combination. Clients can set the property
ReplicationSettingData.StorageCompressionPolicy and ReplicationSettingData.ThinProvisioningPolicy
for the desired results.

Refer to the capabilities for allowable combinations supported by the implementation. See 20.5.4.20
"GetSupportedStorageCompressionFeatures".

EXPERIMENTAL

20.1.32 Indications

Depending on the implementation, the Replication Services Profile generates a number of different alert
and life cycle indicatons, as shown in Table 443. Clients decide what indications they wish to receive by
subscribing to the appropriate indications.
SNIA Technical Position 637

Delta Replica StoragePools

556

557

558

559

560

561

562

563

564

565

566

567

568
Because on a large system with many copy operations in progress simultaneously, there is a potential to
receive many unwanted indications. Therefore, it is recommended for the clients to subscribe to
indications that have a query that is constrained to a specific replication association. See 20.7 "CIM
Elements" for the indication queries. For the storage pool and job indications, refer to 5 "Block Services
Package" and Storage Management Technical Specification, Part 3 Common Profiles, 1.8.0 Rev 4 23 "Job
Control Profile".

20.2 Health and Fault Management Consideration

The profile uses indications to report health and fault management. In general, instance modification
indications are sent when changes in OperationalStatus and HealthState values of the following instances
indicate a fault condition:

• Source and Replica elements

• ProtocolEndpoints

• RemoteReplicationCollections

Table 443 - Indications

Indication Source Of

CIM_InstCreation • New Job Creation

• New Target Element Creation

• New StorageSynchronized Association Creation

• New GroupSynchronized Association Creation

CIM_InstDeletion • Job Deletion

• Target Element Deletion (e.g. Snapshot)

• StorageSynchronized Association Deletion

• GroupSynchronized Association Deletion

CIM_InstModification • Job Progress and Status Changes

• Source and Target Elements Status Changes

• CopyState Changes

• ProgressStatus Changes

• ProtocolEndpoints and RemoteReplicationCollections Status Changes

CIM_AlertIndication • StoragePool space consumption Alerts (especially by Snapshot targets).

• Error conditions, such as

• StorageSynchronized and GroupSynchronized State set to Broken.

• ProtocolEndpoints.OperationalStatus set to Error.

• RemoteReplicationCollection.ConnectivityStatus set to “down”
638

 Delta Replica StoragePools

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587
In response to a fault indication, clients can follow the RelatedElementCausingError association between
the instance reporting the error and the faulted component.

The profile also generates alert indications when the CopyState of a replication association transitions to
the Broken state.

The Replication Services Profile generates alert indications that allow monitoring of storage pool
consumption by the replica elements.

20.3 Cascading Considerations

20.3.1 Overview

For remote replication, the Replication Services Profile requires a cascading provider to perform the
“stitching” of resources between the cascading profile (replication services), and a leaf profile (for
example the Array Profile), where the remote resources are contained. The cascading provider ensures
that the leaf resources represent real instances of ComputerSystem, ProtocolEndpoint, and storage
objects such as StorageVolume in the Cascading Profile. Furthermore, the cascading provider shall
ensure that state and status properties such as OperationalStatus and CopyState have consistent values
between the leaf and real resources.

The replication service relies on other profiles to facilitate access to the leaf resources. For example, the
RemoteServiceAccessPoint instance identifies the necessary information to establish access to the leaf
system’s resources. See Figure 140 for an instance diagram of establishing access to the leaf resources.
This figure also shows instances of additional objects inherited from the class ServiceAccessPoint that
can facilitate access to remote resources.

Figure 140 - Instance Diagram for Access to Leaf Resources

C om puterSystem

N am e:
SanJose

R eplicationS ervice

H ostedService

S torageV olum e2
(ta rge t)

S ystem N am e:
 B oston

R e m ote R ep lica tion w ith S e rvice A ccessP o in t

R em oteS erviceA ccessP oin t

S erviceA ccessP oin t

(abstract)H ostedA ccessP oin t

R e m o te S ystem in B osto n

Loca l S ystem in S a n Jose
N e tw o rk T ra ffic

Protoco lE ndpo int AccessServiceU R I

S torageVolum e1
(source)

S ystem N am e:
SanJose

S AP Ava ilab leForE lem ent
SNIA Technical Position 639

Delta Replica StoragePools

588

589

590

591

592

593

594

595
20.3.2 ServiceAccessPoint and SharedSecret Instances

Access to remote resources may require an instance of ServiceAccessPoint such as
RemoteServiceAccessPoint (inherited from ServiceAccessPoint) and its associated SharedSecret
instance, which describes response to a challenge question (i.e., password).

Figure 141 shows an instance of ServiceAccessPoint associated to an instance of SharedSecret via the
CredentialContext association.

The method AddServiceAccessPoint (20.5.3.16) and the method AddSharedSecret (20.5.3.17) can be
used to create the required instances.

Figure 141 - Instance of ServiceAccessPoint

SharedSecretServiceAccessPoint

CredentialContext
640

 Delta Replica StoragePools

596

597

598

599

600

601

602

603
20.3.3 Cascading Support

Figure 142 illustrates the Replication Services support for cascading.

The embedded dashed box in the figure illustrates the classes and associations of the cascading support.
The dashed classes are shadow of instances provided by the remote system. The collection
AllocatedResources collects all the components in use by the replication service. The RemoteResources
collection collects all components (StorageVolumes, LogicalDisks, StoragePools, etc.) accessible to the
replication service (whether used or not).

Figure 143 shows cascading support utilizing replication groups.

Figure 142 - Replication Services support for Cascading

Replication Services Profile

Cascading Support

ComputerSystem

ComputerSystem
(Shadow)

StorageVolume
(Shadow)

Name= OS X

StorageVolume
(Shadow)

RemoteResources

ElementType = "Volume"
CollectionDiscriminator =
["SNIA:Target Volume",
SNIA:Remote Storage

Pools�

Dependency

RemoteServiceAccessPoin
t

SAPAvailableForElement

SystemDevice

AllocatedResources

ElementType = "Volume"
CollectionDiscriminator =
 "SNIA:Target Volume"

MemberOfCollection

MemberOfCollection

HostedCollection

HostedCollection

StorageVolume

Name= LocalDevice

StorageSynchronized

SystemDevice

Remote Volume

Local Volume

StoragePool
(Shadow)

HostedStoragePool
SNIA Technical Position 641

Delta Replica StoragePools

604

605

606

607

608

609

610

611

20.4 Mapping of Copy Services and Replication Services Properties and Methods

Any action taken using the Replication Services methods is reflected, where applicable, appropriately in
the properties used by the Copy Services Profile (9 Copy Services Profile). The reverse is also true in
that any action taken by the Copy Services methods is reflected correctly in the properties used by the
Replication Services Profile. Refer to Table 179, “Alignment of SyncType/Mode and CopyType,” and
Table 180, “Alignment of CopyState and SyncState,” for alignment of the specific properties used by Copy
Services and this profile.

Figure 143 - Cascading and Replication Groups

 Replication Services Profile

 Cascading Support

ComputerSystem

ComputerSystem
(Shadow) StorageVolume

(Shadow)

Name= OS X

StorageVolume
(Shadow)

RemoteResources

Dependency

RemoteServiceAccessPoint

SAPAvailableForElement

SystemDevice

AllocatedResources

MemberOfCollection

MemberOfCollection

HostedCollection

HostedCollection
StorageVolume

Name= LocalDevice

StorageSynchronized

SystemDevice

ReplicationGroup

InstanceID= LocalGroup

ReplicationGroup
(Shadow)

InstanceID= RemoteGroup

ReplicationService

HostedService

ServiceAffectsElement OrderededMemberOfCollection

GroupSynchronized

OrderededMemberOfCollection

MemberOfCollection
642

 Delta Replica StoragePools

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629
20.5 Methods of the Profile

20.5.1 Overview

The Replication Services Profile has a number of extrinsic methods for group management and
replication management. Additionally, there are a number of extrinsic methods in the
ReplicationServiceCapabilities that advertise the implemented replication services capabilities. Also, the
Profile is dependent on other extrinsic methods provided by the Block Services Package for storage pool
and storage element manipulations. Furthermore, the Profile relies on a number of intrinsic methods such
as ModifyInstance, DeleteInstance for certain optional capabilities.

All of the Profile extrinsic methods return one of the following status codes:

• 0: (Job) Completed with no error

• 1: Method not supported

• 4: Failed

• 5: Invalid Parameter

• 4096: Method Parameters Checked - Job Started

Depending on the error condition, a method may return additional error codes and/or throw an
appropriate exception to indicate the error encountered.

For the input/output parameter values, refer to the appropriate MOF files and the value maps.

Table 444 summarizes the extrinsic methods for group management (class ReplicationService).

Table 445 summarizes the extrinsic methods for replication management (class ReplicationService).

Table 444 - Extrinsic Methods for Group Management

Method Described in

CreateGroup() See 20.5.2.1

DeleteGroup() See 20.5.2.2

AddMembers() See 20.5.2.3

RemoveMembers() See 20.5.2.4

Table 445 - Extrinsic Methods for Replication Management

Method Described in

CreateElementReplica() See 20.5.3.1

CreateGroupReplica() See 20.5.3.2

CreateListReplica() See 20.5.3.3

CreateGroupReplicaFromElements() See 20.5.3.4

CreateSynchronizationAspect() See 20.5.3.5

ModifyReplicaSynchronization() See 20.5.3.6

ModifyListSynchronization() See 20.5.3.7

ModifySettingsDefineState() See 20.5.3.8
SNIA Technical Position 643

Delta Replica StoragePools

630

631

632

633

634
Table 446 summarizes the extrinsic methods for examining the implemented capabilities (class
ReplicationServiceCapabilities). The majority of these methods accept the ReplicationType as an input
parameter. The supplied ReplicationType should be a supported replication type corresponding to the
property ReplicationServicesCapabilities.SupportedReplicationTypes; otherwise the method returns “Not
Supported” (or throws a “Not Supported” exception).

ModifyListSettingsDefineState() See 20.5.3.9

GetAvailableTargetElements() See 20.5.3.10

GetPeerSystems() See 20.5.3.11

GetServiceAccessPoints() See 20.5.3.14

GetReplicationRelationships() See 20.5.3.12

GetReplicationRelationshipInstances() See 20.5.3.13

AddReplicationEntity See 20.5.3.15

AddServiceAccessPoint See 20.5.3.16

AddSharedSecret See 20.5.3.17

CreateRemoteReplicationCollection() See 20.5.3.18

AddToRemoteReplicationCollection() See 20.5.3.19

RemoveFromRemoteReplicationCollection() See 20.5.3.20

Table 446 - Extrinsic Methods for Getting Supported Capabilities

Method Described in

ConvertSyncTypeToReplicationType() See 20.5.4.1

ConvertReplicationTypeToSyncType() See 20.5.4.2

GetSupportedFeatures() See 20.5.4.3

GetSupportedGroupFeatures() See 20.5.4.4

GetSupportedCopyStates() See 20.5.4.5

GetSupportedGroupCopyStates() See 20.5.4.6

GetSupportedWaitForCopyStates() See 20.5.4.7

GetSupportedConsistency() See 20.5.4.8

GetSupportedOperations() See 20.5.4.9

GetSupportedGroupOperations() See 20.5.4.10

GetSupportedListOperations() See 20.5.4.11

GetSupportedSettingsDefineStateOperations() See 20.5.4.12

GetSupportedThinProvisioningFeatures() See 20.5.4.13

GetSupportedMaximum() See 20.5.4.14

GetDefaultConsistency() See 20.5.4.15

GetDefaultGroupPersistency() See 20.5.4.16

Table 445 - Extrinsic Methods for Replication Management

Method Described in
644

 CreateGroup

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669
20.5.2 Group Management Methods

20.5.2.1 CreateGroup

uint32 ReplicationService.CreateGroup(

[IN] string GroupName,

[IN] CIM_LogicalElement REF Members[],

[IN] boolean Persistent,

[IN] boolean DeleteOnEmptyElement,

[IN] boolean DeleteOnUnassociated,

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

[OUT] CIM_ReplicationGroup REF ReplicationGroup,

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

This method allows a client to create a new replication group. Any required associations (such as
HostedCollection) are created in addition to the instance of the group. The parameters are as follows:

• GroupName: If nameable, represents a user friendly name for the group being created. If null or not
nameable, then the implementation assigns a name.

• Members[]: An array of strings containing object references to the elements to add to the group -- order is
maintained. If null, the group will be empty, assuming empty groups are supported. Duplicates members are
not allowed.

• Persistent: If true, the group shall persist across Provider reboots (group is not temporary). If null, the
implementation decides. Use the intrinsic method ModifyInstance to change Persistency of a group if the
group persistency is supported by the implementation.

• DeleteOnEmptyElement: If true and empty groups are allowed, the group will be deleted when the last
element is removed from the group. If empty groups are not allowed, the group will be deleted automatically
when the group becomes empty. If this parameter is not null, its value will be used to set the group's
DeleteOnEmptyElement property. Use the intrinsic method ModifyInstance to change this property after the
group is created.

• DeleteOnUnassociated: If true, the group will be deleted when the group is no longer associated with another
group. This can happen if all synchronization associations to the individual elements of the group are
“deleted”. If this parameter is not null, its value will be used to set the group's DeleteOnUnassociated
property. Use the intrinsic method ModifyInstance to change this property after the group is created.

• ServiceAccessPoint: Reference to access point information to allow the service to create a group on a remote
system. If null, the group is created on the local system.

GetSupportedReplicationSettingData See 20.5.4.17

GetDefaultReplicationSettingData() See 20.5.4.18

GetSupportedConnectionFeatures() See 20.5.4.19

GetSupportedStorageCompressionFeatures() See 20.5.4.20

GetSynchronizationSupported() See 20.5.4.21

GetSupportedTokenizedReplicationType() See 20.5.4.22

Table 446 - Extrinsic Methods for Getting Supported Capabilities

Method Described in
SNIA Technical Position 645

DeleteGroup

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708
• ReplicationGroup: If the method completes successfully, then the ReplicationGroup is a reference to the
group that is created.

• ReplicationSettingData: If supplied, it provides additional replication settings for the method. For example, to
supply the “Description” for the created group.

This method returns the following additional values/statuses:

• If groups are not nameable and a name is supplied, the method returns 7 (“Groups are not nameable“) or
throws an appropriate exception.

• If the ServiceAccessPoint is not specified, the replication group is created on the system hosting the
replication service, via the HostedService association.

20.5.2.2 DeleteGroup

uint32 ReplicationService.DeleteGroup(

[IN, Required] CIM_ReplicationGroup REF ReplicationGroup.

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

[IN] boolean RemoveElements,

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

This method allows a client to delete a replication group. All associations to the deleted group are also
removed as part of the action. The parameters are as follows:

• ReplicationGroup: This is a reference to the group that the client wants to delete.

• ServiceAccessPoint: Reference to access point information to allow the service to delete the group on a
remote system. If null, the group is on the local system.

• RemoveElements: The client can request to delete the group even if it is not empty. If one or more elements
in the group are in a replication relationship, RemoteElements is ignored.

• ReplicationSettingData: If supplied, it provides additional replication settings for the method. For example,
what should happen OnGroupOrListError.

This method returns the following additional values/statuses:

• If an element in the group is in a replication association, the method returns 7 (“One or more element in a
replication relationship“) or throws an appropriate exception.

20.5.2.3 AddMembers

uint32 ReplicationService.AddMembers(

[IN] CIM_LogicalElement REF Members[],

[IN, Required] CIM_ReplicationGroup REF ReplicationGroup,

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

This method allows a client to add members to an existing replication group. The parameters are as
follows:

• Members[]: An array of strings containing object references to the new elements to add to the replication
group. The new elements are added at the end of current members of the replication group. Duplicate
members are not allowed.
646

 RemoveMembers

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750
• ReplicationGroup: A reference to an existing replication group.

• ServiceAccessPoint: Reference to access point information to allow the service to access the group on a
remote system. If null, the group is on the local system.

• ReplicationSettingData: If supplied, it provides additional replication settings for the method. For example,
what should happen OnGroupOrListError.

20.5.2.4 RemoveMembers

uint32 ReplicationService.RemoveMembers(

[IN] CIM_LogicalElement REF Members[],

[IN] boolean DeleteOnEmptyElement,

[IN, Required] CIM_ReplicationGroup REF ReplicationGroup,

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

This method allows a client to remove members from an existing replication group. If empty replication
groups are not supported by the implementation, deleting all members will delete the group. The
parameters are as follows:

• Members[]: An array of strings containing object references to the elements to remove from the replication
group. Attempting to remove a member that is not in the replication group, returns an error.

• DeleteOnEmptyElement: If true and removal of the members causes the group to become empty, the group
will be deleted. Note, if empty groups are not allowed, the group will be deleted automatically when the group
becomes empty. If this parameter is not null, it overrides the group's property DeleteOnEmptyElement.

• ReplicationGroup: A reference to an existing replication group.

• ServiceAccessPoint: Reference to access point information to allow the service to access the group on a
remote system. If null, the group is on the local system.

• ReplicationSettingData: If supplied, it provides additional replication settings for the method. For example,
what should happen OnGroupOrListError.

This method returns the following additional values/statuses:

• Attempting to remove a group member that is in a replication association, returns 7 (“One or more element in
a replication relationship“) or throws an appropriate exception.

20.5.3 Replication Management Methods

20.5.3.1 CreateElementReplica

 uint32 ReplicationService.CreateElementReplica(

 [IN] string ElementName,

 [IN, Required] uint16 SyncType,

 [IN] uint16 Mode,

 [IN, Required] CIM_LogicalElement REF SourceElement,

 [IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

 [IN, OUT] CIM_LogicalElement REF TargetElement,

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [IN, EmbeddedInstance("CIM_ReplicationSettingData")]

 string ReplicationSettingData,
SNIA Technical Position 647

CreateElementReplica

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789
 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronization,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState,

 [IN] CIM_ConnectivityCollection REF ConnectivityCollection);

This method allows a client to create (or start a job to create) a new storage object which is a replica of
the specified source storage object (SourceElement). The parameters are as follows:

• ElementName: A end user relevant name for the element being created. If null, then a system supplied name
is used. The value will be stored in the 'ElementName' property for the created element.

• SyncType: Describes the type of copy that will be made. For example, Mirror, Snapshot, and Clone.

• Mode: Describes whether the target elements will be updated synchronously or asynchronously.

• SourceElement: The source storage object which may be a StorageVolume or storage object.

• SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source element.

• TargetElement:

• As an input, refers to a target element to use. If a target element is not supplied, the implementation may
locate or create a suitable target element. See 20.5.4.17 "GetSupportedReplicationSettingData".

• As an output, refers to the created target storage element (i.e., the replica). If a job is created, the target
element may not be available immediately.

• TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target element.

• ReplicationSettingData: If provided, it overrides the default replication setting data for the given SyncType. If
not provided, the implementation uses the default replication setting data.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be null if job is completed).

• Synchronization: Refers to the created association between the source and the target element. If a job is
created, this parameter may be null, unless the association is actually formed.

• TargetSettingGoal: The definition for the StorageSetting to be maintained by the target storage object (the
replica). If a target element is supplied, this parameter shall be null.

• TargetPool: The underlying storage for the target element (the replica) will be drawn from TargetPool if
specified, otherwise the allocation is implementation specific. If a target element is supplied, this parameter
shall be null.

• WaitForCopyState: Before returning, the method shall wait until this CopyState is reached. For example,
CopyState of Initialized means associations have been established, but there is no data flow. CopyState of
Synchronized indicates the replica is an exact copy of the source element. CopyState of UnSynchronized
means copy operation is in progress (see Table 442 for the CopyStates).

• ConnectivityCollection: Reference to the ConnectivityCollection - for example, a
RemoteReplicationCollection. Since a RemoteReplicationCollection aggregates the ProtocolEndpoints that
provide the paths to a remote system, generally, it is not necessary to supply both the ConnectivityCollection
and the ServiceAccessPoint.
648

 CreateGroupReplica

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818
Method Notes:

• Creates a storage element of the same type as the source element.

• If the TargetElement, the TargetPool, or the TargetAccessPoint are not specified, the TargetElement is
created on the system hosting the replication service, via the HostedService association. Additionally, when
required, the created TargetElement will have the applicable association to the top level ComputerSystem.
For example, if the TargetElement is a StorageVolume, the created TargetElement will have a SystemDevice
association to the top level computer system.

• Creates a StorageSynchronized association.

• Creates SystemDevice, AllocatedFromStoragePool, and ElementSettingData associations to the newly
created target element.

• May create BasedOn and ReplicaPoolForStorage associations.

Table 447 shows selected optional parameters that can interact.

NOTE * See capabilities (Table 465, “Target Element Suppliers,”) for whether implementation locates/creates target elements.

20.5.3.2 CreateGroupReplica

 uint32 ReplicationService.CreateGroupReplica(

 [IN] string RelationshipName,

 [IN, Required] uint16 SyncType,

 [IN] uint16 Mode,

 [IN] CIM_ReplicationGroup REF SourceGroup,

 [IN] CIM_LogicalElement REF SourceElement,

 [IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

 [IN, OUT] CIM_ReplicationGroup REF TargetGroup,

 [IN] uint64 TargetElementCount,

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [IN] uint16 Consistency,

 [IN, EmbeddedInstance("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronization,

Table 447 - Selected CreateElementReplica optional parameters

TargetElement TargetSettingGoal TargetPool Comment

Null Null Null Implementation locates/creates
target element*

Supplied Null Null

Null Supplied Null Goal is used to locate/create
target element*

Null Supplied Supplied Goal is used to locate/create
target element* in the supplied
Pool

Null Null Supplied Pool is used to locate/create
target element* in Pool.
Implementation determines the
Goal
SNIA Technical Position 649

CreateGroupReplica

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858
 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState,

 [IN] CIM_ConnectivityCollection REF ConnectivityCollection);

This method allows a client to create (or start a job to create) a new group of storage objects which are
replicas of the specified source storage or a group of source storage objects (SourceElements). The
parameters are as follows:

• RelationshipName: A user relevent name for the relationship between the source and target groups or
between a source element and a target group (i.e., one-to-many). If null, the implementation assigns a name.
If the individual target elements require an ElementName, a name would be constructed using
RelationshipName (or ReplicationSettingData.ElementName) as prefix followed by \"_n\" sequence number,
where n is a number beginning with 1.

If the method is expected to create the target group, and the parameter ReplicationSettingData is supplied,
the property ReplicationSettingData.ElementName may be used as the group name.

• SyncType: See CreateElementReplica’s parameters (20.5.3.1).

• Mode: See CreateElementReplica’s parameters (20.5.3.1).

• SourceGroup: A group of source storage objects which may be a StorageVolume or storage object. If this
parameter is not supplied, SourceElement is required. Both SourceGroup and SourceElement shall not be
supplied.

• SourceElement: The source storage object which may be a StorageVolume or storage object. If this
parameter is not supplied, SourceGroup is required. Both SourceGroup and SourceElement shall not be
supplied.

• SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source elements/group.

• TargetGroup:

• As an input, refers to a target group to use.

• As an output, refers to the created target group (i.e., the replica group). If a job is created, the target group
may not be available immediately. If TargetGroup is supplied, TargetElementCount shall be null.

• TargetElementCount: This parameter applies to one-source-to-many-target elements. If TargetGroup is
supplied, this parameter shall be null.

• TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target elements/group.

• Consistency: This parameter overrides the default group consistency. For example, "No Consistency",
"Sequential Consistency".

• ReplicationSettingData: See CreateElementReplica’s parameters (20.5.3.1).

• Job: See CreateElementReplica’s parameters (20.5.3.1).

• Synchronization: Refers to the created association between the source element (or source replication group)
and the target replication group. If a job is created, this parameter may be null, unless the association is
actually formed.

• TargetSettingGoal: See CreateElementReplica’s parameters (20.5.3.1).
650

 CreateGroupReplica

859

860

861

862

863

864

865

866

867

868

869

870

871
• TargetPool: See CreateElementReplica’s parameters (20.5.3.1).

• WaitForCopyState: See CreateElementReplica’s parameters (20.5.3.1).

• ConnectivityCollection: See CreateElementReplica’s parameters (20.5.3.1).

Method Notes:

• Creates storage elements of the same type as the source element(s).

• If the TargetGroup or the TargetAccessPoint are not specified, the TargetGroup is created on the system
hosting the replication service, via the HostedService association.

• Creates StorageSynchronized and GroupSynchronized associations.

• Creates SystemDevice, AllocatedFromStoragePool, and ElementSettingData associations to the newly
created target elements.

• May create BasedOn and ReplicaPoolForStorage associations.

Table 448 shows selected optional parameters that can interact.

NOTE * See capabilities (Table 465, “Target Element Suppliers,”) for whether implementation locates/creates target elements.

Table 448 - Selected CreateGroupReplica optional parameters

TargetGroup TargetElementCount TargetSettingGoal TargetPool Comment

Null Null Null Null Implementation locates/
creates target elements*

Supplied Null Null Null

Supplied Supplied Null Null An illegal combination.

Null Supplied Null Null Implementation locates/
creates target elements*

Null Supplied Supplied Null Goal is used to locate/create
target elements*

Null Supplied Supplied Supplied Goal is used to locate/create
target elements* in the
supplied Pool

Null Null Supplied Null Goal is used to locate/create
target elements*

Null Null Supplied Supplied Goal is used to locate/create
target elements in the
supplied Pool

Null Null Null Supplied Pool is used to locate/create
target elements* in Pool.
Implementation determines
the Goal
SNIA Technical Position 651

CreateListReplica

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913
20.5.3.3 CreateListReplica

 uint32 ReplicationService.CreateListReplica(

 [IN] string ElementNames[],

 [IN, Required] uint16 SyncType,

 [IN] uint16 Mode,

 [IN, Required] CIM_LogicalElement REF SourceElements[],

 [IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

 [IN, OUT] CIM_LogicalElement REF TargetElements[],

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [IN, EmbeddedInstance("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronizations[],

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState,

 [IN] CIM_ConnectivityCollection REF ConnectivityCollection);

This method allows a client to create (or start a job to create) new storage objects which are a replica of
the corresponding specified source storage object (an element of the SourceElements). The parameters
are as follows:

• ElementNames: An array of end user relevant names for the elements being created. If null, then a system
supplied name is used. The value will be stored in the 'ElementName' property for the created element. The
first element of the array ElementNames is assigned to the first replica, the second element to the second
replica and so on. If there are more SourceElements entries than ElementNames, the system supplied name
is used.

• SyncType: Describes the type of copy that will be made. For example, Mirror, Snapshot, and Clone. The
same SyncType is applied to all SourceElements entries.

• Mode: Describes whether the target elements will be updated synchronously or asynchronously. The same
Mode is applied to all SourceElements entries.

• SourceElements: An array of source storage objects which may be StorageVolumes or storage objects. All
the source elements shall be of the same type -- for example, all StorageVolumes.

• SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source element. The same SourceAccessPoint applies to all SourceElements
entries.

• TargetElements:

• As an input, refers to an array of target elements to use. If specified, the elements will match one to one with
SourceElements[]. If target elements are not supplied, the implementation may locate or create suitable
target elements. See 20.5.4.17 "GetSupportedReplicationSettingData".

• As an output, refers to the created target storage elements (i.e., the replicas). If a job is created, the target
elements may not be available immediately.

• TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target element. The same TargetAccessPoint applies to all TargetElements entries.
652

 CreateListReplica

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944
• ReplicationSettingData: If provided, it overrides the default replication setting data for the given SyncType. If
not provided, the implementation uses the default replication setting data. The same ReplicationSettingData
applies to SourceElements entries.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be null if job is completed).

• Synchronizations: Refers to an array of created associations between the source and the target elements. If a
job is created, this parameter may be null, unless the associations are actually formed.

• TargetSettingGoal: The definition for the StorageSetting to be maintained by the target storage object (the
replica). If a target element is supplied, this parameter shall be null. The same TargetSettingGoal applies to
all TargetElements entries.

• TargetPool: The underlying storage for the target element (the replica) will be drawn from TargetPool if
specified, otherwise the allocation is implementation specific. If a target element is supplied, this parameter
shall be null. The same TargetPool applies to all TargetElement entries.

• WaitForCopyState: Before returning, the method shall wait until this CopyState is reached for all
Synchronizations. For example, CopyState of Initialized means associations have been established, but there
is no data flow. CopyState of Synchronized indicates the replicas are an exact copy of the corresponding
source element. CopyState of UnSynchronized means copy operation is in progress (see Table 442 for the
CopyStates).

• ConnectivityCollection: See CreateElementReplica’s parameters (20.5.3.1).

Method Notes:

• Creates a storage elements of the same type as the source elements.

• If the TargetElements, the TargetPool, or the TargetAccessPoint are not specified, the TargetElements are
created on the system hosting the replication service, via the HostedService association. Additionally, when
required, the created TargetElements will have the applicable associations to the top level ComputerSystem.
For example, if the TargetElements are StorageVolumes, the created TargetElements will have SystemDevice
associations to the top level computer system.

• Creates the StorageSynchronized associations.

• Creates SystemDevice, AllocatedFromStoragePool, and ElementSettingData associations to the newly
created target elements.

• May create BasedOn and ReplicaPoolForStorage associations.

Table 449 shows selected optional parameters that can interact.

Table 449 - Selected CreateListReplica optional parameters

TargetElements TargetSettingGoal TargetPool Comment

Null Null Null Implementation locates/creates
target elements*

Supplied Null Null

Null Supplied Null Goal is used to locate/create
target elements*

Null Supplied Supplied Goal is used to locate/create
target elements* in the supplied
Pool
SNIA Technical Position 653

CreateGroupReplicaFromElements

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982
NOTE *See capabilities (Table 465, “Target Element Suppliers,”) for whether implementation locates/creates target elements.

20.5.3.4 CreateGroupReplicaFromElements

 uint32 ReplicationService.CreateGroupReplicaFromElements(

 [IN] string RelationshipName,

 [IN, Required] uint16 SyncType,

 [IN] uint16 Mode,

 [IN,OUT] CIM_ReplicationGroup REF SourceGroup,

 [IN] CIM_LogicalElement REF SourceElements[],

 [IN, OUT] string SourceGroupName,

 [IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

 [IN, OUT] CIM_ReplicationGroup REF TargetGroup,

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [IN] uint16 Consistency,

 [IN, EmbeddedInstance("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronization,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState,

 [IN] CIM_ConnectivityCollection REF ConnectivityCollection);

This method allows a client to create (or start a job to create) a new group of storage objects which are
replicas of the specified source storage objects (SourceElements). This method combines the
functionality of CreateGroup and CreateGroupReplica in that the methods accepts a list of source
elements and creates the source group, and the target group, if not supplied.

The parameter SourceGroupName corresponds to the parameter GroupName as defined in the
CreateGroup method.

For the explanation of the parameters, see the methods CreateGroup (20.5.2.1) and CreateGroupReplica
(20.5.3.2).

20.5.3.5 CreateSynchronizationAspect

 uint32 ReplicationService.CreateSynchronizationAspect(

 [IN] string Name,

 [IN, Required] uint16 SyncType,

 [IN] uint16 Mode,

 [IN] CIM_ReplicationGroup REF SourceGroup,

 [IN] CIM_ManagedElement REF SourceElement,

 [IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

 [IN] uint16 Consistency,

Null Null Supplied Pool is used to locate/create
target elements* in Pool.
Implementation determines the
Goal

Table 449 - Selected CreateListReplica optional parameters

TargetElements TargetSettingGoal TargetPool Comment
654

 ModifyReplicaSynchronization

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021
 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_SettingsDefineState REF SettingsState);

This method allows a client to create (or start a job to create) new instances of SynchronizationAspect
that are associated to the source element (or a group of source elements) via the SettingsDefineState
associations. This representation may be of a form of pointers or a series of checkpoints that keep track
of the source element data for the created point-in-time.

This method does not include a target element, however, a target element can be added subsequently
using the ModifySettingsDefineState method.

The method creates individual associations between the source elements and the instances of
SynchronizationAspect.

The parameters are as follows:

• Name: A end user relevant name. If null, then a system supplied default name can be used. The value will be
stored in the ElementName or relationship name depending on whether an element is created or a group.

• SyncType: See CreateElementReplica’s parameters (20.5.3.1).

• Mode: See CreateElementReplica’s parameters (20.5.3.1).

• SourceGroup: See parameters in 20.5.3.2 "CreateGroupReplica".

• SourceElement: See CreateGroupReplica’s parameters (20.5.3.2). The source element may also be an
instance of another SynchronizationAspect.

• SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source element/group.

• Consistency: See CreateGroupReplica’s parameters (20.5.3.2)

• ReplicationSettingData: See CreateElementReplica’s parameters (20.5.3.1).

• Job: See CreateElementReplica’s parameters (20.5.3.1).

• SettingsState: Refers to the created association between the source element or group and the instance of the
SynchronizationAspect. If a job is created, this parameter may be null, unless the association is actually
formed.

Method Notes:

• May create an instance of SynchronizationAspect if an appropriate one does not exist already.

• May create ReplicaPoolForStorage associations.

20.5.3.6 ModifyReplicaSynchronization

 uint32 ReplicationService.ModifyReplicaSynchronization(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_Synchronized REF Synchronization,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

[IN] CIM_StorageSynchronized REF SyncPair[],

 [OUT] CIM_ConcreteJob REF Job,
SNIA Technical Position 655

ModifyListSynchronization

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062
 [IN] boolean Force,

[OUT] CIM_SettingsDefineState REF SettingsState,

 [IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) the synchronization association between
two storage objects or replication groups. The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the replica and/or to the related
associations, for example, Split.

• Synchronization: The reference to the replication association describing the elements/groups relationship that
is to be modified.

• ReplicationSettingData: See CreateElementReplica’s parameters (20.5.3.1).

• SyncPair[]: This parameter applies to AddSyncPair/RemoveSyncPair Operations. It allows a client to form a
StorageSynchronized association between source and target elements and then add the association to
existing source and target groups. Alternatively, a client can remove a StorageSynchronized association from
source and target groups.

• Job: See CreateElementReplica’s parameters (20.5.3.1).

• SettingsState: Reference to the association between the source or group element and an instance of
SynchronizationAspect. This parameters applies to operations such as Dissolve, which dissolves the
Synchronized relationship, but causes the SettingsDefineState association to be created. Depending on the
implementation, Deactivate may also return a SettingsState.

• Force: Some operations may cause an inconsistency among the target elements. If true, the client is not
warned and the operation is performed if possible.

• WaitForCopyState: See CreateElementReplica’s parameters (20.5.3.1).

20.5.3.7 ModifyListSynchronization

 uint32 ReplicationService.ModifyListSynchronization(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_Synchronized REF Synchronization[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean Force,

 [IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) a list of synchronization associations
between two storage objects or replication groups. The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the replica and/or to the related
associations, for example, Split.

• Synchronization: An array of references to the replication association describing the elements/groups
relationship that is to be modified. All elements of the this array shall be of the same concrete class (i.e.,
StorageSynchronized or GroupSynchronized), and shall have the same SyncType, the same Mode, and the
Operation shall be valid for the ReplicationType -- SyncType, Mode, Local/Remote.

• ReplicationSettingData: See CreateElementReplica’s parameters (20.5.3.1).

• Job: See CreateElementReplica’s parameters (20.5.3.1).
656

 ModifySettingsDefineState

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104
• Force: Some operations may cause an inconsistency among the target elements. If true, the client is not
warned and the operation is performed if possible.

• WaitForCopyState: See CreateElementReplica’s parameters (20.5.3.1). All the supplied synchronization
associations shall reach at least the specified CopyState before the method returns.

20.5.3.8 ModifySettingsDefineState

 uint32 ReplicationService.ModifySettingsDefineState(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_SettingsDefineState REF SettingsState,

 [IN, OUT] CIM_LogicalElement REF TargetElement,

 [IN, OUT] CIM_ReplicationGroup REF TargetGroup,

 [IN] uint64 TargetElementCount,

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [OUT] CIM_Synchronized REF Synchronization,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) the SettingsDefineState association
between the storage objects and SynchronizationAspect. The modification could range from introducing
the target elements, which creates new StorageSynchronized associations, to dissolving the
SettingsDefineState associations all together.

With the Copy To Target operation, the supplied SettingsState is deleted since an “active”
Synchronization is created to associate the source and the target elements (or groups).

The parameters are:

• Operation: This parameter describes the type of modification to be made to the related associations, for
example, Copy To Target, which initiates the copy operation from the point-in-time view to the supplied
targets. With the Attach To Target operation, the target simply “points” to the point-in-time view.

• SettingsState: Refers to the associations between the source elements and the SynchronizationAspect
instances. If an associated source element is part of a consistency group, all members of the group shall be
paired with the appropriate target elements.

• TargetElement: If TargetElement is supplied, TargetGroup and TargetCount shall be null.

• As an input, if the point-in-time has only one source element, this parameter supplies the target element.

• As an output, refers to the created target storage element (i.e., the replica). If a job is created, the target
element may not be available immediately.

• TargetGroup: If TargetGroup is supplied, TargetElement and TargetElementCount shall be null.

• As an input, refers to a target group to use. If the source has only one element, the presence of a group
creates a one-to-many association between the source and the target elements. If TargetGroup is supplied,
TargetElement and TargetCount shall be null."

• As an output, refers to the created target group (i.e., the replica group). If a job is created, the target group
may not be available immediately.
SNIA Technical Position 657

ModifyListSettingsDefineState

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144
• TargetElementCount: This parameter applies to one-source-to-many-target-elements. It is possible to create
multiple copies of a source element. If TargetCount is supplied, TargetElement and TargetGroup shall be null.

• TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target elements/group.

• Synchronization: The reference to the replication association describing the elements/groups relationship.

• ReplicationSettingData: See CreateElementReplica’s parameters (20.5.3.1).

• Job: See CreateElementReplica’s parameters (20.5.3.1).

• TargetSettingGoal: See CreateElementReplica’s parameters (20.5.3.1).

• TargetPool: See CreateElementReplica’s parameters (20.5.3.1).

• WaitForCopyState: See CreateElementReplica’s parameters (20.5.3.1).

20.5.3.9 ModifyListSettingsDefineState

 uint32 ReplicationService.ModifyListSettingsDefineState(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_SettingsDefineState REF SettingsStates[],

 [IN, OUT] CIM_LogicalElement REF TargetElements[],

 [IN, OUT] CIM_ReplicationGroup REF TargetGroups[],

 [IN] uint64 TargetElementCount,

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [OUT] CIM_Synchronized REF Synchronizations[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState);

This method is similar to ReplicationService.ModifySettingsDefineState (20.5.3.8), except that it accepts
a list of SettingsDefineState associations.

20.5.3.10 GetAvailableTargetElements

 uint32 ReplicationService.GetAvailableTargetElements(

 [IN, Required] CIM_LogicalElement REF SourceElement,

 [IN, Required] uint16 SyncType,

 [IN, Required] uint16 Mode,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [IN] CIM_ComputerSystem REF TargetComputerSystem,

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPools[],

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_LogicalElement REF Candidates[]);
658

 GetPeerSystems

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183
This method allows a client to get (or start a job to get) all of the candidate target elements for the
supplied source element. If a job is started, once the job completes, examine the AffectedJobElement
associations for candidate targets. The parameters are:

• SourceElement: The source storage object which may be a StorageVolume or storage object.

• SyncType: See CreateElementReplica’s parameters (20.5.3.1).

• Mode: See CreateElementReplica’s parameters (20.5.3.1).

• ReplicationSettingData: See CreateElementReplica’s parameters (20.5.3.1). The parameter is useful for
requesting a specific combination of thinly and fully provisioned elements.

• TargetComputerSystem: Reference to target computer system. If this parameter and TargetAccessPoint are
null, only local targets are returned.

• TargetAccessPoint: Reference to target access point information. If this parameter and
TargetComputerSystem are null, only local targets are returned.

• TargetSettingGoal: Desired target StorageSetting. If null, settings of the source elements shall be used.

• TargetPools[]: The storage pools for the target elements. If null, all storage pools (on the given systems) are
examined.

• Job: See CreateElementReplica’s parameters (20.5.3.1).

• Candidates[]: The list of the candidate target elements found.

20.5.3.11 GetPeerSystems

 uint32 ReplicationService.GetPeerSystems(

 [IN] uint16 Options,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_ComputerSystem REF Systems[]);

This method allows a client to get (or start a job to get) all of the peer systems. A peer system is a system
that is known and visible to the Replication Service. Peer systems are discovered through discovery
services and/or implementation specific services. If a job is started, once the job completes, examine the
AffectedJobElement associations for the peer systems. The parameters are:

• Options: This parameter specifies whether to return all known peer systems or only the systems that are
currently reachable. If null, all known systems are returned, whether they are currently reachable or not.

• Job: See CreateElementReplica’s parameters (20.5.3.1).

• Systems[]: The list of peer computer systems.

20.5.3.12 GetReplicationRelationships

 uint32 ReplicationService.GetReplicationRelationships(

 [IN] uint16 Type,

 [IN] uint16 SyncType,

 [IN] uint16 Mode,

 [IN] uint16 Locality,

 [IN] uint16 CopyState,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronizations[]);
SNIA Technical Position 659

GetReplicationRelationshipInstances

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224
This method allows a client to get (or start a job to get) all of the synchronization relationships known to
the processing replication service. If a job is started, once the job completes, examine the
AffectedJobElement associations for the synchronization relationships. The parameters are as follows:

• Type: The type of synchronization relationships, for example, StorageSynchronized or GroupSynchronized. If
this parameter is not supplied, all such relationships are retrieved.

• SyncType: See CreateElementReplica’s parameters (20.5.3.1). If this parameter is not supplied, all
SyncTypes are retrieved.

• Mode: See CreateElementReplica’s parameters (20.5.3.1). If this parameter is not supplied, all Modes are
retrieved.

• Locality: Describes the desired locality. If this parameter is not supplied, all replication relationships are
retrieved, regardless of the locality of elements. Choices are: Local only -- Source and target elements are
contained in the same system; and Remote only -- Source and target elements are contained in two different
systems.

• CopyState: Only retrieve synchronization relationships that currently this CopyState (see Table 442). If this
parameter is not supplied, relationships are retrieved regardless of their current CopyState.

• Job: See CreateElementReplica’s parameters (20.5.3.1).

• Synchronizations[]: An array of elements found.

20.5.3.13 GetReplicationRelationshipInstances

 uint32 ReplicationService.GetReplicationRelationshipInstances(

 [IN] uint16 Type,

 [IN] uint16 SyncType,

 [IN] uint16 Mode,

 [IN] uint16 Locality,

 [IN] uint16 CopyState,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT, EmbeddedInstance("CIM_Synchronized")]

 string Synchronizations[]);

This method allows a client to get (or start a job to get) all of the synchronization relationship instances
known to the processing replication service. If a job is started, once the job completes, examine the
AffectedJobElement associations for the synchronization relationships.

The output parameter Synchronizations is an array of embedded instances. For the explanation of the
remaining parameters, see the method ReplicationService.GetReplicationRelationships (20.5.3.12).

20.5.3.14 GetServiceAccessPoints

 uint32 ReplicationService.GetServiceAccessPoints(

 [IN] CIM_ComputerSystem REF System,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_ServiceAccessPoint REF ServiceAccessPoints[]);

This method allows a client to get (or start a job to get) ServiceAccessPoints associated with a peer
system. If a job is started, once the job completes, examine the AffectedJobElement associations for the
peer system’s ServiceAccessPoints. The parameters are as follows:

• System: A reference to the computer system.
660

 AddReplicationEntity

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262
• Job: See CreateElementReplica’s parameters (20.5.3.1).

• ServiceAccessPoints[]: An array of references to ServiceAccessPoints associated with the supplied system.

20.5.3.15 AddReplicationEntity

uint32 ReplicationService.AddReplicationEntity(

 [Required, IN, EmbeddedInstance("CIM_ReplicationEntity")]

 string ReplicationEntity,

 [IN] boolean Persistent,

 [IN] string InstanceNamespace,

 [OUT] CIM_ReplicationEntity REF ReplicationEntityPath);

This method allows a client to introduce a new instance of ReplicationEntity in the specified Namespace.
The parameters are:

• ReplicationEntity: A required parameter containing the information for the ReplicationEntity.

• Persistent: If true, the instance shall persist across a Management Server reboot. If null, the value will be
based on the default value of the class in the MOF. Use the intrinsic method ModifyInstance to change the
Persistency value.

• InstanceNamespace: Namespace of created instance. If null, created instance will be in the same
namespace as the service. Namespace shall already exist.

• ReplicationEntityPath: A reference to the created instance.

20.5.3.16 AddServiceAccessPoint

uint32 ReplicationService.AddServiceAccessPoint(

 [Required, IN, EmbeddedInstance("CIM_ServiceAccessPoint")]

 string ServiceAccessPoint,

 [IN] string InstanceNamespace,

 [OUT] CIM_ServiceAccessPoint REF ServiceAccessPointPath);

This method allows a client to introduce a new instance of ServiceAccessPoint in the specified
Namespace. The parameters are:

• ServiceAccessPoint: A required parameter containing the information for the ServiceAccessPoint, or a
subclass of the class ServiceAccessPoint, for example, a RemoteServiceAccessPoint.

• InstanceNamespace: Namespace of created instance. If null, created instance will be in the same
namespace as the service. Namespace shall already exist.

• ServiceAccessPointPath: A reference to the created instance.

20.5.3.17 AddSharedSecret

uint32 ReplicationService.AddSharedSecret(

 [Required, IN, EmbeddedInstance("CIM_SharedSecret")]

 string SharedSecret,

 [IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

 [IN] string InstanceNamespace,

 [OUT] CIM_SharedSecret REF SharedSecretPath);
SNIA Technical Position 661

CreateRemoteReplicationCollection

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302
This method allows a client to introduce a new instance of SharedSecret in the specified Namespace and
optionally associate it to an instance of a ServiceAccessPoint. The parameters are:

• SharedSecret: A required parameter containing the information for the SharedSecret.

• ServiceAccessPoint: Associate created instance to this ServiceAccessPoint. If null, no such association is
established.

• InstanceNamespace: Namespace of created instance. If null, created instance will be in the same
namespace as the service. Namespace shall already exist.

• SharedSecretPath: A reference to the created instance.

20.5.3.18 CreateRemoteReplicationCollection

uint32 ReplicationService..CreateRemoteReplicationCollection(

 [IN] string ElementName,

 [IN] CIM_ServiceAccessPoint REF LocalAccessPoints[],

 [IN] CIM_ServiceAccessPoint REF RemoteAccessPoints[],

 [IN] CIM_ComputerSystem REF RemoteComputerSystem,

 [IN] boolean Active,

 [IN] boolean DeleteOnUnassociated,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_ConnectivityCollection REF ConnectivityCollection,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

A method to create (or start a job to create) a new instance of RemoteReplicationCollection, and
optionally supply the remote system and the paths (i.e., ProtocolEndpoints) that are used to perform
replication operations to/from the remote system. The parameters are:

• ElementName: A end user relevant name for the element being created. If NULL, then a system supplied
default name will be used. The value will be stored in the 'ElementName' property for the created element.

• LocalAccessPoints: An array of references to local ServiceAccessPoints (for example, ProtocolEndpoints)
that allow communication to the remote system.

• RemoteAccessPoints: An array of references to remote ServiceAccessPoints (for example,
ProtocolEndpoints) that allow communication to the remote system.

• RemoteComputerSystem: A reference to the remote system.

• Active: If true, the instance of RemoteReplicationCollection will be enabled and allows replication operations
to the remote system. Use the intrinsic method ModifyInstance to change this property after the
RemoteReplicationCollection is created.

• DeleteOnUnAssociated: If true, the instance of RemoteReplicationCollection will be deleted when it is no
longer associated to a ServiceAccessPoint. Use the intrinsic method ModifyInstance to change this property
after the RemoteReplicationCollection is created.

• Job: Reference to the job (may be NULL if job is completed) doing the work.

• ConnectivityCollection: Reference to the created instance of RemoteReplicationCollectioReplication

• ReplicationSettingData: An embedded instance to provide additional information such as enabling data
compression while transmitting/receiving data.
662

 AddToRemoteReplicationCollection

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341
20.5.3.19 AddToRemoteReplicationCollection

uint32 ReplicationService.AddToRemoteReplicationCollection(

 [IN] CIM_ServiceAccessPoint REF LocalAccessPoints[],

 [IN] CIM_ServiceAccessPoint REF RemoteAccessPoints[],

 [IN] CIM_ComputerSystem REF RemoteComputerSystem,

 [OUT] CIM_ConcreteJob REF Job,

 [Required, IN] CIM_ConnectivityCollection REF ConnectivityCollection);

A method to add (or start a job to add) additional service access points (i.e., ProtocolEndpoints) and/or
remote systems associations to an existing instance of RemoteReplicationCollection.

Generally, both AccessPoints and RemoteComputerSystem parameters are supplied to establish the
access points to a remote ComputerSystem; however, if parameter AccessPoints is NULL, then only the
RemoteComputerSystem is added for the existing AccessPoints associated to the
RemoteReplicationCollection. If RemoteComputerSystem is NULL, then only AccessPoints are added for
the existing remote ComputerSystems known to the RemoteReplicationCollection.

See the method CreateRemoteReplicationCollection for description of the parameters.

20.5.3.20 RemoveFromRemoteReplicationCollection

 uint32 ReplicationService.RemoveFromRemoteReplicationCollection(

 [IN] CIM_ServiceAccessPoint REF LocalAccessPoints[],

 [IN] CIM_ServiceAccessPoint REF RemoteAccessPoints[],

 [OUT] CIM_ConcreteJob REF Job,

 [Required, IN] CIM_ConnectivityCollection REF ConnectivityCollection);

A method to remove (or start a job to remove) service access points (i.e., ProtocolEndpoints) and/or
remote systems associations from an existing instance of RemoteReplicationCollection.

Generally, both AccessPoints and RemoteComputerSystem parameters are supplied to remove the
access points to a remote ComputerSystem; however, if parameter AccessPoints is NULL, then only the
remote ComputerSystem is removed for the existing AccessPoints associated to the
RemoteReplicationCollection. If ComputerSystem is NULL, then only AccessPoints are removed from the
existing remote ComputerSystems known to the RemoteReplicationCollection. See the method
CreateRemoteReplicationCollection for description of the parameters.

20.5.4 Capabilities Methods

20.5.4.1 ConvertSyncTypeToReplicationType

uint32 ReplicationServiceCapabilities.ConvertSyncTypeToReplicationType(

 [IN] uint16 SyncType,

 [IN] uint16 Mode,

 [IN] uint16 LocalOrRemote,

 [OUT] uint16 SupportedReplicationTypes);

The majority of the methods in this class accept ReplicationType which represents a combination of
SyncType, Mode, and Local/Remote. This method accepts the supplied information and returns the
corresponding ReplicationType, which can be passed to other methods to get the additional capabilities.
SNIA Technical Position 663

ConvertSyncTypeToReplicationType

1342

1343

1344
Table 450, Table 451, Table 452, and Table 453 show the values for the
CovertSyncTypeToReplicationType parameters. These values also appear in the value maps in the
appropriate MOF files.

Table 450 - SyncTypes

SyncType Value

Mirror 6

Snapshot 7

Clone 8

TokenizedClone 9

Table 451 - Modes

Mode Value

Synchronous 2

Asynchronous 3

Adaptive 4

Active 5

Table 452 - Local or Remote

LocalOrRemote Value

Local 2

Remote 3

Table 453 - ReplicationTypes

SupportedReplicationType Value

Synchronous Mirror Local 2

Asynchronous Mirror Local 3

Synchronous Mirror Remote 4

Asynchronous Mirror Remote 5

Synchronous Snapshot Local 6

Asynchronous Snapshot Local 7

Synchronous Snapshot Remote 8

Asynchronous Snapshot Remote 9

Synchronous Clone Local 10

Asynchronous Clone Local 11

Synchronous Clone Remote 12
664

 ConvertReplicationTypeToSyncType

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

20.5.4.2 ConvertReplicationTypeToSyncType

 uint32 ReplicationServiceCapabilities.ConvertReplicationTypeToSyncType(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SyncType,

 [OUT] uint16 Mode,

 [OUT] uint16 LocalOrRemote);

This method does the opposite of the method ConvertSyncTypeToReplicationType. This method
translates ReplicationType to the corresponding SyncType, Mode, and Local/Remote.

20.5.4.3 GetSupportedFeatures

 uint32 ReplicationServiceCapabilities.GetSupportedFeatures(

 [IN] uint16 ReplicationType,

 [OUT] uint16 Features[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

The ReplicationSettingData parameter provides additional refinements for the ReplicationType. For
example, the CopyMethodology.

Asynchronous Clone Remote 13

Synchronous TokenizedClone Local 14

Asynchronous TokenizedClone Local 15

Synchronous TokenizedClone Remote 16

EXPERIMENTAL

Asynchronous TokenizedClone Remote 17

Adaptive Mirror Local 18

Adaptive Mirror Remote 19

Adaptive Snapshot Local 20

Adaptive Snapshot Remote 21

Adaptive Clone Local 22

Adaptive Clone Remote 23

Adaptive TokenizedClone Local 24

Adaptive TokenizedClone Remote 25

Active Mirror Local 26

Active Mirror Remote 27

EXPERIMENTAL

Table 453 - ReplicationTypes

SupportedReplicationType Value
SNIA Technical Position 665

GetSupportedFeatures
For a given ReplicationType, this method returns the supported features, as listed in Table 454.

Table 454 - Features

Feature Description

“Replication Groups” Elements in a replication group are supported in a replication
operation.

"Multi-hop element replication" A target element can also act as the source for another copy
operation.

“Each hop must have same SyncType“ In a multi-hop replication, the new hop shall have the same
SyncType as the previous hop.

“Multi-hop requires advance notice” The service needs to know when multi-hoping is intended to allow
the service to do the appropriate set up. The parameter
ReplicationSettingData specifies the number of hops intended.

"Requires full discovery of target ComputerSystem" Provider requires the remote ComputerSystems to be discovered.
The absence of this capability indicates the service supports
undiscovered resources.

"Service suspends source I/O when necessary" Provider is able to suspend I/O to source elements before splitting
the target elements. Otherwise, the client needs to quiesce the
application before issuing the split command.

"Targets allocated from Any storage pool" Specialized storage pools are not required for the target elements,
as long as the pool is not reserved for special activities.

"Targets allocated from Shared storage pool" Targets are allocated from storage pools reserved for Replication
Services.

"Targets allocated from Exclusive storage pool" Targets are allocated from exclusive storage pools.

"Targets allocated from Multiple storage pools" Targets are allocated from multiple specialized, exclusive pools.

“Targets require reserved elements” The target elements must have a specific Usage value. For
example, reserved for "Local Replica Target" (mirror), reserved for
"Delta Replica Target" (Snapshot)., etc.

"Target is associated to SynchronizationAspect” The target element is associated to SynchronizationAspect via
SettingsDefineState. SynchronizationAspect contains the point-in-
time timestamp and the source element reference used to copy to
the target element.

"Source is associated to SynchronizationAspect” The source element is associated to SynchronizationAspect via the
SettingsDefineState association. SynchronizationAspect contains
the point-in-time information of the source data.

"Error recovery from Broken state Automatic", For example, if the connection between the source and target
elements is broken (CopyState = Broken or Partitioned), once the
connection is restored, the copy operation continues automatically.
If the error recovery is not automatic, it requires manual intervention
to restart the copy operation. Use ModifyReplicaSynchronization,
with Operation set to Resume.

“Target must remain associated to source” A dependent target element must remain associated to source
element at all times.

"Remote resource requires remote CIMOM" Client is required to interact with two providers: the provider
controlling the source element and the provider controlling the target
element.

"Synchronized clone target detaches automatically" The clone target element detaches automatically when the target
element becomes synchronized; otherwise, the client needs to
explicitly request a detach operation.
666

 GetSupportedGroupFeatures

1362

1363

1364

1365

1366

1367

1368

1369
20.5.4.4 GetSupportedGroupFeatures

 uint32 ReplicationServiceCapabilities.GetSupportedGroupFeatures(

 [IN] uint16 ReplicationType,

 [OUT] uint16 GroupFeatures[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType, this method returns the supported replication group features, as listed in
Table 455.

"Reverse Roles operation requires Read Only source" The “Reverse Roles” operation requires the source element to be in
the Read Only mode. To change the protection of an element, see
19 "Storage Element Protection Profile".

"Reverse Roles operation requires resync" After the “Reverse Roles” operation completed, it is required to
resync the synchronization relationship between the source and the
target elements. This is indicated in the property
Synchronized.ProgressStatus - “Requires resync“.

"Restore operation requires fracture"

also,

“Restore operation requires detach”

The “Restore from Replica” operation requires the synchronization
relationship to be fractured or detached after restore is completed --
indicated in the property Synchronized.ProgressStatus - “Requires
fracture” or “Requires detach”.

"Resync operation requires activate" For the copy operation to continue, the synchronization relationship
must be activated -- indicated in the property
Synchronized.ProgressStatus - “Requires activate”.

"Copy operation requires offline source" Instrumentation requires the source element to be offline (not-ready)
to ensure data does not change before starting the copy operation.

"Adjustable CopyPriority" Priority of copy operation versus the host I/O can be adjusted.

EXPERIMENTAL

“Can delete source in a copy relationship” Target becomes an independent element not associated to the
source element.

“Detach a snapshot makes snapshot an independent volume” Detaching a snapshot causes the snapshot to become an
independent volume.

"Target always in a system generated group" The target element must always be in a replication group. When
necessary, the system will generate the group.

(See MOF for additional values)

EXPERIMENTAL

Table 455 - Group Features

GroupFeatures Description

"One-to-many replication" One source element can be copied to multiple target elements in a
group.

Table 454 - Features

Feature Description
SNIA Technical Position 667

GetSupportedGroupFeatures

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393
“Many-to-many replication“ One or more elements in the source group and one or more elements
in the target group.

“Consistency enabled for all groups” By default, all groups are Consistent

“Empty replication groups allowed” It is possible to have a replication group with no members; otherwise,
an empty group gets deleted automatically.

"Source group must have more than one element" One members replication groups are not supported.

"Composite Groups" A replication group can have members from different
ComputerSystems.

"Multi-hop group replication" A target replication group can also act as a source for another copy
operation.

“Each hop must have same SyncType” The SyncType of each hop must be the same, e.g., mirror, snapshot,
clone.

"Group can only have one single relationship active" At any given time, only one relationship in the source group can be
active.

“Source element can be removed from group” A source element can be removed even when the group is
associated with another replication group.

“Target element can be removed from group” A target element can be removed even when the group is associated
with another replication group.

"Group can persist" The replication group can persist across the Provider reboot (group is
not temporary).

"Group is nameable" A user friendly name can be given to a replication group
(ElementName)

"Supports target element count" It is possible to supply one source element and request more than
one target element copies.

"Synchronized clone target detaches automatically" The clone target element detaches automatically when the target
element becomes synchronized; otherwise, the client needs to
explicitly request a detach operation.

"Reverse Roles operation requires Read Only source" The “Reverse Roles” operation requires the source element to be in
the Read Only mode. To change the protection of an element, see 19
"Storage Element Protection Profile".

"Reverse Roles operation requires resync" After the “Reverse Roles” operation completed, it is required to
resync the synchronization relationship between the source and the
target elements. This is indicated in the property
Synchronized.ProgressStatus - “Requires resync“.

"Restore operation requires fracture"

also,

“Restore operation requires detach”

The “Restore from Replica” operation requires the synchronization
relationship to be fractured (or detached) after restore is completed -
- indicated in the property Synchronized.ProgressStatus - “Requires
fracture” or “Requires detach”.

"Resync operation requires activate" For the copy operation to continue, the synchronization relationship
must be activated -- indicated in the property
Synchronized.ProgressStatus - “Requires activate”.

"Copy operation requires offline source" Instrumentation requires the source element to be offline (not-ready)
to ensure data does not change before starting the copy operation.

“Element can be member of multiple groups” An element can be member of more than one replication group at the
same time.

Table 455 - Group Features

GroupFeatures Description
668

 GetSupportedCopyStates

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412
20.5.4.5 GetSupportedCopyStates

 uint32 ReplicationServiceCapabilities.GetSupportedCopyStates(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedCopyStates[],

 [OUT] boolean HostAccessible[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType, this method returns the supported CopyStates (see Table 442) and a parallel
array to indicate whether for a given CopyState the target element is host accessible or not (true or false).

20.5.4.6 GetSupportedGroupCopyStates

 uint32 ReplicationServiceCapabilities.GetSupportedGroupCopyStates(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedCopyStates[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType, this method returns the supported replication group CopyStates (see Table
442).

20.5.4.7 GetSupportedWaitForCopyStates

 uint32 ReplicationServiceCapabilities.GetSupportedWaitForCopyStates(

 [IN] uint16 ReplicationType,

 [IN] unit16 MethodName,

 [OUT] uint16 SupportedCopyStates[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

This method, for a given ReplicationType and method, returns the supported CopyStates that can be
specified in the method's WaitForCopyState parameter.

“Elements of group can be mix of thin and thick” A replication group can have a mix of thinly and fully provisioned
members.

"TokenizedClone ConsistentPointInTime" The point-in-time to be created at an exact time with no I/O activities
in such a way the data is consistent among all the elements of the
group.

EXPERIMENTAL

“Can delete source in a copy relationship” Target elements become independent elements not associated to the
source elements.

(See MOF for additional values)

EXPERIMENTAL

Table 455 - Group Features

GroupFeatures Description
SNIA Technical Position 669

GetSupportedConsistency
20.5.4.8 GetSupportedConsistency

 uint32 ReplicationServiceCapabilities.GetSupportedConsistency(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedConsistency[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType, this method returns the supported Consistency, as listed in Table 456.

20.5.4.9 GetSupportedOperations

 uint32 ReplicationServiceCapabilities.GetSupportedOperations(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedOperations[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType this method returns the supported Operations on a StorageSynchronized
association that can be supplied to the ModifyReplicaSynchronization method. Table 457 shows the
possible Operations that an implementation may support.

Refer to Figure 57, “CopyState Transitions” for additional information.

Table 456 - Consistency

Consistency Description

“Sequentially Consistent” Provider guarantees ordered write consistency.

Table 457 - Operations

Operation Description Special Consideration

"Abort" Abort the copy operation if it is possible.

"Activate Consistency" Enable consistency.

“Activate” Activate an “Inactive” or “Prepared” StorageSynchronized
association.

"AddSyncPair" Add source and target elements of a StorageSynchronized
association to the source and target replication groups. The
SyncType of the associations shall be the same.

"Deactivate Consistency" Disable consistency.

“Deactivate” Stop the copy operation. Writes to source element are
allowed.

Snapshot: Writes to target element
after point-in-time is created are lost
(pointers removed).

EXPERIMENTAL

"Detach" Remove the association between the source and target
elements. Detach does not delete the target element.

Snapshot: Detaching a snapshot
relationship may convert the target
element to an independent volume
(see Table 454 - "Features").

EXPERIMENTAL
670

 GetSupportedOperations

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424
“Dissolve” Dissolve the synchronization association between two
storage objects, however, the target element continues to
exist.

Snapshot: This operation also creates
a SettingsDefineState association
between the source element and an
instance of SynchronizationAspect if
the ReplicationType supports it.

"Failover" Enable the read and write operations from the host to the
target element. This operation useful for situations when the
source element is unavailable.

"Failback" Switch the read/write activities from the host back to source
element. Update source element from target element with
writes to target during the failover period.

"Fracture" Separate the target element from the source element.

"RemoveSyncPair" Remove the elements associated via the
StorageSynchronized association from the source and the
target groups.

"Resync Replica" Resynchronize a fractured target element. Or, from a Broken
or Aborted relationship.

To continue from the Broken state,
the problem should be corrected first
before resyncing the replica. Also, to
continue from the Aborted state.

"Restore from Replica" Copy target element to the source element. To ensure integrity of data, restoring
to a source element which is the
source of multiple copy operations,
the implementation may impose
additional restrictions ranging from
not supporting the restore operation
to such a source element to
preventing multiple restore operations
simultaneously. Also, after the
operation is completed, it may be
necessary to fracture (or detach) the
synchronization relationship. See
GetSupportedFeatures in capabilities.

"Resume" Continue the copy operation of a suspended relationship.

"Reset To Sync" Change Mode to Synchronous.

"Reset To Async" Change Mode to Asynchronous.

“Return To ResourcePool” Delete a Snapshot target.

"Reverse Roles" Switch the source and the target element roles. The source element may need to be
Read Only. See
GetSupportedFeatures in capabilities.

"Split" Separate the source and the target elements in a consistent
manner.

"Suspend" Stop the copy operation in such a way that it can be
resumed.

“Unprepare” Causes the synchronization to be reinitialized and stop in
Prepared state.

EXPERIMENTAL

“Prepare” Causes the synchronization to be reinitialized.

Table 457 - Operations

Operation Description Special Consideration
SNIA Technical Position 671

GetSupportedGroupOperations

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450
Table 458 compares the action of similar Operations.

20.5.4.10 GetSupportedGroupOperations

uint32 ReplicationServiceCapabilities.GetSupportedGroupOperations(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedOperations[],

“Reset to Active” Change Mode to Active.

“Reset to Adaptive” Change Mode to Adaptive.

“Reset Replica” Causes replica to go back to its original point-in-time.

EXPERIMENTAL

Table 458 - Comparison of Similar Operations

Operations Description

Activate versus Resume Activate: Activates a StorageSynchronizes association
that has a CopyState of “Inactive.”

Resume: Resumes a StorageSynchronized association
that has a CopyState of “Suspended”.

Deactivate versus Suspend Deactivate: Stops the copy operation. In the case of
Snapshots, all writes to target element are deleted
(pointers to changed data are removed). While inactive,
writes to source element will not be committed to target
element once activated.

Suspend: Stops the copy operation. All writes to target
element are preserved. Once resumed, pending writes to
target element are committed.

Fracture versus Split Fracture: Source and target elements are separated
“abruptly.”

Split: Source and target elements are separated in an
orderly fashion. Consistency of target elements is
maintained.

Detach versus Dissolve Detach: For Mirrors and Clones, the association between
the source and target element shall be first Fractured/Split
before it can be Detached.

Dissolve: The association can have a CopyState of
Synchronized. Additionally, Dissolve can create a
SettingsDefineState association based on
GetSupportedFeatures (20.5.4.3) Capabilities.

Unsynchronized versus Skewed Unsynchronized: The source element contains data that
has not been copied to the target element. Most likely, the
copy operation is in the process of updating the target
element (ProgressStatus=Synchronizing).

Skewed: The target element has been updated by a host
(e.g. target of a snapshot). Resynchronization is not
automatic and requires an explicit “Resync” operation
(i.e., ModifySynchronization)

Table 457 - Operations

Operation Description Special Consideration
672

 GetSupportedListOperations

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467
 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType this method returns the supported replication group Operations (see Table
457) on a GroupSynchronized association that can be supplied to the ModifyReplicaSynchronization
method.

20.5.4.11 GetSupportedListOperations

uint32 ReplicationServiceCapabilities.GetSupportedListOperations(

 [IN] uint16 ReplicationType,

 [IN] uint16 SynchronizationType,

 [OUT] uint16 SupportedOperations[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType this method returns the supported replication Operations (see Table 457) on
a list of associations that can be supplied to the ModifyListSynchronization method. The parameter
SynchronizationType specifies the operations as they apply to a list of StorageSynchronized or
GroupSynchronized. If SynchronizationType is not specified, StorageSynchronized is assumed.

20.5.4.12 GetSupportedSettingsDefineStateOperations

uint32 ReplicationServiceCapabilities.GetSupportedSettingsDefineStateOperations(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedOperations[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType this method returns the supported operations on a SettingsDefineState
association that can be supplied to the ModifySettingsDefineState method. Table 459 shows the list of
SettingsDefineState operations that an implementation may support.

Table 459 - SettingsDefineState Operations

SettingsDefineState
Operation

Description Special Consideration

"Activate Consistency" Enable consistency

"Deactivate Consistency" Disable consistency

"Delete" Remove the SettingsDefineState association. Instance of
SynchronizationAspect may also be deleted if it is not shared
with other elements.

"Copy To Target" Introduces the target elements and forms the necessary
associations between the source and the target elements
i.e., StorageSynchronized and GroupSynchronized.

Detach Removes the association between the
SynchronizationAspect and the target element.

Restore Restore the source element from the associated
SynchronizationAspect.
SNIA Technical Position 673

GetSupportedThinProvisioningFeatures

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487
20.5.4.13 GetSupportedThinProvisioningFeatures

uint32 ReplicationServiceCapabilities.GetSupportedThinProvisioningFeatures(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedThinProvisioningFeatures[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType this method returns the supported features related to thin provisioning. Table
460 shows the list of the Thin Provisioning Features an implementation may support.

A client can request a specific thin provisioning policy in the ReplicationSettingData parameter of the
appropriate method call. See the property ReplicationSettingData.ThinProvisioningPolicy for the
supported options for a copy operation.

20.5.4.14 GetSupportedMaximum

 uint32 ReplicationServiceCapabilities.GetSupportedMaximum(

 [IN] uint16 ReplicationType,

 [IN] uint16 Component,

 [OUT] uint64 MaxValue,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

This method accepts a ReplicationType and a component, it then returns a static numeric value
representing the maximum number of the specified component that the service supports. A value of 0
indicates unlimited components of the given type. In all cases the maximum value is bounded by the
availability of resources on the computer system. If the information is not known, the method returns 7
which indicates "Information is not available".

Effectively, this method informs clients of the edge conditions.

Table 460 - Thin Provisioning Features

Feature Description

"Thin provisioning is not supported" The replication service does not distinguish between thinly and fully
provisioned elements. The service treats all elements as fully
provisioned elements.

"Zeros written in unused allocated blocks of target" Applies to copying from a thinly provisioned element to a fully
provisioned element. The implementation needs to allocate “real”
storage blocks on the target side for the corresponding blocks of the
source element that are unused. The implementation then writes
zeros in the unused blocks of the target element.

"Unused allocated blocks of target are not initialized" Applies to copying from a thinly provisioned element to a fully
provisioned element. The implementation needs to allocate “real”
storage blocks on the target side for the corresponding blocks of the
source element that are unused.
674

 GetDefaultConsistency

1488

1489

1490

1491

1492

1493
Table 461 shows the list of components that can be specified.

20.5.4.15 GetDefaultConsistency

uint32 ReplicationServiceCapabilities.GetDefaultConsistency(

 [IN] uint16 ReplicationType,

 [OUT] uint16 DefaultConsistency,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

This method for a given ReplicationType, returns the default consistency value for the replication groups.
Table 462 shows the list of possible Default Consistency values that an implementation may offer.

20.5.4.16 GetDefaultGroupPersistency

 uint32 ReplicationServiceCapabilities.GetDefaultGroupPersistency(

 [OUT] uint16 DefaultGroupPersistency);

Table 461 - Components

Component Description

“Number of groups” Maximum number of groups supported by the replication service.

"Number of elements per source group" Maximum number of elements in a group that can be used as a source
group.

"Number of elements per target group" Maximum number of elements in a group that can be used as a target
group.

"Number of target elements per source
element"

Maximum number of target elements per source element.

"Number of total source elements" Maximum number of total source elements supported by the service.

"Number of total target elements" Maximum number of total target elements supported by the source.

"Number of peer systems" Maximum number of peer systems that replication service can
communicate with.

"Number of hops in multi-hop replication" Maximum number of hops in multi-hop replication the service can
manage.

"Maximum number of tokens supported" Maximum number of tokens per sub-system.

"Current number of token in-use" Number of tokens in use for the sub-system.

"Optimal token size" Refers to OptimalDataChunk.

Table 462 - Default Consistency

DefaultConsistency Description

"No default consistency" Replication groups are not declared as consistent.

"Sequentially Consistent" By default, a newly created replication group is declared
to be consistent.
SNIA Technical Position 675

GetSupportedReplicationSettingData

1494

1495

1496

1497

1498

1499
This method returns the default persistency for a newly created group. Table 463 shows the list of
possible Group Persistency values that an implementation may offer.

20.5.4.17 GetSupportedReplicationSettingData

 uint32 ReplicationServiceCapabilities.GetSupportedReplicationSettingData(

 [IN] uint16 ReplicationType,

 [IN] uint16 PropertyName,

 [OUT] uint16 SupportedValues[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType, this method returns an array of supported settings that can be utilized in an
instance of the ReplicationSettingData class. See the MOF for the ReplicationSettingData class for the
value map of the properties.

Table 464 shows the values for the property ReplicationSettingData.CopyMethodology.

Table 463 - Group Persistency

DefaultGroupPersistency Description

"No default persistency" Replication groups are not declared as persistent across
the Provider reboots.

"Persistent" By default, a newly created replication group is declared
to be persistent across the Provider reboot (group is not
temporary).

Table 464 - Copy Methodologies

CopyMethodology Description

"Other" A methodology not listed in this table.

"Implementation decides" Implementation determines a suitable methodology.

"Full-Copy" All data is copied to the target element.

"Incremental-Copy" Only changed data is copied to the target element.

"Differential-Copy" Only the new writes are copied to the target element.

"Copy-On-Write" Affected data is copied on the first write to the source or to
the target elements.

"Copy-On-Access" Affected data is copied on the first access to the source
element.

“Delta-Update” Difference based replication where initially the source
element is copied to the target element. Then, at regular
intervals, only changes to the source element that have
taken place since the previous copy operation are
incrementally updated to the target element. This copy
operation is also referred to as asynchronous mirroring.

“Snap-And-Clone“ The service creates a snapshot of the source element
first, then uses the snapshot as the source of the copy
operation to the target element.

EXPERIMENTAL
676

 GetSupportedReplicationSettingData

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516
Table 465 shows the values for the property ReplicationSettingData.TargetElementSuppliers.

Table 466 shows the values for the property ReplicationSettingData.ThinProvisioningPolicy.

“Redirect-On-Write” New writes to the source or the target elements are
redirected to new locations and only metadata is updated
to point to the new data location.

EXPERIMENTAL

Table 465 - Target Element Suppliers

TargetElementSupplier Description

“Use existing” Use existing elements only. If appropriate elements are
not available, returns an error.

“Create new” Create new target elements only.

“Use and create“ If appropriate elements are not available, create new
target elements.

“Instrumentation decides“

“Client must supply” Client must supply target elements.

Table 466 - ThinProvisioningPolicy

Feature Description

"Copy thin source to thin target" Thinly provisioned source element is copied to a thinly provisioned
target element.

"Copy thin source to full target" Thinly provisioned source element is copied to a fully provisioned
target element.

"Copy full source to thin target" Fully provisioned source element is copied to a thinly provisioned
target element.

"Provisioning of target same as source" Provisioning of the target element is the same as the provisioning of
the source element.

"Target pool decides provisioning of target element" In the call to the CreateElementReplica or CreateGroupReplica
method, the storage pool for the target elements is supplied. The
supplied storage pool decides the provisioning of the created target
elements.

"Implementation decides provisioning of target" Vendor specific.

Table 464 - Copy Methodologies

CopyMethodology Description
SNIA Technical Position 677

GetDefaultReplicationSettingData

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542
EXPERIMENTAL

Table 467 shows the values for the property ReplicationSettingData.StorageCompressionPolicy.

EXPERIMENTAL

20.5.4.18 GetDefaultReplicationSettingData

 uint32 ReplicationServiceCapabilities.GetDefaultReplicationSettingData(

 [IN] uint16 ReplicationType,

 [OUT, EmbeddedObject]

 string DefaultInstance);

This method, for a given ReplicationType, returns the default ReplicationSettingData as an instance. Use
this method to determine the implementation behavior for replication settings that do not have a distinct
capability method.

20.5.4.19 GetSupportedConnectionFeatures

uint32 ReplicationServiceCapabilities.GetSupportedConnectionFeatures(

 [IN] CIM_ProtocolEndpoint REF connection,

 [OUT] uint16 SupporteConnectionFeatures[]);

Table 467 - StorageCompressionPolicy

Feature Description

"Compressed source to compressed target" Compressed source element is copied to a compressed
target element.

"Compressed source to uncompressed target" Compressed source element is copied to an
uncompressed target element.

"Uncompressed source to compressed target" Uncompressed source element is copied to a
compressed target element.

"Compression of target same as source" Compression of the target element is the same as the
compression of the source element.

"Target pool decides compression of target element" In the call to the CreateElementReplica or
CreateGroupReplica method, the storage pool for the
target elements is supplied. The supplied storage pool
decides the provisioning of the created target elements.

"Implementation decides compression of target" Leaves implementation to decide the compression of the
target.
678

 GetSupportedStorageCompressionFeatures

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572
This method accepts a connection reference and returns specific features of that connection. Table 468
shows the list of possible Connection Features that an implementation may support.

EXPERIMENTAL

20.5.4.20 GetSupportedStorageCompressionFeatures

uint32 ReplicationServiceCapabilities.GetSupportedStorageCompressionFeatures(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedStorageCompressionFeatures[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType this method returns the supported features related to storage compression.
Table 469 shows the list of the Storage Compression Features an implementation may support.

Table 468 - Connection Features

ConnectionFeature

"Unidirectional to ProtocolEndpoint" Direction of data flow to this ProtocolEndpoint, from a
remote system (by default the connection is bi-
directional).

"Unidirectional from ProtocolEndpoint" Direction of data flow from this ProtocolEndpoint to a
remote system (by default the connection is bi-
directional).

Table 469 - Storage Compression Features

Feature Description

"Storage compression is not supported" The replication service does not support storage
compression. Only uncompressed elements are
accepted.

"Compressed source to compressed target" The replication service supports copying from
compressed source element to compressed target
element.

"Compressed source to uncompressed target" The replication service supports copying from
compressed source element to uncompressed target
element.

"Uncompressed source to compressed target" The replication service supports copying from
uncompressed source element to compressed target
element.

"Compression of target same as source" The source element is copied to a target with the same
compression setting as the source.
SNIA Technical Position 679

GetSynchronizationSupported

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596
20.5.4.21 GetSynchronizationSupported

uint32 ReplicationServiceCapabilities.GetSynchronizationSupported(

 [IN] CIM_ManagedElement REF LocalElement,

 [IN] CIM_ManagedElement REF OtherElement,

 [IN] CIM_ServiceAccessPoint REF OtherElementAccessPoint,

 [IN] uint16 MethodName,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] uint16 SyncTypes[],

 [OUT] uint16 Modes[],

 [OUT] uint16 LocalElementRole[]);

This method returns the supported SyncTypes, Modes, and local element role (source or target) for a
given “local element” such as a storage volume.

As an example, this method can be used to determine if a given storage volume can be mirrored,
snapped, or cloned.

The returned data can be narrowed by supplying additional parameters such as the OtherElement -- for
example, a target storage volume -- desired method -- for example, CreateElementReplica -- and
additional options using the properties of the ReplicationSettingData. In this case, the method returns
possible SyncTypes (i.e., Mirror, Snapshot, Clone) between the LocalElement and the OtherElement.

The [OUT] parameter LocalElementRole indicates whether the local element can be the source, the
target, or both (multi-hop replication) of the copy operations.

EXPERIMENTAL

20.5.4.22 GetSupportedTokenizedReplicationType

uint32 ReplicationServiceCapabilities.GetSupportedTokenizedReplicationType(

 [IN] CIM_ManagedElement REF SourceElement,

 [IN] CIM_ManagedElement REF TargetElement,

 [IN] CIM_ServiceAccessPoint REF ElementAccessPoint,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] uint16 ReplicationTypes[]);

Target pool decides compression of target element" In the call to the CreateElementReplica or
CreateGroupReplica method, the storage pool for the
target elements is supplied. The supplied storage pool
decides the compression of the created target elements.

"Implementation decides compression of target" Leaves implementation to decide compression setting of
the target.

Table 469 - Storage Compression Features

Feature Description
680

 Backward Compatibility
For the supplied elements, this method returns the supported tokenized ReplicationTypes (e.g 14, 15, 16,
17). At least one supplied element is expected to be local to the service.

The method returns "Not Supported" if tokenized operation is not supported between the supplied
elements. The method returns "Source Temporarily Not Available" or "Target Temporarily Not Available" if
the source or the target element temporarily cannot be used for tokenized operations -- for example, the
source or the target element is currently being used for another copy operation.

EXPERIMENTAL

20.5.5 Replication Services and Copy Services Properties and Methods Mapping

20.5.5.1 Backward Compatibility

To preserve backward compatibility, a few additional properties in the existing classes are introduced
instead of changing the semantics of the existing properties. Any action taken by a Replication Services
client shall be reflected correctly in the applicable properties visible to a Copy Services client. The
reverse is also true in that any action taken by a Copy Services client shall be reflected correctly in the
properties visible to a Replication Services client. Keep in mind certain requests that are not supported by
Copy Services result in the request failing. For example, passing an instance of StorageSynchronized
that contains a remote SyncedElement reference to the Copy Services’ ModifySynchronization method
will generate an error.

20.5.5.2 Properties Mapping

See 9.1.6.1.2 "Alignment of StorageSynchronized Properties" to determine the alignment between
CopyType and SyncState (from Copy Services) and SyncType, Mode, CopyState, and ProgressStatus
(from Replication Services).

20.5.5.3 Method Mapping

Table 470, “Copy Services and Replication Services Methods Mapping,” summarizes the method mapping
between Copy Services and Replication Services Profiles. Again, use the Replication Services for
extended functionality, such as Thin Provisioning.

For description of the Copy Services Methods, see 9.5 "Methods of the Profile".

20.6 Use Cases

20.6.1 Creating and Managing Replicas

In general, creating and managing replicas involves the following steps:

• Decide on the SyncType of replica (Mirror, Snapshot, Clone) and Mode (Synchronous, Asynchronous). See
20.1.8 "SyncTypes".

• Locate the hosted instance of ReplicationService. See 20.1.6.

Table 470 - Copy Services and Replication Services Methods Mapping

Copy Services Method Corresponding Replication Services Method

CreateReplica() CreateElementReplica()

AttachReplica()

ModifySynchronization() ModifyReplicaSynchronization()

ModifyListSynchronization()
SNIA Technical Position 681

Method Mapping
• Locate the instance of ReplicationServiceCapabilities. Utilize its properties and methods to determine the
applicable capabilities offered by the implementation for the desired ReplicationType (includes SyncType and
Mode). See 20.1.7 "Replication Services Capabilities".

• Use the method ReplicationService.GetAvailableTargetElements to locate appropriate target elements.
Depending on the implementation, it is also possible to allow the service to locate target elements. See
20.1.27.

• Verify StoragePools have sufficient free capacity for the target elements. See 20.1.28.

• If necessary, use the ReplicationService’s group manipulation methods to create and populate source and
target groups. See 20.5 "Methods of the Profile".

• Invoke the appropriate extrinsic method of the ReplicationService to create a replica. See 20.5 "Methods of
the Profile".

• Monitor the copy operation’s progress by examining the replication associations properties, or subscribe to
the appropriate indications -- including storage pool low space alert indications. See 20.1.15 "Associations"
and 20.1.32 "Indications".

• Invoke the method ReplicationService.ModifyReplicaSynchronization to modify a replica. For example, “split”
a replica from its source element. See 20.5 "Methods of the Profile".

20.7 CIM Elements

20.7.1 Overview

Table 471 describes the CIM elements for Replication Services.

Table 471 - CIM Elements for Replication Services

Element Name Requirement Description

20.7.2 CIM_AllocatedResources Conditional Conditional requirement: Required if remote replication is
supported. This is a SystemSpecificCollection for
collecting components that are being used by the
Replication Services profile (e.g., StorageVolumes,
LogicalDisks, etc.) that supports Cascading.

20.7.3 CIM_ElementCapabilities Mandatory Associates StorageReplicationCapabilities and
ReplicationService.

20.7.4 CIM_GroupSynchronized Conditional Conditional requirement: Required if groups are
supported. Associates source and target groups, or a
source element to a target group.

20.7.5 CIM_HostedAccessPoint (ForProtocolEndpoint) Conditional Conditional requirement: Required if remote replication is
supported. Associates ProtocolEndpoint to the
ComputerSystem on which it is hosted.

20.7.6 CIM_HostedAccessPoint
(ForRemoteServiceAccessPoint)

Conditional Conditional requirement: Required if remote replication is
supported. Associates RemoteServiceAccessPoint to the
ComputerSystem.

20.7.7 CIM_HostedCollection (Allocated Resources) Conditional Conditional requirement: Required if remote replication is
supported. This would associate the AllocatedResources
collection to the top level system for the Replication
Services Profile using Cascading.

20.7.8 CIM_HostedCollection (Between ComputerSystem
and RemoteReplicationCollection)

Conditional Conditional requirement: Required if remote replication is
supported. Associates the RemoteReplicationCollection
(ConnectivityCollection) to the hosting System.
682

 Method Mapping
20.7.9 CIM_HostedCollection (Between ComputerSystem
and ReplicationGroup)

Conditional Conditional requirement: Required if groups are
supported. Associates the replication group to the hosting
System.

20.7.10 CIM_HostedCollection (Remote Resources) Conditional Conditional requirement: This is required if
CIM_RemoteResources is modeled. This would associate
the RemoteResources collection to the top level system
for the Replication Services Profile in support of
Cascading.

20.7.11 CIM_HostedService Mandatory

20.7.12 CIM_MemberOfCollection (Allocated Resources) Optional This supports collecting replication components. This is
required to support the AllocatedResources collection for
Cascading.

20.7.13 CIM_MemberOfCollection (ProtocolEndpoints to
RemoteReplicationCollection)

Optional Associates ProtocolEndpoints to
RemoteReplicationCollection (ConnectivityCollection).

20.7.14 CIM_MemberOfCollection (Remote Resources) Optional This supports collecting all Shadow instances of
components that the Replication Service has available to
use. This is optional when used to support the
RemoteResources collection (the RemoteResources
collection is optional).

20.7.15 CIM_MemberOfCollection (Storage elements to
RemoteReplicationCollection)

Optional Associates storage elements to
RemoteReplicationCollection (ConnectivityCollection).

20.7.16 CIM_OrderedMemberOfCollection Conditional Conditional requirement: Required if groups are
supported. Associates ReplicationGroup to storage
elements.

20.7.17 CIM_ProtocolEndpoint Conditional Conditional requirement: Required if remote replication is
supported. Special purpose endpoint that represents
connections between systems.

20.7.18 CIM_RemoteReplicationCollection Conditional Conditional requirement: Required if remote replication is
supported. A RemoteReplicationCollection groups
together a set of ProtocolEndpoints of the same 'type'
(i.e., class) which are able to communicate with each
other. The ProtocolEndpoints are used by Replication
Services.

20.7.19 CIM_RemoteResources Optional This is a SystemSpecificCollection for collecting
components that may be allocated by the Replication
Services profile (e.g., StorageVolume) that supports
Cascading.

20.7.20 CIM_RemoteServiceAccessPoint Conditional Conditional requirement: Required if remote replication is
supported. A ServiceAccessPoint for replication service.

20.7.21 CIM_ReplicaPoolForStorage Optional Associates special storage pool for Snapshots (delta
replicas) to a source element.

20.7.22 CIM_ReplicationEntity Optional Represents a replication entity such as an entity known by
its World Wide Name (WWN).

20.7.23 CIM_ReplicationGroup Conditional Conditional requirement: Required if groups are
supported. Represents a group of elements participating
in a replication activity.

20.7.24 CIM_ReplicationService Mandatory Base class for Replication Services. Methods are
described in the Extrinsic Methods clause.

Table 471 - CIM Elements for Replication Services

Element Name Requirement Description
SNIA Technical Position 683

Method Mapping

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610
20.7.25 CIM_ReplicationServiceCapabilities Mandatory A set of properties and methods that describe the
capabilities of a replication services provider.

20.7.26 CIM_ReplicationSettingData Optional Contains special options for use by methods of
Replication Services.

20.7.27 CIM_SAPAvailableForFileShare Conditional Conditional requirement: Required if remote replication is
supported. This association identifies the element that is
serviced by the ServiceAccessPoint.

20.7.28 CIM_ServiceAffectsElement (Between
ReplicationService and RemoteReplicationCollection)

Conditional Conditional requirement: Required if remote replication is
supported. Associates Replication Service to
RemoteReplicationCollection (ConnectivityCollection).

20.7.29 CIM_ServiceAffectsElement (Between
ReplicationService and ReplicationEntity)

Optional Associates Replication Service to ReplicationEntity.

20.7.30 CIM_ServiceAffectsElement (Between
ReplicationService and ReplicationGroup)

Conditional Conditional requirement: Required if groups are
supported. Associates Replication Service to Replication
Group.

20.7.31 CIM_SettingsAffectSettings (Between
SynchronizationAspect and child
SynchronizationAspects)

Optional Associates a SynchronizationAspect associated to a
replication group to individual instances of
SynchronizationAspect.

20.7.32 CIM_SettingsDefineState (Between
ReplicationGroup and SynchronizationAspect)

Optional Associates a replication group to an instance of
SynchronizationAspect.

20.7.33 CIM_SettingsDefineState (Between storage
object and SynchronizationAspect)

Optional Associates a storage object to an instance of
SynchronizationAspect.

20.7.34 CIM_SharedSecret Conditional Conditional requirement: Required if remote replication is
supported.

20.7.35 CIM_StorageSynchronized Mandatory Associates replica target element to source element.
Property definitions and descriptions are identical to those
for LogicalDisk usage.

20.7.36 CIM_SynchronizationAspect Optional Keeps track of the source of a copy operation, even after
StorageSynchronized is removed. Also keeps track of
point-in-time.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageSynchronized

Mandatory All instance creation indications for StorageSynchronized.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_GroupSynchronized

Conditional Conditional requirement: Required if groups are
supported. All instance creation indications for
GroupSynchronized.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_SynchronizationAspect

Optional All instance creation indications for
SynchronizationAspect.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageSynchronized AND
OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-synchronized')

Optional CQL -Instance deletion indications for a specific
StorageSynchronized.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageSynchronized

Mandatory All instance deletion indications for StorageSynchronized.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_GroupSynchronized AND
OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-group-synchronized')

Conditional Conditional requirement: Required if groups are
supported. CQL -Instance deletion indications for a
specific GroupSynchronized.

Table 471 - CIM Elements for Replication Services

Element Name Requirement Description
684

 Method Mapping
SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_GroupSynchronized

Optional All instance deletion indications for GroupSynchronized.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_SynchronizationAspect

Optional All instance deletion indications for
SynchronizationAspect.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::CopyState
<>
PreviousInstance.CIM_StorageSynchronized::CopyState
AND OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-synchronized')

Optional CQL -Synchronization state transition for a specific replica
association.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::CopyState
<>
PreviousInstance.CIM_StorageSynchronized::CopyState

Optional CQL -Synchronization state transition for replica
associations.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::ProgressStat
us <>
PreviousInstance.CIM_StorageSynchronized::ProgressSt
atus AND OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-synchronized')

Optional CQL -Progress status transition for a specific replica
association.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::ProgressStat
us <>
PreviousInstance.CIM_StorageSynchronized::ProgressSt
atus

Optional CQL -Progress status transition for replica associations.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_GroupSynchronized AND
SourceInstance.CIM_GroupSynchronized::CopyState <>
PreviousInstance.CIM_GroupSynchronized::CopyState
AND OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-group-synchronized')

Conditional Conditional requirement: Required if groups are
supported. CQL -Synchronization state transition for a
specific replication group association.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_GroupSynchronized AND
SourceInstance.CIM_GroupSynchronized::CopyState <>
PreviousInstance.CIM_GroupSynchronized::CopyState

Optional CQL -Synchronization state transition for replication group
associations.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM4'

Mandatory Be notified when CopyState is set to Broken.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM5'

Mandatory Remaining pool space either below warning threshold set
for the pool or there is no remaining space in the pool.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM6'

Mandatory Be notified of changes in RemoteReplicationCollection
(ConnectivityCollections).

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM7'

Mandatory Be notified of changes in ProtocolEndpoints.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM8'

Conditional Experimental. Be notified when CopyState is Fractured if
the implementation supports this state.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM9’

Conditional Experimental. Be notified when CopyState is Invalid if the
implementation supports this state.

Table 471 - CIM Elements for Replication Services

Element Name Requirement Description
SNIA Technical Position 685

Method Mapping
20.7.2 CIM_AllocatedResources

An instance of a default AllocatedResources defines the set of components that are allocated and in use
by the Replication Services Profile.

AllocatedResources is subclassed from CIM_SystemSpecificCollection.

At least one instance of the AllocatedResources shall exist for the Replication Services Profile, if remote
replication is supported, and shall be hosted by one of its ComputerSystems (typically the top level
ComputerSystem).

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required, if remote replication is supported.

Table 472 describes class CIM_AllocatedResources.

20.7.3 CIM_ElementCapabilities

Associates StorageReplicationCapabilities and ReplicationService.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM10'

Mandatory Experimental. Be notified when the CopyState is Inactive.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM11'

Optional Experimental. Be notified when the CopyState is Split.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM12’

Mandatory Experimental. Be notified when the CopyState returns to a
normal condition.

Table 472 - SMI Referenced Properties/Methods for CIM_AllocatedResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the AllocatedResources collection (e.g., Allocated
StorageVolumes).

ElementType Mandatory The type of remote resources collected by the AllocatedResources
collection.

For this version of SMI-S, the only value supported is '2' (Any Type).

CollectionDiscriminator Mandatory Experimental. This is an array of values that shall contain one or more
values from the list: 'SNIA:Target Volumes', 'SNIA:Source Volumes',
'SNIA:Target Volume Group', 'SNIA:Source Volume Group'.

Table 471 - CIM Elements for Replication Services

Element Name Requirement Description
686

 Method Mapping

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623
Table 473 describes class CIM_ElementCapabilities.

20.7.4 CIM_GroupSynchronized

Associates source and target groups, or a source element to a target group.

Created By: Extrinsic: CreateGroupReplica

Modified By: Extrinsic: ModifyReplicaSynchronization

Deleted By: Extrinsic: ModifyReplicaSynchronization

Requirement: Required if groups are supported.

Table 474 describes class CIM_GroupSynchronized.

Table 473 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

Capabilities Mandatory

ManagedElement Mandatory

Table 474 - SMI Referenced Properties/Methods for CIM_GroupSynchronized

Properties Flags Requirement Description & Notes

RelationshipName Mandatory A user relevant name for the relationship between the source and target
groups or between a source element and a target group (i.e., one-to-
many).

SyncType Mandatory Type of association between source and target groups. Values:

 6: Mirror

 7: Snapshot

8: Clone.

Mode Mandatory Specifies when target elements are updated. Values:

 2: Synchronous

3: Asynchronous.

RequestedCopyState N Optional Indicates the last requested or desired state for the association. Values:

 4: Synchronized

 6: Fractured

 7: Split

 8: Inactive

 9: Suspended

 10: Failedover

 11: Prepared

 12: Aborted

 15: Not Applicable

 16: Partitioned

 17: Invalid

18: Restored.
SNIA Technical Position 687

Method Mapping

1624

1625

1626
1627
1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644
CopyState Mandatory State of association between source and target groups, or source element
and target group. Values:

 2: Initialized

 3: UnSynchronized

 4: Synchronized

 5: Broken

 6: Fractured

 7: Split

 8: Inactive

 9: Suspended

 10: FailedOver

 11: Prepared

 12: Aborted

 13: Skewed

 14: Mixed

 15: Not Applicable

 16: Partitioned

 17: Invalid

18: Restored.

Table 474 - SMI Referenced Properties/Methods for CIM_GroupSynchronized

Properties Flags Requirement Description & Notes
688

 Method Mapping

1645

1646

1647

1648

1649

1650

1651
1652
1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665
ProgressStatus N Optional Status of association between source and target groups. Values:

 2: Completed

 3: Dormant

 4: Initializing

 5: Preparing

 6: Synchronizing

 7: Resyncing

 8: Restoring

 9: Fracturing

 10: Splitting

 11: Failing over

 12: Failing back

 13: Aborting

 14: Mixed

 15: Not Applicable

 16: Suspending

 17: Requires fracture

 18: Requires resync

 19: Requires activate

 20: Pending

 21: Detaching

22: Requires detach.

PercentSynced N Optional Percent of individual elements in the group synched. Values: 0-100.

ConsistencyEnabled Mandatory Set to true if consistency is enabled.

ConsistencyType Conditional Conditional requirement: Required if group consistency is enabled.
Indicates the consistency type used by the groups. Values:

2: Sequential Consistency.

ConsistencyState Conditional Conditional requirement: Required if group consistency is enabled.
Indicates the current state of consistency. Values:

 2: Not Applicable

 3: Consistent

4: Inconsistent.

ConsistencyStatus Conditional Conditional requirement: Required if group consistency is enabled.
Indicates the current status of consistency. Values:

 2: Completed

 3: Consistency-in-progress

 4: Consistency disabled

5: Consistency-error.

WhenEstablished N Optional Specifies when the association was established.

Table 474 - SMI Referenced Properties/Methods for CIM_GroupSynchronized

Properties Flags Requirement Description & Notes
SNIA Technical Position 689

Method Mapping

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682
1683

1684

1685

1686

1687
20.7.5 CIM_HostedAccessPoint (ForProtocolEndpoint)

Associates ProtocolEndpoint to the System on which it is hosted.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 475 describes class CIM_HostedAccessPoint (ForProtocolEndpoint).

20.7.6 CIM_HostedAccessPoint (ForRemoteServiceAccessPoint)

Associates RemoteServiceAccessPoint to the ComputerSystem.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

WhenSynchronized N Optional Date and time synchronization of all elements in the group is achieved.

WhenActivated N Optional Specifies when the association was activated.

WhenSuspended N Optional Specifies when the association was suspended.

FailedCopyStopsHostI
O

N Optional If true, the storage array tells host to stop sending data to source element
if copying to a remote element fails. To set this property initially, use
ReplicationSettingData parameter in create method. To modify this
property, use ModifyInstance intrinsic method.

CopyRecoveryMode N Optional Describes whether the copy operation continues after a broken link is
restored. If Manual, the CopyState is set to Suspended after the link is
restored. It is required to issue the Resume operation to continue. To set
this property initially, use ReplicationSettingData parameter in create
method. To modify this property, use ModifyInstance intrinsic method.
Values:

 2: Automatic

 3: Manual

4: Implementation decides.

SyncedElement Mandatory

SystemElement Mandatory

Table 475 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForProtocolEndpoint)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Hosting System.

Dependent Mandatory The access points that are hosted on this System.

Table 474 - SMI Referenced Properties/Methods for CIM_GroupSynchronized

Properties Flags Requirement Description & Notes
690

 Method Mapping

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707
Table 476 describes class CIM_HostedAccessPoint (ForRemoteServiceAccessPoint).

20.7.7 CIM_HostedCollection (Allocated Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Replication Services profile, it is used to associate the
Allocated Resources to the top level Computer System of the Replication Services Profile in support of
Cascading.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required, if remote replication is supported.

Table 477 describes class CIM_HostedCollection (Allocated Resources).

20.7.8 CIM_HostedCollection (Between ComputerSystem and RemoteReplicationCollection)

Associates the RemoteReplicationCollection (ConnectivityCollection) to the hosting System.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 478 describes class CIM_HostedCollection (Between ComputerSystem and
RemoteReplicationCollection).

Table 476 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForRemoteServiceAccess-
Point)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Hosting System.

Dependent Mandatory The access points that are hosted on this System.

Table 477 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 478 - SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and
RemoteReplicationCollection)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
SNIA Technical Position 691

Method Mapping

1708

1709

1710

1711

1712

1713

1714

1715

1716
20.7.9 CIM_HostedCollection (Between ComputerSystem and ReplicationGroup)

Associates the replication group to the hosting System.

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: DeleteGroup, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Required if groups are supported.

Table 479 describes class CIM_HostedCollection (Between ComputerSystem and ReplicationGroup).

20.7.10 CIM_HostedCollection (Remote Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Replication Services Profile, it is used to associate the
Remote Resources to the top level Computer System of the Replication Services Profile that supports
Cascading.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: This is required if RemoteResources is modeled.

Table 480 describes class CIM_HostedCollection (Remote Resources).

20.7.11 CIM_HostedService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 479 - SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and
ReplicationGroup)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 480 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
692

 Method Mapping

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726
Table 481 describes class CIM_HostedService.

20.7.12 CIM_MemberOfCollection (Allocated Resources)

This use of MemberOfCollection is to collect all allocated shadow component instances (in the
AllocatedResources collection).

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 482 describes class CIM_MemberOfCollection (Allocated Resources).

20.7.13 CIM_MemberOfCollection (ProtocolEndpoints to RemoteReplicationCollection)

Associates ProtocolEndpoints to RemoteReplicationCollection (ConnectivityCollection).

Created By: Extrinsics: CreateRemoteReplicationCollection, AddToRemoteReplicationCollection

Modified By: Static

Deleted By: Extrinsic: RemoveFromRemoteReplicationCollection

Requirement: Optional

Table 483 describes class CIM_MemberOfCollection (ProtocolEndpoints to
RemoteReplicationCollection).

Table 481 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Replication Service hosted on the System.

Table 482 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 483 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (ProtocolEndpoints to
RemoteReplicationCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory
SNIA Technical Position 693

Method Mapping

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740
20.7.14 CIM_MemberOfCollection (Remote Resources)

This use of MemberOfCollection is to collect all shadow components (in the RemoteResources
collection). Each association (and the RemoteResources collection, itself) is created through external
means.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 484 describes class CIM_MemberOfCollection (Remote Resources).

20.7.15 CIM_MemberOfCollection (Storage elements to RemoteReplicationCollection)

Associates storage elements to RemoteReplicationCollection (ConnectivityCollection).

Created By: Extrinsics: CreateElementReplica, CreateGroupReplica

Modified By: Extrinsics: AddMembers, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Optional

Table 485 describes class CIM_MemberOfCollection (Storage elements to RemoteReplicationCollection).

20.7.16 CIM_OrderedMemberOfCollection

Associates ReplicationGroup to storage elements.

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: AddMembers, RemoveMembers

Deleted By: Extrinsics: DeleteGroup, RemoveMembers

Requirement: Required if groups are supported.

Table 484 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 485 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage elements to
RemoteReplicationCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory
694

 Method Mapping

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750
Table 486 describes class CIM_OrderedMemberOfCollection.

20.7.17 CIM_ProtocolEndpoint

Special purpose endpoint that represents connections between systems.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 487 describes class CIM_ProtocolEndpoint.

Table 486 - SMI Referenced Properties/Methods for CIM_OrderedMemberOfCollection

Properties Flags Requirement Description & Notes

AssignedSequence Mandatory Indicates relative position of members within a group.

Collection Mandatory

Member Mandatory

Table 487 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Value always reflects protocol type. Values:

 1: Other

 6: Ethernet CSMA/CD

 7: ISO 802.3 CSMA/CD

 8: ISO 802.4 Token Bus

 15: FDDI

 56: Fibre Channel

 117: Gigabit Ethernet

 4096: IPv4

 4097: IPv6

 4098: IPv4/IPv6

4111: TCP.

OtherTypeDescription N Optional String identifying the Other connection protocol.

OperationalStatus Mandatory An array containing the operational status of protocol end point.
SNIA Technical Position 695

Method Mapping

1751

1752

1753

1754

1755

1756
20.7.18 CIM_RemoteReplicationCollection

Collects the ProtocolEndpoints/ServiceAccessPoints used by Replication Services.

Created By: Extrinsic: CreateRemoteReplicationCollection

Modified By: Extrinsics: AddToRemoteReplicationCollection, RemoveFromRemoteReplicationCollection

Deleted By: Extrinsic: Static

Requirement: Required if remote replication is supported.

Table 488 describes class CIM_RemoteReplicationCollection.

20.7.19 CIM_RemoteResources

An instance of a default RemoteResources defines the set of shadow components that are available to be
used by the Replication Services Profile that supports Cascading.

RemoteResources is subclassed from CIM_SystemSpecificCollection.

One instance of the RemoteResources would exist and shall be hosted by the top level ComputerSystems
of the Replication Services Profile that supports Cascading.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 488 - SMI Referenced Properties/Methods for CIM_RemoteReplicationCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque.

ElementName Optional User Friendly name.

ConnectivityStatus Mandatory An enumeration describing the current or potential connectivity
between endpoints in this collection. Values:

 2: Connectivity - Up

 3: No Connectivity - Down

4: Partitioned - Partial connectivity.

Active N Optional Indicates that this collection is currently active and allows replication
activities to the remote elements.

DeleteOnUnassociated N Optional If true, this instance of RemoteReplicationCollection will be deleted
when it is no longer associated with an access point.

SoftwareCompressionEnabled MN Optional This boolean property indicates if software compression is enabled --
the transmitted/received data is compressed by software. The default is
false.

HardwareCompressionEnabled MN Optional This boolean property indicates if hardware compression is enabled --
the transmitted/received data is compressed by hardware. The default
is false.
696

 Method Mapping

1757
 Table 489 describes class CIM_RemoteResources.

20.7.20 CIM_RemoteServiceAccessPoint

Created By: Extrinsic: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 490 describes class CIM_RemoteServiceAccessPoint.

20.7.21 CIM_ReplicaPoolForStorage

Associates special storage pool for Snapshots (delta replicas) to a source element.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 489 - SMI Referenced Properties/Methods for CIM_RemoteResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the RemoteResources collection (e.g., Remote
StorageVolumes).

ElementType Mandatory The type of remote resources collected by the RemoteResources
collection. This shall be '2' (Any Type).

CollectionDiscriminator Mandatory Experimental. This is an array of values that shall contain one or more
values from the list: 'SNIA:Target Volumes', 'SNIA:Source Volumes',
'SNIA:Target Volume Group', 'SNIA:Source Volume Group', 'SNIA:Remote
Storage Pools'.

Table 490 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

ElementName Optional User Friendly name.

AccessInfo Mandatory Access or addressing information or a combination of this information for a
remote connection. This information can be a host name, network
address, or similar information.

InfoFormat Mandatory The format of the Management Address (i.e., AccessInfo). For example:
"Host Name", "IPv4 Address", "IPv6 Address", "URL". See MOF for the
complete list and values.
SNIA Technical Position 697

Method Mapping
Table 491 describes class CIM_ReplicaPoolForStorage.

20.7.22 CIM_ReplicationEntity

Represents a replication entity such as an entity known by its World Wide Name (WWN).

Created By: Extrinsic: AddReplicationEntity

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 492 describes class CIM_ReplicationEntity.

20.7.23 CIM_ReplicationGroup

Represents a group of elements participating in a replication activity.

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: AddMembers, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Required if groups are supported.

Table 491 - SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 492 - SMI Referenced Properties/Methods for CIM_ReplicationEntity

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key.

Type Mandatory Indicates how to interpret the information appearing in EntityID. Values:

 2: StoragePool

 3: StorageExtent

 4: StorageVolume

 5: LogicalDisk

 6: Filesystem

 7: WWN

 8: URI

 9: Objectpath

10: Encoded in EntityID.

EntityID Mandatory An ID representing the resource identified by this entity. For example, the
WWN or the URI of an element. The property Type is to be used to
interpret the ID.

OtherTypeDescription N Optional Populated when Type has the value of Other.

Persistent MN Optional If false, the instance of this object, not the element represented by this
entity, may be deleted at the completion of a copy operation.
698

 Method Mapping

1758

1759

1760

1761

1762

1763

1764
Table 493 describes class CIM_ReplicationGroup.

20.7.24 CIM_ReplicationService

Base class for Replication Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 494 describes class CIM_ReplicationService.

Table 493 - SMI Referenced Properties/Methods for CIM_ReplicationGroup

Properties Flags Requirement Description & Notes

InstanceID Mandatory Within the scope of an array, the InstanceID opaquely and uniquely
identifies an instance of this class.

Persistent MN Optional If false, the group, not the elements associated with the group, may be
deleted at the completion of a copy operation.

DeleteOnEmptyElement M Mandatory If true and empty groups are allowed, the group will be deleted when the
last element is removed from the group. If empty groups are not allowed,
the group will be deleted automatically when the group becomes empty.

DeleteOnUnassociated M Mandatory If true, the group will be deleted when the group is no longer associated
with another group. This can happen if all synchronization associations to
the individual elements of the group are dissolved.

ConsistentPointInTime N Optional If it is true, it means the point-in-time was created at an exact time with no
I/O activities in such a way the data is consistent among all the elements
of the group. This property is only valid when the group is a target of a
copy operation.

EXPERIMENTAL

MemberPolicy N Optional MemberPolicy indicates what actions can be performed to affect the
group/member relationship. For example, whether a new member can be
added to the group, or whether deleting the group also deletes the
members.

SystemGenerated N Optional If true, it indicates that the group was generated by the system.

EXPERIMENTAL

Table 494 - SMI Referenced Properties/Methods for CIM_ReplicationService

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

CreateElementReplica() Mandatory
SNIA Technical Position 699

Method Mapping
20.7.25 CIM_ReplicationServiceCapabilities

This class defines all of the capability properties for the replication services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

CreateGroupReplica() Conditional Conditional requirement: Required if groups are supported.

CreateListReplica() Optional

CreateSynchronizationAspect() Optional

ModifyReplicaSynchronization() Mandatory

ModifyListSynchronization() Optional

ModifySettingsDefineState() Optional

CreateGroup() Conditional Conditional requirement: Required if groups are supported.

DeleteGroup() Conditional Conditional requirement: Required if groups are supported.

AddMembers() Conditional Conditional requirement: Required if groups are supported.

RemoveMembers() Conditional Conditional requirement: Required if groups are supported.

GetAvailableTargetElements() Optional

GetPeerSystems() Optional

GetReplicationRelationships() Optional

GetServiceAccessPoints() Optional

AddReplicationEntity() Optional

AddServiceAccessPoint() Optional

AddSharedSecret() Optional

CreateGroupReplicaFromElements() Optional

GetReplicationRelationshipInstance() Optional

ModifyListSettingsDefineState() Optional

CreateRemoteReplicationCollection() Optional

AddToRemoteReplicationCollection() Optional

RemoveFromRemoteReplicationCollection() Optional

Table 494 - SMI Referenced Properties/Methods for CIM_ReplicationService

Properties Flags Requirement Description & Notes
700

 Method Mapping
Table 495 describes class CIM_ReplicationServiceCapabilities.

Table 495 - SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User Friendly name.

SupportedReplicationTypes Mandatory Enumeration indicating the supported SyncType/
Mode/Local-or-Remote combinations. Values:

 2: Synchronous Mirror Local

 3: Asynchronous Mirror Local

 4: Synchronous Mirror Remote

 5: Asynchronous Mirror Remote

 6: Synchronous Snapshot Local

 7: Asynchronous Snapshot Local

 8: Synchronous Snapshot Remote

 9: Asynchronous Snapshot Remote

 10: Synchronous Clone Local

 11: Asynchronous Clone Local

 12: Synchronous Clone Remote

 13: Asynchronous Clone Remote

 14: Synchronous TokenizedClone Local

 15: Asynchronous TokenizedClone Local

 16: Synchronous TokenizedClone Remote

17: Asynchronous TokenizedClone Remote.

EXPERIMENTAL

18: Adaptive Mirror Local

19: Adaptive Mirror Remote

20: Adaptive Snapshot Local

21: Adaptive Snapshot Remote

22: Adaptive Clone Local

23: Adaptive Clone Remote

24: Adaptive TokenizedClone Local

25: Adaptive TokenizedClone Remote

26: Active Mirror Local

27: Active Mirror Remote

(See MOF for additional values)

EXPERIMENTAL
SNIA Technical Position 701

Method Mapping

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778
SupportedStorageObjects Mandatory Enumeration indicating the supported storage objects.
Values:

 2: StorageVolume

3: LogicalDisk.

SupportedAsynchronousActions N Conditional Conditional requirement: Al least one of
SupportedSynchronousActions or
SupportedAsynchronousActions shall be
implemented.

Identify replication methods using job control. Values:

 2: CreateElementReplica

 3: CreateGroupReplica

 4: CreateSynchronizationAspect

 5: ModifyReplicaSynchronization

 6: ModifyListSynchronization

 7: ModifySettingsDefineState

 8: GetAvailableTargetElements

 9: GetPeerSystems

 10: GetReplicationRelationships

 11: GetServiceAccessPoints

19: CreateListReplica.

Table 495 - SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities

Properties Flags Requirement Description & Notes
702

 Method Mapping

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799
SupportedSynchronousActions N Conditional Conditional requirement: Al least one of
SupportedSynchronousActions or
SupportedAsynchronousActions shall be
implemented.

Identify replication methods not using job control.
Values:

 2: CreateElementReplica

 3: CreateGroupReplica

 4: CreateSynchronizationAspect

 5: ModifyReplicaSynchronization

 6: ModifyListSynchronization

 7: ModifySettingsDefineState

 8: GetAvailableTargetElements

 9: GetPeerSystems

 10: GetReplicationRelationships

 11: GetServiceAccessPoints

 12: CreateGroup

 13: DeleteGroup

 14: AddMembers

 15: RemoveMembers

 16: AddReplicationEntity

 17: AddServiceAccessPoint

 18: AddSharedSecret

19: CreateListReplica.

ConvertSyncTypeToReplicationType() Mandatory

ConvertReplicationTypeToSyncType() Mandatory

GetSupportedCopyStates() Mandatory

GetSupportedGroupCopyStates() Conditional Conditional requirement: Required if groups are
supported.

GetSupportedWaitForCopyStates() Optional

GetSupportedFeatures() Mandatory

GetSupportedGroupFeatures() Conditional Conditional requirement: Required if groups are
supported.

GetSupportedConsistency() Conditional Conditional requirement: Required if groups are
supported.

GetSupportedOperations() Mandatory

GetSupportedGroupOperations() Conditional Conditional requirement: Required if groups are
supported.

GetSupportedListOperations() Optional

GetSupportedSettingsDefineStateOperations() Optional

Table 495 - SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities

Properties Flags Requirement Description & Notes
SNIA Technical Position 703

Method Mapping

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819
20.7.26 CIM_ReplicationSettingData

Contains special options for use by methods of Replication Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 496 describes class CIM_ReplicationSettingData.

GetSupportedThinProvisioningFeatures() Optional

GetSupportedStorageCompressionFeatures() Optional

GetSupportedMaximum() Optional

GetDefaultConsistency() Conditional Conditional requirement: Required if groups are
supported.

GetDefaultGroupPersistency() Conditional Conditional requirement: Required if groups are
supported.

GetSupportedReplicationSettingData() Optional

GetDefaultReplicationSettingData() Optional

GetSupportedConnectionFeatures() Optional

GetSynchronizationSupported() Optional

GetSupportedTokenizedReplicationType() Optional

Table 496 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User Friendly name.

Pairing MN Optional Controls how source and target elements are paired. Values:

 2: Instrumentation decides

 3: Exact order

4: Optimum (If possible source and target elements on different
adapters).

UnequalGroupsAction MN Optional Indicates what should happen if number of elements in source
and target are unequal. Values:

 2: Return an error

 3: Allow larger source group

4: Allow larger target group.

Table 495 - SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities

Properties Flags Requirement Description & Notes
704

 Method Mapping

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834
DesiredCopyMethodology MN Optional Request specific copy methodology. Values:

 1: Other

 2: Instrumentation decides

 3: Full-Copy

 4: Incremental-Copy

 5: Differential-Copy

 6: Copy-On-Write

 7: Copy-On-Access

 8: Delta-Update

9: Snap-And-Clone.

EXPERIMENTAL

10: Copy-before-Activation

11: Redirect-On-Write

(See MOF for additional values)

EXPERIMENTAL

TargetElementSupplier MN Optional If target elements are not supplied, this property indicates where
the target elements should come from. Values:

 1: Use existing elements

 2: Create new elements

 3: Use existing or Create new elements

 4: Instrumentation decides

5: Client must supply.

ThinProvisioningPolicy MN Optional If the target element is not supplied, this property specifies the
provisioning of the target element. Values:

 2: Copy thin source to thin target

 3: Copy thin source to full target

 4: Copy full source to thin target

 5: Provisioning of target same as source

 6: Target pool decides provisioning of target element

7: Implementation decides provisioning of target.

Table 496 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes
SNIA Technical Position 705

Method Mapping
StorageCompressionPolicy MN Optional If the target element is not supplied, this property specifies the
compression of the target element. Values:

 2: Copy compressed source to compressed target

 3: Copy compressed source to uncompressed target

 4: Copy uncompressed source to compressed target

 5: Compression of target same as source

 6: Target pool decides compression of target element

7: Implementation decides compression of target.

ConsistentPointInTime MN Optional If it is true, it means the point-in-time to be created at an exact
time with no I/O activities in such a way the data is consistent
among all the elements or the group.

DeltaUpdateInterval MN Optional If non-zero, it specifies the interval between the snapshots of
source element, for example, every 23 minutes
(00000000002300.000000:000). If zero or NULL, the
implementation decides.

Multihop MN Optional This property applies to multihop copy operation. It specifies the
number of hops the starting source (or group) element is
expected to be copied. Default is 1.

OnGroupOrListError MN Optional This property applies to group or list operations. It specifies what
the implementation should do if an error is encountered before all
entries in the group or list are processed. Default is to Stop.

 2: Continue

3: Stop.

CopyPriority MN Optional This property sets the StorageSynchronized.CopyPriority
property. CopyPriority allows the priority of background copy
operation to be managed relative to host I/O operations during a
sequential background copy operation.

 0: Not Managed

 1: Low

 2: Same (as host I/O)

 3: High

4: Urgent.

FailedCopyStopsHostIO MN Optional If true, the storage array tells host to stop sending data to source
element if copying to a remote element fails.

CopyRecoveryMode MN Optional Describes whether the copy operation continues after a broken
link is restored. If Manual, the CopyState is set to Suspended
after the link is restored. It is required to issue the Resume
operation to continue. Values:

 2: Automatic

 3: Manual

4: Implementation decides.

Table 496 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes
706

 Method Mapping
20.7.27 CIM_SAPAvailableForFileShare

This association identifies the element that is serviced by the ProtocolEndpoint.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

UnequalListsAction MN Optional Indicates what should happen if number of elements in source
and target lists are unequal. Values:

 2: Return an error

 3: Allow source list to be larger

4: Allow target list to be larger.

DeltaUpdateBlocks MN Optional This property applies to Delta-Update copy methodology. If non-
zero, it specifies the snapshots of source element should be
created after this number of blocks have been modified. If both
DeltaUpdateBlocks and DeltaUpdateInterval are specified the
snapshot is created based on which criterion occurs first. If NULL
or 0, the implementation decides the number of blocks.

ReadOnly MN Optional This property specifies whether the source, the target, or both
elements should be read only to the host. Values:

 2: SystemElement (source)

 3: SyncedElement (target)

4: Both.

TargetElementResourcePool MN Optional If the target element resource pool is not supplied and the
implementation is expected to create the target element, the
instrumentation selects the resource pool based on this property.
Values:

 2: Implementation decides

3: Same as source element.

TargetElementGoal MN Optional If the target element goal is not supplied and the implementation
is expected to create the target element, the instrumentation
selects the goal based on this property. Values:

 2: Implementation decides

3: Same as source element.

RRCSoftwareCompressionEnabled MN Optional This boolean property indicates if software compression is
enabled -- the transmitted/received data is compressed by
software. The default is false.

RRCHardwareCompressionEnabled MN Optional This boolean property indicates if hardware compression is
enabled -- the transmitted/received data is compressed by
hardware. The default is false.

AutoDelete MN Optional The created element can be deleted if system resources are
running low. The default is false.

TimeBeforeRemoval MN Optional The amount of time that the element is retained. If this property is
non-null, AutoDelete is ignored.

Table 496 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes
SNIA Technical Position 707

Method Mapping
Table 497 describes class CIM_SAPAvailableForFileShare.

20.7.28 CIM_ServiceAffectsElement (Between ReplicationService and RemoteReplicationCollec-
tion)

Associates Replication Service to RemoteReplicationCollection (ConnectivityCollection).

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 498 describes class CIM_ServiceAffectsElement (Between ReplicationService and
RemoteReplicationCollection).

20.7.29 CIM_ServiceAffectsElement (Between ReplicationService and ReplicationEntity)

Associates Replication Service to ReplicationEntity.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 499 describes class CIM_ServiceAffectsElement (Between ReplicationService and
ReplicationEntity).

20.7.30 CIM_ServiceAffectsElement (Between ReplicationService and ReplicationGroup)

Associates Replication Service to Replication Group.

Table 497 - SMI Referenced Properties/Methods for CIM_SAPAvailableForFileShare

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The managed element.

AvailableSAP Mandatory The servicing protocol end point.

Table 498 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and RemoteReplicationCollection)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Replication Service.

AffectedElement Mandatory Remote Replication Collection.

Table 499 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and ReplicationEntity)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Replication Service.

AffectedElement Mandatory Replication Entity.
708

 Method Mapping

1835

1836

1837

1838

1839

1840

1841
Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: DeleteGroup, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Required if groups are supported.

Table 500 describes class CIM_ServiceAffectsElement (Between ReplicationService and
ReplicationGroup).

20.7.31 CIM_SettingsAffectSettings (Between SynchronizationAspect and child Synchronization-
Aspects)

Associates a SynchronizationAspect associated to a replication group to individual instances of
SynchronizationAspect.

Created By: Extrinsic: CreateSynchronizationAspect

Modified By: Static

Deleted By: Extrinsics: ModifySettingsDefineState, ModifyReplicaSynchronization

Requirement: Optional

Table 501 describes class CIM_SettingsAffectSettings (Between SynchronizationAspect and child
SynchronizationAspects).

20.7.32 CIM_SettingsDefineState (Between ReplicationGroup and SynchronizationAspect)

Associates a replication group to an instance of SynchronizationAspect.

Created By: Extrinsic: CreateSynchronizationAspect

Modified By: Static

Deleted By: Extrinsics: ModifySettingsDefineState, ModifyReplicaSynchronization

Requirement: Optional

Table 500 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and ReplicationGroup)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Replication Service.

AffectedElement Mandatory Replication Group.

Table 501 - SMI Referenced Properties/Methods for CIM_SettingsAffectSettings (Between Synchroniza-
tionAspect and child SynchronizationAspects)

Properties Flags Requirement Description & Notes

Dependent Mandatory SynchronizationAspect associated to replication group.

Antecedent Mandatory SynchronizationAspect associated to replication group members.
SNIA Technical Position 709

Method Mapping

1842

1843
1844

1845

1846
1847

1848

1849

1850

1851
Table 502 describes class CIM_SettingsDefineState (Between ReplicationGroup and
SynchronizationAspect).

20.7.33 CIM_SettingsDefineState (Between storage object and SynchronizationAspect)

Associates a storage object to an instance of SynchronizationAspect.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 503 describes class CIM_SettingsDefineState (Between storage object and
SynchronizationAspect).

20.7.34 CIM_SharedSecret

Created By: Extrinsic: AddSharedSecret

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 504 describes class CIM_SharedSecret.

Table 502 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between ReplicationGroup
and SynchronizationAspect)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Storage Element.

SettingData Mandatory Synchronization Aspect.

Table 503 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between storage object and
SynchronizationAspect)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Storage Element.

SettingData Mandatory Synchronization Aspect.

Table 504 - SMI Referenced Properties/Methods for CIM_SharedSecret

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory Key.

SystemName Mandatory Key.

ServiceCreationClassName Mandatory Key.

ServiceName Mandatory Key.

RemoteID Mandatory Key, The identity of the client as known on the remote system.

Secret Mandatory A secret.
710

 Method Mapping

1852

1853

1854
1855

1856

1857
1858

1859

1860

1861

1862

1863
20.7.35 CIM_StorageSynchronized

Associates replica target element to source element.

Created By: Extrinsics: CreateElementReplica, CreateGroupReplica, CreateListReplica

Modified By: Extrinsic: ModifyReplicaSynchronization

Deleted By: Extrinsic: ModifyReplicaSynchronization

Requirement: Mandatory

Table 505 describes class CIM_StorageSynchronized.

Table 505 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Flags Requirement Description & Notes

WhenSynced N Optional Date and time synchronization of the elements is achieved.

WhenEstablished N Optional Specifies when the association was established.

WhenSynchronized N Optional Specifies when the CopyState has a value of Synchronized.

WhenActivated N Optional Specifies when the association was activated.

WhenSuspended N Optional Specifies when the association was suspended.

SyncMaintained Mandatory Boolean indicating whether synchronization is maintained.

SyncType Mandatory Type of association between source and target groups. Values:

 6: Mirror

 7: Snapshot

8: Clone.

Mode Mandatory Specifies when target elements are updated. Values:

 2: Synchronous

3: Asynchronous.

RequestedCopyState Optional Indicates the last requested or desired state for the association.
Values:

 4: Synchronized

 6: Fractured

 7: Split

 8: Inactive

 9: Suspended

 10: Failedover

 11: Prepared

 12: Aborted

 15: Not Applicable

 16: Partitioned

 17: Invalid

18: Restored.

ReplicaType Optional
SNIA Technical Position 711

Method Mapping
CopyState Mandatory State of association between source and target groups. Values:

 2: Initialized

 3: Unsynchronized

 4: Synchronized

 5: Broken

 6: Fractured

 7: Split

 8: Inactive

 9: Suspended

 10: FailedOver

 11: Prepared

 12: Aborted

 13: Skewed

 14: Mixed

 15: Not Applicable

 16: Partitioned

 17: Invalid

18: Restored.

Table 505 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Flags Requirement Description & Notes
712

 Method Mapping
ProgressStatus N Optional Status of association between source and target groups. Values:

 2: Completed

 3: Dormant

 4: Initializing

 5: Preparing

 6: Synchronizing

 7: Resyncing

 8: Restoring

 9: Fracturing

 10: Splitting

 11: Failing over

 12: Failing back

 13: Aborting

 14: Mixed

 15: Not Applicable

 16: Suspending

 17: Requires fracture

 18: Requires resync

 19: Requires activate

 20: Pending

 21: Detaching

22: Requires detach.

PercentSynced N Optional Specifies the percent of the work completed to reach
synchronization. For synchronized associations (e.g. SyncType
Mirror), while fractured, the percent difference between source and
target elements can derived by subtracting PercentSynched from
100.

CopyPriority MN Optional CopyPriority allows the priority of background copy engine I/O to be
managed relative to host I/O operations during a sequential
background copy operation. Values:

 0: Not Managed

 1: Low

 2: Same (as host I/O)

 3: High

4: Urgent.

UndiscoveredElement N Optional Specifies whether the source, the target, or both elements involved
in a copy operation are undiscovered. If NULL both source and
target elements are considered discovered. Values:

 2: SystemElement

 3: SyncedElement

4: Both.

Table 505 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Flags Requirement Description & Notes
SNIA Technical Position 713

Method Mapping
20.7.36 CIM_SynchronizationAspect

Keeps track of source of a copy operation and point-in-time.

Created By: Extrinsics: CreateElementReplica, CreateListReplica, CreateSynchronizationAspect

Modified By: Extrinsic: ModifyReplicaSynchronization

Deleted By: Extrinsics: ModifyReplicaSynchronization, ModifySettingsDefineState

Requirement: Optional

SyncState Mandatory State of association between source and target elements. See
MOF for the complete list and values.

FailedCopyStopsHostIO N Optional If true, the storage array tells host to stop sending data to source
element if copying to a remote element fails. To set this property
initially, use ReplicationSettingData parameter in create method. To
modify this property, use ModifyInstance intrinsic method.

CopyRecoveryMode N Optional Describes whether the copy operation continues after a broken link
is restored. If Manual, the CopyState is set to Suspended after the
link is restored. It is required to issue the Resume operation to
continue. To set this property initially, use ReplicationSettingData
parameter in create method. To modify this property, use
ModifyInstance intrinsic method. Values:

 2: Automatic

 3: Manual

4: Implementation decides.

ReadOnly N Optional This property specifies whether the source, the target, or both
elements are "read only" to the host. Values:

 2: SystemElement

 3: SyncedElement

4: Both.

SyncedElement Mandatory

SystemElement Mandatory

Table 505 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Flags Requirement Description & Notes
714

 Method Mapping
Table 506 describes class CIM_SynchronizationAspect.

Table 506 - SMI Referenced Properties/Methods for CIM_SynchronizationAspect

Properties Flags Requirement Description & Notes

InstanceID Mandatory

SyncType Mandatory Type of association between source and target elements. Values:

 6: Mirror

 7: Snapshot

8: Clone.

ConsistencyEnabled Conditional Conditional requirement: Required if groups are supported. Set to true if
consistency is enabled.

ElementName Mandatory An end user relevant name. The value will be stored in the ElementName
property of the created SynchronizationAspect.

ConsistencyType Conditional Conditional requirement: Required if group consistency is enabled.
Indicates the consistency type used by the groups. Values:

2: Sequential Consistency.

CopyStatus N Optional Describes the status of copy operation. Values:

 2: Not Applicable

 3: Operation In Progress

4: Operation Completed.

CopyMethodology N Optional Indicates the copy methodology utilized for copying. Values:

 2: Implementation decides

 3: Full-Copy

 4: Incremental-Copy

 5: Differential-Copy

 6: Copy-On-Write

 7: Copy-On-Access

 8: Delta-Update

9: Snap-And-Clone

EXPERIMENTAL

10: Copy-before-Activatio

11: Redirect-On-Write

(See MOF for additional values)

EXPERIMENTAL

WhenPointInTime N Optional Specifies when point-in-time was created.

SourceElement Mandatory Reference to the source element or the source group of a copy operation
and/or a point-in-time.
SNIA Technical Position 715

Method Mapping
IMPLEMENTED

AutoDelete MN Optional The created element can be deleted if system resources are running low.
The default is false.

TimeBeforeRemoval MN Optional The amount of time that the element is retained. If this property is non-null,
AutoDelete is ignored.

Table 506 - SMI Referenced Properties/Methods for CIM_SynchronizationAspect

Properties Flags Requirement Description & Notes
716

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
EXPERIMENTAL

21 Pools from Volumes Profile

21.1 Description

21.1.1 Synopsis

Profile Name: Pools From Volumes (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: StorageVolume

Scoping Class: ComputerSystem where Dedicated contains “15” (Block Server)

Related Profiles: Table 507 describes the related profiles for Pools from Volumes.

21.1.2 Overview

The Pools from Volumes Profile defines how a pool may be created from StorageVolumes. The Block
Services Package defines how to create a StoragePool from unallocated storage. However, there are
some devices that allow the user to create storage pools from already allocated volumes, necessitating
this profile. This is a similar concept to Volume Composition, in that the volumes are combined into a
larger entity and are no longer available for use as regular volumes. The specific use cases that have
been identified for these kinds of pools are for snapshot replica pools and thin provisioned volume pools.

21.1.3 Terminology

This profile uses the following terms to help distinguish between the different uses of StoragePool and
StorageVolume, and to help distinguish which kind of StorageVolume or StoragePool is being referred to:

• Constituent Volume -- StorageVolumes used to create a concrete StoragePool.

• Pool Volume -- StorageVolume created from a Constituent Pool.

• Constituent Pool -- A concrete StoragePool created from constituent volumes.

21.1.4 Relationship to Block Services Package

The Pools from Volumes Profile extends the Block Services Package with additional descriptions and
definitions showing how such pools may be created and how to model the constituent volumes. The
existing Block Services classes, properties, and methods are used.

21.1.5 Relationship to Extent Composition

This profile shall not require Extent Composition. Some of the examples make use of Extent Composition
but only to demonstrate the relationship of the volumes to the underlying extents.

Table 507 - Related Profiles for Volume Composition

Profile Name Organization Version Requirement Description

Extent Composition SNIA 1.7.0 Optional

Block Services SNIA 1.8.0 Mandatory
SNIA Technical Position 717

StorageVolume

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59
This profile shall not require any BasedOn association to any underlying extents from the volumes
created from the constituent pool, even if Extent Composition is supported by the instrumentation.

21.1.6 Class Model

Figure 144 shows the classes used in this profile. These are the same classes used in the autonomous
profile and Block Services Package.

21.1.7 Model Elements

21.1.7.1 StorageVolume

21.1.7.1.1 Overview

StorageVolume is used in three different contexts in this profile. The first is the normal usage as
described in 5 Block Services Package. The second is as a “constituent volume.” These StorageVolumes
are normal volumes that have been used to create a concrete StoragePool. This volume has the same
associations as normal StorageVolumes with its underlying elements, namely the
AllocatedFromStoragePool association to the concrete StoragePool and the BasedOn association to the
StorageExtent. Once used to create a StoragePool, this volume can be identified by its Usage property.
The third type of StorageVolume is a volume created from the constituent pool. This is referred to as a
“pool volume.” This acts as a normal StorageVolume, with the exception that it does not have a BasedOn
association to any antecedent StorageExtent, even if Extent Composition is supported.

21.1.7.1.2 Volume Visibility

In some implementations, these volumes may still be visible in a list of volumes reported by the array
after pool creation. In this profile, these volumes are called "constituent volumes" to distinguish them
from volumes allocated from the pool. Even though these volumes are visible, they are not usable as
normal volumes. Some instrumentation may need the ability to “see” a constituent volume in order to
perform copy operation or to resize (e.g., shrink) the constituent pool.

21.1.7.2 StoragePool

StoragePool is used in two contexts in this profile. The first is the regular concrete StoragePool. The
second is the constituent pool that is created by the constituent volumes.

21.1.8 Example

This example will show the model changes that occur when a constituent StoragePool is created from
StorageVolumes. Figure 145 shows the starting conditions. There are two normal StorageVolumes
allocated from a concrete pool, labeled ConcretePool in the diagram. This example follows the Extent

Figure 144 - Class Model

StorageVolume StoragePool
AllocatedFromStoragePool

ComputerSystem

SystemDevice

Block Services

StorageSetting

1 ElementSettingData 1

Autonomous Profile
(e.g. Array)
718

 StoragePool

60

61

62

63

64

65

66

67

68

69

70

71

72

73
Composition model, so each volume has a BasedOn association to an underlying StorageExtent that is a
ConcreteComponent of the concrete StoragePool. Depending upon the instrumentation, there may be
intermediate extents between the volume and extent (e.g. if the instrumentation follows the Volume
Composition model, there may be an intermediate CompositeExtent between the StorageVolume and
StorageExtent). Although not shown in the diagram, for each ConcreteComponent association, there is
also an AssociatedComponentExtent association between the same two instances the
ConcreteComponent associates.

The next figure, Figure 146, shows the changes that would occur in the model after creation of the
StoragePool from the StorageVolumes (e.g. as a result of a invocation of he CreateOrModifyStoragePool
method). In this diagram, both of the volumes have been used to create a constituent StoragePool,
labeled CreatedPool in the diagram. The following model changes occur:

• AllocatedFromStoragePool.SpaceConsumed value goes to 0 for the constituent volumes (Volume1 and
Volume2). This is needed to prevent double counting the storage in the newly created StoragePool

• A ConcreteDependency association is added between the newly created StoragePool (CreatedPool) and
each of the StorageVolumes used to create the pool to show that they represent the same piece of storage

Figure 145 - Before Pool Creation

CIM_StorageExtent

CIM_ConcreteComponent

Volume2:
CIM_StorageVolume

// Normal StorageVolume

CIM_AllocatedFromStoragePool

ConcretePool:
CIM_StoragePool

Primordial = false

PrimordialPool:
CIM_StoragePool

Primordial = true

CIM_AllocatedFromStoragePool

CIM_BasedOn

CIM_StorageExtent

Primordial = true

CIM_ConcreteComponent

CIM_BasedOn

CIM_StorageExtent

CIM_ConcreteComponent

CIM_BasedOn

CIM_StorageExtent

Primordial = true

CIM_ConcreteComponent

CIM_BasedOn

Volume1:
CIM_StorageVolume

// Normal StorageVolume
CIM_AllocatedFromStoragePool
SNIA Technical Position 719

StoragePool

74

75

76
• A CompositeExtent is created for each created volume (PoolVolume) and associated to the created pool via
ConcreteComponent and AssociatedRemainingExtent (not shown in figure)

• A one-to-one BasedOn association from the created volume to the created CompositeExtent is created
BasedOn associations are created to associate each of these created CompositeExtents to all of the extents
(StorageExtent or CompositeExtent) that have a BasedOn association to the StorageVolume that is a
constituent volume of the created StoragePool

These changes are consistent with the Extent Composition Profile.
720

 StoragePool
Figure 146 - After Pool Creation

CIM_AllocatedFromStoragePool
SpaceConsumed = 0

PoolVolume:
CIM_StorageVolume

CIM_AllocatedFromStoragePool

CIM_AllocatedFromStoragePool

CreatedPool:
CIM_StoragePool

// constituent pool

CIM_BasedOn

New Instances

CIM_BasedOn

CIM_AllocatedFromStoragePool
SpaceConsumed=0

CIM_CompositeExtent

ConcreteDependency

BasedOn

Volume2:
CIM_StorageVolume

// Constituent volume
Usage = Reserved

Volume1:
CIM_StorageVolume

// Constituent volume
Usage = Reserved

CIM_StorageExtent

CIM_StorageExtent

Primordial = true

CIM_BasedOn

CIM_StorageExtent

CIM_StorageExtent

Primordial = true

CIM_BasedOn

ConcretePool:
CIM_StoragePool

Primordial = false

PrimordialPool:
CIM_StoragePool

Primordial = true

CIM_AllocatedFromStoragePool

ConcreteDependency

CIM_BasedOnCIM_BasedOn

CIM_ConcreteComponent

CIM_ConcreteComponent

CIM_ConcreteComponent

CIM_ConcreteComponent

CIM_ConcreteComponent
SNIA Technical Position 721

StoragePool

77

78

79

80

81

82

83

84

85

86
If Extent Composition is not implemented, the model changes are much simpler. Figure 147 shows what
model changes occur:

• AllocatedFromStoragePool.SpaceConsumed value goes to 0 for the constituent volumes (Volume1 and
Volume2). This is needed to prevent double counting the storage in the newly created StoragePool;

• A ConcreteDependency association is added between the newly created StoragePool (CreatedPool) and
each of the StorageVolumes used to create the pool to show that they represent the same piece of storage.

21.2 Block Services Enhancements

21.2.1 StoragePool Manipulation Methods

See 5.1.7.2 "StoragePool Manipulation Methods".

Figure 147 - After Pool Creation without Extent Composition

PoolVolume:
CIM_StorageVolume

CIM_AllocatedFromStoragePool

CIM_AllocatedFromStoragePool

CreatedPool:
CIM_StoragePool

// constituent pool

ConcreteDependency

New Instances

Volume2:
CIM_StorageVolume

// Constituent volume
Usage = Reserved

CIM_AllocatedFromStoragePool
SpaceConsumed = 0

ConcretePool:
CIM_StoragePool

Primordial = false

PrimordialPool:
CIM_StoragePool

Primordial = true

CIM_AllocatedFromStoragePool

Volume1:
CIM_StorageVolume

// Constituent volume
Usage = Reserved

CIM_AllocatedFromStoragePool
SpaceConsumed = 0

ConcreteDependency
722

 StoragePool

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113
114
115
116
117
118
119
120

121

122

123

124

125
Possible inputs to CreateOrModifyStoragePool shall also allow StorageVolumes. More details may be
found in 21.5 "Methods of the Profile".

21.2.2 Declaring Storage Configuration Options

See 5.1.8 "Declaring Storage Configuration Options".

CIM_StorageConfigurationCapabilities.SupportedStoragePoolFeatures is enhanced to allow
“StorageVolumes” as one of the valid options.

21.2.3 The Usage Property

See 5.1.13 "The Usage Property".

The constituent volume can be identified by its Usage property. The value to use is Reserved for
Computer System.

21.3 Health and Fault Management Considerations

The same Health and Fault Management Considerations from Block Services apply here.

21.4 Cascading Considerations

Not defined in this document.

21.5 Methods of the Profile

21.5.1 New Methods

No new methods are defined. Methods mentioned in 21.5 are enhancements on Block Services methods.

21.5.2 CreateOrModifyStoragePool

See 5.4.3.3 "CreateOrModifyStoragePool".

In the context of the Pools from Volumes Profile, a list of StorageVolumes shall be the only allowed type
for the InExtents[] parameter used to build the constituent pool. Use of StorageExtents is already allowed
by the Block Services Package and this profile shall not change that. The CreateOrModifyStoragePool
method is used when creating a StoragePool from StorageVolumes:

uint32 CreateOrModifyStoragePool(
[In] string ElementName
[Out] CIM_ConcreteJob ref Job,
[In] CIM_StorageSetting ref Goal,
[In,out] Uint64 Size,
[In] string InPools[],
[In] string InExtents[],
[Out] CIM_StoragePool ref Pool);

The parameters are as follows:

• ElementName: If the instrumentation supports naming of StoragePools this parameter may be used to assign
a name to the StoragePool

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter.

• Goal: This is the Service Level that the StoragePool is expected to provide. This may be a null value in which
case a default setting is used.

• Size: Null should be used for the Size parameter as all the passed in capacity (as specified by InExtents)
shall be used to create the StoragePool. Size may be specified, but is not recommended, as it may not be
SNIA Technical Position 723

StoragePool

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167
possible to accurately estimate the resulting pool size ahead of time, due capacity being reserved for
StoragePool overhead.If it is not possible to create an element of at least the desired size, a return code of
“Size not supported” shall be returned with size set to the nearest supported size.

• InPools[]: This shall be null when creating a pool. When modifying a pool, there shall be exactly one entry,
corresponding to the pool being modified.

• InExtents[]: This is an array of strings containing Object references (see 4.11.5 of DMTF DSP00200 CIM
Operations over HTTP for format) to source StorageVolumes.

• TheElement: If the method completes without creating a Job, then the TheElement is the object path of the
StoragePool that is created. Otherwise, TheElement shall be null. When the TheElement is null, then the
storage element created can be determined by using the Job model.

21.5.3 DeleteStoragePool

See 5.4.3.5 "DeleteStoragePool".

When deleting the constituent pool, the constituent volume’s AllocatedFromStoragePool.SpaceConsumed
value returns to the value it had before it was used to build the constituent pool. The
RemainingManagedStorage of the associated parent StoragePool will not change, as the same amount of
storage is still in use, albeit in the formerly constituent volumes instead of the constituent pool. The
former constituent volumes will have their Usage value reset to that of a normal volume,

The parameters and their meanings are the same as in Block Services DeleteStoragePool.

21.5.4 Storage Element Modification

See 5.4.4.5 "Storage Element Modification".

For a constituent pool, the capacity may be expandable by providing the references to existing
component StorageVolumes of the StoragePool and additional references to normal StorageVolumes. A
constituent pool’s capacity may be reducible by providing references to some, but not all, of the current
constituent volumes of the StoragePool. If the summary of the capacity of the referenced input
StorageVolumes is greater than the TotalManagedSpace of the StoragePool, then this action shall be
characterized as a capacity expansion. If this summary is less than the TotalManagedSpace of the
StoragePool, then this action shall be characterized as capacity reduction.

What this means in relation to the CreateOrModifyStoragePool method is that the InPools[] parameter
shall have exactly one entry, that of the StoragePool being modified. This specification shall only define
the case where the StoragePool being modified shall have been created from StorageVolumes.

21.6 Use Cases

Not defined in this document.

21.7 CIM Elements

21.7.1 Overview

Table 508 describes the CIM elements for Pools from Volumes.

Table 508 - CIM Elements for Pools from Volumes

Element Name Requirement Description

21.7.2 CIM_AllocatedFromStoragePool (Volume from
Pool)

Mandatory AllocatedFromStoragePool as defined in Block Services.

21.7.3 CIM_ElementCapabilities Mandatory Associates StorageCapabilities or
StorageConfiguationCapabilities with StoragePool.
724

 StoragePool

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207
21.7.2 CIM_AllocatedFromStoragePool (Volume from Pool)

AllocatedFromStoragePool as defined in Block Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 509 describes class CIM_AllocatedFromStoragePool (Volume from Pool).

21.7.3 CIM_ElementCapabilities

Associates StorageCapabilities or StorageConfiguationCapabilities with StoragePool.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 510 describes class CIM_ElementCapabilities.

21.7.4 CIM_StorageCapabilities Mandatory Capabilities class used to generate StorageSettings. Also
associated to StoragePools via ElementCapabilities.

21.7.5 CIM_StorageVolume Mandatory StorageVolume as defined in Block Services.

21.7.6 CIM_SystemDevice Mandatory Associates top level system from Array, Virtualizer, ... to
StorageVolume.

21.7.7 CIM_StorageConfigurationCapabilities Mandatory SupportedStoragePoolFeatures as defined in
CIM_StorageConfigurationCapabilities, with the addition
of support for StorageVolumes as inputs to pool creation.

21.7.8 CIM_StoragePool Mandatory StoragePool as defined in Block Services.

21.7.9 CIM_StorageSetting Optional StorageSetting as defined in Block Services.

Table 509 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory

Dependent Mandatory

Table 510 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 508 - CIM Elements for Pools from Volumes

Element Name Requirement Description
SNIA Technical Position 725

StoragePool

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247
21.7.4 CIM_StorageCapabilities

Capabilities class used to generate StorageSettings. Also associated to StoragePools via
ElementCapabilities.

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Mandatory

21.7.5 CIM_StorageVolume

StorageVolume as defined in Block Services.

Created By: External

Modified By: Static

Deleted By: Extrinsic: External

Requirement: Mandatory

21.7.6 CIM_SystemDevice

Associates top level system from Array, Virtualizer, ... to StorageVolume.

Created By: Static

Modified By: Static

Deleted By: Extrinsic: External

Requirement: Mandatory

Table 511 describes class CIM_SystemDevice.

21.7.7 CIM_StorageConfigurationCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 512 describes class CIM_StorageConfigurationCapabilities.

Table 511 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 512 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities

Properties Flags Requirement Description & Notes

SupportedStoragePoolFeatures Mandatory Lists the types of storage elements that are supported
by pool creation/modification. To support Pools from
Volumes, this list shall include 5 (StorageVolumes).
726

 StoragePool

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286
21.7.8 CIM_StoragePool

StoragePool as defined in Block Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

21.7.9 CIM_StorageSetting

StorageSetting as defined in Block Services.

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Optional

EXPERIMENTAL
SNIA Technical Position 727

StoragePool
728

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29
STABLE

22 Group Masking and Mapping Profile

22.1 Description

22.1.1 Synopsis

Profile Name: Group Masking and Mapping (Component Profile)

Version: 1.8.0

Organization: SNIA

Central Class: GroupMaskingMappingService

Scoping Class: ComputerSystem

Specializes: Masking and Mapping version 1.8.0

Related Profiles: Table 513 describes the related profiles for Group Masking and Mapping.

22.1.2 Overview

The Group Masking and Mapping Profile specializes 14 "Masking and Mapping Profile". The Group
Masking and Mapping Profile is a component profile that allows the masking and mapping operations
based on groups of initiator ports (StorageHardwareIDs), target ports, and devices. The profile contains
the necessary methods to manipulate masking groups and create or delete masking “views”. Additionally,
the group features are advertised by the instance of GroupMaskingMappingCapabilities.

Because the Group Masking and Mapping Profile is a specialization of clause 14 "Masking and Mapping
Profile", all the classes of clause 14 (including properties, methods, indications, and capabilities) are
inherited (and are available) in this profile.

A masking view created in this profile is modeled as SCSIProtocolController. This is consistent with the
views created by methods of the Masking and Mapping Profile.

A major goal of the profile is to simplify the masking and mapping operations as much as it is possible.
For example, once a masking view is created, to expose additional volumes to the initiators of the
masking view, all a client needs to do is to add the additional volumes to the device group belonging to
the masking view. Similarly, to remove access to one or more volumes exposed through a masking view,
the client simply removes the volumes from the device group associated with the masking view.

The Group Masking and Mapping Profile facilitates provisioning of storage to clustered systems by
exposing a group of storage volumes to the same host systems connected to the storage array.

Table 513 - Related Profiles for Group Masking and Mapping

Profile Name Organization Version Requirement Description

Job Control SNIA 1.5.0 Optional

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2
SNIA Technical Position 729

Non-inherited Elements

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57
22.1.3 Model Elements

22.1.3.1 Non-inherited Elements

In addition to the model elements inherited from 14 "Masking and Mapping Profile", this profile uses the
following classes and associations:

MaskingGroup - This class represents a collection of storage masking objects, such as a group of
InitiatorPorts, TargetPorts or Volumes (i.e., Devices). The masking group has properties to facilitate "self
cleaning" of the groups no longer in use. For example,

• DeleteOnEmpty -- delete the group if all its members are removed.

• DeleteWhenBecomesUnassociated -- delete the group if it no longer is associated to a view.

InitiatorMaskingGroup - A class inherited from MaskingGroup. It represents a collection of
StorageHardwareID object paths.

TargetMaskingGroup - A class inherited from MaskingGroup. It represents a collection of
ProtocolEndpoint object paths.

DeviceMaskingGroup - A class inherited from MaskingGroup. It represents a collection of
StorageVolume object paths.

An implementation may allow empty masking groups to be associated to a masking view; however, an
empty associated masking group may indicate “no access” to the elements associated with the masking
view. For example, an empty associated InitiatorMaskingGroup indicates none of the initiators have
access to the LogicalDevices associated to the masking view. Refer to the group capabilities in 22.6 "CIM
Elements", which may indicate “Associated empty group indicates no access“. The absence of this value
conversely indicates “all access”. In other words, an empty associated InitiatorMaskingGroup indicates all
initiators have access to the elements associated with the masking view.

The masking groups are associated to the “view” via the following associations:

AssociatedInitiatorMaskingGroup - Associates an InitiatorMaskingGroup to a SCSIProtocolController.

AssociatedTargetMaskingGroup - Associates an TargetMaskingGroup to a SCSIProtocolController.

AssociatedDeviceMaskingGroup - Associates an DeviceMaskingGroup to a SCSIProtocolController.

Figure 148 depicts the complete model for a masking view that includes the masking groups. The gray
classes are from this profile; whereas, the remaining classes are from 14 "Masking and Mapping Profile".
730

 Non-inherited Elements

58

59

60

61

62

63

64

65

66

67

68

69
Figure 149 shows the masking groups and their associated masking objects. The association between
the DeviceMaskingGroup and StorageVolumes is OrderedMemberOfCollections because the method
CreateGroup, which creates this association, needs to maintain the order of the StorageVolumes as each
StorageVolume is assigned a unique device number. Assigning unique device numbers may be done
when a device masking group is created or when a masking view is created. If device numbers are
supplied, the implementation shall assign the appropriate device numbers in the order in which the
devices are ordered in the device masking group, hence the requirement to have an
OrderedMemberOfCollection association between the logical devices and the device masking group.

A SCSIProtocolController shall be associated to no more than one InitiatorMaskingGroup, one
TargetMaskingGroup, and one DeviceMaskingGroup. If any of the masking groups is nested, the child
groups are indirectly participating in the masking view. However, the nested masking groups are not
associated directly to the same masking view.

Figure 148 - Group Masking and Mapping Model

LogicalDevice
(StorageVolume)

SCSIProtocolController

AuthorizedPrivilege

SystemSpecificCollection
(optional)

AuthorizedTarget

MemberOfCollection

StorageHardwareID

AuthorizedSubject

*
*1

*

*

1

SCSIProtocolEndpoint

ProtocolController
ForUnit

* *

SAPAvailable
ForElement

InitiatorMaskingGroup

// One or more
elements

TargetMaskingGroup

// One or more
elements

DeviceMaskingGroup

// One or more
elements

AssociatedInitiatorMaskingGroup

AssociatedDeviceMaskingGroup

AssociatedTargetMaskingGroup

MemberOfCollection

OrderedMemberOfCollection

MemberOfCollection
SNIA Technical Position 731

Nested Groups

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87
The profile includes the optional indications for when a masking group is created, deleted, or modified.
Additionally, the profile includes an alert message indicating that the associated membership of a
masking group has changed. The related standard message is:

There is a change in membership of masking group with identifier <InstanceID>.

See 22.6 "CIM Elements" for the supported indication filters.

22.1.3.2 Nested Groups

Masking groups, depending on the capabilities of the implementation, may be nested to an arbitrary
depth. The nested groups shall be of the same type, for example, nested initiator masking groups, or
nested target port groups. A masking group may contain a combination of masking objects (initiators,
target ports, devices), and the like masking groups. For example, a "top level" initiator masking group
may contain zero or more StorageHardwareIDs and zero or more initiator masking groups. The "nested"
initiator masking groups may in turn contain additional StorageHardwareIDs and initiator masking groups.

To create a masking view, a client may supply the "top level" masking group and the appropriate target
port and device masking groups to the CreateMaskingView method.

See the instance of GroupMaskingMappingCapabilities (in 22.6 "CIM Elements") for whether the
implementation supports nested masking groups, and whether the depth of nested groups is limited to
one.

Figure 150 shows nest masking groups and an example of a nested initiator masking group.

Figure 149 - Masking Groups

StorageHardwareID

InitiatorM askingG roup

SCSIP rotocolEndpoint

TargetM askingG roup

LogicalDevice
(S torageVolum e)

DeviceM askingG roup

O rderedM em berO fCollectionM em berO fCollectionM em berO fC ollection

G roupM askingM appingService

ServiceA ffectsE lem ent
ServiceA ffectsE lem ent

ServiceA ffectsE lem ent
732

 Nested Groups

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103
A use case for nested group is in a simple cluster environment (see Figure 151, “Nested Masking Group
Example”), where there is a set of HBAs that belong to one host and a set of HBAs that belong to another
host. Assume each host’s HBA ports are in their own Initiator Masking Group which is participating in
some other masking views. A nested parent group (Engineering, in the example) is then created to
contain both of these child groups (HBA0 and HBA1, in the example). This new parent group can then be
directly associated to a new masking view, furthermore, the child groups still remain associated to some
other masking views.

In this example, when the Engineering InitiatorMaskingGroup is associated to a new masking view, the
child groups HBA0 and HBA1 are indirectly participating in the new masking view, however, they are not
associated directly to the new masking view. Note that HBA0 and HBA1 will have access to the devices
exposed to the Engineering InitiatorMaskingGroup by the masking view.

With nested masking groups, only the outer (i.e., the parent) initiator masking group needs to be
associated to a masking view. The inner (i.e., the children) initiator masking groups will implicitly have
access to the same storage devices made available in the masking view associated to the parent.
However, the inner masking groups (i.e., the children) can be associated to a different masking view in
order to have access to storage devices participating in a different masking view.

Figure 150 - Nested Masking Groups

StorageHardwareID

// IDType
// StorageID

InitiatorMaskingGroup

// InstanceID
// ElementName

MemberOfCollection

*

MaskingGroup

MemberOfCollection

InitiatorMaskingGroup

// InstanceID
// ElementName

MemberOfCollection

*

Nested Masking Groups Example: Nested InitiatorMaskingGroup

Class Diagram Instance Diagram
SNIA Technical Position 733

Nested Groups

104

105

106

107

108

109
22.1.4 Device Numbers

A LogicalDevice is exposed to an initiator with a Device Number, also known as a Logical Unit Number
(LUN). Clients may supply the desired Logical Unit Numbers. If clients do not supply the desired Logical
Units Numbers, the instrumentation decides on the Logical Unit Numbers. There is a boolean property in
the InitiatorMaskingGroup class called ConsistentLogicalUnitNumber to indicate whether device numbers
for a LogicalDevice (volume) visible to the same initiator are required be same.

Figure 151 - Nested Masking Group Example

InitiatorMaskingGroup

HBA1:ComputerSystem

InitiatorMaskingGroup

HBA0:ComputerSystem

InitiatorMaskingGroup

Engineering

StorageHardwareIDStorageHardwareID

MemberOfCollectionMemberOfCollection

MemberOfCollection MemberOfCollection

SCSIProtocolControllerSCSIProtocolController

AssociatedInitiatorMaskingGroup AssociatedInitiatorMaskingGroup
734

 Nested Groups

110

111

112
Figure 152 shows an example configuration with the InitiatorMaskingGroup.ConsistentLogicalUnitNumber
property set to true. In this case, the storage volume “ABC” shall have the same DeviceNumber value
exposed to the same initiator regardless of the path.

Figure 152 - Example ConsistentLogicalUnitNumber set to true

InitiatorMaskingGroup

ConsistentLogicalUnitNumber = True

StorageHardwareID

MemberOfCollection

SCSIProtocolController

SCSIProtocolController

AssociatedInitiatorMaskingGroup
AssociatedInitiatorMaskingGroup

StorageVolume

DeviceID = ABC

SCSIProtocolEndpoint

Name = �E0

SCSIProtocolEndpoint

Name = �E1

SAPAvailable
ForElement

SAPAvailable
ForElement

ProtocolController
ForUnit

ProtocolController
ForUnit

DeviceNumber = 0
DeviceNumber = 0
SNIA Technical Position 735

Nested Groups

113

114

115

116

117

118

119
Figure 153 shows an example configuration with the InitiatorMaskingGroup.ConsistentLogicalUnitNumber
property set to false. In this case, depending on the path, the storage volume “ABC” may have different
DeviceNumber values exposed to the same initiator.

If the instrumentation only supports ConsistentLogicalUnitNumber, the capabilities method
SupportedInitiatorGroupFeatures shall indicate “ConsistentLogicalUnitNumber must be true“. In this
case, clients can not create an InitiatorMaskingGroup with the value of the property
ConsistentLogicalUnitNumber set to false.

Figure 153 - Example ConsistentLogicalUnitNumber set to false

InitiatorMaskingGroup

ConsistentLogicalUnitNumber = False

StorageHardwareID

MemberOfCollection

SCSIProtocolController

SCSIProtocolController

AssociatedInitiatorMaskingGroup
AssociatedInitiatorMaskingGroup

StorageVolume

DeviceID = ABC

SCSIProtocolEndpoint

Name = �E0

SCSIProtocolEndpoint

Name = �E1

SAPAvailable
ForElement

SAPAvailable
ForElement

ProtocolController
ForUnit

ProtocolController
ForUnit

DeviceNumber = 0
DeviceNumber = 1
736

 Nested Groups

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146
22.1.5 Group Masking and Mapping Capabilities

The class GroupMaskingMappingCapabilities contains the properties that advertise the capabilities of the
group masking and mapping implementation. For example, the property SupportedFeatures indicates
capabilities of a masking view that uses groups, and the property SupportedInitiatorGroupFeatures
indicates the capabilities specific to an initiator group.

Refer to 22.6 "CIM Elements" for all the capabilities details.

22.2 Health and Fault Management Consideration

Not defined in this document.

22.3 Cascading Considerations

Not defined in this document.

22.4 Methods of the Profile

22.4.1 Extrinsic and Intrinsic Methods

The Group Masking and Mapping Profile has extrinsic methods for group management and for managing
masking view.

The Profile relies on a number of intrinsic methods ModifyInstance and DeleteInstance for changing the
property values and deleting instances and that do not require special consideration such as the “force”
option.

All of the Profile extrinsic methods return one of the following status codes.

• 0: (Job) Completed with no error

• 1: Method not supported

• 4: Failed

• 5: Invalid Parameter

• 4096: Method Parameters Checked - Job Started

Depending on the error condition, a method may return additional error codes and/or throw an
appropriate exception to indicate the error encountered.

For the input/output parameter values, refer to the appropriate MOF files and the value maps.

Table 514 summarizes the extrinsic methods for group management (class
GroupMaskingMappingService):

Table 514 - Extrinsic Methods for Masking Group Management

Method Described in

CreateGroup See 22.4.2

DeleteGroup See 22.4.3

AddMembers See 22.4.4

RemoveMembers See 22.4.5
SNIA Technical Position 737

Nested Groups

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182
Table 515 summarizes the extrinsic methods for creating and deleting group masking views (class
GroupMaskingMappingService):

22.4.2 CreateGroup

 uint32 GroupMaskingMappingService.CreateGroup(

 [IN] string GroupName,

 [IN] uint16 Type,

 [IN] CIM_ManagedElement REF Members[],

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean DeleteOnEmpty,

 [IN] boolean DeleteWhenBecomesUnassociated,

 [IN] boolean ConsistentLogicalUnitNumber,

 [OUT] CIM_MaskingGroup REF MaskingGroup);

This method allows a client to create a new masking group. Any required associations (such as
ServiceAffectsElement) are created in addition to the instance of the group. The parameters are as
follows:

• GroupName: If nameable, an end user relevant name for the group being created. If NULL or not nameable,
then system assigns a name. If nameable, the name shall be unique for given ComputerSystem. If not
nameable and a group name is supplied, the method returns an error and aborts the method call.

• Type: The type of masking group to create. Possible choices are InitiatorMaskingGroup,
TargetMaskingGroup, and DeviceMaskingGroup. Any other type or a masking group type not supported by
the instrumentation are rejected.

EXPERIMENTAL

MoveMembers

EXPERIMENTAL

EXPERIMENTAL

See 22.4.6

EXPERIMENTAL

EXPERIMENTAL

CreateOrModifyMaskingGroup

EXPERIMENTAL

EXPERIMENTAL

See 22.4.7

EXPERIMENTAL

Table 515 - Extrinsic Methods for Masking Views Management

Method Described in

CreateMaskingView See 22.4.8

DeleteMaskingView See 22.4.9

ModifyMaskingView See 22.4.10

Table 514 - Extrinsic Methods for Masking Group Management

Method Described in
738

 Nested Groups

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222
• Members[]: A list of elements to add to the masking group. For device masking groups the order is
maintained. If NULL, the group shall be empty -- if empty groups are supported. All the supplied elements
shall be of type appropriate for the type of masking group being created.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be NULL if job is completed).

• DeleteOnEmpty: If true, the group shall be deleted when the last element is removed from the group. If false,
the group shall not be deleted when the last element is removed from the group. If an implementation does
not allow empty groups, the group shall be deleted when it becomes empty regardless of the value of this
parameter. See the GetSupported*GroupFeatures() method of the GroupMaskingMappingCapabilities to
determine whether empty groups are allowed.

• DeleteWhenBecomesUnassociated: If true, the group shall be deleted when the group is no longer
associated to any SCSIProtocolController (i.e., a masking view).

• ConsistentLogicalUnitNumber: If true, it indicates the device numbers for a volume visible to the same
initiator through different paths shall be same.

• MaskingGroup: A reference to the created group.

22.4.3 DeleteGroup

 uint32 GroupMaskingMappingService.DeleteGroup(

 [IN, Required] CIM_MaskingGroup REF MaskingGroup,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean Force);

This method allows a client to delete a masking group. Deleting a masking group does not delete its
associated members. The parameters are as follows:

• MaskingGroup: Reference to a masking group which would be deleted.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be NULL if job is completed).

• Force: Attempt to delete the masking group even though it is associated to a masking view, or the group is
not empty. The intent of the Force parameter is to reduce the chance of accidental deletion of a masking
group.

22.4.4 AddMembers

 uint32 GroupMaskingMappingService.AddMembers(

 [IN, Required] CIM_MaskingGroup REF MaskingGroup,

 [IN] CIM_ManagedElement REF Members[],

 [IN] string DeviceNumbers[],

 [OUT] CIM_ConcreteJob REF Job);

This method allows a client to add members to an existing masking group. The parameters are as follows:

• MaskingGroup: Reference to an existing masking group.

• Members[]: List of elements to add to the group. New members are added, in the order supplied, to the end of
the existing members of the group. It is not an error, if a new member is already in the group. All the supplied
elements shall be of type appropriate for the type of masking group supplied.

• DeviceNumbers[]: List of device numbers that correspond to Members. This property is applicable when the
group consists of storage volumes.
SNIA Technical Position 739

Nested Groups

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262
• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be NULL if job is completed).

22.4.5 RemoveMembers

 uint32 GroupMaskingMappingService.RemoveMembers(

 [IN, Required] CIM_MaskingGroup REF MaskingGroup,

 [IN] CIM_ManagedElement REF Members[],

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean DeleteOnEmpty);

This method allows a client to remove members from a masking group. The parameters are as follows:

• MaskingGroup: Reference to an existing masking group.

• Members[]: List of elements to remove from the group. Deleting all members of a group is equivalent to
deleting the group if empty groups are not supported by the implementation.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be NULL if job is completed).

• DeleteOnEmpty: If true and removal of the members causes the group to become empty, the group shall be
deleted. Note, if empty groups are not allowed, the group shall be deleted automatically when the group
becomes empty. If this parameter is not NULL, it overrides the group's property DeleteOnEmpty.

EXPERIMENTAL

22.4.6 MoveMembers

uint32 MoveMembers(

[In, Required] CIM_MaskingGroup REF SourceMaskingGroup,

[In, Required] CIM_MaskingGroup REF TargetMaskingGroup,

[In] CIM_ManagedElement REF Members[],

[In] string DeviceNumbers[],

[In] boolean Force,

[In] boolean SynchronousAction,

[In(False), Out] CIM_ConcreteJob REF Job);

This method allows non-disruptive move of members from one MaskingGroup to the another.

• SourceMaskingGroup: Masking Group that the volumes currently belongs to

• TargetMaskingGroup: Masking Group that the volumes should be moved to

• Members[]: List of elements to move from the Source to Target

• DeviceNumbers[]: If needed, device numbers can also be provided to move to target masking group.

• Force: Force flag can be applied based on operation requirements

• SynchronousAction: If true the method call is synchronous else it is asynchronous

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be NULL if job is completed)

EXPERIMENTAL
740

 Nested Groups

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305
EXPERIMENTAL

22.4.7 CreateOrModifyMaskingGroup

This method creates masking group or modifies SLO of a masking group.

uint32 CreateOrModifyMaskingGroup(

[In] string GroupName,

[In] uint16 Type,

[In] CIM_ManagedElement REF Members[],

[In] CIM_ConcreteJob REF Job,

[In] boolean DeleteOnEmpty,

[In] boolean DeleteWhenBecomesUnassociated,

[In] boolean ConsistentLogicalUnitNumber,

[In] CIM_ManagedElement REF Goal,

[In, Out] CIM_MaskingGroup REF MaskingGroup);

• GroupName: If nameable, an end user relevant name for the group being created. If NULL or not nameable,
then system assigns a name.

• Type: List of elements to add to the masking group. For device masking groups the order is maintained. If
NULL, the group will be empty -- if empty groups are supported."

• Members[]: Reference to the job (may be NULL if job is completed

• Job: If true and empty groups are allowed, the group will be deleted when the last element is removed from
the group. If empty groups are not allowed, the group will be deleted automatically when the group becomes
empty. If this parameter is not NULL, its value will be used to set the group\'s DeleteOnEmpty property. Use
the intrinsic method ModifyInstance to change this property after the group is created.

• DeleteOnEmpty: If true, the group will be deleted when the group is no longer associated with a masking
view. This can happen when the masking view is deleted or the group is removed from the masking view. If
this parameter is not NULL, its value will be used to set the group\'s DeleteWhenBecomesUnassociated
property. Use the intrinsic method ModifyInstance to change this property after the group is created.

• DeleteWhenBecomesUnassociated: A volume may be visible to the same initiator through multiple paths.
Depending on which path the volume is visible to an initiator, the volume may have a different logical unit
number. To ensure a volume has the same logical unit number to a given initiator regardless of the path, the
property InitiatorMaskingGroup.ConsistentLogicalUnitNumber shall be set to true. The value of this
parameter, if not NULL, is used to set the property InitiatorMaskingGroup.ConsistentLogicalUnitNumber when
the initiator masking group is created. Use the intrinsic method ModifyInstance to change the value of the
property InitiatorMaskingGroup.ConsistentLogicalUnitNumber after the masking group is created.

• ConsistentLogicalUnitNumber: The requirements for the element to maintain. If set to a null value, the default
configuration associated with the Service will be used. This parameter should be a reference to a Setting,
SettingData, or Profile appropriate to the element being created. If not NULL, this parameter will supply a new
Goal when modifying an existing element.

• Goal:As an input parameter: if null, creates a new masking group. If not null, then the method modifies the
specified group. As an output parameter, it is a reference to the resulting group.

EXPERIMENTAL
SNIA Technical Position 741

Nested Groups

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323
22.4.8 CreateMaskingView

 uint32 GroupMaskingMappingService.CreateMaskingView(

 [IN] string ElementName,

 [IN] CIM_MaskingGroup REF InitiatorMaskingGroup,

 [IN] CIM_MaskingGroup REF TargetMaskingGroup,

 [IN] CIM_MaskingGroup REF DeviceMaskingGroup,

 [IN] string DeviceNumbers[],

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_SCSIProtocolController REF ProtocolController);

This method allows a client to expose a group of SCSI logical units (such as RAID volumes or tape
drives) to a group of initiators through a group of target ports, through one or more
SCSIProtocolControllers (SPCs). If 0 is returned, the function completed successfully and no
ConcreteJob instance is created. If 4096/0x1000 is returned, a ConcreteJob is started, a reference to
which is returned in the Job output parameter. The parameters are as follows:

• ElementName: A user relevant name for the masking view. If NULL, the implementation assigns a name.

• InitiatorMaskingGroup: Reference to a group of StorageHardwareIDs.

• TargetMaskingGroup: Reference to a group of SCSIProtocolEndpoints.

• DeviceMaskingGroup: Reference to a group of StorageVolumes.

• DeviceNumbers[]: List of device numbers that correspond to the elements of DeviceMaskingGroup. If this
parameter is NULL, device numbers are assigned by the instrumentation.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be NULL if job is completed).

• ProtocolController: A reference to the created SCSIProtocolController, which represents the masking view.

22.4.9 DeleteMaskingView

 uint32 GroupMaskingMappingService.DeleteMaskingView(

 [IN, Required] CIM_SCSIProtocolController REF ProtocolController,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean DeleteWhenBecomesUnassociated);

This method allows a client to delete a masking view, i.e., a SCSIProtocolController. Deleting a masking
view may also delete the associated masking groups -- see the applicable capabilities and group
properties in 22.6 "CIM Elements". The parameters are as follows:

• ProtocolController: A reference to the SCSIProtocolController to delete. The masking group associated with
the view may also get deleted depending on the groups' applicable properties.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be NULL if job is completed).

• DeleteWhenBecomesUnassociated: Override the setting of the masking groups' property
DeleteWhenBecomesUnassociated with the value of this parameter.

22.4.10 ModifyMaskingView

 uint32 GroupMaskingMappingService.ModifyMaskingView(

 [IN, Required] uint16 Operation,
742

 Nested Groups
 [IN, Required] CIM_SCSIProtocolController REF ProtocolController,

 [IN] CIM_MaskingGroup REF MaskingGroup,

 [IN] string DeviceNumbers[],

 [OUT] CIM_ConcreteJob REF Job,

 [IN] Force);

This method allows a client to modify a masking view by adding a masking group or by removing a
masking group from the masking view. The parameters are as follows:

• Operation: It describes the type of modification to be made to the masking view. Possible values: "Add
Group", "Remove Group", and “Replace Group”. Adding a masking group to a masking view which already is
associated to the same type of masking group is an error condition. For example, if a masking view is already
associated to an InitiatorMaskingGroup, attempting to add another InitiatorMaskingGroup to the same
masking view results in an error return (or an exception is thrown). The “Replace Group” operation replaces
an existing masking group of the same type (i.e., Initiator, Target Port, or Device). However, if the masking
view is not already associated to a masking group of the type supplied, the instrumentation shall create the
appropriate association between the supplied masking view and masking group; in other words, the “Replace
Group” operation behaves the same as the “Add Group” operation.

• MaskingGroup: A reference to the masking group.

• DeviceNumbers: This parameter applies to an "Add Group" operation. It is a list of device numbers that
correspond to the elements of a DeviceMaskingGroup. If device numbers are not supplied, the
instrumentation may assign the appropriate device numbers to the supplied logical devices.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be NULL if job is completed).

• Force: If true, the client is not warned that the operation may render the masking view unusable.

22.5 Use Cases

22.5.1 Using Groups in Masking and Mapping

In general, the Masking and Mapping operations using groups involve the following steps:

• Create the masking groups (initiators, target port, and storage volumes), using the CreateGroup method call.

• Create the masking view using the CreateMaskingView method call.

Depending on the implementation, it may be necessary to supply DeviceNumbers when creating a
DeviceMaskingGroup or the actual masking view--refer to the group capabilities (in 22.6 "CIM Elements").
If DeviceNumbers are not required, the implementation shall assign the appropriate device numbers.

Once a masking view is created, to expose additional storage volumes to the same initiator ports, the
client only needs to add the additional storage volumes to the DeviceMaskingGroup using the
AddMembers method call. Alternatively, to remove access to certain storage volumes exposed through a
masking view, the client needs only to use the RemoveMembers method call to removed the intended
storage volumes from the DeviceMaskingGroup associated with the masking view.

An implementation may initially allow a client to create a masking view with fewer than all three masking
groups (initiators, target ports, and devices) or even empty masking groups (see the capabilities in 22.6
"CIM Elements" to determine which groups are required for the creation of a masking view).
Subsequently, the client may use the appropriate methods (ModifyMaskingView) to add the necessary
masking groups and/or to add members (AddMembers) to the empty masking groups.

Assuming the methods ExposePaths and HidePaths methods are supported by the implementation,
changes made to an masking view via the ExposePaths and HidePaths methods shall appear correctly to
SNIA Technical Position 743

Nested Groups
a client using the Group Masking and Mapping Profile. For example, if a client utilizes the HidePaths
method to remove a device associated to a masking view, the instrumentation shall remove the device
from the device masking group associated to the same masking view. However, if the device masking
group is associated to multiple masking views, the instrumentation return an error. Similarly, if a client
utilizes the AddMembers method to add a device to a device masking group associated to an existing
masking view, the end result shall be as if the client used the ExposePaths method to expose the device.
In summary, any changes made to a masking view by a 1.5 client shall appear correct to the pre-1.5 client
and vice versa.

22.6 CIM Elements

22.6.1 Overview

Table 516 describes the CIM elements for Group Masking and Mapping.

Table 516 - CIM Elements for Group Masking and Mapping

Element Name Requirement Description

22.6.2 CIM_AssociatedDeviceMaskingGroup Conditional Conditional requirement: Required if device masking
groups are supported. Associates SCSIProtocolController
to an DeviceMaskingGroup.

22.6.3 CIM_AssociatedInitiatorMaskingGroup Conditional Conditional requirement: Required if initiator masking
groups are supported. Associates SCSIProtocolController
to an InitiatorMaskingGroup.

22.6.4 CIM_AssociatedTargetMaskingGroup Conditional Conditional requirement: Required if target masking
groups are supported. Associates SCSIProtocolController
to a TargetMaskingGroup.

22.6.5 CIM_AuthorizedPrivilege Mandatory

22.6.6 CIM_AuthorizedSubject Mandatory

22.6.7 CIM_AuthorizedTarget Mandatory

22.6.8 CIM_ConcreteDependency (Associates
ControllerConfiguirationService and ProtocolController)

Mandatory

22.6.9 CIM_ConcreteDependency (Associates
PrivilegeManagementService and AuthorizedPrivilege)

Mandatory

22.6.10 CIM_ConcreteDependency (Associates
StorageHardwareIDManagementService and
StorageHardwareID)

Mandatory

22.6.11 CIM_ConcreteDependency (Associates
StorageHardwareIDManagementService and
SystemSpecificCollection)

Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs.

22.6.12 CIM_DeviceMaskingGroup Mandatory Represents a group of Devices (StorageVolumes).

22.6.13 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
ControllerConfigurationService)

Optional Associates EnabledLogicalElementCapabilities with
ControllerConfigurationService.

22.6.14 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
ProtocolController)

Optional Expressed the ability for the element to be named or have
its state changed.

22.6.15 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
StorageHardwareID)

Optional Associates EnabledLogicalElementCapabilities to
StorageHardwareID.
744

 Nested Groups

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344
22.6.16 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
StorageHardwareIDManagementService)

Optional Associates EnabledLogicalElementCapabilities with
StorageHardwareIDManagementService.

22.6.17 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
SystemSpecificCollection)

Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs. Associates
EnabledLogicalElementCapabilities and
SystemSpecificCollection.

22.6.18 CIM_ElementCapabilities (System to
ProtocolControllerMaskingCapabilities)

Mandatory

22.6.19 CIM_ElementSettingData (Associates
ComputerSystem and StorageClientSettingData)

Mandatory

22.6.20 CIM_ElementSettingData (Associates Port and
StorageClientSettingData)

Optional

22.6.21 CIM_ElementSettingData (Associates
ProtocolController and StorageClientSettingData)

Optional

22.6.22 CIM_ElementSettingData (Associates
StorageHardwareID and StorageClientSettingData)

Optional

22.6.23 CIM_EnabledLogicalElementCapabilities Optional This class is used to express the naming and possible
requested state change possibilities for storage elements.

22.6.24 CIM_GroupMaskingMappingCapabilities Mandatory A set of properties that describe the capabilities of a group
masking and mapping provider.

22.6.25 CIM_GroupMaskingMappingService Mandatory Central class for Group Masking and Mapping Profile.
Methods are described in the Extrinsic Methods clause.

22.6.26 CIM_HostedCollection Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs.

22.6.27 CIM_HostedService (Associates
ComputerSystem and ControllerConfigurationService)

Mandatory

22.6.28 CIM_HostedService (Associates
ComputerSystem and PrivilegeManagementService)

Mandatory

22.6.29 CIM_HostedService (Associates
ComputerSystem and
StorageHardwareIDManagementService)

Mandatory

22.6.30 CIM_InitiatorMaskingGroup Mandatory Represents a group of initiator ports
(StorageHardwareIDs).

22.6.31 CIM_MemberOfCollection Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs.

22.6.32 CIM_PrivilegeManagementService Mandatory

22.6.33 CIM_ProtocolController Mandatory

22.6.34 CIM_ProtocolControllerForUnit Mandatory

22.6.35 CIM_SAPAvailableForElement Mandatory

22.6.36 CIM_ServiceAffectsElement (Between
GroupMaskingMappingService and MaskingGroup)

Conditional Conditional requirement: Required if device masking
groups are supported or Required if initiator masking
groups are supported or Required if target masking
groups are supported. Associates Group Masking
Mapping Service to Masking Group.

Table 516 - CIM Elements for Group Masking and Mapping

Element Name Requirement Description
SNIA Technical Position 745

Nested Groups

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367
22.6.2 CIM_AssociatedDeviceMaskingGroup

Associates SCSIProtocolController to an DeviceMaskingGroup.

22.6.37 CIM_StorageClientSettingData Mandatory

22.6.38 CIM_StorageHardwareID Mandatory

22.6.39 CIM_StorageHardwareIDManagementService Mandatory

22.6.40 CIM_SystemSpecificCollection Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs.

22.6.41 CIM_TargetMaskingGroup Mandatory Represents a group of target ports (ProtocolEndpoints).

22.6.42 CIM_AssociatedPrivilege Mandatory

22.6.43 CIM_SystemDevice (System to
ProtocolController)

Mandatory This association links ProtocolController to the scoping
system.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ProtocolController

Mandatory Creation of a ProtocolController.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ProtocolController

Mandatory Deletion of a ProtocolController.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ProtocolControllerForUnit

Mandatory Creation of a ProtocolControllerForUnit association.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ProtocolControllerForUnit

Mandatory Deletion of a ProtocolControllerForUnit association.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ProtocolControllerForUnit

Mandatory Modification of a ProtocolControllerForUnit association
(e.g. changing DeviceNumber).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_AuthorizedSubject

Mandatory Creation of an AuthorizedSubject association.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_AuthorizedSubject

Mandatory Deletion of an AuthorizedSubject association.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageHardwareID

Mandatory Creation of a HardwareID.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageHardwareID

Mandatory Deletion of a HardwareID.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_SAPAvailableForElement

Mandatory Creation of a SAPAvailableForElement.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_SAPAvailableForElement

Mandatory Deletion of a SAPAvailableForElement.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_MaskingGroup

Optional Creation of a MaskingGroup.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_MaskingGroup

Optional Deletion of a MaskingGroup.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_MaskingGroup

Optional Modification of properties of a MaskingGroup.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM31'

Mandatory There is a change in the membership of a masking group.

Table 516 - CIM Elements for Group Masking and Mapping

Element Name Requirement Description
746

 Nested Groups

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if device masking groups are supported.

Table 517 describes class CIM_AssociatedDeviceMaskingGroup.

22.6.3 CIM_AssociatedInitiatorMaskingGroup

Associates SCSIProtocolController to an InitiatorMaskingGroup.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if initiator masking groups are supported.

Table 518 describes class CIM_AssociatedInitiatorMaskingGroup.

22.6.4 CIM_AssociatedTargetMaskingGroup

Associates SCSIProtocolController to an TargetMaskingGroup.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if target masking groups are supported.

Table 519 describes class CIM_AssociatedTargetMaskingGroup.

Table 517 - SMI Referenced Properties/Methods for CIM_AssociatedDeviceMaskingGroup

Properties Flags Requirement Description & Notes

Antecedent Mandatory SCSIProtocolController.

Dependent Mandatory DeviceMaskingGroup.

Table 518 - SMI Referenced Properties/Methods for CIM_AssociatedInitiatorMaskingGroup

Properties Flags Requirement Description & Notes

Antecedent Mandatory SCSIProtocolController.

Dependent Mandatory InitiatorMaskingGroup.

Table 519 - SMI Referenced Properties/Methods for CIM_AssociatedTargetMaskingGroup

Properties Flags Requirement Description & Notes

Antecedent Mandatory SCSIProtocolController.

Dependent Mandatory TargetMaskingGroup.
SNIA Technical Position 747

Nested Groups

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409
22.6.5 CIM_AuthorizedPrivilege

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 520 describes class CIM_AuthorizedPrivilege.

22.6.6 CIM_AuthorizedSubject

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 521 describes class CIM_AuthorizedSubject.

22.6.7 CIM_AuthorizedTarget

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 520 - SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifer.

ElementName Optional User friendly name.

PrivilegeGranted Mandatory Indicates if the privilege is granted or not.

Activities Mandatory For SMI-S, shall be 5,6 ('Read' and Write').

Table 521 - SMI Referenced Properties/Methods for CIM_AuthorizedSubject

Properties Flags Requirement Description & Notes

PrivilegedElement Mandatory The Subject for which Privileges are granted or denied.

Privilege Mandatory The Privilege either granted or denied to an Identity or group of Identities
collected by a Role.
748

 Nested Groups

410

411

412

413

414

415

416

417

418

419

420

421

422

423
Table 522 describes class CIM_AuthorizedTarget.

22.6.8 CIM_ConcreteDependency (Associates ControllerConfiguirationService and ProtocolCon-
troller)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 523 describes class CIM_ConcreteDependency (Associates ControllerConfiguirationService and
ProtocolController).

22.6.9 CIM_ConcreteDependency (Associates PrivilegeManagementService and AuthorizedPrivi-
lege)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 524 describes class CIM_ConcreteDependency (Associates PrivilegeManagementService and
AuthorizedPrivilege).

22.6.10 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and Stor-
ageHardwareID)

Created By: Static

Modified By: Static

Table 522 - SMI Referenced Properties/Methods for CIM_AuthorizedTarget

Properties Flags Requirement Description & Notes

TargetElement Mandatory The target set of resources to which the Privilege applies.

Privilege Mandatory The Privilege affecting the target resource.

Table 523 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates ControllerCon-
figuirationService and ProtocolController)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 524 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates PrivilegeMan-
agementService and AuthorizedPrivilege)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
SNIA Technical Position 749

Nested Groups

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441
Deleted By: Static

Requirement: Mandatory

Table 525 describes class CIM_ConcreteDependency (Associates
StorageHardwareIDManagementService and StorageHardwareID).

22.6.11 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and Sys-
temSpecificCollection)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 526 describes class CIM_ConcreteDependency (Associates
StorageHardwareIDManagementService and SystemSpecificCollection).

22.6.12 CIM_DeviceMaskingGroup

Represents a group of Devices (StorageVolumes).

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: AddMembers, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Mandatory

Table 527 describes class CIM_DeviceMaskingGroup.

Table 525 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHard-
wareIDManagementService and StorageHardwareID)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 526 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHard-
wareIDManagementService and SystemSpecificCollection)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 527 - SMI Referenced Properties/Methods for CIM_DeviceMaskingGroup

Properties Flags Requirement Description & Notes

InstanceID Mandatory Within the scope of an array, the InstanceID opaquely and uniquely
identifies an instance of this class.

DeleteOnEmpty M Mandatory If true and empty groups are allowed, the group will be deleted when the
last element is removed from the group. If empty groups are not allowed,
the group will be deleted automatically when the group becomes empty.
750

 Nested Groups

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458
22.6.13 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ControllerConfiguration-
Service)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 528 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
ControllerConfigurationService).

22.6.14 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ProtocolController)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 529 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
ProtocolController).

22.6.15 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareID)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

DeleteWhenBecomesUnas
sociated

M Mandatory If true, the group will be deleted when the group is no longer associated
with a masking view. This can happen if all masking views associated to
this group are deleted.

ElementName Optional User Friendly name.

Table 528 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to ControllerConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 529 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to ProtocolController)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory

Table 527 - SMI Referenced Properties/Methods for CIM_DeviceMaskingGroup

Properties Flags Requirement Description & Notes
SNIA Technical Position 751

Nested Groups

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475
Table 530 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageHardwareID).

22.6.16 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareIDMan-
agementService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 531 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageHardwareIDManagementService).

22.6.17 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to SystemSpecificCollec-
tion)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 532 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
SystemSpecificCollection).

22.6.18 CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities)

Created By: Static

Modified By: Static

Table 530 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to StorageHardwareID)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory

Table 531 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to StorageHardwareIDManagementService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 532 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to SystemSpecificCollection)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory
752

 Nested Groups

476

477

478

479

480

481

482

483

484

485

486

487

488
489
490

491

492

493

494
Deleted By: Static

Requirement: Mandatory

Table 533 describes class CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities).

22.6.19 CIM_ElementSettingData (Associates ComputerSystem and StorageClientSettingData)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 534 describes class CIM_ElementSettingData (Associates ComputerSystem and
StorageClientSettingData).

22.6.20 CIM_ElementSettingData (Associates Port and StorageClientSettingData)

Created By: CreateInstance

Modified By: Static

Deleted By: DeleteInstance

Requirement: Optional

Table 535 describes class CIM_ElementSettingData (Associates Port and StorageClientSettingData).

22.6.21 CIM_ElementSettingData (Associates ProtocolController and StorageClientSettingData)

Created By: CreateInstance

Modified By: Static

Table 533 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (System to ProtocolControll-
erMaskingCapabilities)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory

Table 534 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ComputerSys-
tem and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

Table 535 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Port and Stor-
ageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory
SNIA Technical Position 753

Nested Groups

495
 Deleted By: DeleteInstance

Requirement: Optional

Table 536 describes class CIM_ElementSettingData (Associates ProtocolController and
StorageClientSettingData).

22.6.22 CIM_ElementSettingData (Associates StorageHardwareID and StorageClientSettingData)

Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateStorageHardwareID

Modified By: Static

Deleted By: Extrinsic: CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID

Requirement: Optional

Table 537 describes class CIM_ElementSettingData (Associates StorageHardwareID and
StorageClientSettingData).

22.6.23 CIM_EnabledLogicalElementCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 538 describes class CIM_EnabledLogicalElementCapabilities.

Table 536 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ProtocolControl-
ler and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

Table 537 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates StorageHardwa-
reID and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

Table 538 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Flags Requirement Description & Notes

ElementName Mandatory The moniker for the instance.

ElementNameEditSupport
ed

Mandatory Denotes whether an storage element can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See MOF
for details.
754

 Nested Groups
22.6.24 CIM_GroupMaskingMappingCapabilities

A set of properties that describe the capabilities of a group masking and mapping provider. The class
definition specializes the CIM_ProtocolControllerMaskingCapabilities definition in the Masking and
Mapping profile. Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)'
in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 539 describes class CIM_GroupMaskingMappingCapabilities.

ElementNameMask Mandatory The regular expression that specifies the possible content and format for
the element name. See MOF for details.

RequestedStatesSupporte
d

Optional Expresses the states to which this element may be changed using the
RequestStateChange method. If this property, it may be assumed that the
state may not be changed.

Table 539 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifer.

ElementName Mandatory User-friendly name.

ValidHardwareIdTypes Mandatory A list of the valid values for StrorageHardwareID.IDType.

PortsPerView Mandatory Indicates the way that ports per view (ProtocolController)
are handled.

ClientSelectableDeviceNumbers Mandatory Indicates whether the client can specify the
DeviceNumbers parameter when calling
ControllerConfigurationService.ExposePaths().

OneHardwareIDPerView Mandatory Set to true if this storage system limits configurations to a
single subject hardware ID per view.

PrivilegeDeniedSupported Mandatory Set to true if this storage system allows a client to create a
Privilege instance with PrivilegeGranted set to FALSE.

UniqueUnitNumbersPerPort Mandatory Indicates whether different ProtocolContollers attached to
a SCSIProtocolEndpoint can expose the same unit
numbers (e.g. multiple LUN 0s) or if the numbers are
required to be unique.

ProtocolControllerSupportsCollections Optional Indicates the storage system supports
SystemSpecificCollections of StorageHardwareIDs.

OtherValidHardwareIDTypes Conditional Conditional requirement: Properties required when
ValidHardwareIDTypes includes 1 (Other).An array of
strings describing types for valid
StorageHardwareID.IDType. Used when the
ValidHardwareIdTypes includes Other.

Table 538 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Flags Requirement Description & Notes
SNIA Technical Position 755

Nested Groups

496

497
498

499

500

501

502
MaximumMapCount Mandatory The maximum number of ProtocolControllerForUnit
associations that can be associated with a single
LogicalDevice (for example, StorageVolume). Zero
indicates there is no limit.

SPCAllowsNoLUs Mandatory Set to true if a client can create an SPC with no
LogicalDevices.

SPCAllowsNoTargets Mandatory Set to true if a client can create an SPC with no target
SCSIProtocolEndpoints.

SPCAllowsNoInitiators Mandatory Set to true if a client can create an SPC with no
StorageHardwareIDs.

SPCSupportsDefaultViews Mandatory Set to true if it the instrumentation supports default view
SPCs that exposes logical units to all initiators.

ExposePathsSupported Optional Set to true if this storage system supports the
ExposePaths and HidePaths methods.

SupportedFeatures (added) Mandatory Enumeration indicating the capabilities of masking and
mapping features having to do with masking groups.
Values:

 2: Supports initiator masking group

 3: Supports target masking group

 4: Supports device masking group

 5: Auto assigns host device numbers

 6: Maskview creation requires initiator masking group

 7: Maskview creation requires target masking group

 8: Maskview creation requires device masking group

 9: Maskview requires non-empty initiator masking group

 10: Maskview requires non-empty target masking group

11: Maskview requires non-empty device masking group.

SupportedAsynchronousActions
(overridden)

Mandatory Identify group masking methods using job control. Values:

 19: CreateGroup

 20: DeleteGroup

 21: AddMembers

 22: RemoveMembers

 23: CreateMaskingView

 24: DeleteMaskingView

25: ModifyMaskingView.

Table 539 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingCapabilities

Properties Flags Requirement Description & Notes
756

 Nested Groups

503

504

505

506

507

508

509

510
SupportedSynchronousActions
(overridden)

Mandatory Identify group masking methods not using job control.
Values:

 19: CreateGroup

 20: DeleteGroup

 21: AddMembers

 22: RemoveMembers

 23: CreateMaskingView

 24: DeleteMaskingView

25: ModifyMaskingView.

SupportedDeviceGroupFeatures (added) Conditional Conditional requirement: Required if device masking
groups are supported. Enumeration indicating the
capabilities of Initiator groups. Values:

 2: Group is nameable

 3: Can add to an associated group

 4: Empty group is allowed

 5: Group associated with view can be empty

 6: Nested groups allowed

 7: Only one level of nested groups

 8: Group can participate in multiple views

 9: Maskview deletion deletes unassociated masking
group

 10: Associated empty group indicates no access

11: Unassociated group rejects device numbers.

SupportedInitiatorGroupFeatures (added) Conditional Conditional requirement: Required if initiator masking
groups are supported. Enumeration indicating the
capabilities of Initiator groups. Values:

 2: Group is nameable

 3: Can add to an associated group

 4: Empty group is allowed

 5: Group associated with view can be empty

 6: Nested groups allowed

 7: Only one level of nested groups

 8: Group can participate in multiple views

 9: Maskview deletion deletes unassociated masking
group

 10: Associated empty group indicates no access

11: ConsistentLogicalUnitNumber shall be true.

Table 539 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingCapabilities

Properties Flags Requirement Description & Notes
SNIA Technical Position 757

Nested Groups

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529
22.6.25 CIM_GroupMaskingMappingService

Central class for Group Masking and Mapping Profile. The class definition specializes the
CIM_ControllerConfigurationService definition in the Masking and Mapping profile. Properties or methods
not inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 540 describes class CIM_GroupMaskingMappingService.

SupportedTargetGroupFeatures (added) Conditional Conditional requirement: Required if target masking
groups are supported. Enumeration indicating the
capabilities of Initiator groups. Values:

 2: Group is nameable

 3: Can add to an associated group

 4: Empty group is allowed

 5: Group associated with view can be empty

 6: Nested groups allowed

 7: Only one level of nested groups

 8: Group can participate in multiple views

 9: Maskview deletion deletes unassociated masking
group

10: Associated empty group indicates no access.

GetElementNameCapabilities() Optional

GetMaskingGroupOperationOrder()
(added)

Optional Experimental. Represents the order in which masking
group should be added to create a masking view. An
empty array indicates all masking groups are needed by
CreateMaskingView method i.e. adding other masking
groups later is not supported. The array order determines
the order of adding masking groups.

GetSupportedGroupMaximums() (added) Optional Experimental. This method accepts a Masking Group
Type and returns the maximum number of members and
nested child groups that are allowed for the given masking
group type.The method also returns a boolean value that
states if the members need to be of the same type.

Table 540 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingService

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Unique identifer for the Service.

Table 539 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingCapabilities

Properties Flags Requirement Description & Notes
758

 Nested Groups

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544
22.6.26 CIM_HostedCollection

Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 541 describes class CIM_HostedCollection.

22.6.27 CIM_HostedService (Associates ComputerSystem and ControllerConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

ExposePaths() Conditional Conditional requirement: ExposePaths and HidePaths are required if
ExposePathsSupported is NULL or set to True.

HidePaths() Conditional Conditional requirement: ExposePaths and HidePaths are required if
ExposePathsSupported is NULL or set to True.

ExposeDefaultLUs() Optional

HideDefaultLUs() Optional

DeleteProtocolController() Optional

CreateMaskingView()
(added)

Mandatory

DeleteMaskingView()
(added)

Optional

ModifyMaskingView()
(added)

Optional

CreateGroup() (added) Mandatory

DeleteGroup() (added) Optional

AddMembers() (added) Mandatory

RemoveMembers() (added) Mandatory

MoveMembers() (added) Optional

CreateOrModifyMaskingGro
up() (added)

Optional

Table 541 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 540 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingService

Properties Flags Requirement Description & Notes
SNIA Technical Position 759

Nested Groups

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559
Table 542 describes class CIM_HostedService (Associates ComputerSystem and
ControllerConfigurationService).

22.6.28 CIM_HostedService (Associates ComputerSystem and PrivilegeManagementService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 543 describes class CIM_HostedService (Associates ComputerSystem and
PrivilegeManagementService).

22.6.29 CIM_HostedService (Associates ComputerSystem and StorageHardwareIDManagement-
Service)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 544 describes class CIM_HostedService (Associates ComputerSystem and
StorageHardwareIDManagementService).

22.6.30 CIM_InitiatorMaskingGroup

Represents a group of initiator ports (StorageHardwareIDs).

Created By: Extrinsic: CreateGroup

Table 542 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
ControllerConfigurationService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 543 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
PrivilegeManagementService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 544 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
StorageHardwareIDManagementService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
760

 Nested Groups

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582
Modified By: Extrinsics: AddMembers, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Mandatory

Table 545 describes class CIM_InitiatorMaskingGroup.

22.6.31 CIM_MemberOfCollection

Created By: Extrinsics: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection,
CIM_StorageHardwareIDManagementService.AddHardwareIDsToCollection

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 546 describes class CIM_MemberOfCollection.

22.6.32 CIM_PrivilegeManagementService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 545 - SMI Referenced Properties/Methods for CIM_InitiatorMaskingGroup

Properties Flags Requirement Description & Notes

InstanceID Mandatory Within the scope of an array, the InstanceID opaquely and
uniquely identifies an instance of this class.

DeleteOnEmpty M Mandatory If true and empty groups are allowed, the group will be deleted
when the last element is removed from the group. If empty
groups are not allowed, the group will be deleted automatically
when the group becomes empty.

DeleteWhenBecomesUnassociated M Mandatory If true, the group will be deleted when the group is no longer
associated with a masking view. This can happen if all masking
views associated to this group are deleted.

ConsistentLogicalUnitNumber M Mandatory If true, the device numbers for a volume visible to the same
initiator though different paths shall be the same.

ElementName Optional User Friendly name.

Table 546 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory
SNIA Technical Position 761

Nested Groups

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600
Table 547 describes class CIM_PrivilegeManagementService.

22.6.33 CIM_ProtocolController

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 548 describes class CIM_ProtocolController.

22.6.34 CIM_ProtocolControllerForUnit

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Requirement: Mandatory

Table 547 - SMI Referenced Properties/Methods for CIM_PrivilegeManagementService

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory The scoping System CreationClassName.

CreationClassName Mandatory The name of the concrete subclass.

SystemName Mandatory The scoping System Name.

Name Mandatory Uniquely identifies the Service.

ElementName Mandatory User friendly name.

AssignAccess() Mandatory

RemoveAccess() Mandatory

Table 548 - SMI Referenced Properties/Methods for CIM_ProtocolController

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory The scoping System CreationClassName.

CreationClassName Mandatory The name of the concrete subclass.

SystemName Mandatory The scoping System's Name.

DeviceID Mandatory Unique name for the ProtocolController.
762

 Nested Groups

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615
Table 549 describes class CIM_ProtocolControllerForUnit.

22.6.35 CIM_SAPAvailableForElement

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Requirement: Mandatory

Table 550 describes class CIM_SAPAvailableForElement.

22.6.36 CIM_ServiceAffectsElement (Between GroupMaskingMappingService and MaskingGroup)

Associates Group Masking Mapping Service to Masking Group.

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: DeleteGroup, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Required if device masking groups are supported or Required if initiator masking groups
are supported or Required if target masking groups are supported.

Table 549 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be formatted as
unseparated uppercase hexadecimal digits, with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as exposed
through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI logical unit (for example, a Block Services
StorageVolume).

Table 550 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

AvailableSAP Mandatory

ManagedElement Mandatory
SNIA Technical Position 763

Nested Groups

616

617

618

619

620

621

622

623

624

625

626

627
628

629

630

631

632
Table 551 describes class CIM_ServiceAffectsElement (Between GroupMaskingMappingService and
MaskingGroup).

22.6.37 CIM_StorageClientSettingData

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 552 describes class CIM_StorageClientSettingData.

22.6.38 CIM_StorageHardwareID

Created By: Extrinsics: CIM_StorageHardwareIDManagementService.CreateStorageHardwareID,
CIM_ControllerConfigurationService.ExposePaths

Modified By: Static

Deleted By: Extrinsic: CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID

Requirement: Mandatory

Table 553 describes class CIM_StorageHardwareID.

22.6.39 CIM_StorageHardwareIDManagementService

Created By: Static

Modified By: Static

Deleted By: Static

Table 551 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between GroupMasking-
MappingService and MaskingGroup)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Group Masking Mapping Service.

AffectedElement Mandatory Masking Group.

Table 552 - SMI Referenced Properties/Methods for CIM_StorageClientSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

ElementName Mandatory A user-friendly name.

ClientTypes Mandatory Array of OS names.

Table 553 - SMI Referenced Properties/Methods for CIM_StorageHardwareID

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

StorageID N Mandatory The worldwide unique ID.

IDType Mandatory StorageID type. Values may be 1|2|3|4|5|7 (Other or PortWWN or
NodeWWN or Hostname or iSCSI Name or SAS Address).
764

 Nested Groups
Requirement: Mandatory

Table 554 describes class CIM_StorageHardwareIDManagementService.

22.6.40 CIM_SystemSpecificCollection

Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 555 describes class CIM_SystemSpecificCollection.

22.6.41 CIM_TargetMaskingGroup

Represents a group of target ports (ProtocolEndpoints).

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: AddMembers, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Mandatory

Table 556 describes class CIM_TargetMaskingGroup.

Table 554 - SMI Referenced Properties/Methods for CIM_StorageHardwareIDManagementService

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Uniquely identifies the Service.

CreateStorageHardwareID() Mandatory

DeleteStorageHardwareID() Mandatory

CreateHardwareIDCollection() Optional

AddHardwareIDsToCollection() Optional

Table 555 - SMI Referenced Properties/Methods for CIM_SystemSpecificCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

ElementName Mandatory A user-friendly name.

Table 556 - SMI Referenced Properties/Methods for CIM_TargetMaskingGroup

Properties Flags Requirement Description & Notes

InstanceID Mandatory Within the scope of an array, the InstanceID opaquely and uniquely
identifies an instance of this class.

DeleteOnEmpty M Mandatory If true and empty groups are allowed, the group will be deleted when the
last element is removed from the group. If empty groups are not allowed,
the group will be deleted automatically when the group becomes empty.
SNIA Technical Position 765

Nested Groups
22.6.42 CIM_AssociatedPrivilege

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 557 describes class CIM_AssociatedPrivilege.

22.6.43 CIM_SystemDevice (System to ProtocolController)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

describes class CIM_SystemDevice (System to ProtocolController).

Table 558 describes class CIM_SystemDevice (System to ProtocolController).

DeleteWhenBecomes
Unassociated

M Mandatory If true, the group will be deleted when the group is no longer associated
with a masking view. This can happen if all masking views associated to
this group are deleted.

ElementName Optional User Friendly name.

Table 557 - SMI Referenced Properties/Methods for CIM_AssociatedPrivilege

Properties Flags Requirement Description & Notes

UseKey Mandatory Opaque and unique identifier.

PrivilegeGranted Mandatory Indicates if the privilege is granted or not.

Activities Mandatory For SMI-S, shall be 5,6 ('Read' and Write')

Subject Mandatory The Subject of the associated privilege.

Target Mandatory The Target of the associated privilege.

Table 558 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to ProtocolController)

Properties Flags Requirement Description & Notes

UseKey Mandatory Opaque and unique identifier.

PrivilegeGranted Mandatory Indicates if the privilege is granted or not.

Activities Mandatory For SMI-S, shall be 5,6 ('Read' and Write')

Table 556 - SMI Referenced Properties/Methods for CIM_TargetMaskingGroup

Properties Flags Requirement Description & Notes
766

 Nested Groups
STABLE

Subject Mandatory The Subject of the associated privilege.

Target Mandatory The Target of the associated privilege.

Table 558 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to ProtocolController)

Properties Flags Requirement Description & Notes
SNIA Technical Position 767

Nested Groups
768

 Overview

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40
EXPERIMENTAL

23 Storage Relocation Profile

23.1 Description

23.1.1 Synopsis

Profile Name: Storage Relocation (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: StorageRelocationService

Scoping Class: ComputerSystem

Related Profiles: Table 559 describes the related profiles for Storage Relocation.

23.1.2 Relocation Types

23.1.2.1 Overview

Typically, a storage pool is established on a set of storage extents, and a volume is allocated to a storage
pool with different performance characteristics (e.g. with different RPM drives, or different drive classes).

However, Storage Relocation can be used to relocate storage (e.g. storage volume, storage pool, logical
disk) within the same storage machine or cross different storage machines with different extent allocation
methods. Storage Relocation can be used as a solution on data migration; and can also be used as part
of a solution on hot spot tuning, while there may be additional backend execution on hot spot tuning
which is transparent to customers. The relocation is performed concurrently with IO operations and the
host views of the volumes do not change. So, the relocations are transparent to host operations.

This profile defines three types of storage relocation operations defined in this profile: Storage Volume
Relocation, Logical Disk Relocation, Storage Pool Relocation.

23.1.2.2 Storage Volume Relocation

Volume relocation refers to the operation to migrate every extent of a volume to a different set of extents.
In this profile, volume relocation is simply done by: 1) relocating volume away from one storage pool and
into another; or 2) relocating onto a new group of extents within one storage pool.

The extent migration serves as a basic utility for the volume relocation function. It migrates data from a
source extent to another target extent. The source and target extent can be any two distinct extents as
long as the migrations can be done through storage controllers (within same storage machine, or cross
different storage machines).

Table 559 - Related Profiles for Storage Relocation

Profile Name Organization Version Requirement Description

Block Services SNIA 1.8.0 Optional

Job Control SNIA 1.5.0 Optional

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2
SNIA Technical Position 769

Logical Disk Relocation

41

42

43

44

45

46

47

48

49

50

51

52
23.1.2.3 Logical Disk Relocation

Similar to storage volume relocation, logical disk relocation refers to the operation to migrate every extent
of a logical disk to a different set of extents. In this profile, logical disk relocation can be done by:
relocating logical disk onto a new group of extents.

23.1.2.4 Storage Pool Relocation

Storage pools are container objects which allows user to group extents together. Typically, users consider
performance characteristics and/or failure boundaries on grouping extents. Volumes created from the
pools inherit the characteristics of the storage in the pools. In this profile, storage pool relocation
includes: 1) relocating storage pool onto a new group of extents; 2) merging storage pools.

Relocating storage pool onto a new group of extents needs extent migration which is similar to volume
relocation.

Merging storage pools is an operation which permits user to merge multiple storage pools into one, which
finally enables user to create volumes on more extents. Merging storage pools is also helpful for users to
define storage tiers by grouping extents with similar performance characteristics into one storage pool.
Typically pools merge might not involve migrating extents. It might just involve a series of global metadata
updates in storage machine. So the time duration for this operation can be relatively short.

23.1.3 Model

New class ‘StorageRelocationService’ is defined in this profile; and it extends the classes of Block
Services, and Job Control.
770

 Related Classes

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94
23.1.4 Implementation

23.1.4.1 Related Classes

Figure 154. presents the classes related to this profile:

StorageConfigurationCapabilities.SupportedStorageElementFeatures shall include a subset of
'StorageVolume Relocation', 'LogicalDisk Relocation', and 'StoragePool Relocation' to indicate support for
relocation of StorageVolumes, LogicalDisks, or StoragePools.

StorageConfigurationCapabilities.SupportedAsynchronousActions shall include a subset of
'StorageVolume Relocation', 'LogicalDisk Relocation', and 'StoragePool Relocation' to indicate support for
asynchronous relocation control of StorageVolumes, LogicalDisks, or StoragePools.

StorageConfigurationCapabilities.SupportedSynchronousActions shall include a subset of
'StorageVolume Relocation', 'LogicalDisk Relocation', and 'StoragePool Relocation' to indicate support for
asynchronous relocation control of StorageVolumes, LogicalDisks, or StoragePools.

StorageConfigurationCapabilities.SupportedStoragePoolUsage shall include a subset of 'Used as source
for Relocation Service', and 'Used as target for Relocation Service' to indicate the support for each
StoragePool (Primordial or Concrete) in relocation.

Figure 154 - Storage Relocation

+ R e lo c a te S to ra g e V o lu m e s T o S to ra g e P o o l()
+ R e lo c a te S to ra g e P o o ls T o S to ra g e P o o l()
+ R e lo c a te S to ra g e V o lu m e T o S to ra g e E x te n ts ()
+ R e lo c a te S to ra g e P o o lT o S to ra g e E x te n ts ()
+ R e lo c a te L o g ic a lD is k T o S to ra g e E x te n ts ()
+ G e tA v a ila b le T a rg e tR e lo c a t io n E x te n ts ()

S to r a g e R e lo c a t io n S e r v ic e

S to r a g e C o n f ig u r a t io n C a p a b il i t ie s

+ S u p p o r te d A s y n c h ro n o u s A c t io n s : u in t1 6 []
+ S u p p o r te d S y n c h ro n o u s A c t io n s : u in t1 6 []
+ S u p p o r te d S to ra g e E le m e n tF e a tu re s : u in t1 6 []
+ S u p p o r te d S to ra g e P o o lU s a g e : u in t1 6 []
+ C lie n tS e tta b le P o o lU s a g e : u in t1 6 []

S to r a g e V o lu m e

+ O p e ra t io n a lS ta tu s : u in t1 6 []
+ N u m E x te n ts M ig ra t in g : u in t1 6

S to r a g e P o o l

+ O p e ra t io n a lS ta tu s : u in t1 6 []
+ C a p a c ity In M ig ra t in g S o u rc e : u in t3 2
+ C a p a c ity In M ig ra t in g T a rg e t : u in t3 2

E le m e n tC a p a b il it ie s

S to r a g e E x te n t

-E x te n tS ta tu s : u in t1 6 []

A llo c a te d F ro m S to ra g e P o o l

C o n c r e te J o b

A ffe c te d J o b E le m e n t

A f fe c te d J o b E le m e n t A f fe c te d J o b E le m e n t
O w n in g J o b E le m e n t

J o b C o n tro l P a c k a g e

L o g ic a lD is k

+ O p e ra t io n a lS ta tu s : u in t1 6 []
+ N u m E x te n ts M ig ra t in g : u in t1 6

A ffe c te d J o b E le m e n t

C o m p u te r S y s te m

H o s te d S e rv ic e

E le m e n tC a p a b il it ie s
SNIA Technical Position 771

Capacity of StoragePool after StorageVolume relocation

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136
StorageConfigurationCapabilities.ClientSettablePoolUsage shall include a subset of 'Used as source for
Relocation Service', and 'Used as target for Relocation Service' to indicate the support for each
StoragePool (Primordial or Concrete) in relocation.

The 'CapacityInMigratingSource' of StoragePool defines the capacity in bytes of allocated extents in the
process of being migrated out of this storage pool when volume relocation is on going. The
'CapacityInMigratingSource' property is optional if the Storage Relocation profile is not supported.

The 'CapacityInMigratingTarget' of StoragePool defines the capacity in bytes of allocated Extents in the
process of being migrated into this storage pool when volume relocation is on going. The
'CapacityInMigratingTarget' property is optional if the Storage Relocation profile is not supported.

The 'Relocating' value for 'OperationalStatus' of both source and target StoragePools defines the status
when the relocation operation of source and target storage pools is on going.

The 'NumExtentsMigrating' of StorageVolume defines the number of Extents in the process of migrating
for this storage volume when the volume relocation is on going. The 'NumExtentsMigrating' property is
optional if the Storage Relocation profile is not supported.

The 'Relocating' value for 'OperationalStatus' of StorageVolume defines the status when the volume
relocation is on going.

The 'NumExtentsMigrating' of LogicalDisk defines the number of Extents in the process of migrating for
this logical disk when the relocation is on going. The 'NumExtentsMigrating' property is optional if the
Storage Relocation profile is not supported.

The 'Relocating' value for 'OperationalStatus' of LogicalDisk defines the status when the volume
relocation is on going.

The 'Relocating' value for 'ExtentStatus' defines the status of StorageExtent who belongs to relocation
ongoing progress.

StorageRelocationService is defined as the service class for storage relocation methods. Two methods of
StorageRelocationService will be used for relocation:

• RelocateStorageVolumesToStoragePool: this method is defined to relocate a group of storage volumes into a
target storage pool.

• RelocateStoragePoolsToStoragePool: this method is defined to relocate a group of storage pools into a target
storage pool.

• RelocateStorageVolumeToStorageExtents: this method is defined to relocate a storage volume onto a new
group of storage extents.

• RelocateStoragePoolToStorageExtents: this method is defined to relocate a storage pool onto a new group of
storage extents.

• RelocateLogicalDiskToStorageExtents: this method is defined to relocate a logical disk onto a new group of
storage extents.

• GetAvailableTargetRelocationExtents: this method is defined to get available storage extents for relocation.

23.1.4.2 Capacity of StoragePool after StorageVolume relocation

After relocating StorageVolume away from source StoragePool and onto target StoragePool, the available
capacity (RemainingManagedSpace) of source StoragePool should be increased by the capacity
(AllocatedFromStoragePool.SpaceConsumed) of that StorageVolume, while the available capacity
(RemainingManagedSpace) of target StoragePool should be decreased by the capacity
(AllocatedFromStoragePool.SpaceConsumed) of that StorageVolume. The total capacity of both source
StoragePool and target StoragePool won't be changed.
772

 Capacity of StoragePool after StoragePool merge

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172
23.1.4.3 Capacity of StoragePool after StoragePool merge

After merging source StoragePool into target StoragePool, the source StoragePool will never exist,
meanwhile the total capacity and remaining capacity of target StoragePool should be increased by that
capacity of the source one.

23.1.4.4 Capacity of StorageElement after be relocated onto new group of StorageExtents

After relocating StorageElement (StorageVolume, StoragePool, LogicalDisk) onto new group of
StorageExtents, the capacity will be as same as before.

23.1.4.5 Track and control of Relocation progress

As one implementation option, Job Control Profile can be used to track and control relocation progress.
When the Job Control Profile is implemented and a client executes the relocation that executes
asynchronously, a reference to an instance of ConcreteJob is returned and the return value for the
method is set to "Method parameters checked - job started".

The ConcreteJob instance allows the progress of the method to be checked, suspended, resumed, and
terminated, etc. And Indications can be used to subscribe for Job completion. For more details, see
Storage Management Technical Specification, Part 3 Common Profiles, 1.8.0 Rev 4 23 Job Control Profile.

23.1.4.6 Relocation Capabilities of Storage Pool

StoragePool has a key role in storage relocation. So defining relocation capabilities of each StoragePool
(Primordial and Concrete) is recommended:

• If a primordial or concrete StoragePool can be used as an source in relocation,
StorageConfigurationCapabilities.SupportedStoragePoolUsage should include 'Used as source for
Relocation Service'.

• If a primordial or concrete StoragePool can be used as a target in relocation,
StorageConfigurationCapabilities.SupportedStoragePoolUsage should include 'Used as target for Relocation
Service'.

• If a primordial or concrete StoragePool can be used as either an source or a target,
StorageConfigurationCapabilities.SupportedStoragePoolUsage should include both.

• If the storage system supports client to configure the capabilities of the storage pool,
StorageConfigurationCapabilities.ClientSettablePoolUsage should be configured to include 'Used as source
for Relocation Service', or 'Used as target for Relocation Service', or both.

23.1.5 Indications

23.1.5.1 Asynchronous Operation and Alert Indications

The implementation of Storage Relocation can employ asynchronous operation, so indications can be
used to notify multiple clients.

23.1.5.2 StorageVolume Relocation starts (msgID: DRM32)

This is an alert message indicating that the relocation of a StorageVolume starts. The related standard
message can be:

Relocation starts for StorageVolume with identifier DeviceID.

23.1.5.3 StorageVolume Relocation ends (msgID: DRM33)

This is an alert message indicating that the relocation of a StorageVolume ends. The related standard
message can be:

Relocation ends for StorageVolume with identifier DeviceID.
SNIA Technical Position 773

StoragePool Relocation starts (msgID: DRM34)

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200
23.1.5.4 StoragePool Relocation starts (msgID: DRM34)

This is an alert message indicating that the relocation of a StoragePool starts. The related standard
message can be:

Relocation starts for StoragePool with identifier PoolID.

23.1.5.5 StoragePool Relocation ends (msgID: DRM35)

This is an alert message indicating that the relocation of a StoragePool ends. The related standard
message can be:

Relocation ends for StoragePool with identifier PoolID.

23.1.5.6 LogicalDisk Relocation starts (msgID: DRM36)

This is an alert message indicating that the relocation of a LogicalDisk starts. The related standard
message can be:

Relocation starts for LogicalDisk with identifier DeviceID.

23.1.5.7 LogicalDisk Relocation ends (msgID: DRM37)

This is an alert message indicating that the relocation of a LogicalDisk ends. The related standard
message can be:

Relocation ends for LogicalDisk with identifier DeviceID.

23.2 Health and Fault Management Consideration

Not defined in this document.

23.3 Cascading Considerations

Not defined in this document.

23.4 Mapping & Masking Considerations

For both local and remote relocation, after it’s done, the source should disappear, and the target should
be the new replacement.

In local relocation, it should be transparent to client sides, which means every properties of the target
volume should be as same as source volume and mapping relationship to host should not be impacted.
But it’s not constrained here to have something changed on target, it depends on the real behavior of
storage system.

In remote relocation, the source object will disappear from source device, and target object will appear on
target device. So the remote relocation may be only permitted when there is relation from the volume to
others (e.g. mapping relation to host). But if the storage system has the ability to migrate all the relations
together with the relocation action, it can still be achieved.

So to mapping & masking, there should be no impact in local relocation, but it can depend on the
behavior of the storage system. And to remote relocation, it depends on the behavior of the storage
system.

23.5 Methods of the Profile

23.5.1 Status Codes

This profile defines StorageRelocationService as the service class for storage relocation methods. All of
the Profile extrinsic methods return one of the following status codes:
774

 LogicalDisk Relocation ends (msgID: DRM37)

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242
• 0: (Job) Completed with no error

• 1: Method not supported

• 4: Failed

• 5: Invalid Parameter

• 4096: Method Parameters Checked - Job Started

Depending on the error condition, a method may return additional error codes and/or throw an
appropriate exception to indicate the error encountered.

For the input/output parameter values, refer to the appropriate MOF files and the value maps.

23.5.2 RelocateStorageVolumesToStoragePool

uint32 RelocateStorageVolumesToStoragePool(

[IN,OUT] CIM_StorageVolume REF TheElements[],

[OUT] CIM_ConcreteJob REF Job,

[IN] CIM_StorageSetting REF TargetSettingGoal,

[IN,OUT] CIM_StoragePool REF TargetPool);

This method is defined to relocate a group of storage volumes into a target storage pool, by inputting
‘TheElements’ as storage volumes to be relocated, ‘TargetSettingGoal’ as setting goal, and ‘TargetPool’
as target storage pool. The output 'Job' parameter can be used to track the relocation progress. The
detailed description for each parameter is as follows:

• TheElements: As an input, TheElements is an array of storage volumes for the source of relocation. As an
output, it represents the storage volumes after relocation.

• Job: Reference to the job (may be null if job completed).

• TargetSettingGoal: The requirements for the relocation target pool. If set to a null value, the default
configuration associated with the service will be used. This parameter should be a reference to a
CIM_StorageSetting which represent the profile appropriate to the relocation target pool. If not NULL, this
parameter will supply a new Goal for the target pool.

• TargetPool: A reference to target storage pool instance used for relocation. As an input parameter, TargetPool
specifies the storage pool to relocate source onto. As an output parameter, TargetPool represents the pool
actually used as the relocation target. It is output only when the relocation succeeds.

23.5.3 RelocateStoragePoolsToStoragePool

uint32 RelocateStoragePoolsToStoragePool(

[IN,OUT] CIM_StoragePool REF TheElements[],

[OUT] CIM_ConcreteJob REF Job,

[IN] CIM_StorageSetting REF TargetSettingGoal,

[IN,OUT] CIM_StoragePool REF TargetPool);

This method is defined to relocate a group of storage pools into a target storage pool, by inputting
‘TheElements’ as source storage pools to be relocated, ‘TargetSettingGoal’ as setting goal, and
‘TargetPool’ as the target storage pool. The output 'Job' parameter can be used to track the relocation
progress. The detailed description for each parameter is as follows:

• TheElements: As an input, TheElements is an array of storage pools for the source of relocation. As an
output, it represents the storage pools after relocation.
SNIA Technical Position 775

LogicalDisk Relocation ends (msgID: DRM37)

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282
• Job: Reference to the job (may be null if job completed).

• TargetSettingGoal: The requirements for the relocation target pool. If set to a null value, the default
configuration associated with the service will be used. This parameter should be a reference to a
CIM_StorageSetting which represent the profile appropriate to the relocation target pool. If not NULL, this
parameter will supply a new Goal for the target pool.

• TargetPool: A reference to target storage pool instance used for relocation. As an input parameter, TargetPool
specifies the storage pool to relocate source onto. As an output parameter, TargetPool represents the pool
actually used as the relocation target. It is output only when the relocation succeeds.

23.5.4 RelocateStorageVolumeToStorageExtents

uint32 RelocateStorageVolumeToStorageExtents(

[IN] CIM_StorageExtent REF InElements[],

[OUT] CIM_ConcreteJob REF Job,

[IN] CIM_StorageSetting REF TargetSettingGoal,

[IN,OUT] CIM_StorageVolume REF TheElement);

This method is defined to relocate a storage volume onto a new group of storage extents, by inputting
‘InElements’ as the group of storage extents to move onto, ‘TargetSettingGoal’ as setting goal, and
‘TheElement’ as target storage volume to be relocated. The output 'Job' parameter can be used to track
the relocation progress. The detailed description for each parameter is as follows:

• InElements: An array of StorageExtents that 'TheElement' is relocated to.

• Job: Reference to the job (may be null if job completed).

• TargetSettingGoal: The requirements for the relocation target element. If set to a null value, the default
configuration associated with the service will be used. This parameter should be a reference to a
CIM_StorageSetting which represents the profile appropriate to the relocation target elements. If not NULL,
this parameter will supply a new Goal for the target elements.

• TheElement: As an input, TheElement is a storageVolume as the source of relocation. As an output, it
represents the storageVolume after relocation.

23.5.5 RelocateStoragePoolToStorageExtents

uint32 RelocateStoragePoolToStorageExtents(

[IN] CIM_StorageExtent REF InElements[],

[OUT] CIM_ConcreteJob REF Job,

[IN] CIM_StorageSetting REF TargetSettingGoal,

[IN,OUT] CIM_StoragePool REF TheElement);

This method is defined to relocate a storage pool onto a new group of storage extents, by inputting
‘InElements’ as the group of storage extents to move onto, ‘TargetSettingGoal’ as setting goal, and
‘TheElement’ as the target storage pool to be relocated. The output 'Job' parameter can be used to track
the relocation progress. The detailed description for each parameter is as follows:

• InElements: An array of StorageExtents that 'TheElement' is relocated to.

• Job: Reference to the job (may be null if job completed).

• TargetSettingGoal: The requirements for the relocation target element. If set to a null value, the default
configuration associated with the service will be used. This parameter should be a reference to a
776

 LogicalDisk Relocation ends (msgID: DRM37)

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324
CIM_StorageSetting which represents the profile appropriate to the relocation target elements. If not NULL,
this parameter will supply a new Goal for the target elements.

• TheElement: As an input, TheElement is a storagePool as the source of relocation. As an output, it
represents the storagePool after relocation.

23.5.6 RelocateLogicalDiskToStorageExtents

uint32 RelocateLogicalDiskToStorageExtents(

[IN] CIM_StorageExtent REF InElements[],

[OUT] CIM_ConcreteJob REF Job,

[IN] CIM_StorageSetting REF TargetSettingGoal,

[IN,OUT] CIM_LogicalDisk REF TheElement);

This method is defined to relocate a logical disk onto a new group of storage extents, by inputting
‘InElements’ as the group of storage extents to move onto, ‘TargetSettingGoal’ as setting goal, and
‘TheElement’ as target logical disk to be relocated. The output 'Job' parameter can be used to track the
relocation progress. The detailed description for each parameter is as follows:

• InElements: An array of StorageExtents that 'TheElement' is relocated to.

• Job: Reference to the job (may be null if job completed).

• TargetSettingGoal: The requirements for the relocation target element. If set to a null value, the default
configuration associated with the service will be used. This parameter should be a reference to a
CIM_StorageSetting which represents the profile appropriate to the relocation target elements. If not NULL,
this parameter will supply a new Goal for the target elements.

• TheElement: As an input, TheElement is a logicalDisk as the source of relocation. As an output, it represents
the logicalDisk after relocation.

23.5.7 GetAvailableTargetRelocationExtents

uint32 GetAvailableTargetRelocationExtents(

[IN] CIM_LogicalElement REF TheElement,

[IN] CIM_StorageSetting REF TargetSettingGoal,

[IN] CIM_StoragePool REF InPool,

[OUT] CIM_StorageExtent REF AvailableExtents[]);

This method is defined to get available group of storage extents for relocation. It supports:

a) Get available target storage extents for storage volume relocation: by inputting ‘TheElement’ as
target storage volume to be relocated, ‘TargetSettingGoal’ as setting goal, ‘InPool’ as the source for
new group of storage extents. The output ‘AvailableExtents’ parameter will return the candidate
extents for relocation.

b) Get available target storage extents for storage pool relocation: by inputting ‘TheElement’ as target
storage pool to be relocated, ‘TargetSettingGoal’ as setting goal, ‘InPool’ as the source for new
group of storage extents. The output ‘AvailableExtents’ parameter will return the candidate extents
for relocation.

c) Get available target storage extents for logical disk relocation: by inputting ‘TheElement’ as target
logical disk to be relocated, ‘TargetSettingGoal’ as setting goal, ‘InPool’ as the source for new group
of storage extents. The output ‘AvailableExtents’ parameter will return the candidate extents for
relocation.

The detailed description for each parameter is as follows:
SNIA Technical Position 777

LogicalDisk Relocation ends (msgID: DRM37)

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346
• TheElement: TheElement is a storage element as the source of relocation.

• TargetSettingGoal: The TargetSettingGoal for which supported extents should be retrieved as available for
relocation. If a NULL is passed for the Goal, the method will return all available extents, regardless of the
goal. There exists a possibility of error in relocating a Pool, Volume, or LogicalDisk to extents retrieved in this
manner.

• InPool: A reference to target storage pool instance used for relocation.

• AvailableExtents: A group of references to available StorageExtents for relocation.

23.6 Use Cases

23.6.1 Relocate StorageVolume to StoragePool for data migration

As one solution for data migration, StorageVolume can be relocated to a new local or remote concrete
StoragePool.

• For local relocation, if 1) ‘SupportedStorageElementFeatures’ of StorageConfigurationCapabilities associating
to the StorageRelocationService instance supports 'StorageVolume To StoragePool Relocation'; and 2)
‘SupportedStoragePoolUsage’ of StorageConfigurationCapabilities associating to the target StoragePool
instance supports 'Used as target for Relocation Service', client can invoke
StorageRelocationService.RelocateStorageVolumesToStoragePool to start the StorageVolume relocation
onto the new concrete StoragePool.

Figure 155 shows the progress of this relocation.

Figure 155 - Relocate StorageVolume to local StoragePool

If ‘SupportedAsynchronousActions’ of StorageConfigurationCapabilities supports 'StorageVolume To
StoragePool Relocation', client can use the ‘Job’ output to track the progress of relocation. In the
progress, Job.PercentComplete can be queried to track the completion percent. And through association
‘AffectedJobElement’, the target StoragePool instance with its property ‘CapacityInMigratingTarget’, the
source StoragePool instance which the StorageVolume originally resides on with its property
‘CapacityInMigratingSource’, and StorageVolume with its property ‘NumExtentsMigrating’ can be queried

Name = Tucson

ComputerSystem

StorageRelocationService

HostedService

Job: Relocating Volume

SystemName = Tucson

StorageVolume1

OwningJobElement

SystemName = Tucson

StoragePool1

AffectedJobElement

AffectedJobElement

After relocating successfully:In relocating:

SystemName = Tucson

StoragePool2

HostedStoragePool

HostedStoragePool

AllocatedFromStoragePool

Name = Tucson

ComputerSystem

StorageRelocationService

HostedService

SystemName = Tucson

StorageVolume1

SystemName = Tucson

StoragePool1

SystemName = Tucson

StoragePool2

HostedStoragePool

HostedStoragePool

AllocatedFromStoragePool
778

 LogicalDisk Relocation ends (msgID: DRM37)

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364
out continuously to track the detailed progress of relocation. While in relocation, the ‘OperationalStatus’
of the source storage volume (StorageVolume1) will have value ‘Relocating’ to indicate it’s in relocation
progress.

As an successful result, ‘CapacityInMigratingTarget’, ‘CapacityInMigratingSource’ and
‘NumExtentsMigrating’ should all be 0. The ‘OperationalStatus’ of the storage volume will change the
value from ‘Relocating’ to ‘OK’. The key properties of the StorageVolume should stay the same.

• For remote relocation to remote storage pool, it needs to check the StorageConfigurationCapabilities in both
local and remote storage system. So if 1) ‘SupportedStorageElementFeatures’ of
StorageConfigurationCapabilities associating to the local StorageRelocationService instance supports
'StorageVolume To StoragePool Relocation'; and 2) ‘SupportedStoragePoolUsage’ of
StorageConfigurationCapabilities associating to the remote target StoragePool instance supports 'Used as
target for Relocation Service', client can invoke
StorageRelocationService.RelocateStorageVolumesToStoragePool to start the StorageVolume relocation
onto the remote concrete StoragePool.

Figure 156 shows the progress of this relocation.

Figure 156 - Relocate StorageVolume to remote StoragePool

As same as the local relocation, the same mechanism can be used to track the relocation progress. And
as an successful result, it is different in remote relocation that the key properties of the StorageVolume
may not be able to stay the same as before, the source storage volume will disappear from the source
storage device and appear on the target storage device, so relocating to a remote location may be a
disruptive process.

23.6.2 Relocate StoragePool for merge

As one solution for extent merge or capacity expansion, one StoragePool can be relocated into a target
local or remote StoragePool.

Name = Tucson

ComputerSystem

Name = Springs

ComputerSystem

StorageRelocationService StorageRelocationService

HostedService HostedService

Job: Relocating Volume

SystemName = Springs

StorageVolume1

OwningJobElement

SystemName = Tucson

StoragePool1

AffectedJobElement

AffectedJobElement

Name = Tucson

ComputerSystem

Name = Springs

ComputerSystem

StorageRelocationService StorageRelocationService

HostedService HostedService

SystemName = Tucson

StorageVolume1

SystemName = Tucson

StoragePool1

After relocating successfully:In relocating:

AllocatedFromStoragePool

HostedStoragePoolSystemDeviceHostedStoragePool
SNIA Technical Position 779

LogicalDisk Relocation ends (msgID: DRM37)

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384
• For local relocation, if 1) ‘SupportedStorageElementFeatures’ of StorageConfigurationCapabilities associating
to the StorageRelocationService instance supports 'StoragePool To StoragePool Relocation'; 2)
‘SupportedStoragePoolUsage’ of StorageConfigurationCapabilities associating to the source StoragePool
instance supports 'Used as source for Relocation Service'; and 3) ‘SupportedStoragePoolUsage’ of
StorageConfigurationCapabilities associating to the target StoragePool instance supports 'Used as target for
Relocation Service', client can invoke StorageRelocationService.RelocateStoragePoolsToStoragePool to start
the source StoragePool relocation onto the target StoragePool.

Figure 157 shows the progress of this relocation.

Figure 157 - Relocate StoragePool to local StoragePool

If ‘SupportedAsynchronousActions’ of StorageConfigurationCapabilities supports 'StoragePool To
StoragePool Relocation', client can use the ‘Job’ output to track the progress of relocation. In the
progress, Job.PercentComplete can be queried to track the completion percent. And through association
‘AffectedJobElement’, the source StoragePool instance with its property ‘CapacityInMigratingSource’, and
the target StoragePool instance with its property ‘CapacityInMigratingTarget’ can be queried out
continuously to track the detailed progress of relocation. While in relocation, the ‘OperationalStatus’ of
the source storage pool (StoragePool2) will have value ‘Relocating’ to indicate it’s in relocation progress.

As an successful result, the source StoragePool won’t exist anymore, and target StoragePool’s
‘CapacityInMigratingTarget’ should be 0. The ‘OperationalStatus’ of the source storage pool will change
the value from ‘Relocating’ to ‘OK’. All the children (volumes or sub pools) belonging to the source
storage pool will be changed as children of target storage pool.

Name = Tucson

ComputerSystem

StorageRelocationService

HostedService

Job: Relocating Pool

SystemName = Tucson

StoragePool2

OwningJobElement

SystemName = Tucson

StoragePool1

AffectedJobElementAffectedJobElement

Name = Tucson

ComputerSystem

StorageRelocationService

HostedService

SystemName = Tucson

StoragePool1

After relocating successfully:In relocating:

HostedStoragePool

HostedStoragePool
HostedStoragePool
780

 LogicalDisk Relocation ends (msgID: DRM37)

385

386

387

388

389

390

391
392
393
394

395

396

397

398

399

400

401

402

403

404

405

406
• For remote relocation, if 1) ‘SupportedStorageElementFeatures’ of StorageConfigurationCapabilities
associating to the local StorageRelocationService instance supports 'StoragePool To StoragePool
Relocation'; 2) ‘SupportedStoragePoolUsage’ of StorageConfigurationCapabilities associating to the local
source StoragePool instance supports 'Used as source for Relocation Service'; and 3)
‘SupportedStoragePoolUsage’ of StorageConfigurationCapabilities associating to the remote target
StoragePool instance supports 'Used as target for Relocation Service', client can invoke
StorageRelocationService.RelocateStoragePoolsToStoragePool to start the local source StoragePool
relocation onto the remote target StoragePool.

Figure 158 shows the progress of this relocation.

Figure 158 - Relocate StoragePool to remote StoragePool

As same as the local relocation, job instance can be used to track the relocation progress. And as the
result of remote relocation, all the children (volumes or sub pools) belonging to the source storage pool
will disappear from the source storage device, and appear as the children of target storage pool on
remote target storage device. So remote location is a disruptive process.

NOTE It is possible to merge a primordial StoragePool into a target StoragePool if the ‘SupportedStoragePoolUsage’ of
StorageConfigurationCapabilities associating to the source primordial StoragePool instance supports 'Used as source for
Relocation Service'. As implementation, merging primordial StoragePool can result in that all of the concrete StoragePools under
that primordial StoragePool will be merged.

23.6.3 Relocate StorageVolume to new StorageExtent group for hotspot tuning

If a StorageVolume is identified as one hotspot volume after analyzing performance statistics of it,
relocating it from low performance StorageExtent (e.g., HDD extent) group to high performance
StorageExtent (e.g.SSD extent) group can serve as an solution on hotspot tuning. And if it becomes cold
spot, it can be relocated back to low performance StorageExtent group.

• For local relocation, if 1) ‘SupportedStorageElementFeatures’ of StorageConfigurationCapabilities associating
to the StorageRelocationService instance supports 'StorageVolume To StorageExtent Relocation'; 2) the new

Name = Tucson

ComputerSystem
Name = Springs

ComputerSystem

StorageRelocationService StorageRelocationService

HostedService HostedService

Job: Relocating Pool

SystemName = Springs

StoragePool2

OwningJobElement

SystemName = Tucson

StoragePool1

AffectedJobElement

AffectedJobElement

Name = Tucson

ComputerSystem

Name = Springs

ComputerSystem

StorageRelocationService StorageRelocationService

HostedService HostedService

SystemName = Tucson

StoragePool1

After relocating successfully:In relocating:

HostedStoragePool
HostedStoragePool HostedStoragePool
SNIA Technical Position 781

LogicalDisk Relocation ends (msgID: DRM37)

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428
StorageExtent group is under one concrete StoragePool; and 3) ‘SupportedStoragePoolUsage’ of
StorageConfigurationCapabilities associating to the target StoragePool instance supports 'Used as target for
Relocation Service', the client can invoke
StorageRelocationService.RelocateStorageVolumeToStorageExtents to start the StorageVolume relocation
onto the new StorageExtent group.

Figure 159 shows the progress of this relocation.

Figure 159 - Relocate StorageVolume to local StorageExtent group

If ‘SupportedAsynchronousActions’ of StorageConfigurationCapabilities supports 'StorageVolume To
StorageExtent Relocation', client can use the ‘Job’ output to track the progress of relocation. In the
progress, Job.PercentComplete can be queried to track the completion percent. And through association
‘AffectedJobElement’, the StorageVolume instance with its property ‘NumExtentsMigrating’, each
associated StorageExtent instance in ‘Relocating’ status, and the target StoragePool instance with its
property ‘CapacityInMigratingTarget’ can be queried out continuously to track the detailed progress of
relocation. While in relocation, the ‘OperationalStatus’ of the source storage volume (StorageVolume1)
will have value ‘Relocating’ to indicate it’s in relocation progress; and the ‘ExtentStatus’ of each new
storage extent will have value ‘Relocating’ to indicate it’s in relocation progress.

As an successful result, both the target StoragePool’s ‘CapacityInMigratingTarget’ and the
StorageVolume’s ‘NumExtentsMigrating’ should be 0. The ‘OperationalStatus’ of the source storage
volume will change the value from ‘Relocating’ to ‘OK’. The ‘ExtentStatus’ of each new storage extent will
remove the ‘Relocating’ value. The key properties of the StorageVolume stays the same.

For remote relocation, if 1) ‘SupportedStorageElementFeatures’ of StorageConfigurationCapabilities
associating to the local StorageRelocationService instance supports 'StorageVolume To StorageExtent

Name = Tucson

ComputerSystem

StorageRelocationService

HostedService

Job: Relocating Volume

SystemName = Tucson

StorageVolume1

OwningJobElement

SystemName = Tucson

StoragePool1

AffectedJobElement

AffectedJobElement

1

*

ConcreteComponent

In relocating:

Name = Tucson

ComputerSystem

StorageRelocationService

HostedService

SystemName = Tucson

StorageVolume1

SystemName = Tucson

StoragePool1

1

*

ConcreteComponent

After relocating successfully:

AllocatedFromStoragePool

SystemName = Tucson

StorageExtent

SystemName = Tucson

StorageExtent BasedOn

HostedStoragePool

SystemDevice

HostedStoragePool
782

 LogicalDisk Relocation ends (msgID: DRM37)

429

430

431

432

433

434
435

436

437

438

439
440

441

442

443

444

445
446

447
448

449

450

451
Relocation'; 2) the remote new StorageExtent group is under one remote concrete StoragePool; and 3)
‘SupportedStoragePoolUsage’ of StorageConfigurationCapabilities associating to the remote target
StoragePool instance supports 'Used as target for Relocation Service', the client can invoke
StorageRelocationService.relocateStorageVolumeToStorageExtents to start the StorageVolume
relocation onto the remote new StorageExtent group.

Figure 160 shows the progress of this relocation.

Figure 160 - Relocate StorageVolume to remote StorageExtent group

Like the local relocation, job instance can be used to track the relocation progress. And as the result of
remote relocation, the source storage volume will disappear from the source storage device, and appear
on the target storage device, so this remote location is a disruptive process.

NOTE Relocating StorageVolume to new StorageExtent group can also be used as an solution for data migration, and the progress
will be as same as the above.

Name = Tucson

ComputerSystem

Name = Springs

ComputerSystem

StorageRelocationService StorageRelocationService

HostedService HostedService

Job: Relocating Volume

SystemName = Springs

StorageVolume1

OwningJobElement

SystemName = Tucson

StoragePool1

AffectedJobElement

AffectedJobElement

1

*

ConcreteComponent

In relocating:

Name = Tucson

ComputerSystem

Name = Springs

ComputerSystem

StorageRelocationService StorageRelocationService

HostedService HostedService

SystemName = Tucson

StorageVolume1

SystemName = Tucson

StoragePool1

1

*

ConcreteComponent

After relocating successfully:

AllocatedFromStoragePool

SystemName = Tucson

StorageExtent

SystemName = Tucson

StorageExtent BasedOn

HostedStoragePool

SystemDevice

HostedStoragePool
SNIA Technical Position 783

LogicalDisk Relocation ends (msgID: DRM37)

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492
23.7 CIM Elements

23.7.1 Overview

Table 560 describes the CIM elements for Storage Relocation.

Table 560 - CIM Elements for Storage Relocation

Element Name Requirement Description

23.7.2 CIM_AffectedJobElement (LogicalDisk to
ConcreteJob)

Conditional Conditional requirement: This is required if
CIM_StorageConfigurationCapabilities.SupportedAsynchr
onousActions contains '21' (async disk operations). This
AffectedJobElement represents an association between a
Job and the LogicalDisks(s) that may be affected by its
execution.

23.7.3 CIM_AffectedJobElement (StorageExtent to
ConcreteJob)

Conditional Conditional requirement: This is required if
CIM_StorageConfigurationCapabilities.SupportedAsynchr
onousActions contains '19|20|21' (async extent
operations). AffectedJobElement represents an
association between a Job and the storage extent(s) that
may be affected by its execution.

23.7.4 CIM_AffectedJobElement (StoragePool to
ConcreteJob)

Conditional Conditional requirement: This is required if
CIM_StorageConfigurationCapabilities.SupportedAsynchr
onousActions contains '17|18|20' (async pool operations).
AffectedJobElement represents an association between a
Job and the storage pool(s) that may be affected by its
execution.

23.7.5 CIM_AffectedJobElement (StorageVolume to
ConcreteJob)

Conditional Conditional requirement: This is required if
CIM_StorageConfigurationCapabilities.SupportedAsynchr
onousActions contains '17|19' (async volume operations).
AffectedJobElement represents an association between a
Job and the storage volumes(s) that may be affected by
its execution.

23.7.6 CIM_ElementCapabilities
(StorageConfigurationCapabilities to StoragePool)

Mandatory Associates StorageConfigurationCapabilities with
StoragePool. This ElementCapabilities shall represent the
capabilities of the StoragePool to which it is associated.

23.7.7 CIM_ElementCapabilities
(StorageConfigurationCapabilities to
StorageRelocationService)

Mandatory Associates the global StorageConfigurationCapabilities
with StorageRelocationservice. This ElementCapabilities
shall represent the capabilities that
StorageRelocationService can provide.

23.7.8 CIM_HostedService (StorageRelocationService to
ComputerSystem)

Mandatory HostedService represents an association between the
scoping System and the StorageRelocationService.

23.7.9 CIM_LogicalDisk Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. The
CIM_LogicalDisk is an augmented version of the
CIM_LogicalDisk defined in the Block Services package.
See CIM_LogicalDisk in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4
5.6.20 CIM_LogicalDisk.

23.7.10 CIM_OwningJobElement
(StorageRelocationService to ConcreteJob)

Conditional Conditional requirement: This is required if
CIM_StorageConfigurationCapabilities.SupportedAsynchr
onousActions contains '17|18|19|20|21' (async relocation
operations). OwningJobElement represents an
association between a Job and the
StorageRelocationService that initiated its execution.
784

 LogicalDisk Relocation ends (msgID: DRM37)

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532
23.7.11 CIM_StorageConfigurationCapabilities (Concrete) Mandatory The Concrete CIM_StorageConfigurationCapabilities an
augmented version of the Concrete
CIM_StorageConfigurationCapabilities defined in the
Block Services package. See
CIM_StorageConfigurationCapabilities (Concrete) in
section Storage Management Technical Specification,
Part 4 Block Devices, 1.8.0 Rev 4 5.6.23
CIM_StorageConfigurationCapabilities (Concrete).

23.7.12 CIM_StorageConfigurationCapabilities (Global) Mandatory The global CIM_StorageConfigurationCapabilities an
augmented version of the global
CIM_StorageConfigurationCapabilities defined in the
Block Services package. See
CIM_StorageConfigurationCapabilities (Global) in section
Storage Management Technical Specification, Part 4
Block Devices, 1.8.0 Rev 4 5.6.24
CIM_StorageConfigurationCapabilities (Global).

23.7.13 CIM_StorageConfigurationCapabilities
(Primordial)

Mandatory The primordial CIM_StorageConfigurationCapabilities an
augmented version of the primordial
CIM_StorageConfigurationCapabilities defined in the
Block Services package. See
CIM_StorageConfigurationCapabilities (Primordial) in
section Storage Management Technical Specification,
Part 4 Block Devices, 1.8.0 Rev 4 5.6.25
CIM_StorageConfigurationCapabilities (Primordial).

23.7.14 CIM_StorageExtent (Relocatable) Optional A StorageExtent that can be a source or target of a
relocation operation.

23.7.15 CIM_StoragePool (Concrete) Mandatory The concrete CIM_StoragePool an augmented version of
the concrete CIM_StoragePool defined in the Block
Services package. See CIM_StoragePool (Concrete) in
section Storage Management Technical Specification,
Part 4 Block Devices, 1.8.0 Rev 4 5.6.27
CIM_StoragePool (Concrete).

23.7.16 CIM_StoragePool (Primordial) Mandatory The primordial CIM_StoragePool an augmented version
of the primordial CIM_StoragePool defined in the Block
Services package. See CIM_StoragePool (Primordial) in
section Storage Management Technical Specification,
Part 4 Block Devices, 1.8.0 Rev 4 5.6.29
CIM_StoragePool (Primordial).

23.7.17 CIM_StorageRelocationService Mandatory CIM_StorageRelocationService that provides the storage
relocation methods.

23.7.18 CIM_StorageVolume Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. The CIM_StorageVolume is an augmented
version of the CIM_StorageVolume defined in the Block
Services package. See CIM_StorageVolume in section
Storage Management Technical Specification, Part 4
Block Devices, 1.8.0 Rev 4 5.6.34 CIM_StorageVolume.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM32'

Optional Indication that StorageVolume relocation starts.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM33'

Optional Indication that StorageVolume relocation ends.

Table 560 - CIM Elements for Storage Relocation

Element Name Requirement Description
SNIA Technical Position 785

LogicalDisk Relocation ends (msgID: DRM37)

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570
23.7.2 CIM_AffectedJobElement (LogicalDisk to ConcreteJob)

Requirement: This is required if CIM_StorageConfigurationCapabilities.SupportedAsynchronousActions
contains '21' (async disk operations).

Table 561 describes class CIM_AffectedJobElement (LogicalDisk to ConcreteJob).

23.7.3 CIM_AffectedJobElement (StorageExtent to ConcreteJob)

Requirement: This is required if CIM_StorageConfigurationCapabilities.SupportedAsynchronousActions
contains '19|20|21' (async extent operations).

Table 562 describes class CIM_AffectedJobElement (StorageExtent to ConcreteJob).

23.7.4 CIM_AffectedJobElement (StoragePool to ConcreteJob)

Requirement: This is required if CIM_StorageConfigurationCapabilities.SupportedAsynchronousActions
contains '17|18|20' (async pool operations).

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM34'

Optional Indication that StoragePool relocation starts.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM35'

Optional Indication that StoragePool relocation ends.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM36'

Optional Indication that LogicalDisk relocation starts.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM37'

Optional Indication that LogicalDisk relocation ends.

Table 561 - SMI Referenced Properties/Methods for CIM_AffectedJobElement (LogicalDisk to Concrete-
Job)

Properties Flags Requirement Description & Notes

AffectedElement Mandatory A reference to a CIM_LogicalDisk instance that is affected by the
execution of the job.

AffectingElement Mandatory The job that is affecting the logical disk.

Table 562 - SMI Referenced Properties/Methods for CIM_AffectedJobElement (StorageExtent to Concrete-
Job)

Properties Flags Requirement Description & Notes

AffectedElement Mandatory A reference to a CIM_StorageExtent instance that is affected by the
execution of the job.

AffectingElement Mandatory The job that is affecting the storage extent.

Table 560 - CIM Elements for Storage Relocation

Element Name Requirement Description
786

 LogicalDisk Relocation ends (msgID: DRM37)

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599
600

601

602

603

604

605

606
607

608

609

610
Table 563 describes class CIM_AffectedJobElement (StoragePool to ConcreteJob).

23.7.5 CIM_AffectedJobElement (StorageVolume to ConcreteJob)

Requirement: This is required if CIM_StorageConfigurationCapabilities.SupportedAsynchronousActions
contains '17|19' (async volume operations).

Table 564 describes class CIM_AffectedJobElement (StorageVolume to ConcreteJob).

23.7.6 CIM_ElementCapabilities (StorageConfigurationCapabilities to StoragePool)

Requirement: Mandatory

Table 565 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to StoragePool).

23.7.7 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageRelocationService)

Requirement: Mandatory

Table 563 - SMI Referenced Properties/Methods for CIM_AffectedJobElement (StoragePool to Concrete-
Job)

Properties Flags Requirement Description & Notes

AffectedElement Mandatory A reference to a CIM_StoragePool instance that is affected by the
execution of the job.

AffectingElement Mandatory The job that is affecting the storage pool.

Table 564 - SMI Referenced Properties/Methods for CIM_AffectedJobElement (StorageVolume to Concrete-
Job)

Properties Flags Requirement Description & Notes

AffectedElement Mandatory A reference to a CIM_StorageVolume instance that is affected by the
execution of the job.

AffectingElement Mandatory The job that is affecting the storage volume.

Table 565 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The Pool StorageConfigurationCapabilities instance associated with the
StoragePool.

ManagedElement Mandatory The StoragePool reference.
SNIA Technical Position 787

LogicalDisk Relocation ends (msgID: DRM37)

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651
Table 566 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to
StorageRelocationService).

23.7.8 CIM_HostedService (StorageRelocationService to ComputerSystem)

Requirement: Mandatory

Table 567 describes class CIM_HostedService (StorageRelocationService to ComputerSystem).

23.7.9 CIM_LogicalDisk

The CIM_LogicalDisk is an augmented version of the CIM_LogicalDisk defined in the Block Services
package. When Storage Relocation is implemented this class adds a property and a property value for
storage relocation.

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Volume Management - LogicalDisk is mandatory.

Table 568 describes class CIM_LogicalDisk.

Table 566 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to StorageRelocationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The global StorageConfigurationCapabilities associated with the element.

ManagedElement Mandatory The StorageRelocationService.

Table 567 - SMI Referenced Properties/Methods for CIM_HostedService (StorageRelocationService to
ComputerSystem)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The StorageRelocationService hosted on the System.

Table 568 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4
5.6.20 CIM_LogicalDisk.

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20 CIM_LogicalDisk.

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20
CIM_LogicalDisk.

DeviceID Mandatory See the DeviceID definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20 CIM_LogicalDisk.
788

 LogicalDisk Relocation ends (msgID: DRM37)

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668
669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693
ElementName Optional See the ElementName definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20
CIM_LogicalDisk.

Name Mandatory See the Name definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20 CIM_LogicalDisk.

NameFormat Mandatory See the NameFormat definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20 CIM_LogicalDisk.

ExtentStatus Mandatory See the ExtentStatus definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20 CIM_LogicalDisk.

OperationalStatus Mandatory Value shall be 2|3|6|8|15|19 (OK or Degraded or Error or Starting or
Dormant or Relocating). The Storage Relocation Profile adds the 19
enumeration.

BlockSize Mandatory See the BlockSize definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20 CIM_LogicalDisk.

NumberOfBlocks Mandatory See the NumberOfBlocks definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20
CIM_LogicalDisk.

ConsumableBlocks Mandatory See the ConsumableBlocks definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20
CIM_LogicalDisk.

IsBasedOnUnderlyingRedun
dancy

Mandatory See the IsBasedOnUnderlyingRedundancy definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4
5.6.20 CIM_LogicalDisk.

NoSinglePointOfFailure Mandatory See the NoSinglePointOfFailure definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20
CIM_LogicalDisk.

DataRedundancy Mandatory See the DataRedundancy definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20
CIM_LogicalDisk.

PackageRedundancy Mandatory See the PackageRedundancy definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20
CIM_LogicalDisk.

DeltaReservation Mandatory See the DeltaReservation definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20
CIM_LogicalDisk.

Usage Optional See the Usage definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20 CIM_LogicalDisk.

OtherUsageDescription Conditional See the OtherUsageDescription definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20
CIM_LogicalDisk.

ClientSettableUsage Optional See the ClientSettableUsage definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20
CIM_LogicalDisk.

Primordial Mandatory See the Primordial definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20 CIM_LogicalDisk.

Table 568 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes
SNIA Technical Position 789

LogicalDisk Relocation ends (msgID: DRM37)

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733
23.7.10 CIM_OwningJobElement (StorageRelocationService to ConcreteJob)

Requirement: This is required if CIM_StorageConfigurationCapabilities.SupportedAsynchronousActions
contains '17|18|19|20|21' (async relocation operations).

Table 569 describes class CIM_OwningJobElement (StorageRelocationService to ConcreteJob).

23.7.11 CIM_StorageConfigurationCapabilities (Concrete)

The global CIM_StorageConfigurationCapabilities an augmented version of the global
CIM_StorageConfigurationCapabilities defined in the Block Services package.When Storage Relocation
is implemented this class is Mandatory and adds property values for storage relocation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 570 describes class CIM_StorageConfigurationCapabilities (Concrete).

ExtentDiscriminator Mandatory See the ExtentDiscriminator definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.20
CIM_LogicalDisk.

NumExtentsMigrating Optional The number of Extents in the process of migrating for this logical disk
when the logical disk relocation is on going. The Storage Relocation
Profile adds this property.

Table 569 - SMI Referenced Properties/Methods for CIM_OwningJobElement (StorageRelocationService to
ConcreteJob)

Properties Flags Requirement Description & Notes

OwningElement Mandatory A reference to a CIM_StorageRelocationService instance
responsible for the creation of the job.

OwnedElement Mandatory The job created by the CIM_StorageRelocationService.

Table 570 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.23
CIM_StorageConfigurationCapabilities (Concrete).

ElementName Mandatory See the ElementName definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.23
CIM_StorageConfigurationCapabilities (Concrete).

SupportedStoragePoolFea
tures

Optional See the SupportedStoragePoolFeatures definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4
5.6.23 CIM_StorageConfigurationCapabilities (Concrete).

Table 568 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes
790

 LogicalDisk Relocation ends (msgID: DRM37)

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772
SupportedAsynchronousA
ctions

Conditional Conditional requirement: Al least one of SupportedSynchronousActions or
SupportedAsynchronousActions shall be implemented.

Lists what actions, invoked through StorageConfigurationService
methods, shall not produce Concrete jobs.

This profile augments the list in Block Services by making this property
mandatory and adding actions, invoked through StorageRelocationService
methods, that may produce Concrete jobs.

17 = 'StorageVolume To StoragePool Relocation'

18 = 'StoragePool To StoragePool Relocation'

19 = 'StorageVolume To StorageExtent Relocation'

20 = 'StoragePool To StorageExtent Relocation'

21 = 'LogicalDisk To StorageExtent Relocation'.

SupportedStorageElement
Types

Mandatory See the SupportedStorageElementTypes definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4
5.6.23 CIM_StorageConfigurationCapabilities (Concrete).

SupportedSynchronousAct
ions

Conditional Conditional requirement: Al least one of SupportedSynchronousActions or
SupportedAsynchronousActions shall be implemented.

Lists what actions, invoked through StorageConfigurationService
methods, may produce Concrete jobs.

This profile augments the list in Block Services by making this property
mandatory and adding actions, invoked through StorageRelocationService
methods, that shall not produce Concrete jobs.

17 = 'StorageVolume To StoragePool Relocation'

18 = 'StoragePool To StoragePool Relocation'

19 = 'StorageVolume To StorageExtent Relocation'

20 = 'StoragePool To StorageExtent Relocation'

21 = 'LogicalDisk To StorageExtent Relocation'.

SupportedStorageElement
Features

Mandatory Lists actions supported through the invocation of
StorageConfigurationService.CreateOrModifyElementFromStoragePool().
Matches 3|5|8|9|11|12|13 (StorageVolume Creation or StorageVolume
Modification or LogicalDisk Creation or LogicalDisk Modification or
Storage Element QoS Change or Storage Element Capacity Expansion or
Storage Element Capacity Reduction).

This profile augments the list in Block Services by making this property
mandatory and adding actions supported through the invocation of
StorageRelocationService.RelocateStorageElementsToStoragePool() and
StorageRelocationService.RelocateStorageElementToElements().

14 = 'StorageVolume To StoragePool Relocation'

15 = 'StoragePool To StoragePool Relocation'

16 = 'StorageVolume To StorageExtent Relocation'

17 = 'StoragePool To StorageExtent Relocation'

18 = 'LogicalDisk To StorageExtent Relocation'.

SupportedStorageElement
Usage

Optional See the SupportedStorageElementUsage definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4
5.6.23 CIM_StorageConfigurationCapabilities (Concrete).

Table 570 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes
SNIA Technical Position 791

LogicalDisk Relocation ends (msgID: DRM37)

773

774

775
776

777

778

779

780

781
782

783
784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814
23.7.12 CIM_StorageConfigurationCapabilities (Global)

The global CIM_StorageConfigurationCapabilities an augmented version of the global
CIM_StorageConfigurationCapabilities defined in the Block Services package.When Storage Relocation
is implemented this class is Mandatory and adds property values for storage relocation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 571 describes class CIM_StorageConfigurationCapabilities (Global).

ClientSettableElementUsa
ge

Optional See the ClientSettableElementUsage definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4
5.6.23 CIM_StorageConfigurationCapabilities (Concrete).

SupportedStoragePoolUsa
ge

Mandatory Indicates the intended usage or any restrictions that may have been
imposed on storage pools.

This profile augments the list in Block Services by making this property
mandatory and adding the following values to the enumerations:

9='Used as source for Relocation Service'

10='Used as target for Relocation Service'.

ClientSettablePoolUsage Mandatory Indicates the intended usage or any restrictions that may have been
imposed on the usage of a client-settable storage pool.

This profile augments the list in Block Services by making this property
mandatory and adding the following values to the enumerations:

9='Used as source for Relocation Service'

10='Used as target for Relocation Service'.

Table 571 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4
5.6.24 CIM_StorageConfigurationCapabilities (Global).

ElementName Mandatory See the ElementName definition in section Storage
Management Technical Specification, Part 4 Block Devices,
1.8.0 Rev 4 5.6.24 CIM_StorageConfigurationCapabilities
(Global).

SupportedStoragePoolFeatures Optional See the SupportedStoragePoolFeatures definition in section
Storage Management Technical Specification, Part 4 Block
Devices, 1.8.0 Rev 4 5.6.24
CIM_StorageConfigurationCapabilities (Global).

Table 570 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes
792

 LogicalDisk Relocation ends (msgID: DRM37)

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853
SupportedAsynchronousActions Mandatory Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs.

This profile augments the list in Block Services by making this
property mandatory and adding actions, invoked through
StorageRelocationService methods, that may produce
Concrete jobs.

17 = 'StorageVolume To StoragePool Relocation'

18 = 'StoragePool To StoragePool Relocation'

19 = 'StorageVolume To StorageExtent Relocation'

20 = 'StoragePool To StorageExtent Relocation'

21 = 'LogicalDisk To StorageExtent Relocation'.

SupportedStorageElementTypes Mandatory See the SupportedStorageElementTypes definition in section
Storage Management Technical Specification, Part 4 Block
Devices, 1.8.0 Rev 4 5.6.24
CIM_StorageConfigurationCapabilities (Global).

SupportedSynchronousActions Mandatory Lists what actions, invoked through
StorageConfigurationService methods, may produce Concrete
jobs.

This profile augments the list in Block Services by making this
property mandatory and adding actions, invoked through
StorageRelocationService methods, that shall not produce
Concrete jobs.

17 = 'StorageVolume To StoragePool Relocation'

18 = 'StoragePool To StoragePool Relocation'

19 = 'StorageVolume To StorageExtent Relocation'

20 = 'StoragePool To StorageExtent Relocation'

21 = 'LogicalDisk To StorageExtent Relocation'.

SupportedStorageElementFeatures Mandatory Lists actions supported through the invocation of
StorageConfigurationService.CreateOrModifyElementFromSto
ragePool(). Matches 3|5|8|9|11|12|13 (StorageVolume
Creation or StorageVolume Modification or LogicalDisk
Creation or LogicalDisk Modification or Storage Element QoS
Change or Storage Element Capacity Expansion or Storage
Element Capacity Reduction).

This profile augments the list in Block Services by making this
property mandatory and adding actions supported through the
invocation of
StorageRelocationService.RelocateStorageElementsToStorag
ePool() and
StorageRelocationService.RelocateStorageElementToElemen
ts().

14 = 'StorageVolume To StoragePool Relocation'

15 = 'StoragePool To StoragePool Relocation'

16 = 'StorageVolume To StorageExtent Relocation'

17 = 'StoragePool To StorageExtent Relocation'

18 = 'LogicalDisk To StorageExtent Relocation'.

Table 571 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes
SNIA Technical Position 793

LogicalDisk Relocation ends (msgID: DRM37)

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891
23.7.13 CIM_StorageConfigurationCapabilities (Primordial)

The global CIM_StorageConfigurationCapabilities an augmented version of the global
CIM_StorageConfigurationCapabilities defined in the Block Services package.When Storage Relocation
is implemented this class is Mandatory and adds property values for storage relocation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 572 describes class CIM_StorageConfigurationCapabilities (Primordial).

SupportedStorageElementUsage Optional See the SupportedStorageElementUsage definition in section
Storage Management Technical Specification, Part 4 Block
Devices, 1.8.0 Rev 4 5.6.24
CIM_StorageConfigurationCapabilities (Global).

ClientSettableElementUsage Optional See the ClientSettableElementUsage definition in section
Storage Management Technical Specification, Part 4 Block
Devices, 1.8.0 Rev 4 5.6.24
CIM_StorageConfigurationCapabilities (Global).

SupportedStoragePoolUsage Mandatory Indicates the intended usage or any restrictions that may have
been imposed on storage pools.

This profile augments the list in Block Services by making this
property mandatory and adding the following values to the
enumerations:

9='Used as source for Relocation Service'

10='Used as target for Relocation Service'.

ClientSettablePoolUsage Mandatory Indicates the intended usage or any restrictions that may have
been imposed on the usage of a client-settable storage pool.

This profile augments the list in Block Services by making this
property mandatory and adding the following values to the
enumerations:

9='Used as source for Relocation Service'

10='Used as target for Relocation Service'.

Table 572 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4
5.6.25 CIM_StorageConfigurationCapabilities (Primordial).

ElementName Mandatory See the ElementName definition in section Storage
Management Technical Specification, Part 4 Block Devices,
1.8.0 Rev 4 5.6.25 CIM_StorageConfigurationCapabilities
(Primordial).

Table 571 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes
794

 LogicalDisk Relocation ends (msgID: DRM37)

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926
927

928

929

930

931

932
933

934
SupportedStoragePoolFeatures Optional See the SupportedStoragePoolFeatures definition in section
Storage Management Technical Specification, Part 4 Block
Devices, 1.8.0 Rev 4 5.6.25
CIM_StorageConfigurationCapabilities (Primordial).

SupportedAsynchronousActions Mandatory Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs.

This profile augments the list in Block Services by making this
property mandatory and adding actions, invoked through
StorageRelocationService methods, that may produce
Concrete jobs.

17 = 'StorageVolume To StoragePool Relocation'

18 = 'StoragePool To StoragePool Relocation'

19 = 'StorageVolume To StorageExtent Relocation'

20 = 'StoragePool To StorageExtent Relocation'

21 = 'LogicalDisk To StorageExtent Relocation'.

SupportedStorageElementTypes Mandatory See the SupportedStorageElementTypes definition in section
Storage Management Technical Specification, Part 4 Block
Devices, 1.8.0 Rev 4 5.6.25
CIM_StorageConfigurationCapabilities (Primordial).

SupportedSynchronousActions Mandatory Lists what actions, invoked through
StorageConfigurationService methods, may produce Concrete
jobs.

This profile augments the list in Block Services by making this
property mandatory and adding actions, invoked through
StorageRelocationService methods, that shall not produce
Concrete jobs.

17 = 'StorageVolume To StoragePool Relocation'

18 = 'StoragePool To StoragePool Relocation'

19 = 'StorageVolume To StorageExtent Relocation'

20 = 'StoragePool To StorageExtent Relocation'

21 = 'LogicalDisk To StorageExtent Relocation'.

SupportedStorageElementFeatures Mandatory Lists actions supported through the invocation of
StorageConfigurationService.CreateOrModifyElementFromSto
ragePool().

This profile augments the list in Block Services by making this
property mandatory and adding actions supported through the
invocation of
StorageRelocationService.RelocateStorageElementsToStorag
ePool() and
StorageRelocationService.RelocateStorageElementToElement
s().

14 = 'StorageVolume To StoragePool Relocation'

15 = 'StoragePool To StoragePool Relocation'

16 = 'StorageVolume To StorageExtent Relocation'

17 = 'StoragePool To StorageExtent Relocation'

18 = 'LogicalDisk To StorageExtent Relocation'.

Table 572 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)

Properties Flags Requirement Description & Notes
SNIA Technical Position 795

LogicalDisk Relocation ends (msgID: DRM37)

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974
23.7.14 CIM_StorageExtent (Relocatable)

A StorageExtent that can be a source or target of a relocation operation.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 573 describes class CIM_StorageExtent (Relocatable).

SupportedStorageElementUsage Optional See the SupportedStorageElementUsage definition in section
Storage Management Technical Specification, Part 4 Block
Devices, 1.8.0 Rev 4 5.6.25
CIM_StorageConfigurationCapabilities (Primordial).

ClientSettableElementUsage Optional See the ClientSettableElementUsage definition in section
Storage Management Technical Specification, Part 4 Block
Devices, 1.8.0 Rev 4 5.6.25
CIM_StorageConfigurationCapabilities (Primordial).

SupportedStoragePoolUsage Mandatory Indicates the intended usage or any restrictions that may have
been imposed on storage pools.

This profile augments the list in Block Services by making this
property mandatory and adding the following values to the
enumerations:

9='Used as source for Relocation Service'

10='Used as target for Relocation Service'.

ClientSettablePoolUsage Mandatory Indicates the intended usage or any restrictions that may have
been imposed on the usage of a client-settable storage pool.

This profile augments the list in Block Services by making this
property mandatory and adding the following values to the
enumerations:

9='Used as source for Relocation Service'

10='Used as target for Relocation Service'.

Table 573 - SMI Referenced Properties/Methods for CIM_StorageExtent (Relocatable)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ExtentStatus Mandatory A value 18 means the extent is actively involved in a relocating
operation.

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The number of usable blocks.

BlockSize Mandatory

Table 572 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)

Properties Flags Requirement Description & Notes
796

 LogicalDisk Relocation ends (msgID: DRM37)

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012
23.7.15 CIM_StoragePool (Concrete)

The concrete CIM_StoragePool an augmented version of the concrete CIM_StoragePool defined in the
Block Services package. When Storage Relocation is implemented this class adds properties for storage
relocation.

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Mandatory

Table 574 describes class CIM_StoragePool (Concrete).

Primordial Mandatory This shall be 'false' for extents that are components of Concrete
StoragePools and 'true' for extents that are components of
Primordial StoragePools.

ExtentDiscriminator Mandatory This is array of values that shall contain 'SNIA:Pool Component'.

Table 574 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes

Primordial Mandatory See the Primordial definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.27 CIM_StoragePool
(Concrete)Shall be false.

InstanceID Mandatory See the InstanceID definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.27 CIM_StoragePool
(Concrete).

ElementName Optional See the ElementName definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.27
CIM_StoragePool (Concrete).

PoolID Mandatory See the PoolID definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.27 CIM_StoragePool
(Concrete).

TotalManagedSpace Mandatory See the TotalManagedSpace definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.27
CIM_StoragePool (Concrete).

RemainingManagedSpace Mandatory See the RemainingManagedSpace definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4
5.6.27 CIM_StoragePool (Concrete).

Usage Optional See the Usage definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.27 CIM_StoragePool
(Concrete).

OtherUsageDescription Conditional See the OtherUsageDescription definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.27
CIM_StoragePool (Concrete).

ClientSettableUsage Optional See the ClientSettableUsage definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.27
CIM_StoragePool (Concrete).

Table 573 - SMI Referenced Properties/Methods for CIM_StorageExtent (Relocatable)

Properties Flags Requirement Description & Notes
SNIA Technical Position 797

LogicalDisk Relocation ends (msgID: DRM37)

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051
23.7.16 CIM_StoragePool (Primordial)

The primordial CIM_StoragePool an augmented version of the primordial CIM_StoragePool defined in the
Block Services package. When Storage Relocation is implemented this class adds properties for storage
relocation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 575 describes class CIM_StoragePool (Primordial).

OperationalStatus Mandatory The Storage Relocation Profile adds the requirement for this property. The
values shall be either '2' (OK) or '19' (Relocating).

CapacityInMigratingSource Optional The Storage Relocation Profile adds this property.The total capacity of
extents migrating out from this storage pool.

CapacityInMigratingTarget Optional The Storage Relocation Profile adds this property.The total capacity of
extents migrating into this storage pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService. See
the GetSupportedSizes definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.27
CIM_StoragePool (Concrete).

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService. See
the GetSupportedSizeRange definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.27
CIM_StoragePool (Concrete).

GetAvailableExtents() Optional See the GetAvailableExtents definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.27
CIM_StoragePool (Concrete).

Table 575 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes

Primordial Mandatory See the Primordial definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.29 CIM_StoragePool
(Primordial)Shall be true.

InstanceID Mandatory See the InstanceID definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.29 CIM_StoragePool
(Primordial).

ElementName Optional See the ElementName definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.29
CIM_StoragePool (Primordial).

PoolID Mandatory See the PoolID definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.29 CIM_StoragePool
(Primordial).

TotalManagedSpace Mandatory See the TotalManagedSpace definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.29
CIM_StoragePool (Primordial).

Table 574 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes
798

 LogicalDisk Relocation ends (msgID: DRM37)

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076
1077

1078

1079

1080

1081

1082
1083
1084

1085
1086

1087

1088

1089

1090

1091

1092

1093

1094

1095
23.7.17 CIM_StorageRelocationService

Requirement: Mandatory

Table 576 describes class CIM_StorageRelocationService.

RemainingManagedSpace Mandatory See the RemainingManagedSpace definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4
5.6.29 CIM_StoragePool (Primordial).

Usage Optional See the Usage definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.29 CIM_StoragePool
(Primordial).

OtherUsageDescription Conditional See the OtherUsageDescription definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.29
CIM_StoragePool (Primordial).

ClientSettableUsage Optional See the ClientSettableUsage definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.29
CIM_StoragePool (Primordial).

OperationalStatus Mandatory The Storage Relocation Profile adds the requirement for this property. The
values shall be either '2' (OK) or '19' (Relocating).

CapacityInMigratingSource Optional The Storage Relocation Profile adds this property.The total capacity of
extents migrating out from this storage pool.

CapacityInMigratingTarget Optional The Storage Relocation Profile adds this property.The total capacity of
extents migrating into this storage pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService. See
the GetSupportedSizes definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.29
CIM_StoragePool (Primordial).

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService. See
the GetSupportedSizeRange definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.29
CIM_StoragePool (Primordial).

GetAvailableExtents() Optional See the GetAvailableExtents definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.29
CIM_StoragePool (Primordial).

Table 576 - SMI Referenced Properties/Methods for CIM_StorageRelocationService

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

RelocateStorageVolumesToSt
oragePool()

Optional Relocate storage volumes to specified target storage pool.

RelocateStoragePoolsToStor
agePool()

Optional Relocate storage pools to specified target storage pool.

Table 575 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes
SNIA Technical Position 799

LogicalDisk Relocation ends (msgID: DRM37)

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136
23.7.18 CIM_StorageVolume

The CIM_StorageVolume is an augmented version of the CIM_StorageVolume defined in the Block
Services package. When Storage Relocation is implemented this class adds a property and a property
value for storage relocation.

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced from Host Hardware RAID Controller -
StorageVolume is mandatory.

RelocateStorageVolumeToSt
orageExtents()

Optional Relocate a storage volume to specified storage extents.

RelocateStoragePoolToStora
geExtents()

Optional Relocate a storage pool to specified storage extents.

RelocateLogicalDiskToStorag
eExtents()

Optional Relocate a logical disk to specified storage extents.

GetAvailableTargetRelocation
Extents()

Optional Get available target storage extents as new group for relocation.

Table 576 - SMI Referenced Properties/Methods for CIM_StorageRelocationService

Properties Flags Requirement Description & Notes
800

 LogicalDisk Relocation ends (msgID: DRM37)

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174
Table 577 describes class CIM_StorageVolume.

Table 577 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4
5.6.34 CIM_StorageVolume.

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

DeviceID Mandatory See the DeviceID definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

ElementName Optional See the ElementName definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

Name CD Mandatory See the Name definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

OtherIdentifyingInfo CD Optional See the OtherIdentifyingInfo definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

IdentifyingDescriptions Conditional See the IdentifyingDescriptions definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

NameFormat Mandatory See the NameFormat definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

NameNamespace Mandatory See the NameNamespace definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

ExtentStatus Mandatory See the ExtentStatus definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

OperationalStatus Mandatory Value shall be 2|3|6|8|15|19 (OK or Degraded or Error or Starting or
Dormant or Relocating).The Storage Relocation Profile adds the
enumeration for relocating.

NumExtentsMigrating Optional The Storage Relocation Profile adds this property. The number of Extents
in the process of migrating for this storage volume when the volume
relocation is on going.

BlockSize Mandatory See the BlockSize definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

NumberOfBlocks Mandatory See the NumberOfBlocks definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

ConsumableBlocks Mandatory See the ConsumableBlocks definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.
SNIA Technical Position 801

LogicalDisk Relocation ends (msgID: DRM37)

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205
1206

1207

1208

1209

1210

1211

1212

1213

1214

1215
EXPERIMENTAL

IsBasedOnUnderlyingRedun
dancy

Mandatory See the IsBasedOnUnderlyingRedundancy definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4
5.6.34 CIM_StorageVolume.

NoSinglePointOfFailure Mandatory See the NoSinglePointOfFailure definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

DataRedundancy Mandatory See the DataRedundancy definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

PackageRedundancy Mandatory See the PackageRedundancy definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

DeltaReservation Mandatory See the DeltaReservation definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

Usage Optional See the Usage definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

OtherUsageDescription Conditional See the OtherUsageDescription definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

ClientSettableUsage Optional See the ClientSettableUsage definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

Primordial Mandatory See the Primordial definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

ExtentDiscriminator Mandatory See the ExtentDiscriminator definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.8.0 Rev 4 5.6.34
CIM_StorageVolume.

Table 577 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes
802

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41
STABLE

24 Thin Provisioning Profile

24.1 Description

24.1.1 Synopsis

Profile Name: Thin Provisioning (Component Profile)

Version: 1.8.0

Organization: SNIA

Central Class: CIM_StoragePool (Primordial)

Scoping Class: ComputerSystem

Specializes: SNIA Block Services version 1.8.0

Related Profiles: Table 578 describes the related profiles for Thin Provisioning.

24.1.2 Overview

NOTE In the context of this standard, the term "fully provisioned" refers to storage elements (pools, volumes or logical disks) that
are not subject to thin provisioning technologies.

The Block Services with Thin Provisioning Profile is a specialization of the Block Services Package (see 5
Block Services Package), adding support for thin provisioning. All the provisions of the Block Services
Package apply, in addition to those defined in this profile.

This profile is nearly compatible with the Block Services Package. A client supporting the Block Services
Package interacting with a Block Server with Thin Provisioning Profile agent should be able to actively
manage fully-provisioned volumes and pools, but discovery will be slightly impacted because it will see
instances of both fully and thinly provisioned pools and volumes. The model is the same, but the client
needs to consider the values of thin-provisioning-specific properties to fully understand capacity
utilization.

24.1.3 Background

Thin provisioning is a capability of some block server implementations to defer provisioning of backing
store for regions of a volume until the regions have been accessed (written) by the consumer (e.g., host
file system). The alternatives (fully provisioned volumes) allocate all of the requested capacity from the
backing store at the time the volume is created. For thin provisioned volumes, the block server

Table 578 - Related Profiles for Thin Provisioning

Profile Name Organization Version Requirement Description

Job Control SNIA 1.5.0 Optional

Extent Composition SNIA 1.7.0 Optional

Storage Relocation SNIA 1.7.0 Optional

Pools from Volumes SNIA 1.7.0 Optional

Storage Pool Diagnostics SNIA 1.8.0 Optional Experimental.

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2
SNIA Technical Position 803

Overview

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69
implementation tracks information about which regions have been accessed, and once a region is
accessed, the backing storage is allocated.

There are various approaches to implementing thin provisioning; some vendors pattern thin provisioning
logic after OS virtual memory or journaled file systems, and there are numerous variations. This profile
does not address techniques or algorithms for thin provisioning; these details are left to innovation of the
vendors delivering thin provisioning solutions. This profile provides a common abstraction for the
management features of thin provisioning. In particular, this profile allows SMI-S clients to determine
whether a storage system (and children such as pools, and volumes) supports thin provisioning,
determine the difference between the exposed “virtual capacity” and actual, committed physical storage,
and create thinly provisioned volumes and pools.

24.1.4 Model

24.1.4.1 Overview

No new classes are defined by this profile; it extends the classes of Block Services.

Throughout this profile, volume refers to either StorageVolume or LogicalDisk, which are the two types of
elements exported from the Block Services Profile. Pool children refers to the three types of elements
(StorageVolume, LogicalDisk, and StoragePool) that may be carved from a pool.

24.1.4.2 Capacity Concepts for Volumes

Each storage volume has a nominal capacity value, the capacity seen by users and applications (such as
file systems). This capacity is also reported through in-band interfaces such as SCSI READ CAPACITY.
Applications cannot write more than this capacity at a given time. When fully provisioned volumes are
created, the nominal capacity is allocated by the block server. When thin provisioned volumes are
created, a smaller value (referred to here as the initial reserve capacity) is allocated (this value may be
zero).

Capacity consumed is the capacity the application is actually using at a give time (the block server may
have rounded this up to a multiple of some internal granule size). For thin provisioned volumes, the
capacity consumed on the backend storage may be smaller than the nominal capacity. The capacity
consumed grows from the initial reserve capacity as the application (such as a file system) writes new
areas of the volume. In theory, the capacity consumed could grow to equal (or exceed when metadata is
considered) the nominal capacity.

The nominal capacity is represented in the model by the ConsumableBlocks property of volumes.
Capacity consumed is modeled by the SpaceConsumed property of the AllocatedFromStoragePool
association referencing the volume. Initial reserve capacity is modeled using the
ThinProvisionedInitialReserve property of StorageSettings. In some block servers, the smaller capacity is
a characteristic of a StoragePool and is represented by the SpaceConsumed on the
AllocatedFromStoragePool association between the StorageVolume or LogicalDisk and StoragePool.

Note that these concepts and properties also apply to delta replicas as defined in 9 Copy Services Profile
and 20 Replication Services Profile.

24.1.4.3 Capacity Concepts for Pools

Block Servers supporting thin provisioned volumes have different approaches to modeling capacity in
pools. This profile supports three approaches:

• The first approach is used when a pool supports thin provisioned children, but the “advertised” capacity of the
pool matches the actual capacity of its underlying storage. In this case, the block server follows the provisions
in 5 Block Services Package.

• The second approach is used when a pool supports thin provisioned children and has a defined capacity to
which its children can grow, but this capacity is greater than the capacity of underlying storage.
804

 Key Classes

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116
• The third approach is when the block server does not assign a maximum capacity to the pool.

The model supporting these three approaches is documented in 24.1.4.4.2 Pool Capacity.

Note that primordial StoragePools cannot be thinly provisioned, but can support allocation of thinly
provisioned concrete pools.

24.1.4.4 Key Classes

24.1.4.4.1 Overview

Figure 161 presents the key classes and related to this profile.

StorageConfigurationCapabilities.SupportedStorageElementTypes shall include a subset of
ThinlyProvisionedStorageVolume, ThinlyProvisionedLogicalDisk,
ThinlyProvisionedAllocatedStoragePool, ThinlyProvisionedQuotaStoragePool, or
ThinlyProvisionedLimitlessStoragePool to indicate support for allocation of thinly provisioned
StorageVolumes, LogicalDisks, or StoragePools. The three SupportedStorageElementTypes values
related to pools allow the block server to advertise which types of pool capacity approaches are available
for child pools. The meaning of Allocated, Quota and Limitless pools is expanded in 24.1.4.3 Capacity
Concepts for Pools. Similar values are used in ElementType parameters of methods to specify which
approach the client prefers when creating new children. Note that as defined in the Block Services
Package, StorageConfigurationCapabilities associated to StorageConfigurationService defines global
block server capabilities; other instances of StorageConfigurationCapabilities may optionally be
associated to StoragePool to provide pool-specific overrides.

The SpaceLimitDetermination property of StoragePool defines the approach associated with the pool for
determining capacity information for the pool. See 24.1.4.4.2 Pool Capacity. The
SpaceLimitDetermination property is undefined if the Block Services with Thin Provisioning Profile is not
supported. SpaceLimitDetermination shall be present on any StoragePool instance that supports thin
provisioning and SpaceLimitDetermination is not Allocated.

The SpaceLimit property of StoragePool is the capacity of the storage allocated to the pool when
Spacelimitdetermination has the value 3 (Quota) or 4 (Limitless) or is set to the value of
TotalManagedSpace if SpaceLimitDetermination has the value 2 (Allocated). The value of SpaceLimit may
be modified by a client using CreateOrModifyStoragePool. The upper bounds returned from

Figure 161 - Thin Provisioning Model

StorageVolum e

C onsum ableB locks
ThinlyProvisioned = true

StoragePool

P r im ordial = False
SpaceLim it
SpaceLim itD eterm ination
ThinProvisionM etaD ataSpace

AllocatedFrom StoragePool

SpaceC onsum ed

StorageC onfigurationC apabilit ies
(capabilit ies of pool)

SupportedStorageElem entTypes
ThinProvisionedC lientSettableR eserve
ThinProvisionedD efaultR eserve

E lem entC apabilit ies

S torageSett ing (goal for creating
pools)

ThinProvisionedPoolType
ThinProvisionedInitia lR eserve

StorageC onfigurationService

StorageC onfigurationC apabilit ies
(capabilit ies of the block server)

SupportedS torageElem entTypes
ThinProvisionedC lientSettableR eserve
ThinProvisionedD efaultR eserve

E lem entC apabilit ies

StorageSetting (for volum es))

ThinProvisionedInitia lR eserve

E lem entSettingD ata
SNIA Technical Position 805

Indications

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135
136

137

138

139

140

141
142

143

144

145

146
147

148

149

150

151
GetAvailableSizes and GetAvailableSizeRanges should be approximately the same as SpaceLimit. See
24.1.4.4.2 Pool Capacity. The SpaceLimit property is not defined if the Block Services with Thin
Provisioning Profile is not supported.

The ThinProvisionMetaDataSpace property of StoragePool is the size of the pool’s metadata (in bytes).
Unlike fully-provisioned pools, this value cannot be determined by subtracting the sum of
SpaceConsumed of child elements from TotalManagedSpace. The ThinProvisionMetaDataSpace property
is undefined if the Block Services with Thin Provisioning Profile is not supported.

If the ThinlyProvisioned property of StorageVolume or LogicalDisk is “true”, then the block server shall
support thin provisioning for the StorageVolume or LogicalDisk. If ThinlyProvisioned is undefined or the
value is null, the StorageVolume or LogicalDisk shall not be thin provisioned. The ThinlyProvisioned
property is undefined if the Block Services with Thin Provisioning Profile is not supported.

24.1.4.4.2 Pool Capacity

StoragePool.SpaceLimitDetermination indicates which of three approaches apply to determining the
capacity related properties of the associated StoragePool.

In all cases, StoragePool.TotalManagedSpace represents the sum of the usable capacity from underlying
StorageExtents. The StorageExtents may or may not be modeled and the usable capacity may have been
reduced due to redundancy or metadata. In all cases, RemainingManagedSpace shall be set to
SpaceLimit minus the sum of SpaceConsumed on AllocatedFromStoragePool associations to all child
elements allocated from the pool.

This profile supports three techniques for determining the space available for creating or expanding child
elements.

• If StoragePool.SpaceLimitDetermination is set to 2 (Allocated), TotalManagedSpace is also the capacity that
may be used to create or expand pool children (StorageVolumes, LogicalDisks, or other StoragePools). And
StoragePool.RemamingManagedSpace represents the capacity left to create a new storage element or
expand an existing storage element. This approach is common to fully provisioned pools. The SpaceLimit
property should be set to the same value as TotalManagedSpace.

• If StoragePool.SpaceLimitDetermination is set to 3 (Quota), StoragePool.SpaceLimit serves as an
administratively defined limit on the capacity that may be used to create or expand child elements
(StorageVolumes, LogicalDisks, or other StoragePools).

• If StoragePool.SpaceLimitDetermination is set to 4 (Limitless), then the block server does not have a defined
limit on the capacity for creating or expanding children. Clients that support thin provisioning should not use
SpaceLimit when SpaceLimitDetermination is set to 4 (Limitless). But for compatibility with clients that do not
support this profile, the instrumentation should use a heuristic to set SpaceLimit (and to values returned from
GetAvailableSizes and GetAvailableSizeRanges) to a reasonable value. One possible heuristic is to set
SpaceLimit to the value of the largest volume supported by the implementation (e.g., 2 terabytes if the
implementation does not support SCSI sixteen byte CDBs).

If SpaceLimitDetermination is null or undefined, clients should treat the pools as if
SpaceLimitDetermination was 2 (Allocated).

24.1.4.4.3 Relationship to Pools From Volumes

Not defined in this document.

24.1.4.5 Indications

24.1.4.5.1 Capacity Warning

This is an alert message indicating that the actual capacity of a volume or pool is nearing a limit (e.g.,
actual usage of containing pool is nearing SpaceLimit). The related standard message is
806

 Indications

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182
Thin provisioned <Volume or Pool> with identifier <Volume or Pool ID> capacity in
use nearing available limit.

24.1.4.5.2 Capacity Critical

This is an alert message indicating that the actual capacity of a volume or pool has reached a limit (e.g.,
actual usage of containing pool is equal to SpaceLimit). Write commands from hosts to the volume or pool
are failing. The related standard message is

Thin provisioned <Volume or Pool> with identifier <Volume or Pool ID> capacity in
use exceeded available limit.

24.1.4.5.3 Capacity Okay

This is an alert message indicating that the actual capacity of a volume or pool is no longer in a capacity
warning or critical state. The related standard message is

Thin provisioned <Volume or Pool> with identifier <Volume or Pool ID> capacity
condition cleared.

24.2 Health and Fault Management Consideration

Not defined in this document.

24.3 Cascading Considerations

Not defined in this document.

24.4 Methods of the Profile

24.4.1 Overview

This profile uses the same methods and approach to creating/modifying volumes and pools as Block
Services, with additional properties used for active management of thin provisioned elements. The next
few sections provides details of how these properties are used.

24.4.2 StoragePool GetSupportedSizes() and GetSupportedSizeRanges()

When a client invokes GetSupportedSizes() or GetSupportedSizeRanges() with ElementType set to 5
(Thin Provisioned Volume) or 6 (Thin Provisioning Logical Disk), the instrumentation shall return size
information relative to the value of SpaceLimitDetermination for the related pools.

• For pools with SpaceLimitDetermination of 2 (Allocated), the instrumentation shall return sizes using the
same approach for fully provisioned volumes as described in 5 Block Services Package.

• For pools with SpaceLimitDetermination set to 3 (Quota) or 4 (Limitless), the sizes returned should not
exceed the value of SpaceLimit for pools supporting thin provisioning.

When a client invokes GetSupportedSizes() or GetSupportedSizeRanges() with ElementType set to 3
(Storage Volume) or 4 (Logical Disk),

• For pools with SpaceLimitDetermination of 3 (Quota) or 4 (Limitless), the provider shall return 3 (Invalid
Element Type)

24.4.3 StorageSetting CreateSetting

When creating thinly provisioned StoragePools: ThinProvisionedPoolType shall be set to a value from
SupportedStorageElementTypes in the parent pool’s applicable StorageConfigurationCapabilities
instance.
SNIA Technical Position 807

Indications

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203
204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221
24.4.4 StorageConfigurationService CreateOrModifyStoragePool()

CreateOrModifyStoragePool is used to create a thinly provisioned pool. The ElementType parameter
(e.g., ThinlyProvisionedAllocatedStoragePool) shall be included in SupportedStorageElementTypes in the
StorageConfigurationCapabilities instances applicable to the pool specified in the InPools parameter.

NOTE CreateOrModifyStoragePool also supports pool creation using InExtents, instead of InPools.

24.4.5 StorageConfigurationService CreateOrModifyElementFromElements()

CreateOrModifyElementFromElements may be used to create a pool from extents

To create a thinly-provisioned pool, the ElementType shall be ThinlyProvisionedAllocatedStoragePool,
ThinlyProvisionedQuotaStoragePool, or ThinlyProvisionedLimitlessStoragePool.

The size parameter is ignored if ElementType is ThinlyProvisionedAllocatedStoragePool. In this case, the
size is set by the block server based on the capacity of the extents allocated to the pool

24.4.6 StorageConfigurationService CreateOrModifyElementFromStoragePool()

CreateOrModifyElementFromStoragePool is used to create a StorageVolume or LogicalDisk. The size
parameter holds the desired nominal size. The ElementType parameter shall be
ThinlyProvisionedStorageVolume or ThinlyProvisionedLogicalDisk.

See 24.5 Use Cases for examples using these methods.

24.5 Use Cases

24.5.1 Create a Pool from a Parent Pool

Creating a thin provisioned pool follows the same approach as creating fully provisioned pool with the
changes in step 1. Assume the client wishes to create a pool using the Allocated approach to space
determination:

1) Find a parent pool associated to a StorageConfigurationCapabilities instance where SupportedStor-
ageElementTypes incudes ThinlyProvisionedAllocatedStoragePool.

2) Dreate a (or locate an existing usable) StorageSetting instance.

3) Call CreateOrModifyStoragePool

• the StorageSetting as the Goal Parameter

• the appropriate parent pool as the PoolToDrawFrom,

• the size parameter is set to the client’s requested size

• ElementType is ThinlyProvisionedAllocatedStoragePool

NOTE If the client sets SpaceLimitDetermination to Quota, the Size parameter becomes the value of SpaceLimit in the created
pool.

24.5.2 Create a Pool from Extents

This is similar to creating a pool from the parent pool, except that it uses
CreateOrModifyElementFromElement.

ElementType is ThinlyProvisionedAllocatedStoragePool, ThinlyProvisionedQuotaStoragePool, and
ThinlyProvisionedLimitlessStoragePool.

The size parameter is ignored if ElementType is ThinlyProvisionedAllocatedStoragePool. In this case, the
size is set by the block server based on the capacity of the extents allocated to the pool.
808

 Indications

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262
24.5.3 Creating a Thinly Provisioned Volume

Creating a thin provisioned volume follows the same approach as creating fully provisioned volume with
the following extra steps:

1) verify that the parent pool supports thin provisioned child volumes by verifying that StorageConfigu-
rationCapabilities.SupportedStorageElementTypes incudes ThinlyProvisionedStorageVolume

2) use StorageConfigurationCapabilities.ThinProvisionedClientSettableReserve to determine whether
the client can specify an desired initial reserve

3) create a (or locate and existing usable) StorageSetting instance, set ThinProvisionedInitialReserve
as needed

4) call CreateOrModifyElementFromStoragePool using

• the StorageSetting as the Goal,

• the appropriate parent pool as the PoolToDrawFrom,

• the size parameter holds the nominal size,

• ElementType is ThinlyProvisionedStorageVolume

24.5.4 Capacity Properties for Fully-provisioned RAID1 Volume

Figure 162 demonstrates two approaches for setting capacity properties. In one approach, the capacity
due to redundancy on RAID is included in the concrete pool; in the other approach, the capacity in the
concrete pool reflects the factoring out of the RAID overhead. In this array configuration, there is a
primordial pool showing the capacity from two 502 block disks. (The disks are not modeled, a valid option
in SMI-S.) Each disk has two blocks of metadata - yielding 2 * 500 usable blocks. The block server has
assembled these two disks into a RAID1 set (represented by the Concrete pool)—a process which
consumes four blocks for metadata. A single StorageVolume is allocated. This volume consumes 110
blocks. The SpaceConsumed value of 224 in the upper right reflects two times 110 (the nominal volume
capacity times 2 for RAID1) plus four blocks metadata.
SNIA Technical Position 809

Indications

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302
Note that Block Services allows an arbitrary number of concrete pools between the primordial pool and
the pool from which the volume is allocated, so other sets of instances could also represent the same
RAID1 configuration.

Figure 162 - RAID1 Capacity after Volume Creation

Concrete: StoragePool

Primordial = false
TotalManagedSpace = 496 * 512
RemainingManagedSpace = 386 * 512

SVP: AllocatedFromStoragePool
SpaceConsumed = 110 * 512

Primordial : StoragePool

Primordial = true
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 0

PP: AllocatedFromStoragePool
SpaceConsumed = 1000 * 512

Simple: StorageVolume

NumberOfBlocks = 110

Concrete: StoragePool

Primordial = false
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 776 * 512

SVP: AllocatedFromStoragePool
SpaceConsumed = 224 * 512

Primordial : StoragePool

Primordial = true
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 0

PP: AllocatedFromStoragePool
SpaceConsumed = 1000 * 512

Simple: StorageVolume

NumberOfBlocks = 110

RAID-at-Pool approach RAID-at-Volume approach
810

 Indications

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343
24.5.5 Capacity Properties for Thin Provisioning

Figure 163 builds on Figure 162, showing a newly created thinly provisioned volume with of 50 blocks
consumed.

Figure 163 - RAID1 Capacity with Thin Volume and RAID-at-Pool Approach

Concrete: StoragePool

Primordial = false
SpaceLimitDetermination = Allocated
TotalManagedSpace = 496 * 512
RemainingManagedSpace = 336 * 512

FVP: AllocatedFromStoragePool
SpaceConsumed = 110 * 512

Primordial : StoragePool

Primordial = true
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 0

PP: AllocatedFromStoragePool
SpaceConsumed = 1000 * 512

FullVol: StorageVolume

NumberOfBlocks = 110

ThinVol: StorageVolume

NumberOfBlocks = 110

TVP: AllocatedFromStoragePool
SpaceConsumed = 50 * 512
SNIA Technical Position 811

Indications

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384
Figure 164 adds the same thin volume, but uses the RAID-on-Volume approach.

24.6 CIM Elements

24.6.1 Overview

Table 579 describes the CIM elements for Thin Provisioning.

Figure 164 - RAID1 Capacity with Thin Volume and RAID-at-Volume Approach

Table 579 - CIM Elements for Thin Provisioning

Element Name Requirement Description

24.6.2 CIM_AllocatedFromStoragePool (Pool from Pool) Mandatory AllocatedFromStoragePool.

24.6.3 CIM_AllocatedFromStoragePool (Volume or
LogicalDisk from Pool)

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. AllocatedFromStoragePool.

24.6.4 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to StorageVolume or
LogicalDisk)

Optional Expressed the ability for the element to be named or have
its state changed.

24.6.5 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to StoragePool)

Mandatory This specializes the Block Services
CIM_ElementCapabilities to make it Mandatory.

Concrete: StoragePool

Primordial = false
SpaceLimitDetermination = Allocated
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 672 * 512

FVP: AllocatedFromStoragePool
SpaceConsumed = 224 * 512

Primordial : StoragePool

Primordial = true
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 0

PP: AllocatedFromStoragePool
SpaceConsumed = 1000 * 512

FullVol: StorageVolume

NumberOfBlocks = 110

ThinVol: StorageVolume

NumberOfBlocks = 110

TVP: AllocatedFromStoragePool
SpaceConsumed = 104 * 512
812

 Indications

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421
24.6.6 CIM_ElementCapabilities
(ImplementationCapabilities to System)

Optional Experimental. Associates the conformant Array
ComputerSystem to the CIM_ImplementationCapabilities
supported by the implementation.

24.6.7 CIM_ElementCapabilities (StorageCapabilities to
StorageConfigurationService)

Optional Associates StorageCapabilities with
StorageConfigurationService. This StorageCapabilities
shall represent the capabilities of the entire
implementation.

24.6.8 CIM_ElementCapabilities (StorageCapabilities to
StoragePool)

Mandatory Associates StorageCapabilities with StoragePool. This
StorageCapabilities shall represent the capabilities of the
StoragePool to which it is associated.

24.6.9 CIM_ElementCapabilities
(StorageConfigurationCapabilities to
StorageConfigurationService)

Mandatory Associates StorageConfigurationCapabilities with
StorageConfigurationService.

24.6.10 CIM_ElementCapabilities
(StorageConfigurationCapabilities to concrete
StoragePool)

Optional Associates StorageConfigurationCapabilities with
StoragePool.

24.6.11 CIM_ElementCapabilities
(StorageConfigurationCapabilities to primordial
StoragePool)

Optional Associates StorageConfigurationCapabilities with
StoragePool.

24.6.12 CIM_ElementCapabilities (Used to declare the
naming capabilities of the StoragePool)

Optional Deprecated. Associates
EnabledLogicalElementCapabilities with
StorageConfigurationService.

24.6.13 CIM_ElementCapabilities (Used to declare the
naming capabilities of the StorageVolume or LogicalDisk)

Optional Associates EnabledLogicalElementCapabilities with
StorageConfigurationService.

24.6.14 CIM_ElementSettingData Mandatory

24.6.15 CIM_EnabledLogicalElementCapabilities (For
StorageConfigurationService)

Optional Deprecated. This class is used to express the naming and
possible requested state change possibilities for storage
elements.

24.6.16 CIM_EnabledLogicalElementCapabilities (For
StoragePool)

Mandatory This specializes the Block Services
CIM_EnabledLogicalElementCapabilities to make it
Mandatory

24.6.17 CIM_HostedService Conditional Conditional requirement: Support for
StorageConfigurationService.

24.6.18 CIM_HostedStoragePool Mandatory

24.6.19 CIM_ImplementationCapabilities
(ImplementationCapabilities)

Optional Experimental. The capabilities of the profile
implementation.

24.6.20 CIM_LogicalDisk Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. A LogicalDisk is
allocated from a concrete StoragePool.

24.6.21 CIM_OwningJobElement Conditional Conditional requirement: Support for Job Control profile.

24.6.22 CIM_StorageCapabilities Mandatory

24.6.23 CIM_StorageConfigurationCapabilities (Concrete) Conditional Conditional requirement: Support for the Storage
Relocation profile. StorageConfigurationCapabilities as
defined in Block Services, with the addition of
SupportedStorageElementTypes for thin pools and
volumes.

Table 579 - CIM Elements for Thin Provisioning

Element Name Requirement Description
SNIA Technical Position 813

Indications

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460
24.6.24 CIM_StorageConfigurationCapabilities (Global) Conditional Conditional requirement: Support for
StorageConfigurationService.
StorageConfigurationCapabilities as defined in Block
Services, with the addition of
SupportedStorageElementTypes for thin pools and
volumes.

24.6.25 CIM_StorageConfigurationCapabilities
(Primordial)

Conditional Conditional requirement: Support for the Storage
Relocation profile. StorageConfigurationCapabilities as
defined in Block Services, with the addition of
SupportedStorageElementTypes for thin pools and
volumes.

24.6.26 CIM_StorageConfigurationService Mandatory StorageConfigurationService as defined in Block
Services, adding thin provisioning values to the
ElementType parameter.

24.6.27 CIM_StoragePool (Concrete) Mandatory Concrete StoragePool as defined in Block Services with
the addition of SpaceLimit, SpaceLimitDetermination, and
ThinProvisionMetaDataSpace.

24.6.28 CIM_StoragePool (Empty) Optional Empty StoragePool as defined in Block Services with the
addition of SpaceLimit, SpaceLimitDetermination, and
ThinProvisionMetaDataSpace.

24.6.29 CIM_StoragePool (Primordial) Mandatory Primordial StoragePool as defined in Block Services with
the addition of SpaceLimit, SpaceLimitDetermination, and
ThinProvisionMetaDataSpace.

24.6.30 CIM_StorageSetting Mandatory StorageSetting as defined in Block Services with the
addition of Thin Provisioning properties.

24.6.31 CIM_StorageSettingWithHints Optional

24.6.32 CIM_StorageSettingsAssociatedToCapabilities Optional This class associates the StorageCapabilities with the
preset setting. Any StorageSetting instance associated
with this association shall work, unmodified, to create a
storage element. The preset settings should not change
overtime and represent possible settings for storage
elements are set of design time rather than runtime. All
StorageSetting instances linked with this association shall
have a ChangeableType of "0" ("Fixed - Not
Changeable").

24.6.33 CIM_StorageSettingsGeneratedFromCapabilities Conditional Conditional requirement: Support for
StorageConfigurationService. This class associates the
StorageCapabilities with the StorageSetting generated
from it via the CreateSetting method. StorageSettings
instances generated in this manner, as identified with this
association, may be removed from the model at any time
by the implementation if the ChangeableType of the
associated setting is set to "2" ("Changeable - Transient").
All StorageSettings associated with this class shall be
changeable, ChangeableType is "2" or "3". Some
implementations may permit the modification of the
ChangeableType property itself on StorageSetting
instances associated via this class. Provided this is
allowed, a client may change the ChangeableType to "3"
("Changeable - Persistent") to have this setting retained
either after generation of the instance or after its
modification by the client. The DefaultSetting property of
the StorageSetting instances linked with this association
is meaningless.

Table 579 - CIM Elements for Thin Provisioning

Element Name Requirement Description
814

 Indications

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500
24.6.34 CIM_StorageVolume Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. Representation of a virtual disk (for SCSI, a
logical unit). A StorageVolume is allocated from a
concrete StoragePool. See the "Standard Formats for
Logical Unit Names" clause in the Storage Management
Technical Specification, Part 2 Common Architecture,
1.8.0 Rev 4 for details on how to set Name, NameFormat,
and NameNamespace properties.

24.6.35 CIM_SystemDevice (System to StorageVolume
or LogicalDisk)

Mandatory Associates a top level system to the StorageVolumes or
LogicalDisks.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Creation/Deletion of StoragePool.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Deletion of StoragePool.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. Creation of StorageVolume, if the
StorageVolume storage element is implemented.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. Deletion of StorageVolume, if the
StorageVolume storage element is implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::OperationalStatus
<>
PreviousInstance.CIM_StorageVolume::OperationalStatu
s

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. CQL -Change of status of a Storage Volume,
if Storage Volume is implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::ElementName <>
PreviousInstance.CIM_StorageVolume::ElementName

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. CQL -Change of ElementName of a Storage
Volume, if Storage Volume is implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::NumberOfBlocks
<>
PreviousInstance.CIM_StorageVolume::NumberOfBlocks

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. CQL -Change of NumberOfBlocks of a
Storage Volume, if Storage Volume is implemented.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. Creation of
LogicalDisk, if the LogicalDisk storage element is
implemented.

Table 579 - CIM Elements for Thin Provisioning

Element Name Requirement Description
SNIA Technical Position 815

Indications

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531
532

533

534

535

536

537

538

539

540

541

542

543

544

545
24.6.2 CIM_AllocatedFromStoragePool (Pool from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. Deletion of
LogicalDisk, if the LogicalDisk storage element is
implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::OperationalStatus <>
PreviousInstance.CIM_LogicalDisk::OperationalStatus

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. CQL -Change of
status of LogicalDisk, if LogicalDisk is implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StoragePool AND
SourceInstance.CIM_StoragePool::TotalManagedSpace
<>
PreviousInstance.CIM_StoragePool::TotalManagedSpace

Mandatory CQL -Change of TotalManagedSpace.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StoragePool AND
SourceInstance.CIM_StoragePool::ElementName <>
PreviousInstance.CIM_StoragePool::ElementName

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. CQL -Change of ElementName of a Storage
Pool, if Storage Pool is implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StoragePool AND
SourceInstance.CIM_StoragePool::RemainingManagedS
pace <>
PreviousInstance.CIM_StoragePool::RemainingManaged
Space

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. CQL -Change of RemainingManagedSpace of
a Storage Pool, if Storage Pool is implemented.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM28'

Mandatory Experimental. Indication that capacity is running low. See
24.1.4.5.1 Capacity Warning.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM29'

Mandatory Experimental. Indication that capacity is has run out. See
24.1.4.5.2 Capacity Critical.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM30'

Mandatory Experimental. Indication that capacity condition has been
cleared. See 24.1.4.5.3 Capacity Okay.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='DRM38'

Mandatory Experimental. A LogicalDisk has degraded.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='DRM39'

Mandatory Experimental. A LogicalDisk has failed.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='DRM40'

Mandatory Experimental. A LogicalDisk has returned to normal
service.

Table 579 - CIM Elements for Thin Provisioning

Element Name Requirement Description
816

 Indications

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587
Table 580 describes class CIM_AllocatedFromStoragePool (Pool from Pool).

24.6.3 CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced from Host Hardware RAID Controller -
StorageVolume is mandatory.

Table 581 describes class CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool).

24.6.4 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or Logi-
calDisk)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 582 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageVolume or LogicalDisk).

Table 580 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory Antecedent references the parent pool from which the dependent pool is
allocated.

Dependent Mandatory

Table 581 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or LogicalD-
isk from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory

Dependent Mandatory

Table 582 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to StorageVolume or LogicalDisk)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory A Storage Volume or Logical Disk.
SNIA Technical Position 817

Indications

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629
24.6.5 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool)

This specializes the Block Services CIM_ElementCapabilities to make it Mandatory.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 583 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StoragePool).

24.6.6 CIM_ElementCapabilities (ImplementationCapabilities to System)

Experimental. Associates the conformant Array ComputerSystem to the CIM_ImplementationCapabilities
supported by the implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 584 describes class CIM_ElementCapabilities (ImplementationCapabilities to System).

24.6.7 CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 583 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object (CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StoragePool Enabled Capabilities" that is associated
with a storage pool.

ManagedElement Mandatory A reference to an instance of a StoragePool.

Table 584 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities
to System)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The ImplementationCapabilities.

ManagedElement Mandatory The conformant Array ComputerSystem that has
ImplementationCapabilities.
818

 Indications

630

631

632
Table 585 describes class CIM_ElementCapabilities (StorageCapabilities to
StorageConfigurationService).

24.6.8 CIM_ElementCapabilities (StorageCapabilities to StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 586 describes class CIM_ElementCapabilities (StorageCapabilities to StoragePool).

24.6.9 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationSer-
vice)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 587 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to
StorageConfigurationService).

24.6.10 CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Table 585 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
ageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 586 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
agePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 587 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to StorageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.
SNIA Technical Position 819

Indications

633

634

635
Requirement: Optional

Table 588 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete
StoragePool).

24.6.11 CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 589 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial
StoragePool).

24.6.12 CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool)

Deprecated. Associates EnabledLogicalElementCapabilities with StorageConfigurationService. This is for
identifying the capability to provide an element name for storage pools.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 590 describes class CIM_ElementCapabilities (Used to declare the naming capabilities of the
StoragePool).

Table 588 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to concrete StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 589 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to primordial StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 590 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming
capabilities of the StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object (CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StoragePool Enabled Capabilities" that is associated
with an instance of StorageConfigurationService.

ManagedElement Mandatory A reference to an instance of CIM_StorageConfigurationService.
820

 Indications

636

637

638

639

640

641

642
24.6.13 CIM_ElementCapabilities (Used to declare the naming capabilities of the StorageVolume or
LogicalDisk)

Associates EnabledLogicalElementCapabilities with StorageConfigurationService. This is for identifying
the capability to provide an element name for storage volumes or logical disks.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 591 describes class CIM_ElementCapabilities (Used to declare the naming capabilities of the
StorageVolume or LogicalDisk).

24.6.14 CIM_ElementSettingData

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 592 describes class CIM_ElementSettingData.

24.6.15 CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService)

Deprecated.

Created By: Static

Modified By: Static

Table 591 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming
capabilities of the StorageVolume or LogicalDisk)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object (CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StorageVolume Enabled Capabilities" or "LogicalDisk
Enabled Capacilities" that is associated with an instance of
StorageConfigurationService.

ManagedElement Mandatory A reference to an instance of CIM_StorageConfigurationService.

Table 592 - SMI Referenced Properties/Methods for CIM_ElementSettingData

Properties Flags Requirement Description & Notes

IsDefault Mandatory An enumerated integer indicating that the referenced setting is a default
setting for the element, or that this information is unknown. Value shall be
0,1 or 2 (Unknown or Is Default or Is Not Default).

IsCurrent Mandatory An enumerated integer indicating that the referenced setting is currently
being used in the operation of the element, or that this information is
unknown. Value shall be 0,1 or 2 (Unknown or Is Default or Is Not Default).

ManagedElement Mandatory StorageVolume or LogicalDisk.

SettingData Mandatory The StorageSetting or StorageSettingWithHints that is associated with the
Storage Volume or Logical Disk.
SNIA Technical Position 821

Indications
Deleted By: Static

Requirement: Optional

Table 593 describes class CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService).

24.6.16 CIM_EnabledLogicalElementCapabilities (For StoragePool)

This specializes the Block Services CIM_EnabledLogicalElementCapabilities to make it Mandatory.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 594 describes class CIM_EnabledLogicalElementCapabilities (For StoragePool).

Table 593 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
ConfigurationService)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For this usage of the capabilities this should include one of the
following three values:

StoragePool Enabled Capabilities

StorageVolume Enabled Capabilities

LogicalDisk Enabled Capacilities.

ElementNameEditSupported Mandatory Denotes whether a storage element can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See
MOF for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and
format for the element name. See MOF for details.

RequestedStatesSupported Optional Expresses the states to which this element may be changed using
the RequestStateChange method. If this property is NULL, it may
be assumed that the state may not be changed.

Table 594 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
Pool)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For this usage of the capabilities this should be 'StoragePool Enabled
Capabilities'.

ElementNameEditSupported Mandatory Denotes whether a storage element can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See MOF
for details.
822

 Indications
24.6.17 CIM_HostedService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 595 describes class CIM_HostedService.

24.6.18 CIM_HostedStoragePool

Requirement: Mandatory

Table 596 describes class CIM_HostedStoragePool.

24.6.19 CIM_ImplementationCapabilities (ImplementationCapabilities)

Experimental. The capabilities (features) of the profile implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

ElementNameMask Mandatory The regular expression that specifies the possible content and format for
the element name. See MOF for details.

RequestedStatesSupported Optional Expresses the states to which this element may be changed using the
RequestStateChange method. If this property, it may be assumed that the
state may not be changed.

Table 595 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting computer system.

Dependent Mandatory The storage configuration service hosted on the computer system.

Table 596 - SMI Referenced Properties/Methods for CIM_HostedStoragePool

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The reference to the hosting computer system.

PartComponent Mandatory The reference to the hosted storage pool.

Table 594 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
Pool)

Properties Flags Requirement Description & Notes
SNIA Technical Position 823

Indications
Table 597 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

24.6.20 CIM_LogicalDisk

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Volume Management - LogicalDisk is mandatory.

Table 598 describes class CIM_LogicalDisk.

Table 597 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the implementation capability of an
implementation.

ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.

SupportedElementNameC
odeSet

Optional This property indicates the supported code set for the ElementName -- for
example, "Single Byte ASCII", "UTF-8", "ISO 8859-1", etc. See MOF for
details.

Table 598 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name Mandatory OS Device Name.

NameFormat Mandatory This shall be "12" (OS Device Name).

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant). In addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRedu
ndancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory
824

 Indications
24.6.21 CIM_OwningJobElement

Conditional on support for Job Control profile.

Requirement: Support for Job Control profile.

Table 599 describes class CIM_OwningJobElement.

24.6.22 CIM_StorageCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Conditional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain 'SNIA:Allocated'.

NumExtentsMigrating Optional Experimental. The number of Extents in the process of migrating for this
logical disk when the logical disk relocation is on going.

IsCompressed Optional Experimental. IsCompressed identifies whether or not compression is
being applied to the volume. When set to "true" the data is compressed.
When set to "false" the data is not compressed.

CompressionRate Optional Experimental. CompressionRate identifies whether or not compression is
being applied to the volume and at what rate. The possible values are '1'
(None), '2' (High), '3' (Medium) or '4' (Low).

CompressionState Optional Experimental. CompressionState indicates whether the compresson is '2'
(pending), '3' (initializing), '4' (in progress) or '5' (completed). If
compression is not supported (CompressionRate='1') for the volume, the
CompressionState shall be '1' (Not Applicable).

Table 599 - SMI Referenced Properties/Methods for CIM_OwningJobElement

Properties Flags Requirement Description & Notes

OwnedElement Mandatory

OwningElement Mandatory

Table 598 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes
SNIA Technical Position 825

Indications
Table 600 describes class CIM_StorageCapabilities.

Table 600 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of Capabilities. In
addition, the user-friendly name can be used as a index
property for a search or query. (Note: ElementName does not
have to be unique within a namespace) If the capabilities are
fixed, then this property should be used as a means for the
client application to correlate between capabilities and device
documentation.

ElementType Mandatory Enumeration indicating the type of instance to which this
StorageCapabilities applies. Shall be either 5 or 6 (StoragePool
or StorageConfigurationService).

NoSinglePointOfFailure Mandatory Indicates whether or not the associated instance supports no
single point of failure. Values are: FALSE = does not support no
single point of failure, and TRUE = supports no single point of
failure.

NoSinglePointOfFailureDefault Mandatory Indicates the default value for the NoSinglePointOfFailure
property.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of
complete copies of data that can be maintained. Examples
would be RAID 5 where 1 copy is maintained and RAID 1
where 2 or more copies are maintained. Possible values are 1
to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of
complete copies of data that can be maintained. Examples
would be RAID 5 where 1 copy is maintained and RAID 1
where 2 or more copies are maintained. Possible values are 1
to n.

DataRedundancyDefault Mandatory DataRedundancyDefault describes the default number of
complete copies of data that can be maintained. Examples
would be RAID 5 where 1 copy is maintained and RAID 1
where 2 or more copies are maintained. Possible values are 1
to n.

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of
spindles or logical devices that can be used. Package
redundancy describes how many disk spindles or logical
devices can fail without data loss including, at most, one spare.
Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of
spindles or logical devices that can be used. Package
redundancy describes how many disk spindles or logical
devices can fail without data loss including, at most, one spare.
Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyDefault Mandatory PackageRedundancyDefault describes the default number of
spindles or logical devices that can be used. Package
redundancy describes how many disk spindles or logical
devices can fail without data loss including, at most, one spare.
Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.
826

 Indications
ExtentStripeLengthDefault Optional Describes what the default stripe length, the number of
members or columns, a storage element will have when
created or modified using this capability. A NULL means that
the setting of stripe length is not supported at all or not
supported at this level of storage element allocation or
assignment.

ParityLayoutDefault Optional ParityLayoutDefault describes what the default parity a storage
element will have when created or modified using this
capability. A NULL means that the setting of the parity is not
supported at all or is not supported at this level of storage
element allocation or assignment.

UserDataStripeDepthDefault Optional UserDataStripeDepthDefault describes what the number of
bytes forming a stripe that a storage element will have when
created or modified using this capability. A NULL means that
the setting of stripe depth is not supported at all or not
supported at this level of storage element allocation or
assignment.

AvailableDiskType Optional Experimental. Enumeration indicating the type of DiskDrives
which may be available. (0)Unknown, (1)Other, (2)Hard Disk
Drive, (3)Solid State Drive, (4)Hybrid.

AvailableFormFactorType Optional Experimental. Enumeration indicating the drive physical size
which may be available. (0)Unknown, (1)Other, (2)Not
Reported, (3)5.25 inch, (4)3.5 inch, (5)2.5 inch, (6)1.8 inch".

AvailableInterconnectType Optional Experimental. Enumeration indicating the type of disk
interconnections which may be available. (0)Unknown, (1)other
, (2)SAS, (3)SATA, (4)SAS/SATA, (5)FC, (6)SOP.

AvailableInterconnectSpeed Optional Experimental. The speed of disk interconnections which are be
available. Values are in bits/second.

AvailableRPM Optional Experimental. The rotational speed of disk media which are be
available. Values are in rotations per minute. SSD devices shall
report 0".

Encryption Optional Experimental. This property reflects support of the encryption
feature implemented by some disk drives.

SupportedCompressionRates Optional Experimental. SupportedCompressionRates identifies the
compression rates that are supported by the implementation,
"including '1' (None). If '1' (None) is specified, then no other rate
may be identified. If '1' (None) is not specificed, then the values
recognized are '2' (High), '3' (Medium), '4' (Low) and/or '5'
(Implementation Decides).

CreateSetting() Conditional Conditional requirement: Support for
StorageConfigurationService. Generate a setting to use as a
goal for creating or modifying storage elements.

GetSupportedStripeLengths() Optional List the possible discrete stripe lengths supported at this time of
this method's execution.

GetSupportedStripeLengthRange() Optional List the possible stripe length ranges supported at the time of
this method's execution.

GetSupportedParityLayouts() Optional List the possible parity layouts supported at the time of this
method's execution.

Table 600 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes
SNIA Technical Position 827

Indications

643

644

645

646

647

648

649

650

651

652
24.6.23 CIM_StorageConfigurationCapabilities (Concrete)

StorageConfigurationCapabilities as defined in Block Services, with the addition of
SupportedStorageElementTypes for thin pools and volumes. The class definition specializes the
CIM_StorageConfigurationCapabilities definition in the Block Services profile.Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for the Storage Relocation profile.

Table 601 describes class CIM_StorageConfigurationCapabilities (Concrete).

GetSupportedStripeDepths() Optional List the possible stripe depths supported at the time of this
method's execution.

GetSupportedStripeDepthRange() Optional List the possible stripe depth ranges supported at the time of
this method's execution.

Table 601 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePoolFeatures Optional Lists what StorageConfigurationService
functionalities are implemented. Matches 2|3|4|5|6|7
(InExtents or Single InPool or multiple InPools or
Storage Pool QoS Change or Storage Pool Capacity
Expansion or Storage Pool Capacity Reduction).

SupportedSynchronousActions Conditional Conditional requirement: Support for the Storage
Relocation profile. Al least one of
SupportedSynchronousActions or
SupportedAsynchronousActions shall be
implemented.

Lists what actions, invoked through
StorageConfigurationService methods, shall not
produce Concrete jobs. This version of the standard
recognizes "2" (Storage Pool Creation), "3" (Storage
Pool Deletion), "4" (Storage Pool Modification), "5"
(Storage Element Creation), "12" (Storage Element
from Element Creation), "13" (Storage Element from
Element Modification) or "15" (StoragePool Usage
Modification) or "17" (StorageVolume To StoragePool
Relocation) or "18" (StoragePool To StoragePool
Relocation) or "19" (StorageVolume To StorageExtent
Relocation) or "20" (StoragePool To StorageExtent
Relocation) or "21" (LogicalDisk To StorageExtent
Relocation) or "22" (Multiple Storage Element
Creation) or "23" (Multiple Storage Element Return)
or "24" (Storage Element from Multiple Pools
Creation) or "25" (CompositeVolume Creation) or
"26" (CompositeVolume Return) or "27"
(CompositeVolume Modification) or "28"
(CompositeVolume Dissolve).

Table 600 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes
828

 Indications

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669
SupportedStorageElementTypes Mandatory Extended for Thin Provisioning to include 5
(ThinlyProvisionedStorageVolume), 6
(ThinlyProvisionedLogicalDisk), 7
(ThinlyProvisionedAllocatedStoragePool), 8
(ThinlyProvisionedQuotaStoragePool), or 9
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchronousActions Conditional Conditional requirement: Support for the Storage
Relocation profile. Al least one of
SupportedSynchronousActions or
SupportedAsynchronousActions shall be
implemented.

Lists what actions, invoked through
StorageConfigurationService methods, may produce
Concrete jobs. This version of the standard
recognizes "2" (Storage Pool Creation), "3" (Storage
Pool Deletion), "4" (Storage Pool Modification), "5"
(Storage Element Creation), "12" (Storage Element
from Element Creation), "13" (Storage Element from
Element Modification) or "15" (StoragePool Usage
Modification) or "17" (StorageVolume To StoragePool
Relocation) or "18" (StoragePool To StoragePool
Relocation) or "19" (StorageVolume To StorageExtent
Relocation) or "20" (StoragePool To StorageExtent
Relocation) or "21" (LogicalDisk To StorageExtent
Relocation) or "22" (Multiple Storage Element
Creation) or "23" (Multiple Storage Element Return)
or "24" (Storage Element from Multiple Pools
Creation) or "25" (CompositeVolume Creation) or
"26" (CompositeVolume Return) or "27"
(CompositeVolume Modification) or "28"
(CompositeVolume Dissolve).

SupportedStorageElementFeatures Conditional Conditional requirement: Support for the Storage
Relocation profile. Al least one of
SupportedSynchronousActions or
SupportedAsynchronousActions shall be
implemented.

Lists actions supported through the invocation of
StorageConfigurationService.CreateOrModifyElemen
tFromStoragePool(). Matches
3|8|14|15|16|17|18|19|20|21 (StorageVolume
Creation or LogicalDisk Creation or StorageVolume
To StoragePool Relocation or StoragePool To
StoragePool Relocation or StorageVolume To
StorageExtent Relocation or StoragePool To
StorageExtent Relocation LogicalDisk To
StorageExtent Relocation or CompositeVolume
Creation or CompositeVolume Modification or
CompositeVolume Dissolve).

SupportedStorageElementUsage Optional Indicates the intended usage or any restrictions that
may have been imposed on supported storage
elements.

ClientSettableElementUsage Optional Indicates the intended usage or any restrictions that
may have been imposed on the usage of client-
settable elements.

Table 601 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes
SNIA Technical Position 829

Indications

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685
24.6.24 CIM_StorageConfigurationCapabilities (Global)

StorageConfigurationCapabilities as defined in Block Services, with the addition of
SupportedStorageElementTypes for thin pools and volumes. The class definition specializes the
CIM_StorageConfigurationCapabilities definition in the Block Services profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

SupportedStoragePoolUsage Conditional Conditional requirement: Support for the Storage
Relocation profile. Indicates the intended usage or
any restrictions that may have been imposed on
storage pools.

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage
Relocation profile. Indicates the intended usage or
any restrictions that may have been imposed on the
usage of a client-settable storage pool.

MaximumElementCreateCount Optional Indicates the maximum number of elements that can
be specified to be created in a single method call. If 0
or null, there is no limit.

MaximumElementDeleteCount Conditional Conditional requirement: Support for the Storage
Relocation profile. Indicates the maximum number of
elements that can be deleted in a single method call.
If 0 or null, there is no limit.

MultipleElementCreateFeatures Optional Enumeration indicating features offered by the
multiple element create method. "2" (Single instance
creation indication).

MultipleElementDeleteFeatures Optional Enumeration indicating features offered by the
multiple element delete method. "2" (Continue on
nonexistent element) or "3" (Return error on
nonexistent element).

ThinProvisionedClientSettableReserve
(added)

Mandatory Experimental.

ThinProvisionedDefaultReserve (added) Mandatory Experimental.

GetElementNameCapabilities() Optional This method indicates if ElementName can be
specified as a part of invoking an appropriate method
of StorageConfigurationService to create a new
element. Additionally, the returned data includes the
methods that can be used to modify the
ElementName of existing storage elements.

Table 601 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes
830

 Indications

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704
Table 602 describes class CIM_StorageConfigurationCapabilities (Global).

Table 602 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePoolFeatures Optional Lists what StorageConfigurationService functionalities are
implemented. Matches 2|3|4|5|6|7 (InExtents or Single
InPool or Multiple InPools or Storage Pool QoS Change or
Storage Pool Capacity Expansion or Storage Pool Capacity
Reduction).

SupportedSynchronousActions Conditional Conditional requirement: Support for the Storage Relocation
profile. Al least one of SupportedSynchronousActions or
SupportedAsynchronousActions shall be implemented.

Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs.

SupportedStorageElementTypes Mandatory Extended for Thin Provisioning to include 5
(ThinlyProvisionedStorageVolume), 6
(ThinlyProvisionedLogicalDisk), 7
(ThinlyProvisionedAllocatedStoragePool), 8
(ThinlyProvisionedQuotaStoragePool), or 9
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchronousActions Conditional Conditional requirement: Support for the Storage Relocation
profile. Al least one of SupportedSynchronousActions or
SupportedAsynchronousActions shall be implemented.

Lists what actions, invoked through
StorageConfigurationService methods, may produce
Concrete jobs.

SupportedStorageElementFeatures Conditional Conditional requirement: Support for the Storage Relocation
profile. Lists actions supported through the invocation of
StorageConfigurationService.CreateOrModifyElementFrom
StoragePool(). Matches
3|5|8|9|11|12|13|14|15|16|17|18|19|20|21 (StorageVolume
Creation or StorageVolume Modification or LogicalDisk
Creation or LogicalDisk Modification or Storage Element
QoS Change or Storage Element Capacity Expansion or
Storage Element Capacity Reduction or StorageVolume To
StoragePool Relocation or StoragePool To StoragePool
Relocation or StorageVolume To StorageExtent Relocation
or 'StoragePool To StorageExtent Relocation or LogicalDisk
To StorageExtent Relocation or CompositeVolume Creation
or CompositeVolume Modification or CompositeVolume
Dissolve).

SupportedStorageElementUsage Optional Indicates the intended usage or any restrictions that may
have been imposed on supported storage elements.

ClientSettableElementUsage Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of client-settable
elements.

SupportedStoragePoolUsage Conditional Conditional requirement: Support for the Storage Relocation
profile. Indicates the intended usage or any restrictions that
may have been imposed on storage pools.
SNIA Technical Position 831

Indications

705

706

707

708

709

710

711

712

713

714

715
716

717

718

719

720

721

722
24.6.25 CIM_StorageConfigurationCapabilities (Primordial)

StorageConfigurationCapabilities as defined in Block Services, with the addition of
SupportedStorageElementTypes for thin pools and volumes. The class definition specializes the
CIM_StorageConfigurationCapabilities definition in the Block Services profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for the Storage Relocation profile.

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage Relocation
profile. Indicates the intended usage or any restrictions that
may have been imposed on the usage of a client-settable
storage pool.

MaximumElementCreateCount Optional Indicates the maximum number of elements that can be
specified to be created in a single method call. If 0 or null,
there is no limit.

MaximumElementDeleteCount Conditional Conditional requirement: Support for the Storage Relocation
profile. Indicates the maximum number of elements that can
be deleted in a single method call. If 0 or null, there is no
limit.

MultipleElementCreateFeatures Optional Enumeration indicating features offered by the multiple
element create method. "2" (Single instance creation
indication).

MultipleElementDeleteFeatures Optional Enumeration indicating features offered by the multiple
element delete method. "2" (Continue on nonexistent
element) or "3" (Return error on nonexistent element).

AutomaticPoolSelectionAllowed Optional If true, it indicates the implementation selects appropriate
pools based on other supplied parameters to create
elements. For example, based on supplied Goal.

ThinProvisionedClientSettableReserve
(added)

Mandatory Experimental.

ThinProvisionedDefaultReserve (added) Mandatory Experimental.

GetElementNameCapabilities() Optional This method indicates if ElementName can be specified as a
part of invoking an appropriate method of
StorageConfigurationService to create a new element.
Additionally, the returned data includes the methods that can
be used to modify the ElementName of existing storage
elements.

Table 602 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes
832

 Indications

723

724

725
726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742
Table 603 describes class CIM_StorageConfigurationCapabilities (Primordial).

Table 603 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePoolFeatures Optional Lists what StorageConfigurationService functionalities
are implemented. Matches 2|3|4 (InExtents or Single
InPool or Multiple InPools).

SupportedSynchronousActions Conditional Conditional requirement: Support for the Storage
Relocation profile. Al least one of
SupportedSynchronousActions or
SupportedAsynchronousActions shall be implemented.

Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs. This version of the standard recognizes
"2" (Storage Pool Creation), "12" (Storage Element from
Element Creation) or "15" (StoragePool Usage
Modification) or "17" (StorageVolume To StoragePool
Relocation) or "18" (StoragePool To StoragePool
Relocation) or "19" (StorageVolume To StorageExtent
Relocation) or "20" (StoragePool To StorageExtent
Relocation) or "21" (LogicalDisk To StorageExtent
Relocation).

SupportedStorageElementTypes Mandatory Extended for Thin Provisioning to include 5
(ThinlyProvisionedStorageVolume), 6
(ThinlyProvisionedLogicalDisk), 7
(ThinlyProvisionedAllocatedStoragePool), 8
(ThinlyProvisionedQuotaStoragePool), or 9
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchronousActions Conditional Conditional requirement: Support for the Storage
Relocation profile. Lists what actions, invoked through
StorageConfigurationService methods, may produce
Concrete jobs. This version of the standard recognizes
"2" (Storage Pool Creation), "12" (Storage Element from
Element Creation) or "15" (StoragePool Usage
Modification) or "17" (StorageVolume To StoragePool
Relocation) or "18" (StoragePool To StoragePool
Relocation) or "19" (StorageVolume To StorageExtent
Relocation) or "20" (StoragePool To StorageExtent
Relocation) or "21" (LogicalDisk To StorageExtent
Relocation) or "22" (Multiple Storage Element Creation)
or "23" (Multiple Storage Element Return) or "24"
(Storage Element from Multiple Pools Creation).
SNIA Technical Position 833

Indications

743

744

745

746

747

748

749

750

751
24.6.26 CIM_StorageConfigurationService

StorageConfigurationService as defined in Block Services, adding thin provisioning values to the
ElementType parameter. The class definition specializes the CIM_StorageConfigurationService definition
in the Block Services profile Properties or methods not inherited are marked accordingly as '(overridden)'
or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 604 describes class CIM_StorageConfigurationService.

SupportedStorageElementFeatures Conditional Conditional requirement: Support for the Storage
Relocation profile. Lists actions supported through the
invocation of
StorageConfigurationService.CreateOrModifyElementFr
omStoragePool(). This version of the standard does not
recognize any values for this property. For Primordial
pools, this shall not contain 3 (StorageVolume Creation),
5 (StorageVolume Modification), 8 (LogicalDisk
Creation) or 9 (LogicalDisk Modification) or 14
(StorageVolume To StoragePool Relocation) or 15
(StoragePool To StoragePool Relocation) or 16
(StorageVolume To StorageExtent Relocation) or 17
(StoragePool To StorageExtent Relocation) or 18
(LogicalDisk To StorageExtent Relocation or 19
(CompositeVolume Creation) or 20 (CompositeVolume
Modification) or 21 (CompositeVolume Dissolve).

SupportedStorageElementUsage Optional For Primordial StorageConfigurationCapabilities, this
shall be NULL.

ClientSettableElementUsage Optional For Primordial StorageConfigurationCapabilities, this
shall be NULL.

SupportedStoragePoolUsage Conditional Conditional requirement: Support for the Storage
Relocation profile. Indicates the intended usage or any
restrictions that may have been imposed on storage
pools.

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage
Relocation profile. Indicates the intended usage or any
restrictions that may have been imposed on the usage of
a client-settable storage pool.

ThinProvisionedClientSettableReserve
(added)

Mandatory Experimental.

ThinProvisionedDefaultReserve (added) Mandatory Experimental.

Table 604 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

CreationClassName Mandatory

Table 603 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)

Properties Flags Requirement Description & Notes
834

 Indications

752

753
754
755

756

757

758

759

760

761

762

763

764

765
766
767

768

769
24.6.27 CIM_StoragePool (Concrete)

Concrete StoragePool as defined in Block Services with the addition of SpaceLimit,
SpaceLimitDetermination, and ThinProvisionMetaDataSpace properties. The class definition specializes
the CIM_StoragePool definition in the Block Services profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Mandatory

Table 605 describes class CIM_StoragePool (Concrete).

SystemName Mandatory

Name Mandatory

CreateOrModifyStoragePool() Optional Create (or modify) a StoragePool. A job may be created
as well.

DeleteStoragePool() Optional Start a job to delete a StoragePool.

CreateOrModifyElementFromStoragePool()
(overridden)

Mandatory Expanded ElementType parameter.

CreateElementsFromStoragePools() Optional Experimental. Create one or more storage elements. A
job may be created as well.

CreateOrModifyElementFromElements()
(overridden)

Mandatory Expanded ElementType parameter.

ReturnToStoragePool() Mandatory Release the capacity represented by this storage
element back to the Pool.

ReturnElementsToStoragePool() Optional Experimental. Release the capacity represented by one
or more storage elements back to the Pool.

RequestUsageChange() Optional Allows a client to change the Usage for the element.

GetElementsBasedOnUsage() Optional Allows a client to retrieve elements for a specialized
Usage.

Table 605 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes

Primordial Mandatory Shall be false.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies this Pool.

OperationalStatus Conditional Experimental. Conditional requirement: Support for the Storage Relocation
profile or Mandatory if the Storage Pool Diagnostics is supported. Value
shall be 2|3|5|6|11|15 (OK or Degraded or Predictive Failure or Error or In
Service or Dormant). In addition, the secondary OperationalStatus may be
19 (Relocating) with 2|3|15 (OK or Degraded or Dormant).

Table 604 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Properties Flags Requirement Description & Notes
SNIA Technical Position 835

Indications

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785
TotalManagedSpace Mandatory

RemainingManagedSpace Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Conditional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

CapacityInMigratingSource Optional Experimental. The total capacity of extents migrating out from this storage
pool.

CapacityInMigratingTarget Optional Experimental. The total capacity of extents migrating into this storage pool.

ElementsShareSpace Optional If true, it indicates elements allocated from the storage pool are sharing
space from the storage pool. For example, multiple snapshots "allocated"
from a storage pool, point to the same blocks of the storage pool. As
another example, elements utilizing de-duplication technology refer to a
shared copy of the data stored in the storage pool.

ReservedSpace Optional The amount of capacity used by the storage pool to store information
about the configuration of the storage pool. The space is not included in
the TotalManagedSpace of the storage pool.

CompressionActive Optional Experimental. Indicates if the pool is compressed.

CompressionPercent Optional Experimental. Indicates amount of compression on the pool.

CompressionRate Optional Experimental. CompressionRate identifies whether or not compression is
being applied to the pool and at what rate.

CompressionState Optional Experimental. The CompressionState indicates whether the compression
is pending, initializing, in progress or completed.

DedupActive Optional Experimental. Indicates if deduplication is active for this pool

DedupPercent Optional Experimental. Deduplication percentage of the pool.

SpaceLimit (added) Mandatory Experimental. The capacity of the storage allocated to the pool when
SpaceLimitDetermination has the value 3 (Quota) or 4 (Limitless) or set to
the value of TotalManagedSpace if SpaceLimitDetermination has the value
2 (Allocated).

SpaceLimitDetermination
(added)

Mandatory Experimental. The SpaceLimitDetermination property of StoragePool
defines the approach associated with the pool for determining capacity
information for the pool.

ThinProvisionMetaDataSp
ace (added)

Optional Experimental. The size of metadata consumed by this storage pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService. List
the discrete storage element sizes that can be created or expanded from
this Pool.

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService. List
the size ranges for storage element that can be created or expanded from
this Pool.

GetAvailableExtents() Optional List the StorageExtents from this Pool that may be used to create or
expand a storage element. The StorageExtents may not already be in use
as supporting capacity for existing storage element.

Table 605 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes
836

 Indications

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803
24.6.28 CIM_StoragePool (Empty)

Empty StoragePool as defined in Block Services with the addition of SpaceLimit,
SpaceLimitDetermination, and ThinProvisionMetaDataSpace properties. The class definition specializes
the CIM_StoragePool definition in the Block Services profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Optional

Table 606 describes class CIM_StoragePool (Empty).

Table 606 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty)

Properties Flags Requirement Description & Notes

Primordial Mandatory This may be either true or false. That is, both concrete and primordial
StoragePools may be empty.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|15 (OK or Degraded or Error or Dormant). In addition,
the secondary OperationalStatus may be 19 (Relocating) with2|3|15 (OK
or Degraded or Dormant).

TotalManagedSpace Mandatory This shall be 0 for an empty StoragePool.

RemainingManagedSpace Mandatory

Usage Optional

OtherUsageDescription Conditional Set when Usage is Other

ClientSettableUsage Optional

CapacityInMigratingSource Optional Experimental. The total capacity of extents migrating out from this storage
pool.

CapacityInMigratingTarget Optional Experimental. The total capacity of extents migrating into this storage pool.

CompressionActive Optional Experimental. Indicates if the pool is compressed.

CompressionPercent Optional Experimental. Indicates amount of compression on the pool.

CompressionRate Optional Experimental. CompressionRate identifies whether or not compression is
being applied to the pool and at what rate.

CompressionState Optional Experimental. The CompressionState indicates whether the compression
is pending, initializing, in progress or completed.

DedupActive Optional Experimental. Indicates if deduplication is active for this pool

DedupPercent Optional Experimental. Deduplication percentage of the pool.

SpaceLimit (added) Mandatory Experimental. The capacity of the storage allocated to the pool when
SpaceLimitDetermination has the value 3 (Quota) or 4 (Limitless) or set to
the value of TotalManagedSpace if SpaceLimitDetermination has the value
2 (Allocated).
SNIA Technical Position 837

Indications

804

805

806

807

808

809

810

811

812

813

814

815

816
817

818

819
24.6.29 CIM_StoragePool (Primordial)

Primordial StoragePool as defined in Block Services with the addition of SpaceLimit,
SpaceLimitDetermination, and ThinProvisionMetaDataSpace properties. The class definition specializes
the CIM_StoragePool definition in the Block Services profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 607 describes class CIM_StoragePool (Primordial).

SpaceLimitDetermination
(added)

Mandatory Experimental. The SpaceLimitDetermination property of StoragePool
defines the approach associated with the pool for determining capacity
information for the pool.

ThinProvisionMetaDataSp
ace (added)

Optional Experimental. The size of metadata consumed by this storage pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService.

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService.

GetAvailableExtents() Optional

Table 607 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes

Primordial Mandatory Shall be true.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies this Pool.

OperationalStatus Mandatory Value shall be 2|3|6|15 (OK or Degraded or Error or Dormant). In addition,
the secondary OperationalStatus may be 19 (Relocating) with 2|3|15 (OK
or Degraded or Dormant).

TotalManagedSpace Mandatory

RemainingManagedSpace Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Conditional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

CapacityInMigratingSource Optional Experimental. The total capacity of extents migrating out from this storage
pool.

CapacityInMigratingTarget Optional Experimental. The total capacity of extents migrating into this storage pool.

ReservedSpace Optional The amount of capacity used by the storage pool to store information
about the configuration of the storage pool. The space is not included in
the TotalManagedSpace of the storage pool.

Table 606 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty)

Properties Flags Requirement Description & Notes
838

 Indications

820

821

822

823

824

825
826

827

828

829

830

831
24.6.30 CIM_StorageSetting

StorageSetting as defined in Block Services with the addition of and Thin Provisioning properties. The
class definition specializes the CIM_StorageSetting definition in the Block Services profile. Properties or
methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 608 describes class CIM_StorageSetting.

CompressionActive Optional Experimental. Indicates if the pool is compressed.

CompressionPercent Optional Experimental. Indicates amount of compression on the pool.

CompressionRate Optional Experimental. CompressionRate identifies whether or not compression is
being applied to the pool and at what rate.

CompressionState Optional Experimental. The CompressionState indicates whether the compression
is pending, initializing, in progress or completed.

DedupActive Optional Experimental. Indicates if deduplication is active for this pool

DedupPercent Optional Experimental. Deduplication percentage of the pool.

SpaceLimit (added) Mandatory Experimental. The capacity of the storage allocated to the pool when
SpaceLimitDetermination has the value 3 (Quota) or 4 (Limitless) or set to
the value of TotalManagedSpace if SpaceLimitDetermination has the value
2 (Allocated).

SpaceLimitDetermination
(added)

Mandatory Experimental. The SpaceLimitDetermination property of StoragePool
defines the approach associated with the pool for determining capacity
information for the pool.

ThinProvisionMetaDataSp
ace (added)

Optional Experimental. The size of metadata consumed by this storage pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService. List
the discrete storage element sizes that can be created or expanded from
this Pool.

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService. List
the size ranges for storage element that can be created or expanded from
this Pool.

GetAvailableExtents() Optional List the StorageExtents from this Pool that may be used to create or
expand a storage element. The StorageExtents may not already be in use
as supporting capacity for existing storage element.

Table 608 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In addition, the
user-friendly name can be used as a index property for a search of query.
(Note: Name does not have to be unique within a namespace.).

Table 607 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes
SNIA Technical Position 839

Indications

832

833

834

835

836

837

838

839

840
NoSinglePointOfFailure Mandatory Indicates the desired value for No Single Point of Failure. Possible values
are false = single point of failure, and true = no single point of failure.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional ExtentStripeLength describes the desired stripe length goal.

ExtentStripeLengthMin Optional ExtentStripeLengthMin describes the minimum acceptable stripe length.

ExtentStripeLengthMax Optional ExtentStripeLengthMax describes the maximum acceptable stripe length.

ParityLayout Optional ParityLayout describes the desired parity layout. The value may be 1 or 2
(Non-rotated Parity or Rotated Parity).

UserDataStripeDepth Optional UserDataStripeDepth describes the desired stripe depth.

UserDataStripeDepthMin Optional UserDataStripeDepthMin describes the minimum acceptable stripe depth.

UserDataStripeDepthMax Optional UserDataStripeDepthMax describes the maximum acceptable stripe
depth.

ChangeableType Mandatory This property informs a client if the setting can be modified. It also tells the
client how long this setting is expected to remain in the model. If the
implementation allows it, the client can use the property to request that the
setting's existence be not transient.

StorageExtentInitialUsage Optional The Usage value to be used when creating a new storage element.

StoragePoolInitialUsage Optional The Usage value to be used when creating a new storage pool.

DiskType Optional Experimental. Enumeration indicating the type of DiskDrive wanted.
(0)Dont care, (1)Other, (2)Hard Disk Drive, (3)Solid State Drive, (4)Hybrid.

InterconnectType Optional Experimental. Enumeration indicating the type of disk interconnection
wanted.".

InterconnectSpeed Optional Experimental. The speed of disk interconnection wanted in bits/second.
Value of 0 means dont care.

FormFactorType Optional Experimental. Enumeration indicating the physical size of drive wanted.".

Table 608 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes
840

 Indications

841

842
843

844

845

846

847

848

849
24.6.31 CIM_StorageSettingWithHints

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 609 describes class CIM_StorageSettingWithHints.

RPM Optional Experimental. The rotational speed of disk media wanted. A value of
0xffffffff means dont care. A value of 0 specifies a SSD drive.

Encryption Optional Experimental. This property reflects support of the encryption feature
wanted.

PortType Optional Experimental.

CompressionRate Optional Experimental. CompressionRate Indicates the desired compression for a
storage element. The possible values are '1' (None), '2' (High), '3'
(Medium), '4' (Low) or '5' (Implementation Decides).

CompressedElement Optional Experimental. CompressedElement property indicates whether or not
compression of the element is being requested. When set to true,
compression is being requested. When set to false, compression is not
being requested.

ThinProvisionedPoolType
(added)

Mandatory Experimental. This property is needed when the Setting is used as goal in
CreateOrModify... but is not needed when the Setting class is associated
to a pool or volume.

ThinProvisionedInitialRese
rve (added)

Mandatory

Table 609 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In addition, the
user-friendly name can be used as a index property for a search of query.
(Note: Name does not have to be unique within a namespace.).

NoSinglePointOfFailure Mandatory

DataRedundancyMin Mandatory

DataRedundancyMax Mandatory

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory

PackageRedundancyMax Mandatory

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional

ExtentStripeLengthMin Optional

ExtentStripeLengthMax Optional

Table 608 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes
SNIA Technical Position 841

Indications

850

851
852

853

854

855

856

857

858
24.6.32 CIM_StorageSettingsAssociatedToCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

ParityLayout Optional

UserDataStripeDepth Optional

UserDataStripeDepthMin Optional

UserDataStripeDepthMax Optional

StorageExtentInitialUsage Optional

StoragePoolInitialUsage Optional

DataAvailabilityHint Mandatory This hint is an indication from a client of the importance placed on data
availability. Values are 0=Don't Care to 10=Very Important.

AccessRandomnessHint Mandatory This hint is an indication from a client of the randomness of accesses.
Values are 0=Entirely Sequential to 10=Entirely Random.

AccessDirectionHint Mandatory This hint is an indication from a client of the direction of accesses. Values
are 0=Entirely Read to 10=Entirely Write.

AccessSizeHint Mandatory This hint is an indication from a client of the optimal access sizes. Several
sizes can be specified. Units("Megabytes").

AccessLatencyHint Mandatory This hint is an indication from a client how important access latency is.`
Values are 0=Don't Care to 10=Very Important.

AccessBandwidthWeight Mandatory This hint is an indication from a client of bandwidth prioritization. Values
are 0=Don't Care to 10=Very Important.

StorageCostHint Mandatory This hint is an indication of the importance the client places on the cost of
storage. Values are 0=Don't Care to 10=Very Important. A StorageVolume
provider might choose to place data on low cost or high cost drives based
on this parameter.

StorageEfficiencyHint Mandatory This hint is an indication of the importance placed on storage efficiency by
the client. Values are 0=Don't Care to 10=Very Important. A
StorageVolume provider might choose different RAID levels based on this
hint.

ChangeableType Mandatory

Table 609 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints

Properties Flags Requirement Description & Notes
842

 Indications
Table 610 describes class CIM_StorageSettingsAssociatedToCapabilities.

24.6.33 CIM_StorageSettingsGeneratedFromCapabilities

Created By: Extrinsic: CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 611 describes class CIM_StorageSettingsGeneratedFromCapabilities.

24.6.34 CIM_StorageVolume

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced from Host Hardware RAID Controller -
StorageVolume is mandatory.

Table 612 describes class CIM_StorageVolume.

Table 610 - SMI Referenced Properties/Methods for CIM_StorageSettingsAssociatedToCapabilities

Properties Flags Requirement Description & Notes

DefaultSetting Mandatory This boolean designates the setting that will be used if the CreateSetting()
method is called with providing the NewSetting parameter. However, some
implementations may require that the NewSetting parameter be non null.
There may be only one default setting per the combination of
StorageCapabilities and associated StoragePool as associated through
ElementCapabilities.

Dependent Mandatory The StorageSetting reference.

Antecedent Mandatory The StorageCapabilities reference.

Table 611 - SMI Referenced Properties/Methods for CIM_StorageSettingsGeneratedFromCapabilities

Properties Flags Requirement Description & Notes

Dependent Mandatory The StorageSetting reference.

Antecedent Mandatory The StorageCapabilities reference.

Table 612 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.
SNIA Technical Position 843

Indications
Name CD Mandatory Identifier for this volume; based of datapath standards such as
SCSI or ATAPI.

OtherIdentifyingInfo CD Optional Additional correlatable names.

IdentifyingDescriptions Conditional. Required if OtherIdentifyingInfo is provided.

NameFormat Mandatory The type of identifier in the Name property. The valid values for
StorageVolumes are:

1 (Other)

2 (VPD83NAA6)

3 (VPD83NAA5)

4 (VPD83Type2)

5 (VPD83Type1)

6 (VPD83Type0)

7 (SNVM)

8 (NodeWWN)

9 (NAA)

10 (EUI64)

11 (T10VID).

NameNamespace Mandatory The namespace that defines uniqueness for the NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant). In addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the parent
StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRedun
dancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Conditional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain
'SNIA:Allocated'.

CanDelete Optional Experimental. Indicates if the volume is able to be deleted by a
client application.

Table 612 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes
844

 Indications
24.6.35 CIM_SystemDevice (System to StorageVolume or LogicalDisk)

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Mandatory

Table 613 describes class CIM_SystemDevice (System to StorageVolume or LogicalDisk).

STABLE

NumExtentsMigrating Optional Experimental. The number of Extents in the process of migrating
for this storage volume when the volume relocation is on going.

IsCompressed Optional Experimental. IsCompressed identifies whether or not
compression is being applied to the volume. When set to "true" the
data is compressed. When set to "false" the data is not
compressed.

CompressionRate Optional Experimental. CompressionRate identifies whether or not
compression is being applied to the volume and at what rate. The
possible values are '1' (None), '2' (High), '3' (Medium) or '4' (Low).

CompressionState Optional Experimental. CompressionState indicates whether the
compression is '2' (pending), '3' (initializing), '4' (in progress) or '5'
(completed). If compression is not supported
(CompressionRate='1') for the volume, the CompressionState shall
be '1' (Not Applicable).

Table 613 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageVolume or Log-
icalDisk)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 612 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes
SNIA Technical Position 845

Indications
846

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
EXPERIMENTAL

25 Automated Storage Tiering Profile

25.1 Description

25.1.1 Synopsis

Profile Name: Automated Storage Tiering (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: TierService

Scoping Class: ComputerSystem

Related Profiles: Table 614 describes the related profiles for Automated Storage Tiering.

25.1.2 Overview

The storage industry offers a range of storage products with varying performance characteristics. For
example, Solid State Drive (SSD), Fibre Channel (FC), Serial ATA (SATA), etc.

Various storage products can be configured into different tiers of storage. To enable storage arrays to
provide faster access to data based on how frequently the data is accessed, it is desirable to monitor the
frequency of data access enabling the optimized placement of the data in the appropriate storage tier.

The Automated Storage Tiering profile, a component profile, includes classes and methods to expose the
storage tiering feature of the storage array. The storage tiers may be created by the storage array based
on the performance characteristics of the underlying hardware and the quality of service associated with
that hardware.

Alternatively, SMI-S clients may have the ability to create the storage tiers based on various requirements
such as disk drive technology, quality of service, etc.

Once the storage tiers have been identified, the storage array will monitor the data usage of various
storage elements (e.g., volumes) and “automatically” move the data to the appropriate storage tier in
order to optimize the response time of the applications using that data. At the same time, as the data in a
high performing storage tiers is used less often, the storage array will move that data to a less performing
storage tier.

Table 614 - Related Profiles for Automated Storage Tiering

Profile Name Organization Version Requirement Description

Block Services SNIA 1.8.0 Mandatory

Pools from Volumes SNIA 1.7.0 Optional

Job Control SNIA 1.5.0 Optional

Extent Composition SNIA 1.7.0 Optional

Disk Drive Lite SNIA 1.7.0 Optional
SNIA Technical Position 847

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49
Storage tiering may be a fully automated feature managed by the storage array. Deciding when and under
what performance criteria to move storage volumes between storage tiers may also be based on policies
and schedules provided by the storage administrators. In some cases, a storage array may have well
established default policies for optimum performance; however, it may also allow the storage
administrators to fine tune the policies to better meet the requirements of the applications accessing the
data.

The implementation may also offer a manual mode to allow clients to decide when to actually perform the
data movement/relocation based on the collected workload statistics.

Throughout this profile, there are specific references to class properties and methods pertaining to each
section. Refer to 25.4 "CIM Elements" for a complete list of all properties and methods, including their
description.

25.1.3 Key Components

Table 615 shows a list of key classes used by the Automated Storage Tiering.

Clients should refer to 25.3 "Client Considerations and Recipes" for a list of steps to follow to utilize the
storage tiering service.

25.1.4 Automated Storage Tiering Discovery

Figure 165 depicts the Automated Storage Tiering discovery instance diagram.

Table 615 - Key Classes

Class Name Notes

TierService The main class for Automated Storage Tiering. It contains methods for manipulating storage
tiers.

TierServiceCapabilities Contains a set of properties and methods that describe the capabilities of automated storage
tiering.

StorageTier Represents a collection of storage objects belong to a tier.

AssociatedElementTier Associates an element to a storage tier.

TierDomain Represents a set of storage tiers that have a common scope and management domain.
848

50

51

52

53

54

55

56

57
As shown in Figure 166, the single instance of the class TierService and its methods provide the
mechanism for creating and managing storage tiers if they are not automatically created by the storage
array.

An instance of the TierSettingData associated to the TierServiceCapabilities includes properties that may
apply to all storage tiers (effectively, a “global” setting). Each storage tier also has an associated
TierSettingData (effectively, a “local” setting). The “local” setting has precedence over the “global”
setting. In other words, if a property appears in both the “local” and in the “global” setting, the property in
the “local” setting prevails.

Figure 165 - Automated Storage Tiering Discovery

Com puterSystem

// A rray

TierServ ice

HostedServ ice

TierServ iceCapabilities

E lem entCapabilities
SNIA Technical Position 849

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76
25.1.5 Storage Tiers

A storage tier is a collection of storage objects that have the same performance characteristics and/or
Quality of Service (QoS).

An implementation offering support for storage tiering, may create the storage tiers automatically or allow
clients to invoke the appropriate methods in the TierService class to create the storage tiers.

Figure 167 shows two storage tiers -- one based on SSD (Solid State Drives) disk drives, and one based
on SATA (Serial ATA) disk drives.

Storage volumes can be automatically relocated from one storage tier to another storage tier in order to
improve access to data stored on the storage volumes.

A storage tier with a lower value RelativePerformanceOrder has a “better” performance characteristics.
On systems that create storage tiers automatically, the system assigns an appropriate
RelativePerformanceOrder value to the storage tier. On systems that clients request a storage tier to be
created (by invoking the method CreateStorageTier, see clause 25.2.2), clients can specify the
RelativePerformanceOrder for the storage tier, as well as the acceptable minimum and maximum values
for the RelativePerformanceOrder for the requested storage tier.

The method GetStorageTierCandidateObjects (see clause 25.2.9) allows clients to locate the appropriate
storage objects to form a storage tier.

Storage volumes with a null or 0 StorageVolume.StorageTieringSelection property are not subject to
storage tiering. The property StorageVolume.StorageTieringSelection has the following possible values:

Figure 166 - Additional Automated Storage Tiering Components

ComputerSystem

// Array

TierService

HostedService

TierServiceCapabilities

ElementCapabilities

TierDomain

StorageTier

ServiceAffectsElement

ServiceAffectsElement

ConcreteDependency

SystemComponent

TierSettingData

SettingsDefineCapabilities
850

77

78

79

80

81

82

83

84

85

86
• 0: The StorageVolume is not subject to storage tiering

• 1: “Use RelativePerformanceOrder” -- Use the property StorageVolume.RelativePerformanceOrder to locate
an appropriate storage tier for this storage volume.

• 2: “Use RelativePerformanceOrderSet” -- which indicates the storage volume can only be associated with
storage tiers that have a RelativePerformanceOrder value included in this set.

The (optional) boolean property StorageTieringFrozen (when set to True) of the StorageSetting instance
associated to a StorageVolume indicates if further data movement of the StorageVolume has been
suspended. To resume the data movement of the StorageVolume by the storage tiering subsystem, use
the ModifyInstance intrinsic method to set the property StorageTieringFrozen of the associated
StorageSetting instance to False.
SNIA Technical Position 851

87

88
A storage tier may be comprised of storage objects with the same performance characteristics (and QoS)
from different storage pools, as shown in Figure 168.

Figure 167 - Storage Tiering Model

Pool1:
StoragePool

TierDomain

volume:
StorageVolume

extent1:
StorageExtent

//SSD//SSD

extent2:
StorageExtent

//SSD

extent4:
StorageExtent

//SATA

extent5:
StorageExtent

//SATA

extent3:
StorageExtent

//SSD

extent6:
StorageExtent

//SATA

tier1:
StorageTier

tier2:
StorageTier

AssociatedComponentExtent

MemberOfCollection

AssociatedElementTier

MemberOfCollection

ConcreteDependency

cap2:
StorageTierCapabilities

// QoS

ElementCapabilities

cap1:
StorageTierCapabilities

// QoS

ElementCapabilities

StorageTier as a collection of StorageExtents
(within the same StoragePool)

AllocatedfromStoragePool

TierSetting1:
TierSettingData

SettingsDefineCapabilities

SettingsDefineCapabilities
TierSetting2:

TierSettingData

AssociatedResourcePool
852

89

90

91
A storage tier may consist of StorageVolumes allocated from different storage pools with similar
performance characteristics (and/or QoS). In this configuration, StorageVolumes form a StoragePool (per
Pools from Volumes profile). Figure 169 shows such configuration.

Figure 168 - Storage Tiering Model based on different pools

ComputerS ystemTier Domain

T ierS etting2:
T ierS ettingData

T ierCapabilities2:
S torageTierCapabilities

T ierCapabilities1:
S torageTierCapabilities

P ool1:
S torageP ool

//S S D

P ool2:
S torageP oolt

//S S D

P ool4:
S torageP ool

//S A TA

P ool5:
S torageP ool

//S A TA

P ool3:
S torageP ool

//S S D

P ool6:
S torageP ool

//S A TA

Tier1:
S torageTier

T ier2:
S torageTier

S ettingsDefineCapabilities

S ystem Com ponent

MemberOfCollection

E lem entCapabilities

Mem berOfCollection

ConcreteDependency

E lementCapabilities

T ierS etting1:
T ierS ettingData

S ettingsDefineCapabilities

S torageTier as a collection of S torageP ools

A ssociatedResourceP ool
SNIA Technical Position 853

92

93

94

95
Storage tiers can be based on the Quality of Service (QoS) offered by the underlying storage pools.
Figure 170 shows two different storage tiers--one that is “highly available,” and another that has “low
availability.” The storage capabilities associated to each storage tier indicate the range of redundancies
offered by the corresponding storage tier.

Figure 169 - Storage Tiering based on StorageVolumes forming a StoragePool

T ie r D o m a in

V o lu m e 1 :
S to r a g e V o lu m e

/ /S S D

V o lu m e 2 :
S to ra g e V o lu m e l

/ /S S D

C o n c r e te P o o l1 :
S to r a g e P o o l

/ /S S D

C o n c r e te P o o l2 :
S to r a g e P o o l

/ /S A T A

V o lu m e l3 :
S to r a g e V o lu m e

/ /S A T A

P o o l3 :
S to ra g e P o o l

/ /S S D + S A T A
// C o n s t i tu e n t P o o l

t ie r 1 :
S to r a g e T ie r

t ie r 2 :
S to r a g e T ie r

M e m b e r O fC o lle c t io n

V o lu m e 5 :
S to r a g e V o lu m e

/ / S S D + S A T A
//P o o l V o lu m e

S to ra g e T ie r a s a c o l le c t io n o f S to ra g e V o lu m e s
(P o o ls f ro m V o lu m e s)

V o lu m e 4 :
S to r a g e V o lu m e

/ /S A T A

M e m b e r O fC o lle c t io n

A llo c a te d fr o m S to ra g e P o o l A llo c a te d fr o m S to ra g e P o o l A llo c a te d fr o m S to r a g e P o o l A llo c a te d fr o m S to r a g e P o o l

A llo c a te d fr o m S to r a g e P o o l

C o n c r e te D e p e n d e n c y

C o n c r e te D e p e n d e n c y

C o n c r e te D e p e n d e n c y C o n c r e te D e p e n d e n c y

A s s o c ia te d E le m e n tT ie r A s s o c ia te d E le m e n tT ie r

C o n c r e te D e p e n d e n c y

A s s o c ia te d R e s o u r c e P o o l
854

96

97
StorageTiers can be a collection of primordial StorageExtents with different characteristics that are used
to form a StoragePool, as shown in Figure 171. The primordial StorageExtents, with the

Figure 170 - Storage tiers based on QoS

Pool1:
StoragePool

volume1:
StorageVolume

TierDomain

volume2:
StorageVolume

extent1:
CompositeExtent

//SSD//RAID 1

extent2:
CompositeExtentt

//RAID 10

extent3:
StorageExtent

//JBOD

extent4:
StorageExtent

//JBOD

extent5:
CompositeExtent

//RAID 0

tier1:
StorageTier

tier2:
StorageTier

AssociatedComponentExtent

AllocatedfromStoragePool

AllocatedfromStoragePool

MemberOfCollection

AssociatedElementTier

MemberOfCollection

AssociatedElementTier

ConcreteDependency

cap2:
StorageTierCapabilities

// QoS
Low Availability

ElementCapabilities

cap1:
StorageTierCapabilities

// QoS
Highly Available

ElementCapabilities

AssociatedResourcePool
SNIA Technical Position 855

98

99
ExtentDiscriminator property set to ‘SNIA:DiskDrive,SNIA:Pool Component’, are directly associated to
DiskDrives, via the MediaPresent association (see the Disk Drive Lite profile).

Figure 171 - StorageTiers based on Primordial StorageExtents

Pool1:
StoragePool

TierDomain

volume:
StorageVolume

extent1:
StorageExtent

//SSD
 //SSD
 ExtentDiscriminator =

 'SNIA:DiskDrive'

extent2:
StorageExtent

//SSD
ExtentDiscriminator =
'SNIA:DiskDrive'

extent3:
StorageExtent

 //SATA
ExtentDiscriminator =

 'SNIA:DiskDrive'

extent4:
StorageExtent

//SATA
ExtentDiscriminator =

'SNIA:DiskDrive'

tier1:
StorageTier

tier2:
StorageTier

MemberOfCollection

AssociatedElementTier

MemberOfCollection

ConcreteDependency

cap2:
StorageTierCapabilities

// QoS

ElementCapabilities

cap1:
StorageTierCapabilities

// QoS

ElementCapabilities

StorageTier as a collection of Primordial
StorageExtents.

AllocatedfromStoragePool

TierSetting1:
TierSettingData

SettingsDefineCapabilities

SettingsDefineCapabilities
TierSetting2:

TierSettingData

AssociatedResourcePool
856

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123
25.1.6 StorageTier and StoragePool

There is a correlation between storage tiers and storage pools since storage volumes allocated from a
storage pool also have an association to one or more storage tiers. However, a StorageTier represents a
collection of resources, which are identified as a tier; whereas, a StoragePool represents a pool of
resources, which contain the elements such as a StorageVolume.

For example it is possible to divide up a storage pool based on disk drive technologies (and/or protection)
into storage tiers--for example, all SSD drives into tier1, FC drives into tier2, and SATA drives into tier3.

Alternatively, it is possible to create a storage tier from one or more storage pools--for example, one or
more storage pools that are based on SSD drives can be grouped into tier1, one or more storage pools
that are based on FC drives can be grouped into tier2, etc.

25.1.7 TierDomain

A tier domain is a collection of storage tiers. The storage tiers belonging to a tier domain are associated
to the TierDomain via the ConcreteDependency association. TierDomains are associated to the top level
ComputerSystem via the SystemComponent association.

The underlying storage pools are associated to one or more tier domains via the
AssociatedResourcePool association.

The storage elements subject to storage tiering are restricted to move between storage tiers in the same
tier domain. In Figure 172, there are two tier domains. In this configuration, for example, the storage
tiering subsystem may move a storage element allocated from storage pool 3 to storage pool 1, which is
associated to tier 1.

The property DataMovement indicates whether data movement is automatic or manual, as follows:

• Auto: Movement of data happens automatically based on the collected statistics.

• Manual: The actual movement of data happens when requested by a client. The data movement is still based
on the collected statistics.
SNIA Technical Position 857

Figure 172 - Two TierDomain Configuration

ComputerSystemTier Domain 1

Pool1:
StoragePool

//SSD

Pool2:
StoragePoolt

//SATA

Pool4:
StoragePool

//SATA

Pool5:
StoragePool

//SSD

Pool3:
StoragePool

//SATA

Pool6:
StoragePool

//SSD

Tier1:
StorageTier

Tier3:
StorageTier

SystemComponent

MemberOfCollection

ConcreteDependency

A configuration with two TierDomains

AssociatedResourcePool

Tier2:
StorageTier

MemberOfCollection

Tier4:
StorageTier

MemberOfCollection MemberOfCollection

Tier Domain 2

SystemComponent

ConcreteDependency

AssociatedResourcePool
858

124

125

126

127

128
25.1.8 Support for Sub-LUN tiering

An implementation may support storage tiering for Sub-LUNs. Such support involves automatic
movement of only certain, “heavily used”, extents of a storage volume to more performant storage tiers --
as opposed to moving all the extents of the storage volume. Figure 173 shows a storage volume that is
associated to two different storage tiers. See the TierServiceCapabilities in clause 25.1.9.

Figure 173 - A volume associated to two storage tiers

Pool1:
StoragePool

StorageSetting

volume1:
StorageVolume

TierDomain

Pool2:
StoragePool

extent1:
StorageExtent

//SSD

extent3:
StorageExtent

//SATA

extent4:
StorageExtent

//SATA

extent2:
StorageExtent

//SSD

extent5:
StorageExtent

//SATA

tier1:
StorageTier

tier2:
StorageTier

AssociatedComponentExtent

AssociatedComponentExtent

AllocatedfromStoragePool

AllocatedfromStoragePool

ElementSettingData

AssociatedElementTier

AssociatedElementTier

MemberOfCollection

ConcreteDependency

MemberOfCollection
SNIA Technical Position 859

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147
25.1.9 Storage Tiering Capabilities

The single instance of the class TierServiceCapabilities describes various capabilities of the storage
tiering feature. Clients should examine the TierServiceCapabilities instance to determine the specific
capabilities of the storage tiering implementation.

The property TierServiceCapabilities.relatedFeatures is an array indicating the supported features of the
storage tiering service. Table 616 show the possible values for this property.

The property TierServiceCapabilities.SupportedTierFeatures is an array indicating the supported tier
features.

25.2 Methods of the Profile

25.2.1 Status Codes

The Automated Storage Tiering Profile has a number of extrinsic methods for storage tier management.

All of the Profile extrinsic methods return one of the following status codes:

• 0: (Job) Completed with no error

• 1: Method not supported

• 4: Failed

• 5: Invalid Parameter

• 4096: Method Parameters Checked - Job Started

Table 616 - SupportedFeatures

Feature

System Creates StorageTiers

Client Can Create StorageTiers

System Creates TierDomains

Client Can Create TierDomains

Supports SubLUN

Table 617 - SupportedTierFeatures

Storage Tier Features

StorageTiers Based On Performance Only

StorageTiers Based On QoS Only

StorageTiers Based On Performance and QoS

StorageTiers Based On Other Characteristics

StorageTiers Can Overlap

StorageTiers Can Be Empty

StorageTiers In Multiple TierDomains
860

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177
Depending on the error condition, a method may return additional error codes and/or throw an
appropriate exception to indicate the error encountered.

Furthermore, the Profile relies on a number of intrinsic methods such as ModifyInstance for modifying
properties such as ElementName.

For the input/output parameter values, refer to the appropriate MOF files and the value maps.

Table 618 summarizes the extrinsic methods:.

25.2.2 CreateStorageTier

uint32 TierService.CreateStorageTier(

 [IN, Description (

 "A end user relevant name. If null, then a "

 "system supplied default name may be used.")]

 string ElementName,

 [IN, Description (

 "List of elements to use to create a storage "

 "tier. ")]

 CIM_LogicalElement REF Members[],

 [IN, Description (

 "If provided, it overrides the default tiering "

 "setting data that is used. "),

 EmbeddedInstance ("CIM_TierSettingData")]

 string TierSettingData,

 [IN, Description (

 "The Quality of Service per the properties "

 "of supplied StorageSetting.")]

 CIM_ManagedElement REF Goal,

 [IN, Description (

 "Array of references to CIM_StoragePool "

 "instances. ")]

 CIM_AdminDomain REF TierDomain[],

 [IN (false), OUT, Description (

Table 618 - Extrinsic Methods

Method Described in

CreateStorageTier() See 25.2.2

DeleteStorageTier() See 25.2.3

AddToStorageTier() See 25.2.4

RemoveFromStorageTier() See 25.2.5

CreateTierDomain() See 25.2.6

DeleteTierDomain() See 25.2.7

ModifyStorageTierDomainAssociation() See 25.2.8

GetStorageTierCandidateObjects() See 25.2.9

RequestDataMovementStateChange() See 25.2.10
SNIA Technical Position 861

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217
 "Reference to the job (may be Null if job is "

 "completed).")]

 CIM_ConcreteJob REF Job,

 [IN (false), OUT, Description (

 "Reference to the created StorageExtentTier.")]

 CIM_StorageTier REF StorageTier);

This method allows a client to create a storage tier based on the supplied information. For example, it is
possible to create a storage tier based on the storage extents of a storage pool that are utilizing the SSD
technology. In this case, the parameter Members[0] is set to reference the desired storage pool,
TierSettingData.Technology property set to SSD, and TierSettingData.StorageObjectType to
ComponentsOfStoragePool.

Basically, the more parameters specified, the narrower the criteria for selecting the storage objects
comprising a storage tier.

The parameters are as follows:

• ElementName: An end-user relevant name for the element being created. If null, then a system supplied
name may be used. The value will be stored in the 'ElementName' property for the created element.

• Members: List of elements (e.g., StorageExtents) to use to create a storage tier. If null, locate storage object
from other parameters -- for example, from TierSettingData.

• TierSettingData: Its properties are used to populate the applicable properties of the created storage tier -- for
example, RelativePerformanceOrder. Additionally, its other properties are used to narrow the selection
criteria for the locating appropriate storage objects for the tier -- for example, Technology, with values such as
SSD, Mixed, etc.

• Goal: The definition for the StorageSetting to locate storage objects with the desired Quality of Service.

• TierDomain: As an input, the created storage tier will be associated to this array of TierDomains. If null, the
implementation may create a TierDomain, or associate the created storage tier to existing TierDomains. As
an output, it will contain references to the TierDomains that the system decided to use or create.

• Job: If a Job is created as a side effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be null if job is completed).

• StorageTier: Refers to the created storage tier. If a job is created, this parameter may be null. Use the
AffectedJobElement association to locate the created storage tier once the job completes.

Method Notes:

• Any required associations are created in addition to the instance of the StorageTier.

25.2.3 DeleteStorageTier

uint32 TierService.DeleteStorageTier(

 [IN, EmbeddedInstance ("CIM_TierSettingData")]

 string TierSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] CIM_StorageTier REF StorageTier,

 [IN] Boolean Force);

Parameters:
862

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256
• StorageTier: A reference to the storage tier to be deleted.

• Force: The implementation may not allow a storage tier to be deleted if the storage tier is associated with
underlying storage elements. In such situations specify \"true\" to force the deletion of the storage tier.

This method allows a client to delete a storage tier. All associations to the deleted storage tier are also
removed as part of the action.

25.2.4 AddToStorageTier

uint32 TierService.AddToStorageTier(

 [IN] CIM_LogicalElement REF Members[],

 [IN, EmbeddedInstance ("CIM_TierSettingData")]

 string TierSettingData,

 [IN] CIM_ManagedElement REF Goal,

 [IN] CIM_ResourcePool REF InPools[],

 [OUT] CIM_ConcreteJob REF Job,

 [IN] CIM_StorageTier REF StorageTier);

This method allows a client to add storage objects to an existing storage tier.

25.2.5 RemoveFromStorageTier

uint32 TierService.RemoveFromStorageTier(

 [IN] CIM_LogicalElement REF Members[],

 [OUT] CIM_ConcreteJob REF Job,

 [IN] CIM_StorageTier REF StorageTier);

This method allows a client to remove storage objects from an existing storage tier. If empty storage tiers
are not supported by the implementation, deleting all members will delete the storage tier.

25.2.6 CreateTierDomain

 uint32 TierService.CreateTierDomain(

 [IN] string ElementName,

 [IN, EmbeddedInstance ("CIM_TierSettingData")]

 string TierSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_AdminDomain REF TierDomain);

This method allows a client to create a new TierDomain.

25.2.7 DeleteTierDomain

 uint32 TierService.DeleteTierDomain(

 [IN, EmbeddedInstance ("CIM_TierSettingData")]

 string TierSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] Boolean Force,

 [IN] CIM_AdminDomain REF TierDomain);
SNIA Technical Position 863

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300
This method allows a client to delete a TierDomain. If TierDomain is associated to storage tiers, the call
will fail. However, if the Force parameter is set to true, the associated storage tiers will also be deleted
unless the associated storage tiers are also associated to other TierDomains.

25.2.8 ModifyStorageTierDomainAssociation

 uint32 TierService.ModifyStorageTierDomainAssociation(

 [IN] CIM_AdminDomain REF RemoveFromTierDomain,

 [IN] CIM_AdminDomain REF AddToTierDomain,

 [IN, EmbeddedInstance ("CIM_TierSettingData")]

 string TierSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] CIM_StorageTier REF StorageTier);

This method allows a client to modify associations between a storage tier and tier domains.

If the parameter RemoveFromTierDomain is null, the storage tier will not be removed from an existing
TierDomain. If the parameter AddToTierDomain is null, the storage tier will not be added to a TierDomain.

For example, to just add a storage tier to an existing TierDomain, do not supply the
RemoveFromTierDomain parameter, but supply the parameter AddToTierDomain. Alternatively, to just
remove a storage tier from a TierDomain without adding it to another TierDomain, supply the
RemoveFromTierDomain, but do not supply the AddToTierDomain.

25.2.9 GetStorageTierCandidateObjects

 uint32 TierService.GetStorageTierCandidateObjects(

 [IN] CIM_LogicalElement REF InElements[],

 [IN, EmbeddedInstance ("CIM_TierSettingData")]

 string TierSettingData,

 [IN] CIM_ManagedElement REF Goal,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_LogicalElement REF Candidates[]);

This method returns an array of storage objects that can form a storage tier. The selection criteria is
based on the input parameters. The more input parameters, the narrower the search criteria. For
example, it is possible to specify to return the candidate storage objects based on all storage extents of a
storage pool, i.e., ConcreteComponents, that utilize solid state technology by supplying the appropriate
InPools and TierSettingData.

25.2.10 RequestDataMovementStateChange

 uint32 TierDomain.RequestDataMovementStateChange(

 [IN, Description (

 "Specifies the requested state. "

 "Possible values are as follows: \n"

 "Start: begin manual data movement. \n"

 "Stop: stop manual data movement. \n"

 "Pause: pause data movement. \n"

 "Resume: resume data movement."),

 ValueMap { "2", "3", "4", "5", "..", "0x8000.."},

 Values { "Start", "Stop", "Pause", "Resume",

 "DMTF Reserved", "Vendor Reserved" }]
864

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343
 uint16 RequestedState,

 [IN, Description (

 "A timeout period that specifies the maximum amount "

 "of time that the client expects the transition to "

 "the new state to take. The interval format must be "

 "used to specify the TimeoutPeriod. A value of 0 or "

 "a null parameter indicates that the client has no "

 "time requirements for the transition. \n"

 "If this property does not contain 0 or null and "

 "the implementation does not support this "

 "parameter, a return code of \'Use Of Timeout "

 "Parameter Not Supported\' must be returned.")]

 datetime TimeoutPeriod,

 [IN, Description (

 "Specifies to data and time for the indicated "

 "new requested state. If null, data movement "

 "starts as soon as possible.")]

 datetime StartTime,

 [IN, Description (

 "Specifies the duration for data movement."

 "The interval format must be used. A value of "

 "0 or a null parameter indicates there is "

 "no time limit.")]

 datetime DataMovementInterval);

Requests that the state of manual data movement to be changed to the value specified in the
RequestedState parameter. Invoking this method multiple times could result in earlier requests being
overwritten or lost.

The property TierDomain.DataMovementState indicates the current state of data movement activity for
the given TierDomain -- for example, “In Progress”, “Completed”, etc. -- see the MOF file for the list of
states.

25.3 Client Considerations and Recipes

25.3.1 Recipes

No recipes are defined in this version of the standard.

25.3.2 Automated Storage Tiering

In general, there are two possible implementations of storage tiering. One, where the storage array
manages the storage tiers, including creating the storage tiers. Two, all the clients need to do is to create
the storage tiers and tier domains.

In both implementations, the storage array monitors the activities of the storage elements (e.g., volumes)
and moves the storage elements to the appropriate storage tiers (with
StorageTier.RelativePerformanceOrder having a value less than or equal to
StorageVolume.RelativePerformanceOrder or one of the values in the RelativePerformanceOrderSet).

The following steps are recommended:

• Review the Discovery discussion to determine if Storage Tiering is supported. See Clause 25.
SNIA Technical Position 865

344

345

346

347

348

349

350

351

352
• Examine the storage tiering capabilities to determine whether a client needs to create the storage tiers or not.
See 25.1.9 "Storage Tiering Capabilities".

25.3.3 Creating StorageVolumes with Storage Tiering

Clients can create a new storage volume and request the newly created storage volume to be placed in
an appropriate storage tier. To do so, clients need to create an instance of AdvancedStorageSetting
(using the method StorageCapabilities.CreateSetting) and set the properties
AdvancedStorageSetting.InitialStorageTieringSelection and
AdvancedStorageSetting.RelativePerformanceOrderLimit (or InitialRelativePerformanceOrderSet) as
desired, by calling the intrinsic method ModifyInstance. Then, when calling the method
StorageConfigurationService.CreateOrModifyElementFromStoragePool, supply the advanced storage
setting. Alternatively, clients can set the property AdvancedStorageSetting.InitialStorageTierMethodology
and let the system decide the appropriate storage tier. For example, clients can specify a newly created
StorageVolume to be placed in a storage tier that has the “Highest Performance” by supplying the
argument AdvancedStorageSetting.InitialStorageTierMethodology=”Highest Performance” to the
StorageConfigurationService.CreateOrModifyElementFromStoragePool method.

25.4 CIM Elements

25.4.1 Overview

Table 619 describes the CIM elements for Automated Storage Tiering.

Table 619 - CIM Elements for Automated Storage Tiering

Element Name Requirement Description

25.4.2 CIM_AdvancedStorageSetting Optional Representation of a StorageSetting. StorageSettings are
covered in Block Services Package. Additional properties
are added for storage tiering.

25.4.3 CIM_AssociatedElementTier Conditional Conditional requirement: Required if storage tiering is
supported. Define the association between an element
and one or more storage tiers.

25.4.4 CIM_AssociatedResourcePool Optional Associates an object inherited from System to a
dependent ResourcePool such as a StoragePool.

25.4.5 CIM_ConcreteDependency (TierDomain to
StorageTier)

Optional Associates storage tiers to tier domains.

25.4.6 CIM_ElementCapabilities Mandatory Associates TierServiceCapabilities and TierService.

25.4.7 CIM_HostedService Mandatory

25.4.8 CIM_MemberOfCollection (Identifies
StorageExtents comprising a tier)

Optional Associates a storage extent to a storage tier.

25.4.9 CIM_MemberOfCollection (Identifies StoragePools
comprising a tier)

Optional Associates a storage pool to a storage tier.

25.4.10 CIM_MemberOfCollection (Identifies
StorageVolumes comprising a tier)

Optional Identifies a storage volume contributing to a storage tier.

25.4.11 CIM_MemberOfCollection (Identifies primordial
StorageExtents comprising a tier)

Optional Associates a primordial storage extent to a storage tier.

25.4.12 CIM_ServiceAffectsElement (Between
TierService and StorageTier)

Optional Associates TierService to StorageTier.

25.4.13 CIM_ServiceAffectsElement (Between
TierService and TierDomain)

Optional Associates TierService to TierDomain.
866

353

354

355

356

357

358
 25.4.2 CIM_AdvancedStorageSetting

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Optional

25.4.14 CIM_SettingsDefineCapabilities (Between
StorageTierCapabilities and TierSettingData)

Optional Associates StorageTierCapabilities to TierSettingData.

25.4.15 CIM_SettingsDefineCapabilities (Between
TierServiceCapabilities and TierSettingData)

Optional Associates TierServiceCapabilities to TierSettingData.

25.4.16 CIM_StorageTier Mandatory This class represents a collection of storage objects, such
as a collection of storage objects identified as a storage
tier.

25.4.17 CIM_StorageTierCapabilities Optional A subclass of StorageCapabilities that defines the
Capabilities of a storage tier.

25.4.18 CIM_StorageVolume (Constituent) Conditional Conditional requirement: Referenced from Pools from
Volumes - Constituent StorageVolume is mandatory. The
CIM_StorageVolume is an augmented version of the
CIM_StorageVolume defined in the Block Services
package. See CIM_StorageVolume in Storage
Management Technical Specification, Part 4 Block
Devices, 1.8.0 Rev 4 5.6.34 CIM_StorageVolume.

25.4.19 CIM_StorageVolume (Regular) Mandatory The CIM_StorageVolume is an augmented version of the
CIM_StorageVolume defined in the Block Services
package. See CIM_StorageVolume in Storage
Management Technical Specification, Part 4 Block
Devices, 1.8.0 Rev 4 5.6.34 CIM_StorageVolume.

25.4.20 CIM_SystemComponent (TierDomain to
ComputerSystem)

Optional Storage TierDomains on a system.

25.4.21 CIM_TierDomain Mandatory TierDomain representing one or more storage tiers.

25.4.22 CIM_TierService Mandatory The TierService class provides methods to allow a client
to manage storage tiers. Methods are described in the
Extrinsic Methods clause.

25.4.23 CIM_TierServiceCapabilities Mandatory A subclass of Capabilities that defines the Capabilities of
a TierService. An instance of TierServiceCapabilities is
associated with a TierService using ElementCapabilities.

25.4.24 CIM_TierSettingData Optional Contains special options for use by methods of
TierService.

Table 619 - CIM Elements for Automated Storage Tiering

Element Name Requirement Description
SNIA Technical Position 867

Table 620 describes class CIM_AdvancedStorageSetting.

Table 620 - SMI Referenced Properties/Methods for CIM_AdvancedStorageSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In addition,
the user-friendly name can be used as a index property for a search
of query. (Note: Name does not have to be unique within a
namespace.).

NoSinglePointOfFailure Mandatory Indicates the desired value for No Single Point of Failure. Possible
values are false = single point of failure, and true = no single point of
failure.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete
copies of data to be maintained. Examples would be RAID 5 where
1 copy is maintained and RAID 1 where 2 or more copies are
maintained. Possible values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete
copies of data to be maintained. Examples would be RAID 5 where
1 copy is maintained and RAID 1 where 2 or more copies are
maintained. Possible values are 1 to n.

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of
spindles or logical devices to be used. Package redundancy
describes how many disk spindles or logical devices can fail without
data loss including, at most, one spare. Examples would be RAID5
with a Package Redundancy of 1, RAID6 with 2. Possible values are
0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of
spindles or logical devices to be used. Package redundancy
describes how many disk spindles or logical devices can fail without
data loss including, at most, one spare. Examples would be RAID5
with a Package Redundancy of 1, RAID6 with 2. Possible values are
0 to n.

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional ExtentStripeLength describes the desired stripe length goal.

ExtentStripeLengthMin Optional ExtentStripeLengthMin describes the minimum acceptable stripe
length.

ExtentStripeLengthMax Optional ExtentStripeLengthMax describes the maximum acceptable stripe
length.

ParityLayout Optional ParityLayout describes the desired parity layout. The value may be
1 or 2 (Non-rotated Parity or Rotated Parity).

UserDataStripeDepth Optional UserDataStripeDepth describes the desired stripe depth.

UserDataStripeDepthMin Optional UserDataStripeDepthMin describes the minimum acceptable stripe
depth.

UserDataStripeDepthMax Optional UserDataStripeDepthMax describes the maximum acceptable stripe
depth.

ChangeableType Mandatory This property informs a client if the setting can be modified. It also
tells the client how long this setting is expected to remain in the
model. If the implementation allows it, the client can use the
property to request that the setting's existence be not transient.
868

359

360

361

362

363

364

365

366

367
25.4.3 CIM_AssociatedElementTier

Define the association between an element and one or more storage tiers.

Created By: Extrinsic: static

Modified By: Extrinsic: static

Deleted By: Extrinsic: Static

Requirement: Required if storage tiering is supported.

StorageExtentInitialUsage Optional The Usage value to be used when creating a new storage element.

StoragePoolInitialUsage Optional The Usage value to be used when creating a new storage pool.

InitialStorageTierMethodology MN Optional Enumeration indicating the initial storage tier for the element.
"None" or null means this element is not subject to storage tiering.
Values:

 0: None

 3: Implementation Decides

 4: Highest Performance

 5: Lowest Performance

 6: Highest Availability

7: Lowest Availability.

InitialStorageTieringSelection MN Optional Use this value to set the property StorageTieringSelection of the
associated element. Storage tiering examines
StorageTieringSelection to determine whether to use
RelativePerformanceOrder or RelativePerformanceOrderSet for
selecting an appropriate storage tier. A value of 0 or null indicates
the associated element is not subject to storage tiering. Values:

 0: Unknown

 2: Use RelativePerformanceOrder

3: Use RelativePerformanceOrderSet.

RelativePerformanceOrderLimit MN Optional The storage tiering limit applied to the element. This property
indicates RelativePerformanceOrder not to exceed this value. For
example: A system has storage tiers with
RelativePerformanceOrder of 1, 3, and 5. If the request is to create
a new storage volume with
StorageSetting.RelativePerformanceOrderLimit of 2, the newly
created storage volume is placed in a storage tier with
RelativePerformanceOrder of 1.

InitialRelativePerformanceOrder
Set

MN Optional A set of values. The associated element can only be placed in
storage tiers that have a RelativePerformanceOrder value included
in this set.

StorageTieringFrozen MN Optional If true, and the storage element is under the control of the tiering
subsystem, the element's tiering associations will remain frozen --
no data relocation between tiers.

Table 620 - SMI Referenced Properties/Methods for CIM_AdvancedStorageSetting

Properties Flags Requirement Description & Notes
SNIA Technical Position 869

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386
Table 621 describes class CIM_AssociatedElementTier.

25.4.4 CIM_AssociatedResourcePool

Associates an object inherited from System to a dependent ResourcePool such as a StoragePool.

Created By: Extrinsic: static

Modified By: Extrinsic: static

Deleted By: Extrinsic: Static

Requirement: Optional

Table 622 describes class CIM_AssociatedResourcePool.

25.4.5 CIM_ConcreteDependency (TierDomain to StorageTier)

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 623 describes class CIM_ConcreteDependency (TierDomain to StorageTier).

Table 621 - SMI Referenced Properties/Methods for CIM_AssociatedElementTier

Properties Flags Requirement Description & Notes

Allocated Mandatory Indicates what portion of the element is associated with (allocated from)
this storage tier. None: Indicates the element is associated with this
storage tier; however, currently none of the element's blocks are allocated
from this storage tier. Values:

 2: All

 3: Partial

4: None.

GroupComponent Mandatory A storage tier.

PartComponent Mandatory Any element subject to storage tiering.

Table 622 - SMI Referenced Properties/Methods for CIM_AssociatedResourcePool

Properties Flags Requirement Description & Notes

Antecedent Mandatory A ResourcePool such as StoragePool.

Dependent Mandatory A tier domain.

Table 623 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (TierDomain to StorageTier)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Tier Domain.

Dependent Mandatory A Storage Tier.
870

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405
25.4.6 CIM_ElementCapabilities

Associates TierServiceCapabilities and TierService.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 624 describes class CIM_ElementCapabilities.

25.4.7 CIM_HostedService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 625 describes class CIM_HostedService.

25.4.8 CIM_MemberOfCollection (Identifies StorageExtents comprising a tier)

Associates a storage extent to a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 626 describes class CIM_MemberOfCollection (Identifies StorageExtents comprising a tier).

Table 624 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

Capabilities Mandatory Instance of CIM_TierServiceCapabilities.

ManagedElement Mandatory Instance of CIM_TierService.

Table 625 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Tier Service hosted on the System.

Table 626 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StorageExtents
comprising a tier)

Properties Flags Requirement Description & Notes

Collection Mandatory Instance of CIM_StorageTier.

Member Mandatory A storage extent or a composite storage extent.
SNIA Technical Position 871

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426
25.4.9 CIM_MemberOfCollection (Identifies StoragePools comprising a tier)

Associates a storage pool to a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 627 describes class CIM_MemberOfCollection (Identifies StoragePools comprising a tier).

25.4.10 CIM_MemberOfCollection (Identifies StorageVolumes comprising a tier)

Identifies a storage volume contributing to a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 628 describes class CIM_MemberOfCollection (Identifies StorageVolumes comprising a tier).

25.4.11 CIM_MemberOfCollection (Identifies primordial StorageExtents comprising a tier)

Associates a primordial storage extent to a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 627 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StoragePools
comprising a tier)

Properties Flags Requirement Description & Notes

Collection Mandatory Instance of CIM_StorageTier.

Member Mandatory A storage pool.

Table 628 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StorageVolumes
comprising a tier)

Properties Flags Requirement Description & Notes

Collection Mandatory Instance of CIM_StorageTier.

Member Mandatory A storage volume.
872

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442
Table 629 describes class CIM_MemberOfCollection (Identifies primordial StorageExtents comprising a
tier).

25.4.12 CIM_ServiceAffectsElement (Between TierService and StorageTier)

Associates TierService to StorageTier.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 630 describes class CIM_ServiceAffectsElement (Between TierService and StorageTier).

25.4.13 CIM_ServiceAffectsElement (Between TierService and TierDomain)

Associates TierService to TierDomain.

Created By: Extrinsic: Static

Modified By: Extrinsic: Static

Deleted By: Extrinsic: Static

Requirement: Optional

Table 631 describes class CIM_ServiceAffectsElement (Between TierService and TierDomain).

25.4.14 CIM_SettingsDefineCapabilities (Between StorageTierCapabilities and TierSettingData)

Associates StorageTierCapabilities to TierSettingData.

Requirement: Optional

Table 629 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies primordial Stor-
ageExtents comprising a tier)

Properties Flags Requirement Description & Notes

Collection Mandatory Instance of CIM_StorageTier.

Member Mandatory A primordial storage extent.

Table 630 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierService and
StorageTier)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Tier Service.

AffectedElement Mandatory Storage Tier.

Table 631 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierService and
TierDomain)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Tier Service.

AffectedElement Mandatory Tier Domain.
SNIA Technical Position 873

443

444

445

446

447

448

449

450

451
Table 632 describes class CIM_SettingsDefineCapabilities (Between StorageTierCapabilities and
TierSettingData).

25.4.15 CIM_SettingsDefineCapabilities (Between TierServiceCapabilities and TierSettingData)

Associates TierServiceCapabilities to TierSettingData.

Requirement: Optional

Table 633 describes class CIM_SettingsDefineCapabilities (Between TierServiceCapabilities and
TierSettingData).

25.4.16 CIM_StorageTier

This class represents a collection of storage objects, such as a collection of storage objects identified as
a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Mandatory

Table 634 describes class CIM_StorageTier.

Table 632 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Between Storag-
eTierCapabilities and TierSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to StorageTierCapabilities.

PartComponent Mandatory Reference to TierSettingData.

Table 633 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Between TierService-
Capabilities and TierSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to TierServiceCapabilities.

PartComponent Mandatory Reference to TierSettingData.

Table 634 - SMI Referenced Properties/Methods for CIM_StorageTier

Properties Flags Requirement Description & Notes

InstanceID Mandatory Within the scope of an array, the InstanceID opaquely and uniquely
identifies an instance of this class.

ElementName Optional User-friendly name.

RelativePerformanceOrder Mandatory A number starting from 0 to indicate the relative performance
characteristics of the storage tier. The smaller the number, the higher the
performance characteristics.
874

452

453

454

455

456

457
25.4.17 CIM_StorageTierCapabilities

A subclass of StorageCapabilities that defines the Capabilities of a storage tier.

Created By: Static

Modified By: Static

Deleted By: Static

StorageObjectType Optional indicates the type of storage objects comprising a storage tier. Values:

 2: StorageVolume

 3: LogicalDisk

 4: StorageExtent

 5: StoragePool

 6: ComponentsOfStoragePool

 7: ElementsOfStoragePool

 8: External StoragePool

9: Primordial StorageExtent.

Technology Optional The technology of the underlying disk drives used. Mixed: a storage tier
consists of a mix of different disk drive technologies. Values:

 2: Not Applicable

 3: Solid State Drive

 4: Fibre Channel

 5: SATA

 6: SAS

 7: Mixed

8: Hard Disk Drive.

State M Optional This property indicates whether the storage tier is actively being used or
not. Values:

 2: Enabled

3: Disabled.

Dynamic M Optional If true any new storage objects added to the system that have a similar
performance characteristics (and QoS) to this tier become part of this tier
automatically. If false, after the storage tier is created, any newly
introduced storage objects need to be added to the storage tier manually.

DeleteOnEmptyStorageTie
r

M Optional If true and empty storage tiers are allowed, the storage tier will be deleted
when the last element is removed from the storage tier. If empty storage
tiers are not allowed, the storage tier will be deleted automatically when
the storage tier becomes empty.

Percentage M Optional A value between 0 to 100 to indicate the maximum percentage of the
underlying capacity that can be used for storage tiering activities. For
example, a value of 80 indicates no more than 80 percent of the storage
tier can be used for automated tiering. The remaining 20 percent of the
underlying storage is set aside for elements that do not participate in
automated storage tiering.

TotalCapacity Optional The total capacity of the storage tier in bytes.

Table 634 - SMI Referenced Properties/Methods for CIM_StorageTier

Properties Flags Requirement Description & Notes
SNIA Technical Position 875

458
 Requirement: Optional

Table 635 describes class CIM_StorageTierCapabilities.

Table 635 - SMI Referenced Properties/Methods for CIM_StorageTierCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of Capabilities. In addition, the
user-friendly name can be used as a index property for a search or query.
(Note: ElementName does not have to be unique within a namespace) If
the capabilities are fixed, then this property should be used as a means for
the client application to correlate between capabilities and device
documentation.

ElementType Mandatory Enumeration indicating the type of instance to which this
StorageCapabilities applies. Shall be either 5 or 6 (StoragePool or
StorageConfigurationService).

NoSinglePointOfFailure Mandatory Indicates whether or not the associated instance supports no single point
of failure. Values are: FALSE = does not support no single point of failure,
and TRUE = supports no single point of failure.

NoSinglePointOfFailureDef
ault

Mandatory Indicates the default value for the NoSinglePointOfFailure property.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

DataRedundancyDefault Mandatory DataRedundancyDefault describes the default number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancyDefa
ult

Mandatory PackageRedundancyDefault describes the default number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

ExtentStripeLengthDefault Optional Describes what the default stripe length, the number of members or
columns, a storage element will have when created or modified using this
capability. A NULL means that the setting of stripe length is not supported
at all or not supported at this level of storage element allocation or
assignment.
876

459

460

461

462

463
25.4.18 CIM_StorageVolume (Constituent)

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyElementFromStoragePool

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Pools from Volumes - Constituent StorageVolume is mandatory.

ParityLayoutDefault Optional ParityLayoutDefault describes what the default parity a storage element
will have when created or modified using this capability. A NULL means
that the setting of the parity is not supported at all or is not supported at
this level of storage element allocation or assignment.

UserDataStripeDepthDefa
ult

Optional UserDataStripeDepthDefault describes what the number of bytes forming
a stripe that a storage element will have when created or modified using
this capability. A NULL means that the setting of stripe depth is not
supported at all or not supported at this level of storage element allocation
or assignment.

StorageTierCharacteristics Optional Indicates the storage tiering capabilities. Values:

 2: BasedOnPerformance Only

 3: BasedOnQOS Only

4: BasedOnPerformance And BasedOnQOS.

RelativePerformanceOrder
Min

Optional Indicates the minimum value for RelativePerformanceOrder that this
storage tier can have. The minimum value for RelativePerformanceOrder,
which represents the highest level of performance.

RelativePerformanceOrder
Max

Optional Indicates the maxmimum value for RelativePerformanceOrder that this
storage tier can have. The maximum value for RelativePerformanceOrder,
which represents the lowest level of performance.

RelativePerformanceOrder
Default

Optional Indicates the default value of RelativePerformanceOrder for the storage
tier -- the smaller the RelativePerformanceOrder, the more performant the
storage tier.

CreateSetting() Conditional Conditional requirement: Support for StorageConfigurationService.
Generate a setting to use as a goal for creating or modifying storage
elements.

GetSupportedStripeLength
s()

Optional List the possible discrete stripe lengths supported at this time of this
method's execution.

GetSupportedStripeLength
Range()

Optional List the possible stripe length ranges supported at the time of this
method's execution.

GetSupportedParityLayout
s()

Optional List the possible parity layouts supported at the time of this method's
execution.

GetSupportedStripeDepths
()

Optional List the possible stripe depths supported at the time of this method's
execution.

GetSupportedStripeDepth
Range()

Optional List the possible stripe depth ranges supported at the time of this method's
execution.

Table 635 - SMI Referenced Properties/Methods for CIM_StorageTierCapabilities

Properties Flags Requirement Description & Notes
SNIA Technical Position 877

464
 Table 636 describes class CIM_StorageVolume (Constituent).

Table 636 - SMI Referenced Properties/Methods for CIM_StorageVolume (Constituent)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name CD Mandatory Identifier for this volume; based of datapath standards such as SCSI or
ATAPI.

OtherIdentifyingInfo CD Optional Additional correlatable names.

IdentifyingDescriptions Conditional. Required if OtherIdentifyingInfo is provided.

NameFormat Mandatory The type of identifier in the Name property. The valid values for
StorageVolumes are:

1 (Other)

2 (VPD83NAA6)

3 (VPD83NAA5)

4 (VPD83Type2)

5 (VPD83Type1)

6 (VPD83Type0)

7 (SNVM)

8 (NodeWWN)

9 (NAA)

10 (EUI64)

11 (T10VID).

NameNamespace Mandatory The namespace that defines uniqueness for the NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant). In addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRed
undancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory
878

465

466

467

468

469

470
25.4.19 CIM_StorageVolume (Regular)

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyElementFromStoragePool

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Mandatory

Table 637 describes class CIM_StorageVolume (Regular).

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Conditional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory This is an array of values that shall contain 'SNIA:Pool Component'.

CanDelete Optional Indicates if the volume is able to be deleted by a client application.

NumExtentsMigrating Optional The number of Extents in the process of migrating for this storage volume
when the volume relocation is ongoing.

StorageTieringSelection N Optional Storage tiering examines this property to determine whether to use
RelativePerformanceOrder or RelativePerformanceOrderSet for selecting
an appropriate storage tier. A value of 0 or null indicates the element is not
subject to storage tiering. Values:

 0: None

 2: Use RelativePerformanceOrder

3: Use RelativePerformanceOrderSet.

RelativePerformanceOrder N Optional A storage volume can be associated with one or more storage tiers with
equal or smaller StorageTier.RelativePerformanceOrder. The smaller the
RelativePerformanceOrder, the more performant the tier.

RelativePerformanceOrder
Set

N Optional A set of RelativePerformanceOrder values. The volume can only be
associated with storage tiers that have a RelativePerformanceOrder value
included in this set.

Table 637 - SMI Referenced Properties/Methods for CIM_StorageVolume (Regular)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name CD Mandatory Identifier for this volume; based of datapath standards such as SCSI or
ATAPI.

OtherIdentifyingInfo CD Optional Additional correlatable names.

IdentifyingDescriptions Conditional. Required if OtherIdentifyingInfo is provided.

Table 636 - SMI Referenced Properties/Methods for CIM_StorageVolume (Constituent)

Properties Flags Requirement Description & Notes
SNIA Technical Position 879

NameFormat Mandatory The type of identifier in the Name property. The valid values for
StorageVolumes are:

1 (Other)

2 (VPD83NAA6)

3 (VPD83NAA5)

4 (VPD83Type2)

5 (VPD83Type1)

6 (VPD83Type0)

7 (SNVM)

8 (NodeWWN)

9 (NAA)

10 (EUI64)

11 (T10VID).

NameNamespace Mandatory The namespace that defines uniqueness for the NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant). In addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRedunda
ncy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Conditional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory This is an array of values that shall contain 'SNIA:Allocated'.

CanDelete Optional Indicates if the volume is able to be deleted by a client application.

NumExtentsMigrating Optional The number of Extents in the process of migrating for this storage volume
when the volume relocation is ongoing.

Table 637 - SMI Referenced Properties/Methods for CIM_StorageVolume (Regular)

Properties Flags Requirement Description & Notes
880

471

472

473

474

475

476

477

478

479

480

481

482

483
25.4.20 CIM_SystemComponent (TierDomain to ComputerSystem)

Storage TierDomains on a system.

Created By: Extrinsic: CreateTierDomain

Modified By: Static

Deleted By: Extrinsic: DeleteTierDomain

Requirement: Optional

Table 638 describes class CIM_SystemComponent (TierDomain to ComputerSystem).

25.4.21 CIM_TierDomain

TierDomain representing one or more storage tiers.

Created By: Extrinsic: CreateTierDomain

Modified By: Static

Deleted By: Extrinsic: DeleteTierDomain

Requirement: Mandatory

StorageTieringSelection N Optional Storage tiering examines this property to determine whether to use
RelativePerformanceOrder or RelativePerformanceOrderSet for selecting
an appropriate storage tier. A value of 0 or null indicates the element is not
subject to storage tiering. Values:

 0: None

 2: Use RelativePerformanceOrder

3: Use RelativePerformanceOrderSet.

RelativePerformanceOrder N Optional A storage volume can be associated with one or more storage tiers with
equal or smaller StorageTier.RelativePerformanceOrder. The smaller the
RelativePerformanceOrder, the more performant the tier.

RelativePerformanceOrderSet N Optional A set of RelativePerformanceOrder values. The volume can only be
associated with storage tiers that have a RelativePerformanceOrder value
included in this set.

Table 638 - SMI Referenced Properties/Methods for CIM_SystemComponent (TierDomain to ComputerSys-
tem)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to top-level ComputerSystem.

PartComponent Mandatory Reference to the TierDomain.

Table 637 - SMI Referenced Properties/Methods for CIM_StorageVolume (Regular)

Properties Flags Requirement Description & Notes
SNIA Technical Position 881

484

485

486

487

488

489

490

491
Table 639 describes class CIM_TierDomain.

25.4.22 CIM_TierService

Base class for Automatic Storage Tiering.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 640 describes class CIM_TierService.

Table 639 - SMI Referenced Properties/Methods for CIM_TierDomain

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Name of Class.

Name Mandatory An arbitrary name (implementation dependent).

NameFormat Mandatory Dependent on the arbitrary name chosen.

ElementName Optional A user friendly name for the storage tier domain (implementation
dependent).

OtherIdentifyingInfo Mandatory For a storage tier domain, this property shall contain the value 'TIER'.

IdentifyingDescriptions Mandatory For a storage TIER AdminDomain, this property shall contain the value
'SNIA:DetailedType' in the index for the OtherIdentifyingInfo of 'TIER'.

DataMovement MN Optional Specifies if data movement is automatic or requires manual intervention.
Values:

 2: Auto

3: Manual.

DataMovementState MN Optional Indicates the state of data movement that requires manual intervention.
Values:

 0: Not Applicable

 2: Waiting for Approval

 3: Waiting for Scheduled Time

 4: In Progress

 5: Stopped

 6: Paused

 7: Aborted

8: Completed.

RequestDataMovementSta
teChange()

Conditional Conditional requirement: Required if manual data movement is supported.

Table 640 - SMI Referenced Properties/Methods for CIM_TierService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory
882

492

493
494

495

496

497

498

499
25.4.23 CIM_TierServiceCapabilities

A subclass of Capabilities that defines the Capabilities of a TierService. An instance of
TierServiceCapabilities is associated with a TierService using ElementCapabilities.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 641 describes class CIM_TierServiceCapabilities.

CreationClassName Mandatory

Name Mandatory

CreateStorageTier() Conditional Conditional requirement: Required if client manages storage tiers.

DeleteStorageTier() Conditional Conditional requirement: Required if client manages storage tiers.

AddToStorageTier() Conditional Conditional requirement: Required if client manages storage tiers.

RemoveFromStorageTier() Conditional Conditional requirement: Required if client manages storage tiers.

CreateTierDomain() Conditional Conditional requirement: Required if client manages tier domains.

DeleteTierDomain() Conditional Conditional requirement: Required if client manages tier domains.

ModifyStorageTierDomain
Association()

Conditional Conditional requirement: Required if client manages tier domains.

GetStorageTierCandidate
Objects()

Conditional Conditional requirement: Required if client manages tier domains.

Table 641 - SMI Referenced Properties/Methods for CIM_TierServiceCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User Friendly name.

SupportedFeatures Mandatory Enumeration indicating the supported features of the storage tiering
service. Values:

 2: System Creates StorageTiers

 3: Client Can Create StorageTiers

 4: System Creates TierDomains

 5: Client Can Create TierDomains

6: Supports SubLUN.

Table 640 - SMI Referenced Properties/Methods for CIM_TierService

Properties Flags Requirement Description & Notes
SNIA Technical Position 883

SupportedTierFeatures Mandatory Enumeration indicating the supported features of the storage tiers. Values:

 2: StorageTiers Based On Performance Only

 3: StorageTiers Based On QoS Only

 4: StorageTiers Based On Performance and QoS

 5: StorageTiers Based On Other Characteristics

 6: StorageTiers Can Overlap

 7: StorageTiers Can Be Empty

8: StorageTiers In Multiple TierDomains.

SupportedStorageObjects Mandatory Enumeration indicating the supported storage objects that can be used to
form a storage tier. ComponentsOfStoragePool: In calling the method
CreateStorageTier, it is possible to supply one or StoragePools and
request the storage tiers to be created based on the
"ConcreteComponents" of the StoragePools, i.e. StorageExtents.
ElementsOfStoragePool: Storage tier is comprised of elements, e.g.
volumes, allocated from a StoragePool. Values:

 2: StorageVolume

 3: LogicalDisk

 4: StorageExtent

 5: StoragePool

 6: ComponentsOfStoragePool

 7: ElementsOfStoragePool

 8: External StoragePool

9: Primordial StorageExtent.

SupportedAsynchronousA
ctions

Mandatory Identify methods using job control. Values:

 2: CreateStorageTier

 3: AddToStorageTier

 4: RemoveFromStorageTier

 5: CreateTierDomain

 6: DeleteTierDomain

 7: ModifyStorageTierDomainAssociation

8: GetStorageTierCandidateObjects.

SupportedSynchronousAct
ions

Mandatory Identify methods not using job control. Values:

 2: CreateStorageTier

 3: AddToStorageTier

 4: RemoveFromStorageTier

 5: CreateTierDomain

 6: DeleteTierDomain

 7: ModifyStorageTierDomainAssociation

8: GetStorageTierCandidateObjects.

Table 641 - SMI Referenced Properties/Methods for CIM_TierServiceCapabilities

Properties Flags Requirement Description & Notes
884

500

501

502

503

504

505

506
25.4.24 CIM_TierSettingData

Contains special options for use by methods of TierService.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

SupportedCompression Optional Indicates if the Automated Storage Tiering subsystem has the capability to
compress storage volumes that are subject to tiering. Values:

 2: ThinlyProvisioned

3: ThicklyProvisioned.

SupportedDataMovement Optional Indicates the supported data movement choices that are available. Values:

 2: Auto

3: Manual.

Table 641 - SMI Referenced Properties/Methods for CIM_TierServiceCapabilities

Properties Flags Requirement Description & Notes
SNIA Technical Position 885

Table 642 describes class CIM_TierSettingData.

Table 642 - SMI Referenced Properties/Methods for CIM_TierSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User Friendly name.

RelativePerformanceOrder
Goal

MN Optional An integer starting from 0 to indicate the performance characteristic of the
storage tier. The smaller the number, the higher the performance
characteristics.

RelativePerformanceOrder
Min

MN Optional Indicates the minimum value for RelativePerformanceOrder that this
storage tier can have. Basically, the minimum value for
RelativePerformanceOrder represents the highest level of performance.

RelativePerformanceOrder
Max

MN Optional Indicates the maxmimum value for RelativePerformanceOrder that this
storage tier can have. Basiclly, the maximum value for
RelativePerformanceOrder represents the lowest level of performance.

StorageTierCharacteristics MN Optional Indicates the storage tier charateristics. Performance generally relates to
the underlying technology, for example, Solid State versus Fibre Channel
drives. QoS refers to the Quality of Service, for example, RAID protected
versus unprotected. Values:

 2: BasedOnPerformance Only

 3: BasedOnQOS Only

4: BasedOnPerformance And BasedOnQOS.

Technology MN Optional The technology of the underlying disk drives used. Not Applicable: Storage
tier is not based on technology of underlying components. Mixed: a
storage tier consists of a mix of different disk drive technologies. Values:

 2: Not Applicable

 3: Solid State Drive

 4: Fibre Channel

 5: SATA

 6: SAS

 7: Mixed

8: Hard Disk Drive.

InitialState MN Optional This property indicates the intial state of the storage tier. The default value
is 2. Values:

 2: Enabled

3: Disabled.

Dynamic MN Optional If true any new extents added to the system that have a similar
performance characteristics (and QoS) to this tier become part of this tier
automatically. If false, the new extents needs to be added to this tier
manually. The default value is false.

DeleteOnEmptyStorageTie
r

MN Optional If true and empty storage tier are allowed, the storage tier will be deleted
when the last element is removed from the storage tier. If empty storage
tier are not allowed, the storage tier will be deleted automatically when the
storage tier becomes empty. The default value is false.
886

EXPERIMENTAL

Percentage MN Optional A value between 0 to 100 to indicate the maximum percentage of the
underlying capacity that can be used for storage tiering activities. For
example, a value of 80 indicates no more than 80 percent of the storage
tier can be used for automated tiering. The remaining 20 percent of the
underlying storage is set aside for elements that do not participate in
automated storage tiering.

CompressionIdleInterval MN Optional Number of days data on a volume must be idle before the Automated
Storage Tiering subsystem starts compressing the data. Value shall be in [
1..365].

CompressionRate MN Optional A number between 1 and 10 to indicate the rate at which the Automated
Storage Tiering subsystem compresses the data. The smaller the number,
the higher the rate of compression.

Table 642 - SMI Referenced Properties/Methods for CIM_TierSettingData

Properties Flags Requirement Description & Notes
SNIA Technical Position 887

888

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
EXPERIMENTAL

26 Automated Storage Tiering Policy Profile

26.1 Synopsis

Profile Name: Automated Storage Tiering Policy (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: TierPolicyService

Scoping Class: ComputerSystem

Related Profiles: Table 643 describes the related profiles for Automated Storage Tiering Policy.

26.2 Description

This component profile introduces the necessary classes to allow clients to create and manage the
policies for automated storage tiering.

The Automated Storage Tiering Policy Profile is a specialization of the existing Automated Storage Tiering
profile.

There are implementations that completely manage the automated storage tiering. However, there are
also implementations that allow clients to specify the policy by which the automated storage tiering
manages the data movement and placement of the data subject to storage tiering. Furthermore, clients
have the ability to specify the time period, such as time of day, which a policy is in effect.

26.3 Policies

Policies direct the automated storage tiering of the storage array. Policies may specify when certain
tiering activities should take place.

Instances of the class TierPolicyRule represent the storage tiering policies that are in effect. An
implementation may have two types of policy rules -- one for collecting statistics about the workload
activities, such as I/Os, for given components, and another policy rule for the actual movement of data
between storage tiers.

As an example, a “data movement” policy rule may indicate that no more than 10% of the space
requirement of a StorageVolume to come from tier1, 20% from tier2, and 70% from tier3.

A policy rule may apply to the entire storage array (GlobalRule), or to a specific component (LocalRule)
such as a StorageVolume or storage volumes belonging to a DeviceMaskingGroup.

Table 643 - Related Profiles for Automated Storage Tiering Policy

Profile Name Organization Version Requirement Description

Block Services SNIA 1.8.0 Mandatory

Pools from Volumes SNIA 1.7.0 Optional

Job Control SNIA 1.5.0 Optional

Extent Composition SNIA 1.7.0 Optional

Disk Drive Lite SNIA 1.7.0 Optional
SNIA Technical Position 889

27

28

29

30

31

32

33

34

35

36

37

38

39
26.4 Key Components

Table 644 shows a list of key classes used in this profile.

26.5 Implementation

26.5.1 Automated Storage Tiering Policy Discovery

Figure 174 depicts the Automated Storage Tiering Policy discovery instance diagram.

As shown in Figure 175, the single instance of the class TierPolicyService and its methods provide the
mechanism for managing storage tiering policies.

The implementation may create the “global” TierPolicyRules automatically. Clients may also be able to
create the “local” TierPolicyRules -- see the capabilities for what the implementation supports.

Global TierPolicyRules (with the property RuleDiscriminator set to “SNIA:GlobalRule”) are only
associated to the TierPolicyService. Local TierPolicyRules (with the property RuleDiscriminator set to
“SNIA:LocalRule”) are associated to ManagedElements such as StorageVolumes and/or
DeviceMaskingGroups.

An instance of the TierPolicySettingData associated to the TierPolicyServiceCapabilities includes
properties that apply to all storage tiers and storage elements subject to storage tiering. For example, If

Table 644 - Key Classes

Class Name Notes

TierPolicyService The main class for this profile. It contains methods for
manipulating storage tiering policies.

TierPolicyServiceCapabilities Contains a set of properties and methods that describe
the capabilities of tiering policy service.

TierPolicyRule Describes the tiering policy rules

AssociatedTierPolicy Associates TierPolicyRule to storage tiers.

TierPolicySetAppliesToElement Associates TierPolicyRule to ManagedElements.

Figure 174 - Automated Storage Tiering Policy Discovery

ComputerSystem

// Array

TierPolicyService

HostedService

TierPolicyServiceCapabilities

ElementCapabilities
890

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60
the implementation supports automatic storage pool allocation
(TierPolicyServiceCapabilities.SupportsAutomaticStoragePoolAllocation), by setting the property
TierPolicySettingData.AutomaticStoragePoolAllocationEnabled to true, when a thinly provisioned storage
element (such as a StorageVolume) subject to storage tiering needs additional storage capacity and the
storage pool that the storage element is allocated from is out of free capacity, the system allocates the
additional storage capacity from another storage pool in the same tiering policy that is associated to the
storage volume.

26.5.2 Time Period

The property TierPolicyRule.TimePeriodCondition specifies the time period for this tier policy rule. For
example, the TimePeriodCondition may indicate this TierPolicyRule is active at all times. Alternatively,
TimePeriodCondition may indicate the time period is an associated instance of
PolicyTimePeriodCondition to the TierPolicyRule (see Figure 176) or to a PolicyTimePeriodCondition
associated to a global TierPolicyRule (see Figure 175).

The instances of PolicyTimePeriodCondition associated to global TierPolicyRules are intended to reduce
the need for numerous instances of PolicyTimePeriodCondition associated to local TierPolicyRules.

For example, if TierPolicyRule.TimePeriodCondition has a value of “Global”, it indicates a
PolicyTimePeriodCondition associated to a “global” TierPolicyRule. In this case, the instrumentation first
locates an appropriate TierPolicyRule before utilizing its associated PolicyTimePeriodCondition. The
TierPolicyRules are tailored for data movement, workload data collection, and thin or thick provisioning.

If the property TierPolicyRule.TimePeriodCondition has the value of 'Not Available', it indicates the
instrumentation does not make the “time period” associated to a TierPolicyRule available to clients.

Figure 175 - Additional Tiering Policy Components

ComputerSystem

// Array

TierPolicyService

HostedService

TierPolicyServiceCapabilities

ElementCapabilities

TierPolicyRule

Activity = Workload statistics
collection
RuleDiscriminator =
SNIA:GlobalRule

ServiceAffectsElement

TierPolicyRule

Activity = Data movement
RuleDiscriminator =
SNIA:GlobalRule

TierPolicyRule

Activity = Data movement
RuleDiscriminator =
SNIA:LocalRule

TierPolicySettingData

SettingsDefineCapabilities
SNIA Technical Position 891

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75
If the property TierPolicyRule.TimePeriodCondition has the value of 'None', it indicates the policy rule
currently does not have an associated time period condition.

26.5.3 PolicyTimePeriodCondition

The associated instances of PolicyTimePeriodCondition specify when an enabled TierPolicyRule is active
(on) or not active (off). If the property PolicySetValidityPeriod.ConditionNegated is false, the
PolicyTimePeriodCondition indicates the time period when the TierPolicyRule is active.

Figure 176 shows two instances of PolicyTimePeriodCondition, one for the time period the “Data
movement” TierPolicyRule is active, and one for the time period the “Workload statistics collection”
TierPolicyRule is inactive.

26.5.4 ManagedElements Subject to Tiering

ManagedElements, such as StorageVolumes or DeviceMaskingGroups, subject to storage tiering can be
associated to “global” TierPolicyRules, “local” TierPolicyRules or both.

Figure 177 shows a ManagedElement that is associated to two local TierPolicyRules -- one for data
movement, and another for workload statistics collection. The optional associated
PolicyTimePeriodConditions specifies the time period the space allocated to the ManagedElement is

Figure 176 - PolicyTimePeriodCondition

PolicySetValidityPeriod

ConditionNegated = false
(time period the rule is on)

PolicySetValidityPeriod

ConditionNegated = true
(time period the rule is off)

StorageVolume or DeviceMaskingGroup :
CIM_ManagedElement

TierPolicyRule

Activity = Data
movement
RuleDiscriminator =
SNIA:LocalRule

PolicyTimePeriodCondition

TierPolicySetAppliesToElement

TierPolicyRule

Activity = Workload
statistics collection
RuleDiscriminator =
SNIA:LocalRule

TierPolicySetAppliesToElement
892

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94
moved to the appropriate storage tiers. Effectively, the parts of the ManagedElement that are accessed
more frequently are moved to the storage tiers that have higher performance characteristics.

The workload statistics collection TierPolicyRule specifies to use an appropriate
PolicyTimePeriodConditions associated to a global TierPolicyRule.

If more than one TierPolicyRules for the same or overlapping time period are associated (via the
TierPolicySetAppliesToElement association) to the same ManagedElement, the associated
TierPolicyRule with lower TierPolicySetAppliesToElement.RulePriority value has higher precedence.

In the case where there are overlapping “global” and “local” policy rules associated with a managed
element, the local policy rule has precedence.

The instance of AdvancedStorageSetting associated to the ManagedElement (e.g. StorageVolume or
DeviceMaskingGroup) contains the properties pertaining to storage tiering. If the instance of
AdvancedStorageSetting is associated to a group of elements (e.g. DeviceMaskingGroup), then, the
instance properties apply to all elements of the group.

26.5.5 Tiering Policy Capabilities

The single instance of the class TierPolicyServiceCapabilities describes various capabilities of the
storage tiering policy feature. Clients should examine the TierPolicyServiceCapabilities instance to
determine the specific capabilities of the storage tiering policy implementation.

Figure 177 - ManagedElement Subject to Tiering

Tier1 :
CIM_StorageTier

Tier2 :
CIM_StorageTier

Tier3 :
CIM_StorageTier

AssociatedTierPolicy

MaxPercentAllocated = 10

AssociatedTierPolicy

MaxPercentAllocated = 70

AssociatedTierPolicy

MaxPercentAllocated = 20

StorageVolume or DeviceMaskingGroup :
CIM_ManagedElement

TierPolicyRule

Activity = Data
movement
RuleDiscriminator =
SNIA:LocalRule
TimePeriodCondition =
Associated Time Period

PolicyTimePeriodCondition

TierPolicySetAppliesToElement

PolicySetValidityPeriod

TierPolicyRule

Activity = Workload
statistics collection
RuleDiscriminator =
SNIA:LocalRule
TimePeriodCondition =
Global

TierPolicySetAppliesToElement

AdvancedStorageSetting

ElementSettingData
SNIA Technical Position 893

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117
The property TierPolicyServiceCapabilities.SupportedPolicyFeatures is an array indicating the supported
features of the storage tiering policy service. Figure 645 shows the possible values for this property.

26.5.6 Health and Fault Management Consideration

Not defined in this document.

26.6 Methods

26.6.1 Status Codes

The Automated Storage Tiering Policy Profile has a number of extrinsic methods for storage tier
management.

All of the profile extrinsic methods return one of the following status codes:

• 0: (Job) Completed with no error

• 1: Method not supported

• 4: Failed

• 5: Invalid Parameter

• 4096: Method Parameters Checked - Job Started

Depending on the error condition, a method may return additional error codes and/or throw an
appropriate exception to indicate the error encountered.

Furthermore, the profile relies on a number of intrinsic methods such as ModifyInstance for modifying
properties such as PolicyRuleName.

For the input/output parameter values, refer to the appropriate MOF files and the value maps.

Figure 646 summarizes the extrinsic methods (class TierPolicyService).

Table 645 - SupportedPolicyFeatures

Features

System creates policies

Client can create policies

Storage tier can belong to multiple policies

Policy shall account for total allocation

Supports global TierPolicyRule

Supports local TierPolicyRule

Table 646 - Extrinsic Methods

Method Described in

CreateStorageTierPolicyRule See 26.6.2

DeleteStorageTierPolicyRule See 26.6.3

ModifyStorageTierPolicyRule See 26.6.4
894

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154
26.6.2 CreateStorageTierPolicyRule

This method allows a client to create a storage tier policy based on the supplied information.

 uint32 CreateStorageTierPolicyRule(

 [IN, Description (

 "A end user relevant name for the created policy "

 "rule. If null, then a system supplied default name "

 "may be used.")]

 string PolicyRuleName,

 [IN, Description (

 "Indicates the purpose of the policy rule. Data "

 "movement: Rule to be applied for data movement. "

 "Workload statistics collection: Rule is in effect "

 "for collecting statistics about the managed "

 "element. If null, defaults to Data movement."),

 ValueMap { "2", "3", "..", "0x8000.." },

 Values { "Data movement",

 "Workload statistics collection", "DMTF Reserved",

 "Vendor Specific" }]

 uint16 Activity,

 [IN, Description (

 "Indicates whether the created policy is set to "

 "Enabled or Disabled. If null, the policy is set to "

 "Enabled."),

 ValueMap { "2", "3", "..", "0x8000.." },

 Values { "Enabled", "Disabled", "DMTF Reserved",

 "Vendor Specific" },

 ModelCorrespondence { "CIM_TierPolicyRule.Enabled" }]

 uint16 PolicyState,

 [IN, Description (

 "List of storage tiers to associate to this policy. "

 "If null, no tiers will be associated to this "

 "policy."),

 ArrayType ("Indexed"),

 ModelCorrespondence {

 "CreateStorageTierPolicyRule.MaxPercentAllocated" }]

 CIM_StorageTier REF Tiers[],

 [IN, Description (

 "The percentage of the capacity that is allocated "

 "from the corresponding storage tier. This array is "

 "index-correlated with the array Tiers."),

 Units ("Percent"),

 ArrayType ("Indexed"),

 MinValue (0),

 MaxValue (100),

 ModelCorrespondence {

 "CreateStorageTierPolicyRule.Tiers" },

 PUnit ("percent")]
SNIA Technical Position 895

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201
 uint16 MaxPercentAllocated[],

 [IN, Description (

 "Associate these elements to the created policy.")]

 CIM_ManagedElement REF InElements[],

 [IN, Description (

 "If provided, it supplies additional information to "

 "incorporate in a policy rule. For example, the "

 "RulePriority."),

 EmbeddedInstance ("CIM_TierPolicySettingData")]

 string TierPolicySettingData,

 [IN, Description (

 "If provided, it represents the time periods during "

 "which the policy is active. If not provided, the "

 "implementation decides."),

 EmbeddedInstance ("CIM_PolicyTimePeriodCondition")]

 string PolicyTimePeriodCondition,

 [IN, Description (

 "If true, the supplied "

 "PolicyTimePeriodCondition should be negated -- "

 "the time period the rule shall not "

 "be in effect. If false, it specifies the time "

 "period the rule shall be in effect. "

 "If NULL, the property shall have the value "

 "of false."),

 ModelCorrespondence {

 "CreateStorageTierPolicyRule.PolicyTimePeriodCondition" }]

 boolean ConditionNegated,

 [IN, Description (

 "If provided, sets "

 "TierPolicyRule.TimePeriodCondition. If not "

 "provided, the implementation sets the value "

 "based on whether the parameter "

 "PolicyTimePeriodCondition is supplied."),

 ValueMap { "2", "3", "4", "5", "6",

 "..", "0x8000.." },

 Values { "Implementation Decides", "Not Available",

 "All The Time", "Associated Time Period", "Global",

 "DMTF Reserved", "Vendor Specific" },

 ModelCorrespondence {

 "TierPolicyRule.TimePeriodCondition",

 "CreateStorageTierPolicyRule.PolicyTimePeriodCondition" }]

 uint16 TimePeriodCondition,

 [IN (false), OUT, Description (

 "Reference to the job (may be NULL if job is completed)."

)]

 CIM_ConcreteJob REF Job,

 [IN (false), OUT, Description (
896

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234
 "Reference to the created PolicyRule.")]

 CIM_PolicyRule REF PolicyRule);

26.6.3 DeleteStorageTierPolicyRule

This method allows a client to delete a storage tier policy.

uint32 DeleteStorageTierPolicyRule(

 [IN, Required, Description (

 "Storage policy rule to delete.")]

 CIM_PolicyRule REF PolicyRule,

 [IN (false), OUT, Description (

 "Reference to the job (may be NULL if job is completed).")]

 CIM_ConcreteJob REF Job,

 [IN, Description (

 "If the policy is actively being used, the system "

 "may prevent the policy to be deleted. By passing "

 "true for this parameter, the system will attempt "

 "to delete an active policy.")]

 boolean Force);

26.6.4 ModifyStorageTierPolicyRule

This method allows a client to modify a storage tiering policy.

The parameter "Operation" specifies the modification to be performed, and the parameter PolicyRule
indicates the policy rule that is to be modified. As for the other parameters, only the applicable
parameters for the requested operation are necessary.

Table 647 shows the required parameters for the requested operation.

Table 647 - Parameters for ModifyStorageTierPolicyRule

Operation PolicyRule Additional Parameters

2 (“Rename PolicyRuleName”) <ObjectPath of PolicyRule> PolicyRuleName

3 (“Add Tiers to Policy”) <ObjectPath of PolicyRule> Tiers[], MaxPercentAllocated[]

Note: These are parallel arrays.

4 (“Remove Tiers from Policy”) <ObjectPath of PolicyRule> Tiers[]

5 (“Add InElements to Policy”) <ObjectPath of PolicyRule> InElements[]

6 (“Remove InElements from Policy”) <ObjectPath of PolicyRule> InElements[]

7 (“Update MaxPercentAllocated”) <ObjectPath of PolicyRule> Tiers[], MaxPercentAllocated[]

Note: These are parallel arrays.

8 (“Add PolicyTimePeriodCondition”) <ObjectPath of PolicyRule> PolicyTimePeriodCondition

9 (“Remove PolicyTimePeriodCondition”) <ObjectPath of PolicyRule> PolicyTimePeriodCondition

10 (“Modify PolicyTimePeriodConditions”) <ObjectPath of PolicyRule> PolicyTimePeriodCondition
SNIA Technical Position 897

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269
 uint32 ModifyStorageTierPolicyRule(

 [IN, Description ("The Operations to perform."),

 ValueMap { "2", "3", "4", "5", "6", "7", "8",

 "9", 10", "..", "0x8000.." },

 Values { "Rename PolicyRuleName",

 "Add Tiers to Policy", "Remove Tiers from Policy",

 "Add InElements to Policy",

 "Remove InElements from Policy",

 "Update MaxPercentAllocated",

 "Add PolicyTimePeriodCondition",

 "Remove PolicyTimePeriodCondition",

 "Modify PolicyTimePeriodCondition",

 "DMTF Reserved", "Vendor Specific" }]

 uint16 Operation,

 [IN, Description (

 "A new name for the policy rule. "

 "Effectively, renaming the policy rule.")]

 string PolicyRuleName,

 [IN, Description (

 "List of storage tiers to associate to this policy."),

 ArrayType ("Indexed"),

 ModelCorrespondence {

 "ModifyStorageTierPolicyRule.MaxPercentAllocated" }]

 CIM_StorageTier REF Tiers[],

 [IN, Description (

 "The percentage of the capacity that is allocated "

 "from the corresponding storage tier. This array is "

 "index-correlated with the array Tiers."),

 Units ("Percent"),

 ArrayType ("Indexed"),

 MinValue (0),

 MaxValue (100),

 ModelCorrespondence {

 "CreateStorageTierPolicyRule.Tiers" },

 PUnit ("percent")]

 uint16 MaxPercentAllocated[],

 [IN, Description (

 "Associate the elements to the policy.")]

 CIM_ManagedElement REF InElements[],

 [IN, Description (

 "If provided, it supplies additional information to "

 "incorporate in a policy rule. For example, the "

 "RulePriority."),

 EmbeddedInstance ("CIM_TierPolicySettingData")]

 string TierPolicySettingData,

 [IN, Description (

 "If provided, it represents the time periods during "
898

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312
 "which the policy is active. If not provided, the "

 "implementation decides."),

 EmbeddedInstance ("CIM_PolicyTimePeriodCondition")]

 string PolicyTimePeriodCondition,

 [IN, Description (

 "If true, the supplied "

 "PolicyTimePeriodCondition should be negated -- "

 "the time period the rule shall not "

 "be in effect. If false, it specifies the time "

 "period the rule shall be in effect. "

 "If NULL, the property shall have the value "

 "of false."),

 ModelCorrespondence {

 "ModifyStorageTierPolicyRule.PolicyTimePeriodCondition" }]

 boolean ConditionNegated,

 [IN (false), OUT, Description (

 "Reference to the job (may be NULL if job is completed)."

)]

 CIM_ConcreteJob REF Job,

 [Required, IN, Description (

 "Reference to the PolicyRule to be modified.")]

 CIM_PolicyRule REF PolicyRule);

26.7 Use Cases

26.7.1 Overview

Storage tiering policies may be created and managed by the implementation. Clients may also be able to
create and manage policies associated with storage tiering.

The implementation may support “global” and/or “local” tiering policy rules. The elements subject to
storage tiering may be associated to global, local, or both tiering policy rules.

26.7.2 Use Case -- Is Storage Tiering Policy is supported ?

• Discover the TierPolicyService, using HostedService association to top level computer system

• Locate the associated TierPolicyCapabilities, using the ElementCapabilities association to TierPolicyService

• Examine the property TierPolicyCapabilities.SupportsTieringPolicies
SNIA Technical Position 899

313

314
26.8 CIM Elements

26.8.1 Overview

Table 648 describes the CIM elements for Automated Storage Tiering Policy.

Table 648 - CIM Elements for Automated Storage Tiering Policy

Element Name Requirement Description

26.8.2 CIM_AdvancedStorageSetting Optional Representation of a StorageSetting. StorageSettings are
covered in Block Services Package. Additional properties
are added for storage tiering.

26.8.3 CIM_AssociatedElementTier Conditional Conditional requirement: Required if storage tiering is
supported. Define the association between an element
and one or more storage tiers.

26.8.4 CIM_AssociatedResourcePool Optional Associates an object inherited from System to a
dependent ResourcePool such as a StoragePool.

26.8.5 CIM_AssociatedTierPolicy Optional Defines the association between a TierPolicyRule and a
storage tier.

26.8.6 CIM_ConcreteDependency (TierDomain to
StorageTier)

Optional Associates storage tiers to tier domains.

26.8.7 CIM_ElementCapabilities Mandatory Associates TierPolicyServiceCapabilities and
TierPolicyService.

26.8.8 CIM_ElementSettingData Optional

26.8.9 CIM_HostedService Mandatory

26.8.10 CIM_MemberOfCollection (Identifies
StorageExtents comprising a tier)

Optional Associates a storage extent to a storage tier.

26.8.11 CIM_MemberOfCollection (Identifies
StoragePools comprising a tier)

Optional Associates a storage pool to a storage tier.

26.8.12 CIM_MemberOfCollection (Identifies
StorageVolumes comprising a tier)

Optional Identifies a storage volume contributing to a storage tier.

26.8.13 CIM_MemberOfCollection (Identifies primordial
StorageExtents comprising a tier)

Optional Associates a primordial storage extent to a storage tier.

26.8.14 CIM_PolicySetValidityPeriod Optional Defines the association between a TierPolicyRule and a
PolicyTimePeriodCondition.

26.8.15 CIM_PolicyTimePeriodCondition Optional Provides a means of representing the time periods during
which a policy rule is in effect.

26.8.16 CIM_ServiceAffectsElement (Between
TierPolicyService and TierPolicyRule)

Optional Associates tier policy service to policy rule.

26.8.17 CIM_ServiceAffectsElement (Between
TierService and StorageTier)

Optional Associates TierService to StorageTier.

26.8.18 CIM_ServiceAffectsElement (Between
TierService and TierDomain)

Optional Associates TierService to TierDomain.

26.8.19 CIM_SettingsDefineCapabilities (Between
StorageTierCapabilities and TierSettingData)

Optional Associates StorageTierCapabilities to TierSettingData.

26.8.20 CIM_SettingsDefineCapabilities (Between
TierServiceCapabilities and TierSettingData)

Optional Associates TierServiceCapabilities to TierSettingData.
900

315

316

317

318

319
26.8.2 CIM_AdvancedStorageSetting

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Optional

26.8.21 CIM_StorageTier Mandatory This class represents a collection of storage objects, such
as a collection of storage objects identified as a storage
tier.

26.8.22 CIM_StorageTierCapabilities Optional A subclass of StorageCapabilities that defines the
Capabilities of a storage tier.

26.8.23 CIM_StorageVolume (Constituent) Conditional Conditional requirement: Referenced from Pools from
Volumes - Constituent StorageVolume is mandatory. The
CIM_StorageVolume is an augmented version of the
CIM_StorageVolume defined in the Block Services
package. See CIM_StorageVolume in Storage
Management Technical Specification, Part 4 Block
Devices, 1.8.0 Rev 4 5.6.34 CIM_StorageVolume.

26.8.24 CIM_StorageVolume (Regular) Mandatory The CIM_StorageVolume is an augmented version of the
CIM_StorageVolume defined in the Block Services
package. See CIM_StorageVolume in Storage
Management Technical Specification, Part 4 Block
Devices, 1.8.0 Rev 4 5.6.34 CIM_StorageVolume.

26.8.25 CIM_SystemComponent (TierDomain to
ComputerSystem)

Optional Storage TierDomains on a system.

26.8.26 CIM_TierDomain Mandatory TierDomain representing one or more storage tiers.

26.8.27 CIM_TierPolicyRule Optional Inherited from CIM_PolicyRule to include properties
specific to storage tiering.

26.8.28 CIM_TierPolicyService Mandatory The TierPolicyService class provides methods to allow a
client to manage storage tiering policies. Methods are
described in the Extrinsic Methods clause.

26.8.29 CIM_TierPolicyServiceCapabilities Mandatory A subclass of Capabilities that defines the Capabilities of
a TierPolicyService. An instance of
TierPolicyServiceCapabilities is associated with a
TierPolicyService using ElementCapabilities.

26.8.30 CIM_TierPolicySetAppliesToElement Optional Defines the association between a TierPolicyRule and a
ManagedElement.

26.8.31 CIM_TierPolicySettingData Optional Contains various options for use by the TierPolicyService
methods to offer clients additional controls to manipulate
a policy associated with storage tiering.

Table 648 - CIM Elements for Automated Storage Tiering Policy

Element Name Requirement Description
SNIA Technical Position 901

320
 Table 649 describes class CIM_AdvancedStorageSetting.

Table 649 - SMI Referenced Properties/Methods for CIM_AdvancedStorageSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In addition, the
user-friendly name can be used as a index property for a search of query.
(Note: Name does not have to be unique within a namespace.).

NoSinglePointOfFailure Mandatory Indicates the desired value for No Single Point of Failure. Possible values
are false = single point of failure, and true = no single point of failure.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional ExtentStripeLength describes the desired stripe length goal.

ExtentStripeLengthMin Optional ExtentStripeLengthMin describes the minimum acceptable stripe length.

ExtentStripeLengthMax Optional ExtentStripeLengthMax describes the maximum acceptable stripe length.

ParityLayout Optional ParityLayout describes the desired parity layout. The value may be 1 or 2
(Non-rotated Parity or Rotated Parity).

UserDataStripeDepth Optional UserDataStripeDepth describes the desired stripe depth.

UserDataStripeDepthMin Optional UserDataStripeDepthMin describes the minimum acceptable stripe depth.

UserDataStripeDepthMax Optional UserDataStripeDepthMax describes the maximum acceptable stripe
depth.

ChangeableType Mandatory This property informs a client if the setting can be modified. It also tells the
client how long this setting is expected to remain in the model. If the
implementation allows it, the client can use the property to request that the
setting's existence be not transient.

StorageExtentInitialUsage Optional The Usage value to be used when creating a new storage element.

StoragePoolInitialUsage Optional The Usage value to be used when creating a new storage pool.
902

321

322

323

324

325

326
26.8.3 CIM_AssociatedElementTier

Define the association between an element and one or more storage tiers.

Created By: Extrinsic: static

Modified By: Extrinsic: static

Deleted By: Extrinsic: Static

Requirement: Required if storage tiering is supported.

InitialStorageTierMethodol
ogy

MN Optional Enumeration indicating the initial storage tier for the element. "None" or
null means this element is not subject to storage tiering. Values:

 0: None

 3: Implementation Decides

 4: Highest Performance

 5: Lowest Performance

 6: Highest Availability

7: Lowest Availability.

InitialStorageTieringSelecti
on

MN Optional Use this value to set the property StorageTieringSelection of the
associated element. Storage tiering examines StorageTieringSelection to
determine whether to use RelativePerformanceOrder or
RelativePerformanceOrderSet for selecting an appropriate storage tier. A
value of 0 or null indicates the associated element is not subject to storage
tiering. Values:

 0: Unknown

 2: Use RelativePerformanceOrder

3: Use RelativePerformanceOrderSet.

RelativePerformanceOrder
Limit

MN Optional The storage tiering limit applied to the element. This property indicates
RelativePerformanceOrder not to exceed this value. For example: A
system has storage tiers with RelativePerformanceOrder of 1, 3, and 5. If
the request is to create a new storage volume with
StorageSetting.RelativePerformanceOrderLimit of 2, the newly created
storage volume is placed in a storage tier with RelativePerformanceOrder
of 1.

InitialRelativePerformance
OrderSet

MN Optional A set of values. The associated element can only be placed in storage
tiers that have a RelativePerformanceOrder value included in this set.

StorageTieringFrozen MN Optional If true, and the storage element is under the control of the tiering
subsystem, the element's tiering associations will remain frozen -- no data
relocation between tiers.

Table 649 - SMI Referenced Properties/Methods for CIM_AdvancedStorageSetting

Properties Flags Requirement Description & Notes
SNIA Technical Position 903

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341
Table 650 describes class CIM_AssociatedElementTier.

26.8.4 CIM_AssociatedResourcePool

Associates an object inherited from System to a dependent ResourcePool such as a StoragePool.

Created By: Extrinsic: static

Modified By: Extrinsic: static

Deleted By: Extrinsic: Static

Requirement: Optional

Table 651 describes class CIM_AssociatedResourcePool.

26.8.5 CIM_AssociatedTierPolicy

Defines the association between a TierPolicyRule and a storage tier.

Created By: Extrinsic: CreateStorageTierPolicyRule

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTierPolicyRule

Requirement: Optional

Table 652 describes class CIM_AssociatedTierPolicy.

Table 650 - SMI Referenced Properties/Methods for CIM_AssociatedElementTier

Properties Flags Requirement Description & Notes

Allocated Mandatory Indicates what portion of the element is associated with (allocated from)
this storage tier. None: Indicates the element is associated with this
storage tier; however, currently none of the element's blocks are allocated
from this storage tier. Values:

 2: All

 3: Partial

4: None.

GroupComponent Mandatory A storage tier.

PartComponent Mandatory Any element subject to storage tiering.

Table 651 - SMI Referenced Properties/Methods for CIM_AssociatedResourcePool

Properties Flags Requirement Description & Notes

Antecedent Mandatory A ResourcePool such as StoragePool.

Dependent Mandatory A tier domain.

Table 652 - SMI Referenced Properties/Methods for CIM_AssociatedTierPolicy

Properties Flags Requirement Description & Notes

MaxPercentAllocated Mandatory The maximum percentage of the capacity of the element that can be
allocated from the storage tier. Shall be an integer value between 0 and
100.
904

342

343

344

345

346

347

348

349
350
351

352

353

354

355

356

357

358

359

360

361
26.8.6 CIM_ConcreteDependency (TierDomain to StorageTier)

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 653 describes class CIM_ConcreteDependency (TierDomain to StorageTier).

26.8.7 CIM_ElementCapabilities

Associates TierPolicyServiceCapabilities and TierPolicyService. The class definition specializes the
CIM_ElementCapabilities definition in the Automated Storage Tiering profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 654 describes class CIM_ElementCapabilities.

26.8.8 CIM_ElementSettingData

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Antecedent Mandatory A policy rule.

Dependent Mandatory A storage tier.

Table 653 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (TierDomain to StorageTier)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Tier Domain.

Dependent Mandatory A Storage Tier.

Table 654 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

Capabilities (overridden) Mandatory Instance of CIM_TierPolicyServiceCapabilities.

ManagedElement
(overridden)

Mandatory Instance of CIM_TierPolicyService.

Table 652 - SMI Referenced Properties/Methods for CIM_AssociatedTierPolicy

Properties Flags Requirement Description & Notes
SNIA Technical Position 905

362

363

364
365

366

367

368

369

370

371

372

373

374

375

376

377
Table 655 describes class CIM_ElementSettingData.

26.8.9 CIM_HostedService

The class definition specializes the CIM_HostedService definition in the Automated Storage Tiering
profile. Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in the
left most column

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 656 describes class CIM_HostedService.

26.8.10 CIM_MemberOfCollection (Identifies StorageExtents comprising a tier)

Associates a storage extent to a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 657 describes class CIM_MemberOfCollection (Identifies StorageExtents comprising a tier).

Table 655 - SMI Referenced Properties/Methods for CIM_ElementSettingData

Properties Flags Requirement Description & Notes

IsDefault Mandatory An enumerated integer indicating that the referenced setting is a default
setting for the element, or that this information is unknown. Value shall be
0,1 or 2 (Unknown or Is Default or Is Not Default).

IsCurrent Mandatory An enumerated integer indicating that the referenced setting is currently
being used in the operation of the element, or that this information is
unknown. Value shall be 0,1 or 2 (Unknown or Is Default or Is Not Default).

ManagedElement Mandatory StorageVolume or CIM_DeviceMaskingGroup.

SettingData Mandatory The AdvancedStorageSetting that is associated with the Storage Volume
or Device Masking Group.

Table 656 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent (overridden) Mandatory The Tier Policy Service hosted on the System.

Table 657 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StorageExtents
comprising a tier)

Properties Flags Requirement Description & Notes

Collection Mandatory Instance of CIM_StorageTier.

Member Mandatory A storage extent or a composite storage extent.
906

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397
26.8.11 CIM_MemberOfCollection (Identifies StoragePools comprising a tier)

Associates a storage pool to a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 658 describes class CIM_MemberOfCollection (Identifies StoragePools comprising a tier).

26.8.12 CIM_MemberOfCollection (Identifies StorageVolumes comprising a tier)

Identifies a storage volume contributing to a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 659 describes class CIM_MemberOfCollection (Identifies StorageVolumes comprising a tier).

26.8.13 CIM_MemberOfCollection (Identifies primordial StorageExtents comprising a tier)

Associates a primordial storage extent to a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 658 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StoragePools
comprising a tier)

Properties Flags Requirement Description & Notes

Collection Mandatory Instance of CIM_StorageTier.

Member Mandatory A storage pool.

Table 659 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StorageVolumes
comprising a tier)

Properties Flags Requirement Description & Notes

Collection Mandatory Instance of CIM_StorageTier.

Member Mandatory A storage volume.
SNIA Technical Position 907

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413
Table 660 describes class CIM_MemberOfCollection (Identifies primordial StorageExtents comprising a
tier).

26.8.14 CIM_PolicySetValidityPeriod

Defines the association between a TierPolicyRule and a PolicyTimePeriodCondition.

Created By: Extrinsic: CreateStorageTierPolicyRule

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTierPolicyRule

Requirement: Optional

Table 661 describes class CIM_PolicySetValidityPeriod.

26.8.15 CIM_PolicyTimePeriodCondition

Provides a means of representing the time periods during which a policy rule is in effect.

Created By: Extrinsic: CreateStorageTierPolicyRule

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTierPolicyRule

Requirement: Optional

Table 662 describes class CIM_PolicyTimePeriodCondition.

Table 660 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies primordial Stor-
ageExtents comprising a tier)

Properties Flags Requirement Description & Notes

Collection Mandatory Instance of CIM_StorageTier.

Member Mandatory A primordial storage extent.

Table 661 - SMI Referenced Properties/Methods for CIM_PolicySetValidityPeriod

Properties Flags Requirement Description & Notes

GroupComponent Mandatory PolicyRules and/or groups of rules that are currently applied to an
Element.

PartComponent Mandatory CIM_PolicyTimePeriodCondition to which the TierPolicyRule applies.

Table 662 - SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

PolicyRuleName Mandatory A user-friendly rule name. Defaults to 'NO RULE', as recommended by
DMTF.

PolicyConditionName Mandatory A user-friendly condition name. Defaults to 'NO RULE', as recommended
by DMTF.
908

414

415

416

417

418

419

420

421

422

423

424

425

426

427
26.8.16 CIM_ServiceAffectsElement (Between TierPolicyService and TierPolicyRule)

Associates tier policy service to policy rule.

Created By: Extrinsic: CreateStorageTierPolicyRule

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTierPolicyRule

Requirement: Optional

Table 663 describes class CIM_ServiceAffectsElement (Between TierPolicyService and TierPolicyRule).

26.8.17 CIM_ServiceAffectsElement (Between TierService and StorageTier)

Associates TierService to StorageTier.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 664 describes class CIM_ServiceAffectsElement (Between TierService and StorageTier).

PolicyRuleCreationClassN
ame

Mandatory A user-friendly name. Defaults to 'NO RULE', as recommended by DMTF.

DayOfMonthMask Optional Day Of Month Mask. See MOF for format.

DayOfWeekMask Optional An array of Day Of Week Mask. See MOF for format.

LocalOrUtcTime Optional Local Or UTC Time. 1 indicates Local Time, 2 indicates UTC Time.

MonthOfYearMask Optional An array of Month Of Year Mask. See MOF for format.

TimeOfDayMask Optional Time Of Day Mask. See MOF for format.

TimePeriod Optional Time Period. See MOF for format.

Table 663 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierPolicySer-
vice and TierPolicyRule)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Tier Policy Service.

AffectedElement Mandatory Tier Policy Rule.

Table 664 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierService and
StorageTier)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Tier Service.

AffectedElement Mandatory Storage Tier.

Table 662 - SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition

Properties Flags Requirement Description & Notes
SNIA Technical Position 909

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446
26.8.18 CIM_ServiceAffectsElement (Between TierService and TierDomain)

Associates TierService to TierDomain.

Created By: Extrinsic: Static

Modified By: Extrinsic: Static

Deleted By: Extrinsic: Static

Requirement: Optional

Table 665 describes class CIM_ServiceAffectsElement (Between TierService and TierDomain).

26.8.19 CIM_SettingsDefineCapabilities (Between StorageTierCapabilities and TierSettingData)

Associates StorageTierCapabilities to TierSettingData.

Requirement: Optional

Table 666 describes class CIM_SettingsDefineCapabilities (Between StorageTierCapabilities and
TierSettingData).

26.8.20 CIM_SettingsDefineCapabilities (Between TierServiceCapabilities and TierSettingData)

Associates TierServiceCapabilities to TierSettingData.

Requirement: Optional

Table 667 describes class CIM_SettingsDefineCapabilities (Between TierServiceCapabilities and
TierSettingData).

Table 665 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierService and
TierDomain)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Tier Service.

AffectedElement Mandatory Tier Domain.

Table 666 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Between Storag-
eTierCapabilities and TierSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to StorageTierCapabilities.

PartComponent Mandatory Reference to TierSettingData.

Table 667 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Between TierService-
Capabilities and TierSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to TierServiceCapabilities.

PartComponent Mandatory Reference to TierSettingData.
910

447

448

449

450

451
26.8.21 CIM_StorageTier

This class represents a collection of storage objects, such as a collection of storage objects identified as
a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Mandatory

Table 668 describes class CIM_StorageTier.

Table 668 - SMI Referenced Properties/Methods for CIM_StorageTier

Properties Flags Requirement Description & Notes

InstanceID Mandatory Within the scope of an array, the InstanceID opaquely and uniquely
identifies an instance of this class.

ElementName Optional User-friendly name.

RelativePerformanceOrder Mandatory A number starting from 0 to indicate the relative performance
characteristics of the storage tier. The smaller the number, the higher the
performance characteristics.

StorageObjectType Optional indicates the type of storage objects comprising a storage tier. Values:

 2: StorageVolume

 3: LogicalDisk

 4: StorageExtent

 5: StoragePool

 6: ComponentsOfStoragePool

 7: ElementsOfStoragePool

 8: External StoragePool

9: Primordial StorageExtent.

Technology Optional The technology of the underlying disk drives used. Mixed: a storage tier
consists of a mix of different disk drive technologies. Values:

 2: Not Applicable

 3: Solid State Drive

 4: Fibre Channel

 5: SATA

 6: SAS

 7: Mixed

8: Hard Disk Drive.

State M Optional This property indicates whether the storage tier is actively being used or
not. Values:

 2: Enabled

3: Disabled.

Dynamic M Optional If true any new storage objects added to the system that have a similar
performance characteristics (and QoS) to this tier become part of this tier
automatically. If false, after the storage tier is created, any newly
introduced storage objects need to be added to the storage tier manually.
SNIA Technical Position 911

452

453

454

455

456

457

458
26.8.22 CIM_StorageTierCapabilities

A subclass of StorageCapabilities that defines the Capabilities of a storage tier.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 669 describes class CIM_StorageTierCapabilities.

DeleteOnEmptyStorageTie
r

M Optional If true and empty storage tiers are allowed, the storage tier will be deleted
when the last element is removed from the storage tier. If empty storage
tiers are not allowed, the storage tier will be deleted automatically when
the storage tier becomes empty.

Percentage M Optional A value between 0 to 100 to indicate the maximum percentage of the
underlying capacity that can be used for storage tiering activities. For
example, a value of 80 indicates no more than 80 percent of the storage
tier can be used for automated tiering. The remaining 20 percent of the
underlying storage is set aside for elements that do not participate in
automated storage tiering.

TotalCapacity Optional The total capacity of the storage tier in bytes.

Table 669 - SMI Referenced Properties/Methods for CIM_StorageTierCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of Capabilities. In addition, the
user-friendly name can be used as a index property for a search or query.
(Note: ElementName does not have to be unique within a namespace) If
the capabilities are fixed, then this property should be used as a means for
the client application to correlate between capabilities and device
documentation.

ElementType Mandatory Enumeration indicating the type of instance to which this
StorageCapabilities applies. Shall be either 5 or 6 (StoragePool or
StorageConfigurationService).

NoSinglePointOfFailure Mandatory Indicates whether or not the associated instance supports no single point
of failure. Values are: FALSE = does not support no single point of failure,
and TRUE = supports no single point of failure.

NoSinglePointOfFailureDef
ault

Mandatory Indicates the default value for the NoSinglePointOfFailure property.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

Table 668 - SMI Referenced Properties/Methods for CIM_StorageTier

Properties Flags Requirement Description & Notes
912

DataRedundancyDefault Mandatory DataRedundancyDefault describes the default number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancyDefa
ult

Mandatory PackageRedundancyDefault describes the default number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

ExtentStripeLengthDefault Optional Describes what the default stripe length, the number of members or
columns, a storage element will have when created or modified using this
capability. A NULL means that the setting of stripe length is not supported
at all or not supported at this level of storage element allocation or
assignment.

ParityLayoutDefault Optional ParityLayoutDefault describes what the default parity a storage element
will have when created or modified using this capability. A NULL means
that the setting of the parity is not supported at all or is not supported at
this level of storage element allocation or assignment.

UserDataStripeDepthDefa
ult

Optional UserDataStripeDepthDefault describes what the number of bytes forming
a stripe that a storage element will have when created or modified using
this capability. A NULL means that the setting of stripe depth is not
supported at all or not supported at this level of storage element allocation
or assignment.

StorageTierCharacteristics Optional Indicates the storage tiering capabilities. Values:

 2: BasedOnPerformance Only

 3: BasedOnQOS Only

4: BasedOnPerformance And BasedOnQOS.

RelativePerformanceOrder
Min

Optional Indicates the minimum value for RelativePerformanceOrder that this
storage tier can have. The minimum value for RelativePerformanceOrder,
which represents the highest level of performance.

RelativePerformanceOrder
Max

Optional Indicates the maxmimum value for RelativePerformanceOrder that this
storage tier can have. The maximum value for RelativePerformanceOrder,
which represents the lowest level of performance.

RelativePerformanceOrder
Default

Optional Indicates the default value of RelativePerformanceOrder for the storage
tier -- the smaller the RelativePerformanceOrder, the more performant the
storage tier.

CreateSetting() Conditional Conditional requirement: Support for StorageConfigurationService.
Generate a setting to use as a goal for creating or modifying storage
elements.

GetSupportedStripeLength
s()

Optional List the possible discrete stripe lengths supported at this time of this
method's execution.

Table 669 - SMI Referenced Properties/Methods for CIM_StorageTierCapabilities

Properties Flags Requirement Description & Notes
SNIA Technical Position 913

459

460

461

462

463

464
26.8.23 CIM_StorageVolume (Constituent)

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyElementFromStoragePool

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Pools from Volumes - Constituent StorageVolume is mandatory.

Table 670 describes class CIM_StorageVolume (Constituent).

GetSupportedStripeLength
Range()

Optional List the possible stripe length ranges supported at the time of this
method's execution.

GetSupportedParityLayout
s()

Optional List the possible parity layouts supported at the time of this method's
execution.

GetSupportedStripeDepths
()

Optional List the possible stripe depths supported at the time of this method's
execution.

GetSupportedStripeDepth
Range()

Optional List the possible stripe depth ranges supported at the time of this method's
execution.

Table 670 - SMI Referenced Properties/Methods for CIM_StorageVolume (Constituent)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name CD Mandatory Identifier for this volume; based of datapath standards such as SCSI or
ATAPI.

OtherIdentifyingInfo CD Optional Additional correlatable names.

IdentifyingDescriptions Conditional. Required if OtherIdentifyingInfo is provided.

Table 669 - SMI Referenced Properties/Methods for CIM_StorageTierCapabilities

Properties Flags Requirement Description & Notes
914

NameFormat Mandatory The type of identifier in the Name property. The valid values for
StorageVolumes are:

1 (Other)

2 (VPD83NAA6)

3 (VPD83NAA5)

4 (VPD83Type2)

5 (VPD83Type1)

6 (VPD83Type0)

7 (SNVM)

8 (NodeWWN)

9 (NAA)

10 (EUI64)

11 (T10VID).

NameNamespace Mandatory The namespace that defines uniqueness for the NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant). In addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRed
undancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Conditional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory This is an array of values that shall contain 'SNIA:Pool Component'.

CanDelete Optional Indicates if the volume is able to be deleted by a client application.

NumExtentsMigrating Optional The number of Extents in the process of migrating for this storage volume
when the volume relocation is ongoing.

Table 670 - SMI Referenced Properties/Methods for CIM_StorageVolume (Constituent)

Properties Flags Requirement Description & Notes
SNIA Technical Position 915

465

466

467

468

469

470
26.8.24 CIM_StorageVolume (Regular)

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyElementFromStoragePool

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Mandatory

Table 671 describes class CIM_StorageVolume (Regular).

StorageTieringSelection N Optional Storage tiering examines this property to determine whether to use
RelativePerformanceOrder or RelativePerformanceOrderSet for selecting
an appropriate storage tier. A value of 0 or null indicates the element is not
subject to storage tiering. Values:

 0: None

 2: Use RelativePerformanceOrder

3: Use RelativePerformanceOrderSet.

RelativePerformanceOrder N Optional A storage volume can be associated with one or more storage tiers with
equal or smaller StorageTier.RelativePerformanceOrder. The smaller the
RelativePerformanceOrder, the more performant the tier.

RelativePerformanceOrder
Set

N Optional A set of RelativePerformanceOrder values. The volume can only be
associated with storage tiers that have a RelativePerformanceOrder value
included in this set.

Table 671 - SMI Referenced Properties/Methods for CIM_StorageVolume (Regular)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name CD Mandatory Identifier for this volume; based of datapath standards such as SCSI or
ATAPI.

OtherIdentifyingInfo CD Optional Additional correlatable names.

IdentifyingDescriptions Conditional. Required if OtherIdentifyingInfo is provided.

Table 670 - SMI Referenced Properties/Methods for CIM_StorageVolume (Constituent)

Properties Flags Requirement Description & Notes
916

NameFormat Mandatory The type of identifier in the Name property. The valid values for
StorageVolumes are:

1 (Other)

2 (VPD83NAA6)

3 (VPD83NAA5)

4 (VPD83Type2)

5 (VPD83Type1)

6 (VPD83Type0)

7 (SNVM)

8 (NodeWWN)

9 (NAA)

10 (EUI64)

11 (T10VID).

NameNamespace Mandatory The namespace that defines uniqueness for the NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant). In addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRed
undancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Conditional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory This is an array of values that shall contain 'SNIA:Allocated'.

CanDelete Optional Indicates if the volume is able to be deleted by a client application.

NumExtentsMigrating Optional The number of Extents in the process of migrating for this storage volume
when the volume relocation is ongoing.

Table 671 - SMI Referenced Properties/Methods for CIM_StorageVolume (Regular)

Properties Flags Requirement Description & Notes
SNIA Technical Position 917

471

472

473

474

475

476

477

478

479

480

481

482

483

484
26.8.25 CIM_SystemComponent (TierDomain to ComputerSystem)

Storage TierDomains on a system.

Created By: Extrinsic: CreateTierDomain

Modified By: Static

Deleted By: Extrinsic: DeleteTierDomain

Requirement: Optional

Table 672 describes class CIM_SystemComponent (TierDomain to ComputerSystem).

26.8.26 CIM_TierDomain

TierDomain representing one or more storage tiers.

Created By: Extrinsic: CreateTierDomain

Modified By: Static

Deleted By: Extrinsic: DeleteTierDomain

Requirement: Mandatory

StorageTieringSelection N Optional Storage tiering examines this property to determine whether to use
RelativePerformanceOrder or RelativePerformanceOrderSet for selecting
an appropriate storage tier. A value of 0 or null indicates the element is not
subject to storage tiering. Values:

 0: None

 2: Use RelativePerformanceOrder

3: Use RelativePerformanceOrderSet.

RelativePerformanceOrder N Optional A storage volume can be associated with one or more storage tiers with
equal or smaller StorageTier.RelativePerformanceOrder. The smaller the
RelativePerformanceOrder, the more performant the tier.

RelativePerformanceOrder
Set

N Optional A set of RelativePerformanceOrder values. The volume can only be
associated with storage tiers that have a RelativePerformanceOrder value
included in this set.

Table 672 - SMI Referenced Properties/Methods for CIM_SystemComponent (TierDomain to ComputerSys-
tem)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to top-level ComputerSystem.

PartComponent Mandatory Reference to the TierDomain.

Table 671 - SMI Referenced Properties/Methods for CIM_StorageVolume (Regular)

Properties Flags Requirement Description & Notes
918

485

486

487

488

489

490

491
Table 673 describes class CIM_TierDomain.

26.8.27 CIM_TierPolicyRule

Inherited from CIM_PolicyRule to include properties specific to storage tiering.

Created By: Extrinsic: CreateStorageTierPolicyRule

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTierPolicyRule

Requirement: Optional

Table 674 describes class CIM_TierPolicyRule.

Table 673 - SMI Referenced Properties/Methods for CIM_TierDomain

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Name of Class.

Name Mandatory An arbitrary name (implementation dependent).

NameFormat Mandatory Dependent on the arbitrary name chosen.

ElementName Optional A user friendly name for the storage tier domain (implementation
dependent).

OtherIdentifyingInfo Mandatory For a storage tier domain, this property shall contain the value 'TIER'.

IdentifyingDescriptions Mandatory For a storage TIER AdminDomain, this property shall contain the value
'SNIA:DetailedType' in the index for the OtherIdentifyingInfo of 'TIER'.

DataMovement MN Optional Specifies if data movement is automatic or requires manual intervention.
Values:

 2: Auto

3: Manual.

DataMovementState MN Optional Indicates the state of data movement that requires manual intervention.
Values:

 0: Not Applicable

 2: Waiting for Approval

 3: Waiting for Scheduled Time

 4: In Progress

 5: Stopped

 6: Paused

 7: Aborted

8: Completed.

RequestDataMovementSta
teChange()

Conditional Conditional requirement: Required if manual data movement is supported.

Table 674 - SMI Referenced Properties/Methods for CIM_TierPolicyRule

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory
SNIA Technical Position 919

492

493
494

495

496

497

498

499
26.8.28 CIM_TierPolicyService

Base class for Automatic Storage Policy Tiering. The class definition specializes the CIM_TierService
definition in the Automated Storage Tiering profile. Properties or methods not inherited are marked
accordingly as '(overridden)' or '(added)' in the left most column

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 675 describes class CIM_TierPolicyService.

CreationClassName Mandatory

PolicyRuleName Mandatory A user-friendly name of this policy rule.

Activity Mandatory Indicates which tiering activity this rule applies to. Values:

 2: Data movement

3: Workload statistics collection.

RuleDiscriminator Mandatory This is array of values that shall contain either 'SNIA:GlobalRule' or
'SNIA:LocalRule'.

Enabled Mandatory Indicates whether this policy rule is administratively enabled or disabled.
Values:

 1: Enabled

2: Disabled.

TimePeriodCondition MN Optional Specifies the time period for this policy rule. If Null, the implementation
decides. Values:

 0: Unknown

 2: Implementation Decides

 3: Not Available

 4: All The Time

 5: Associated Time Period

 6: Global

7: None.

Table 675 - SMI Referenced Properties/Methods for CIM_TierPolicyService

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

CreateStorageTier() Conditional Conditional requirement: Required if client manages storage
tiers.

Table 674 - SMI Referenced Properties/Methods for CIM_TierPolicyRule

Properties Flags Requirement Description & Notes
920

500

501
502
503
504

505

506

507

508

509
26.8.29 CIM_TierPolicyServiceCapabilities

A subclass of Capabilities that defines the Capabilities of a TierPolicyService. An instance of
TierPolicyServiceCapabilities is associated with a TierPolicyService using ElementCapabilities. The class
definition specializes the CIM_TierServiceCapabilities definition in the Automated Storage Tiering profile.
Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most
column

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 676 describes class CIM_TierPolicyServiceCapabilities.

DeleteStorageTier() Conditional Conditional requirement: Required if client manages storage
tiers.

AddToStorageTier() Conditional Conditional requirement: Required if client manages storage
tiers.

RemoveFromStorageTier() Conditional Conditional requirement: Required if client manages storage
tiers.

CreateTierDomain() Conditional Conditional requirement: Required if client manages tier
domains.

DeleteTierDomain() Conditional Conditional requirement: Required if client manages tier
domains.

ModifyStorageTierDomainAssociation() Conditional Conditional requirement: Required if client manages tier
domains.

GetStorageTierCandidateObjects() Conditional Conditional requirement: Required if client manages tier
domains.

CreateStorageTierPolicyRule() (added) Conditional Conditional requirement: Required if client manipulates
storage tiering policies.

DeleteStorageTierPolicyRule() (added) Conditional Conditional requirement: Required if client manipulates
storage tiering policies.

ModifyStorageTierPolicyRule() (added) Conditional Conditional requirement: Required if client manipulates
storage tiering policies.

Table 676 - SMI Referenced Properties/Methods for CIM_TierPolicyServiceCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User Friendly name.

Table 675 - SMI Referenced Properties/Methods for CIM_TierPolicyService

Properties Flags Requirement Description & Notes
SNIA Technical Position 921

SupportedFeatures Mandatory Enumeration indicating the supported features of the storage tiering
service. Values:

 2: System Creates StorageTiers

 3: Client Can Create StorageTiers

 4: System Creates TierDomains

 5: Client Can Create TierDomains

6: Supports SubLUN.

SupportedTierFeatures Mandatory Enumeration indicating the supported features of the storage tiers. Values:

 2: StorageTiers Based On Performance Only

 3: StorageTiers Based On QoS Only

 4: StorageTiers Based On Performance and QoS

 5: StorageTiers Based On Other Characteristics

 6: StorageTiers Can Overlap

 7: StorageTiers Can Be Empty

8: StorageTiers In Multiple TierDomains.

SupportedStorageObjects Mandatory Enumeration indicating the supported storage objects that can be used to
form a storage tier. ComponentsOfStoragePool: In calling the method
CreateStorageTier, it is possible to supply one or StoragePools and
request the storage tiers to be created based on the
"ConcreteComponents" of the StoragePools, i.e. StorageExtents.
ElementsOfStoragePool: Storage tier is comprised of elements, e.g.
volumes, allocated from a StoragePool. Values:

 2: StorageVolume

 3: LogicalDisk

 4: StorageExtent

 5: StoragePool

 6: ComponentsOfStoragePool

 7: ElementsOfStoragePool

 8: External StoragePool

9: Primordial StorageExtent.

Table 676 - SMI Referenced Properties/Methods for CIM_TierPolicyServiceCapabilities

Properties Flags Requirement Description & Notes
922

SupportedAsynchronousA
ctions (overridden)

Mandatory Identify methods using job control. Values:

 2: CreateStorageTier

 3: AddToStorageTier

 4: RemoveFromStorageTier

 5: CreateTierDomain

 6: DeleteTierDomain

 7: ModifyStorageTierDomainAssociation

 8: GetStorageTierCandidateObjects

 9: DeleteStorageTier

 10: CreateStorageTierPolicyRule

 11: DeleteStorageTierPolicyRule

12: ModifyStorageTierPolicyRule.

SupportedSynchronousAct
ions (overridden)

Mandatory Identify methods not using job control. Values:

 2: CreateStorageTier

 3: AddToStorageTier

 4: RemoveFromStorageTier

 5: CreateTierDomain

 6: DeleteTierDomain

 7: ModifyStorageTierDomainAssociation

 8: GetStorageTierCandidateObjects

 9: DeleteStorageTier

 10: CreateStorageTierPolicyRule

 11: DeleteStorageTierPolicyRule

12: ModifyStorageTierPolicyRule.

SupportedCompression Optional Indicates if the Automated Storage Tiering subsystem has the capability to
compress storage volumes that are subject to tiering. Values:

 2: ThinlyProvisioned

3: ThicklyProvisioned.

SupportedDataMovement Optional Indicates the supported data movement choices that are available. Values:

 2: Auto

3: Manual.

SupportsTieringPolicies(ad
ded)

Mandatory Indicates if instrumentation supports policies for storage tiering. Values:

 true: Storage tiering policies are supported

false: Storage tiering is supported, but not tiering policies.

Table 676 - SMI Referenced Properties/Methods for CIM_TierPolicyServiceCapabilities

Properties Flags Requirement Description & Notes
SNIA Technical Position 923

510

511

512

513

514

515

516
26.8.30 CIM_TierPolicySetAppliesToElement

Defines the association between a TierPolicyRule and a ManagedElement.

Created By: Extrinsic: CreateStorageTierPolicyRule

SupportedPolicyFeatures
(added)

Mandatory Enumeration indicating the supported features of the storage tiering
service. Values:

 2: System creates Policies

 3: Client can create Policies

 4: Storage tier can belong to multiple policies

 5: Policy shall account for total allocation

 6: Supports global TierPolicyRule

7: Supports local TierPolicyRule.

PolicyAppliesToElements
(added)

Mandatory Enumeration indicating the elements that are associated with a tiering
policy. Values:

 2: StorageVolume

 3: LogicalDisk

6: DeviceMaskingGroup.

SupportedProvisioningTyp
es (added)

Mandatory The policy rule applies to elements that have the indicated provisioning.
Values:

 2: ThinlyProvisioned

3: ThicklyProvisioned.

SupportedDataMovement
Rates (added)

Mandatory Specifies how fast data should be moved between storage tiers. Values:

 2: Very High

 3: High

 4: Medium

 5: Slow

6: Very Slow

7: Implementation Decides.

SupportedRemoteTieringC
oordination (added)

Optional Indicates if the Automated Storage Tiering subsystem has the capability to
coordinate with the remote site the tiering characteristics of the elements
involved in remote replication. Values:

 2: ThinlyProvisioned Mirror

 3: ThicklyProvisioned Mirror

 4: ThinlyProvisioned Clone

5: ThicklyProvisioned Clone.

SupportsAutomaticStorage
PoolAllocation (added)

Optional A boolean property to indicate if the system supports the following
capability. When a thinly provisioned storage element (such as
StorageVolume) subject to storage tiering needs additional storage
capacity and the storage pool the storage element is allocated from is out
of free capacity, the system allocates the additional storage capacity from
another storage pool in the same tiering policy that is associated to the
storage volume.

Table 676 - SMI Referenced Properties/Methods for CIM_TierPolicyServiceCapabilities

Properties Flags Requirement Description & Notes
924

517

518
519
520
521

522

523

524

525

526
Modified By: Static

Deleted By: Extrinsic: DeleteStorageTierPolicyRule

Requirement: Optional

Table 677 describes class CIM_TierPolicySetAppliesToElement.

26.8.31 CIM_TierPolicySettingData

Contains various options for use by the TierPolicyService methods to offer clients additional controls to
manipulate a policy associated with storage tiering. This class is not instantiated. It is provided here to
identify properties that can be set in the embedded instance input to the method. The class definition
specializes the CIM_TierSettingData definition in the Automated Storage Tiering profile. Properties or
methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most column

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 678 describes class CIM_TierPolicySettingData.

Table 677 - SMI Referenced Properties/Methods for CIM_TierPolicySetAppliesToElement

Properties Flags Requirement Description & Notes

RulePriority Mandatory A number between 0 and 100. In situations where more than one
PolicySet is associated to the ManagedElement, this property indicates
which policy has higher priority. The lower the number, the higher the
priority. A value of 0 indicates the implementation decides the priority of
the rule.

RemoteTieringCoordinatio
nEnabled

MN Optional If true, the Automated Storage Tiering subsystem will coordinate with the
remote site while considering tiering of elements involved in replication.

PolicySet Mandatory PolicyRules and/or groups of rules that are currently applied to an
Element.

ManagedElement Mandatory ManagedElement to which the TierPolicyRule applies.

Table 678 - SMI Referenced Properties/Methods for CIM_TierPolicySettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User Friendly name.

RelativePerformanceOrderGoal MN Optional An integer starting from 0 to indicate the performance
characteristic of the storage tier. The smaller the number, the
higher the performance characteristics.

RelativePerformanceOrderMin MN Optional Indicates the minimum value for RelativePerformanceOrder
that this storage tier can have. Basically, the minimum value
for RelativePerformanceOrder represents the highest level of
performance.

RelativePerformanceOrderMax MN Optional Indicates the maxmimum value for RelativePerformanceOrder
that this storage tier can have. Basiclly, the maximum value for
RelativePerformanceOrder represents the lowest level of
performance.
SNIA Technical Position 925

StorageTierCharacteristics MN Optional Indicates the storage tier charateristics. Performance
generally relates to the underlying technology, for example,
Solid State versus Fibre Channel drives. QoS refers to the
Quality of Service, for example, RAID protected versus
unprotected. Values:

 2: BasedOnPerformance Only

 3: BasedOnQOS Only

4: BasedOnPerformance And BasedOnQOS.

Technology MN Optional The technology of the underlying disk drives used. Not
Applicable: Storage tier is not based on technology of
underlying components. Mixed: a storage tier consists of a mix
of different disk drive technologies. Values:

 2: Not Applicable

 3: Solid State Drive

 4: Fibre Channel

 5: SATA

 6: SAS

 7: Mixed

8: Hard Disk Drive.

InitialState MN Optional This property indicates the intial state of the storage tier. The
default value is 2. Values:

 2: Enabled

3: Disabled.

Dynamic MN Optional If true any new extents added to the system that have a similar
performance characteristics (and QoS) to this tier become part
of this tier automatically. If false, the new extents needs to be
added to this tier manually. The default value is false.

DeleteOnEmptyStorageTier MN Optional If true and empty storage tier are allowed, the storage tier will
be deleted when the last element is removed from the storage
tier. If empty storage tier are not allowed, the storage tier will
be deleted automatically when the storage tier becomes
empty. The default value is false.

Percentage MN Optional A value between 0 to 100 to indicate the maximum percentage
of the underlying capacity that can be used for storage tiering
activities. For example, a value of 80 indicates no more than
80 percent of the storage tier can be used for automated
tiering. The remaining 20 percent of the underlying storage is
set aside for elements that do not participate in automated
storage tiering.

CompressionIdleInterval MN Optional Number of days data on a volume must be idle before the
Automated Storage Tiering subsystem starts compressing the
data. Value shall be an integer in [1..365].

CompressionRate MN Optional A number between 1 and 10 to indicate the rate at which the
Automated Storage Tiering subsystem compresses the data.
The smaller the number, the higher the rate of compression.

Table 678 - SMI Referenced Properties/Methods for CIM_TierPolicySettingData

Properties Flags Requirement Description & Notes
926

EXPERIMENTAL

ProvisioningType (added) MN Optional Specifies the elements provisioning type that this rule applies
to. Values:

 2: ThinlyProvisioned

 3: ThicklyProvisioned

 4: All

5: Not Applicable.

RulePriority (added) MN Optional A number between 0 and 100. In situations where more than
one PolicySet is associated to the ManagedElement, this
property indicates which policy has higher priority. The lower
the number, the higher the priority. A value of 0 indicates the
implementation decides the priority of the rule.

DataMovementRate (added) MN Optional Specifies how fast data should be moved between storage
tiers. Values:

 2: Very High

 3: High

 4: Medium

 5: Slow

 6: Very Slow

 7: Implementation Decides

8: Not Applicable.

RemoteTieringCoordinationEnabled
(added)

MN Optional If true, the Automated Storage Tiering subsystem will
coordinate with the remote site while considering tiering of
elements involved in replication.

AutomaticStoragePoolAllocationEnabled
(added)

MN Optional If true, when a thinly provisioned storage element (such as a
StorageVolume) subject to storage tiering needs additional
storage capacity and the storage pool that the storage
element is allocated from is out of free capacity, the system
allocates the additional storage capacity from another storage
pool in the same tiering policy that is associated to the storage
volume.

Table 678 - SMI Referenced Properties/Methods for CIM_TierPolicySettingData

Properties Flags Requirement Description & Notes
SNIA Technical Position 927

928

EXPERIMENTAL

27 Storage Pool Diagnostics Profile

27.1 Synopsis

Profile Name: Storage Pool Diagnostics (Component Profile)

Version: 1.8.0

Organization: SNIA

Central Class: StoragePoolDiagnosticTest

Scoping Class: ComputerSystem

Specializes: Diagnostics Profile 2.1.0, DSP 1002, 2.1.0a

Related Profiles: Table 679 describes the related profiles for Storage Pool Diagnostics.

The Storage Pool Diagnostics Profile extends the management capability of the Block Services profile by
adding diagnostic methods for determining that the storage pool is operating normally and for
troubleshooting storage pool problems involving the storage pool in a managed system.

CIM_StoragePoolDiagnosticTest shall be the Central Class of this profile. The instance of
CIM_StoragePoolDiagnosticTest shall be the Central Instance of this profile. CIM_ComputerSystem shall
be the Scoping Class of this profile. The instance of CIM_ComputerSystem with which the Central
Instance is associated through an instance of CIM_HostedService shall be the Scoping Instance of this
profile.

27.2 Description

This profile describes the CIM schema extensions that compose the Diagnostic support for storage pools,
as defined in the Block Services profile. The primary function of this profile is to provide a comprehensive
set of functions for managing the health and fault diagnostics for storage pools. The profile provides a
seamless integration of optional diagnostics for storage pools in a CIM, CDM and SMI-S environment.

With this profile, WBEM clients can discover storage pool diagnostic services that have been installed on
the system, invoke these services to run on specific storage pools and determine the basics for
performing corrective actions. The specific tests that may be supported include:

• a status test - To identify the general condition of a specified Storage Pool.

• a self test - To perform a health check on a specific storage pool (and possibly set a new OperationalStatus)

• a RECE test - To identify underlying causes for an OperationalStatus that is not OK.

• an impact test - To identify the elements (other storage pools or storage volumes) that are impacted by a
storage pool’s OperationalStatus (and the specific impact).

Table 679 - Related Profiles for Storage Pool Diagnostics

Profile Name Organization Version Requirement Description

Diagnostic Job Control DMTF 1.0.0b Mandatory See DSP1119, version 1.0.0b

Disk Drive Diagnostics DMTF 1.1.0a Optional See DSP1113, version 1.1.0a

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2
SNIA Technical Position 929

• a corrective actions test - To identify possible corrective actions that would clear an OperationalStatus that is
not OK.

This profile is a specialization of the DMTF Diagnostics Profile (DSP1002 version 2.1.0). It applies the
elements of that profile to the logical element: StoragePool. In addition, this profile extends DSP1002 by
specifying the integration of “subtests” and exposing summary records that result from a test.

Figure 178 presents the class schema for the Storage Pool Diagnostics Profile. For simplicity, the prefix
CIM_ has been removed from the names of the classes.

The Storage Pool Diagnostics Profile extends DSP1002. The extensions are shown in Figure 178 as
shaded classes. StoragePoolDiagnosticTest, StoragePoolDiagnosticCapabilities and
StoragePoolDiagnosticSettingData are subclasses of the DiagnosticTest, DiagnosticCapabilities and
DiagnosticSettingData classes of DSP1002. They add properties that are specific to the diagnostic tests
for storage pools.

The DiagnosticSubTestRecord and SummaryDiagnostics classes are new classes, as are the
associations ElementDiagnostics and LogToLog. The shaded DiagnosticLog is not a new class, but a
reuse of an existing class. These may eventually be promoted to DSP1002. They are extensions to
accommodate testing of logical elements and subtests for elements that comprise a logical element.

The tests that are defined for storage pools are:

• Status Test - Used to verify the health (change to status) of a storage pool

• Self Test - Used to evaluate the health (change to status) of a storage pool and the elements that support it

Figure 178 - Storage Pool Diagnostics Instance Diagram

StoragePoo lD iagnosticT est

D iagnosticSettingDataRecord

Software Iden tity

LogM anagesRecord

StoragePoo l

(See Block Services)

Ava ilab leD iagnosticService

D iagnosticLog

(See re fe rencing
p ro file)

Com puterSystem
(e .g ., Array)

HostedService

Elem entSoftware Iden tity UseO fLog

D iagnosticServiceRecord

D iagnosticCom ple tionRecord

He lpService

HostedService

System Device
(See Block Services)

ServiceAffectsElem ent

RecordApp liesT oElem ent

Sto ragePoo l
D iagnosticSettingData

Elem entSettingData

Concre teJob

(See D iagnostics
Job Contro l)

O wn ingJobElem ent

AffectedJob
Elem ent

JobSettingData

(See D iagnostics
Job Contro l)

Elem entSettingData

ServiceAffectsElem ent

Sto ragePoo l
D iagnosticCapab ilities

Elem entCapab ilities

(re fe rencing Pro file)

D iagnosticT est

System Com ponen t

HostedService
(Refe rencing Pro file)

Sum m aryDiagnostic

Elem entD iagnostics

D iagnosticSubT estRecord D iagnosticLog

(fo r sub test)
LogT oLog
930

• RECE Test - Used to determine the elements that contribute to a non-OK OperationalStatus of a storage
pool.

• Impact Test - Used to determine the impacted elements that are based on (allocated from) the storage pool.

• Actions Test - Used to determine the available options for clearing a non-OK OperationalStatus

NOTE This profile defines a RECE test. The RECE test provides a similar function to the RECE association of the Health Package.
The RECE test is a client invoked test that returns information about elements that contribute to a non-OK OperationalStatus for a
StoragePool. The RECE association, as defined in the Health Package, is an association that identifies related elements causing
error. It would be between a storage pool and its elements that are causing an error. The Health Package does not require the
StoragePool Diagnostic Profile and the Storage Pool Diagnostic Profile does not require the Health Package. However, the two
profiles are related in that both address obtaining information about elements that are causing a problem for a storage pool.

27.3 Implementation

27.3.1 Overview

This clause provides additional implementation details for the various diagnostic tests of this profile.

27.3.2 Storage Pool Test Information

Table 680 contains information about the test types.

Table 680 - Test Type Information

Test Name Test Information

Status test Description Used to verify the health of a storage pool

Coverage Range The storage pool under test

Destructive No

User Control No

Execution Time Relatively short

Details This test will verify the OperationalStatus of the storage pool. It may do this by
checking the OperationalStatus of the elements that comprise the StoragePool. This
test will “refresh” the OperationalStatus and update the SummaryDiagnostics
instance for the Status test.

Self test Description Used to evaluate the health of a storage pool and the elements that support it

Coverage Range The storage pool and elements that comprise the storage pool

Destructive No

User Control The user can control the depth of the test. A depth of “zero(0) only tests the storage
pool under test. A depth of one(1) will test the storage pool under test and the
elements that directly comprise the storage pool (e.g., its parent pool). A depth of
65535 will test all element, direct or indirect, that comprise the storage pool.

Execution Time The execution time will vary depending on the “depth” specified. If a depth of 65535
(all related elements) is specified, the test may take some time to execute.

Details The self-test looks at underlying elements of the storage pool (e.g., Parent pool, disk
drives, storage extents, etc.). How “deep” it looks will depend on the “depth” specified
in the DiagnosticSettings parameter of the call. The Self-test will also refresh the
SummaryDiagnostics instance for the pool (and self-test).
SNIA Technical Position 931

27.3.3 CIM_StoragePoolDiagnosticTest

The CIM_StoragePoolDiagnosticTest class can be used for a variety of tests necessary for diagnosing
storage pool issues. Table 681 defines the valid property values and whether the test is mandatory or
optional. An implementation may extend this class and add vendor-defined tests by using the Vendor
Defined range of the StoragePoolTestType valuemap.

RECE test Description Used to determine the elements that contribute to a non-OK OperationalStatus of a
storage pool

Coverage Range The elements that comprise the storage pool (e.g, parent pools, disk drive and
extents).

Destructive No

User Control The user can control the depth of the RECE test. If a depth of one (1) is specified,
only the directly related elements causing the non-OK OperationalStatus will be
reported. If a depth of “65535 is specified, then all elements that contribute to the
non-OK OperationalStatus will be reported.

Execution Time The execution time will vary depending on the “depth” specified. If a depth of 65535
(all related elements) is specified, the test may take some time to execute.

Details If the OperationalStatus of the storage pool under test is OK, no related elements
causing error (RECEs) will be reported. The RECE Test will also refresh the
SummaryDiagnostics instance for the pool (and the RECE Test).

Impact test Description Used to determine the impacted elements that are based on (allocated from) the
storage pool.

Coverage Range The elements that are allocated from the storage pool (e.g., child pools or storage
volumes)

Destructive No

User Control The user can control the depth of the Impact test. If a depth of “one” is specified, only
the directly related elements allocated from the pool will be reported. If a depth of
65535 is specified, then all elements allocated from the pool (directly or indirectly)
that are impacted will be reported.

Execution Time This could take some time to collect the answers. It will depend largely on the number
of elements allocated from the pool

Details The Impact test looks at elements allocated out of the storage pool (e.g., child pools
and storage volumes, etc.). If their OperationalStatus is not OK, then the element
may be identified as being impacted. The Impact test will also refresh the
SummaryDiagnostics instance for the pool (and Impact test).

Actions test Description Used to determine the available options for clearing a non-OK OperationalStatus

Coverage Range The storage pool and any “failing” elements that comprise the storage pool

Destructive No

User Control None

Execution Time This should not take too long. It is partially dependent on how many problems exist
with component elements.

Details The Actions test looks at the problem with the storage pool and each of its underlying
elements (as identified in the RECE test) and identifies actions that can be taken to
make the OperationalStatus of the storage pool under test OK. This can be actions on
the pool itself, or actions on elements from which the pool is constructed. The Actions
test will also refresh the SummaryDiagnostics instance for the pool (and Actions test).

Table 680 - Test Type Information

Test Name Test Information
932

 Overview
Table 681 and Table 682 provide additional information about the CIM_StoragePoolDiagnosticTest class.

27.3.4 CIM_StoragePoolDiagnosticCapabilities

27.3.4.1 Overview

Table 683 shows the capabilities that may be specified for the storage pool diagnostic tests.

27.3.4.2 CIM_StoragePoolDiagnosticServiceCapabilities.SupportedDepths

This array property is used by a provider for the tests shown in Table 683 to specify the list of depths that
are supported by the test.

Table 681 - CIM_StoragePoolDiagnosticTest property requirements

Test Name Criteria ElementName* StoragePool
TestType

TestType

Status Test Optional Storage Pool Status Test 2 Health Check

Self Test Mandatory Storage Pool Self Test 3 Health Check

RECE Test Optional Storage Pool RECE Test 4 Health Check

Impact Test Optional Storage Pool Impact Test 5 Health Check

Actions Test Optional Storage Pool Actions Test 6 Functional

An asterisk (*) indicates that the property is inherited from the parent class CIM_DiagnosticTest.

Table 682 - CIM_StoragePoolDiagnosticTest property Information

Test Name Characteristics* Comment

Status Test tbd

Self Test tbd

RECE Test tbd

Impact Test tbd

Actions Test tbd

An asterisk (*) indicates that the property is inherited from the parent class CIM_DiagnosticTest.

Table 683 - CIM_StoragePoolDiagnosticServiceCapabilities property requirements

Test Name ElementName* SupportedDepths tbd

Status Test Storage Pool Status Test

Self Test Storage Pool Self Test Used

RECE Test Storage Pool RECE Test Used

Impact Test Storage Pool Impact Test

Actions Test Storage Pool Actions Test

An asterisk (*) indicates that the property is inherited from the parent class CIM_DiagnosticServiceCapabilities
SNIA Technical Position 933

General Implementation Guidelines
27.3.5 CIM_StoragePoolDiagnosticSettingData

27.3.5.1 General Implementation Guidelines

For each StoragePoolDiagnosticTest, exactly one instance of the CIM_StoragePoolDiagnosticSettingData
class shall be implemented. It is associated to CIM_StoragePoolDiagnosticTest by using
CIM_ElementSettingData. The vendor-defined default values shall be specified and advertised by using
an instance of CIM_StoragePoolDiagnosticSettingData that is referenced by the instance of
CIM_ElementSettingData. This default setting data shall have the property value for IsDefault is 1 (Is
Default).

A diagnostic test may require parameters to run. Some parameters may affect how the test is run, while
other parameters provide the values to be used by the test.

The client may use a copy of the vendor-defined default CIM_StoragePoolDiagnosticSettingData instance
as an argument to the CIM_StoragePoolDiagnosticTest.RunDiagnosticService() extrinsic method.
Alternatively, the client may create its own instance of CIM_StoragePoolDiagnosticSettingData and use it
instead.

The CIM_StoragePoolDiagnosticSettingData class defines the parameters that may be used by some of
the storage pool tests. Figure 684 lists these test parameters and shows which tests might use them. An
implementation may extend this class and define additional parameters for any other Vendor Defined
tests.

27.3.5.2 Inherited DiagnosticSettingData properties

In addition to the property that is unique to CIM_StoragePoolDiagnosticSettingData, the following
identifies the properties inherited from CIM_DiagnosticSettingData and their application to storage pool
tests:

• HaltOnError - If specified and supported by the implementation, the test will stop after it finds an error.

• QuickMode - Vendor unique.

• PercentOfTestCoverage - Vendor unique.

• LoopControl - The support depends on the loop control specified.

• Continuous - means the test should run to completion

• Error Count - means the test should stop after it detects the specified number of errors.

• Timer - means the test should stop after a specified elapsed time

• Unknown, Other & Count - Vendor unique.

• ResultPersistence - If logging is performed, this specifies how long the log should be kept around.

Table 684 - CIM_StoragePoolDiagnosticSettingData property requirements

Test Name ElementName Depth

Status Test Storage Pool Status Test

Self Test Storage Pool Self Test Used

RECE Test Storage Pool RECE Test Used

Impact Test Storage Pool Impact Test Used

Actions Test Storage Pool Actions Test
934

 General Usage
• LogOptions - Specifies what type of information should be logged.

• LogStorage - Specifies where the log should be stored.

• VerbosityLevel - Specifies how detailed the log records should be. The meaning of the levels is vendor unique

• QueryTimeout - If the test is interactive, this specifies how long the job should wait for a response from the
client.

• NonDestructive - N/A. The currently defined storage pool tests are all non-destructive.

27.3.6 CIM_DiagnositcSubTestRecord

27.3.6.1 General Usage

An instance of CIM_DiagnosticSubTestRecord shall identify the existence of a subtest log (an instance of
CIM_DiagnosticLog). The diagnostic subtest record will identify the test that was applied, the element
that was tested and nature of the completion (not completed, aborted, no problems, OK but warnings,
etc.).

27.3.6.2 CIM_DiagnositcSubTestRecord.InstanceID

InstanceID should be constructed using the following preferred algorithm:

<ConcreteJob.InstanceID>:<n>

Where '<ConcreteJob.InstanceID> is <OrgID:LocalID> as described in ConcreteJob and <n> is an
increment value that provides uniqueness. The InstanceID prefix is the same as other record entries in
the same log (not the prefix in the referenced log). The sequence number is the sequence within the log
in which the entry is recorded. It is not a reference to a sequence number in the log referenced.

27.3.6.3 CIM_DiagnositcSubTestRecord.ServiceName

This is the name of the subtest that was run. Note this is not the name of the test that generated the
subtest, but the name of the subtest itself.

27.3.6.4 CIM_DiagnositcSubTestRecord.ManagedElementName

This is the ElementName of the element (e.g., storage pool or disk drive) subjected to the subtest. Note
this is the name of the ManagedElement on which the subtest was run (not the StoragePool that was the
target of the original test).

27.3.6.5 CIM_DiagnositcSubTestRecord.RecordType

 This shall be '3' (Subtests). Subtest record entries shall have a record type of “subtest”.

27.3.6.6 CIM_DiagnositcSubTestRecord.TestCompletionStatus

This is the message id of the completion status message for the subtest that the
DiagnosticSubTestRecord is identifying.

The possible values are:

• DIAG0 - The test passed.

• DIAG3 - The device test failed.

• DIAG4 - The test was completed with warnings.

• DIAG44 - The test did not start.

• DIAG45 - The test aborted.
SNIA Technical Position 935

CIM_DiagnositcSubTestRecord.ExpirationDate
27.3.6.7 CIM_DiagnositcSubTestRecord.ExpirationDate

The date and time that this record instance should be deleted. The expiration datetime should be set
when the record is fully populated with record data. The value should be calculated using the
ResultPersistence property of the DiagnosticSetting class. Once the Expiration Date has been reached,
record instances should be deleted as soon as possible

27.3.6.8 CIM_DiagnositcSubTestRecord.CreationTimeStamp

A timestamp indicating when this record was created.

27.3.7 CIM_LogToLog

27.3.7.1 General Usage

The LogToLog association is from an instance of CIM_DiagnositcSubTestRecord to an instance of
CIM_DiagnosticLog (Subtest).

27.3.7.2 CIM_LogToLog.Antecedent

A reference to the instance of CIM_DiagnosticSubTestRecord in the parent log.

27.3.7.3 CIM_LogToLog.Dependent

A reference to a CIM_DiagnosticLog for the subtest.

27.3.8 CIM_DiagnosticLog (Subtest)

The diagnostic log for a subtest is like a diagnostic log for the originating test, but the InstanceID of the
log for the subtest shall be different than the InstanceID for the originating test.

In addition, DiagnosticRecords in a subtest log are slightly different than the records in the log for the
originating test. The difference is in the formation of the InstanceID for the records in the log.

CIM_DiagnosticRecord.InstanceID should be constructed by using the following preferred algorithm:

<ConcreteJob.InstanceID>:<n>:<m>

where <ConcreteJob.InstanceID> is <OrgID>:<LocalID> as described in CIM_ConcreteJob for the
originating test, <n> is the sequence number for the DiagnosticSubTestRecord and <m> should be set to
0 for the first record created by the subtest during this subtest run, and incremented for each subsequent
record created by the subtest during this test run. Each new subtest execution can reset the <m> to 0 and
the <n> value will be different, because there will be a separate DiagnosticSubTestRecord for a second
invocation of the subtest.

27.3.9 CIM_SummaryDiagnostic

27.3.9.1 General Usage

Logs created by a test (or subtest) have a limited life time. An instance of CIM_SummaryDiagnostic
preserves the pertinent information from a test in an instance that is associated (via ElementDiagnostics)
to the element that was tested. A summary of test results for the last execution of the test identified by the
ServiceName. Note that an element would typically have multiple instances of CIM_SummaryDiagnostics,
one for each test that was run on the element.

As an example, a StoragePool might have 5 CIM_SummaryDiagnostic instances associated with it. There
might be one for each of the possible tests: Status test, Self-test, RECE test, Impact Test and Actions
Test. Each instance is timestamped to indicate how stale the information might be.
936

 CIM_SummaryDiagnostic.InstanceID
27.3.9.2 CIM_SummaryDiagnostic.InstanceID

The InstanceID is an opaque, unique identifer of the instance. InstanceID should be constructed using the
following preferred algorithm:

<OrgID>:<LocalID>

27.3.9.3 CIM_SummaryDiagnostic.ServiceName

This is the name of the test (or subtest) that was run. For an implementation that supports the standard,
the ServiceName might be <OrgID>:Status Test, <OrgID>:Self-Test, <OrgID>:RECE Test,
<OrgID>:Impact Test or <OrgID>:Actions Test. But the ServiceName might also refer to a vendor specific
test.

27.3.9.4 CIM_SummaryDiagnostic.TestCompletionStatus

For standard implementations of the DMTF Diagnostics profile, there are a set of alert messages that are
characterized as “test completion status” alerts. These are alerts that are sent to indicate the completion
of the test job and the overall status of the completion.

The TestCompletionStatus is the message id of the completion status message for the last execution of
the test (or subtest). The possible values are:

• DIAG0 - The test passed.

• DIAG3 - The device test failed.

• DIAG4 - The test was completed with warnings.

• DIAG44 - The test did not start.

• DIAG45 - The test aborted.

27.3.9.5 CIM_SummaryDiagnostic.TestTimeStamp

A timestamp indicating when the test was run.

27.3.9.6 CIM_SummaryDiagnostic.ErrorAlerts

If the test (or subtest) found errors, ErrorAlerts shall contain the embedded instances of the
CIM_AlertIndications. If no errors were found by the test (or subtest), then this shall be null.

27.3.9.7 CIM_SummaryDiagnostic.WarningAlerts

If the test (or subtest) reported warnings, WarningAlerts shall contain the embedded instances of the
CIM_AlertIndications. If no warnings were issued by the test (or subtest), then this shall be null.

27.3.10 CIM_ElementDiagnostic

27.3.10.1 General Usage

This associates an element to its summary diagnostic instances. Note that the element may not be a
StoragePool.

 This is because subtests should also generate summary diagnostic instances.

27.3.10.2 CIM_ElementDiagnostic.ManagedElement

A reference to the element (storage pool or disk drive) on which the test or subtest was run.

27.3.10.3 CIM_ElementDiagnostic.SummaryResults

A reference to an instance of summary diagnostics for the element.
SNIA Technical Position 937

General Usage
27.3.11 Storage Pool Diagnostics Profile indications support

27.3.11.1 General Usage

The Storage Pool Diagnostics Profile constrains certain elements in its support for the DMTF Indications
Profile. This subclause identifies those constraints.

27.3.11.2 CIM_IndicationFilter (StaticIndicationFilter)

27.3.11.2.1 General Usage

The Storage Pool Diagnostics Profile constrains some of the properties of the StaticIndicationFilter
version of the CIM_IndicationFilter class and makes the class mandatory. The class is mandatory
because some of the alert indication filters are mandatory and the Storage Pool Diagnostics Profile
requires that static versions of mandatory indication filters be populated.

27.3.11.2.2 CIM_IndicationFilter.Name

The Storage Pool Diagnostics Profile constrains names of the profile-defined alert indication filters as
prescribed by the DMTF Indications Profile. The names for the indication filters are identified in the
entries for the indications in Table 690. The Name shall be formatted as defined by the following ABNF
rule:

“SNIA Storage Pool Diagnostics:” MessageID

The MessageID shall have the same value of the MessageID in the Query for the filter.

27.3.11.2.3 CIM_IndicationFilter.Query

The Storage Pool Diagnostics Profile constrains the Query properties of the profile-defined alert
indication filters as prescribed by the DMTF Indications Profile. The Query properties for the indication
filters are identified in the entries for the indications in Table 690.

27.3.11.2.4 CIM_IndicationFilter.QueryLanguage

The Storage Pool Diagnostics Profile constrains the QueryLanguage properties of the profile-defined alert
indication filters as prescribed by the DMTF Indications Profile. The QueryLanguage properties for the
indication filters are identified in the entries for the indications in Table 690.

27.3.12 Diagnostics alert indications and standard messages

27.3.12.1 DRM101 - StoragePool is healthy

The test ran to completion and found the OperationalStatus to be OK.

This alert is only sent if the StoragePool was the subject of a Storage Pool Status Test or Storage Pool
Self-test and the OperationalStatus was found or confirmed to be OK. This message would be sent even
if there are secondary OperationalStatus values (in addition to the OK).

The variables in this message are:

• Test – Identifies the Diagnostic Test instance that was run. This is the Name property of the DiagnosticTest
instance.

• Pool Moniker - Identifies a unique name for the storage pool under test that was specified. This could be one
of the following names:

• The Object path of the CIM_StoragePool

• The ElementName of the CIM_StoragePool

• A unique, user friendly name not in the model (such as, asset name)
938

 DRM102 - StoragePool is dependent on an element with problems
The Pool Moniker can be any of these, but whichever one is used shall be used consistently for all storage
pools within the scoping profile.

With this alert, the AlertType shall have the value 1 (Other). The OtherAlertType should be set to
“StoragePool is OK”

With this alert, the PerceivedSeverity shall have the value 2 (Information).

27.3.12.2 DRM102 - StoragePool is dependent on an element with problems

The test found that an element the pool is dependent on has a non-OK OperationalStatus.

This alert is only sent if the StoragePool was the subject of a Storage Pool Status Test or Storage Pool
Self-test and an element that contributes to the storage pool has a non-OK OperationalStatus. The
subject pool may still show an OK OperationalStatus (or not). In order for this alert to be sent, the non-OK
element must actively be part of the storage pool. If there are multiple contributing elements with a non-
OK status, there will be multiple alerts messages generated.

The variables in this message are:

• Test – Identifies the Diagnostic Test instance that was run. This is the Name property of the DiagnosticTest
instance.

• Pool Moniker - Identifies a unique name for the storage pool under test that was specified. This could be one
of the following names:

• The Object path of the CIM_StoragePool

• The ElementName of the CIM_StoragePool

• A unique, user friendly name not in the model (such as, asset name)

The Pool Moniker can be any of these, but whichever one is used shall be used consistently for all storage
pools within the scoping profile.

• OperationalStatus1 - The OperationalStatus of the storage pool under test.

• Named Element - The common name (e.g. Storage Pool or Disk Drive) for the non-OK element

• Element Moniker - Identifies a unique name for the contributing element with the non-OK state. This could be
one of the following names:

• The Object path of the CIM_ManagedElement (e.g., CIM_StoragePool or CIM_DiskDrive)

• The ElementName of the CIM_ManagedElement

• A unique, user friendly name not in the model (such as, asset name)

The Element Moniker can be any of these, but whichever one is used shall be used consistently for all such
elements within the scoping profile.

• OperationalStatus2 - The OperationalStatus of the non-OK element.

With this alert, the AlertType shall have the value 1 (Other). The OtherAlertType should be set to
“StoragePool element problem”

With this alert, the PerceivedSeverity shall have the value 2 (Information).

27.3.12.3 DRM103 - The StoragePool is being serviced

The test found that the StoragePool is being serviced, which results in the pool OperationalStatus.
SNIA Technical Position 939

DRM104 - The OperationalStatus of the Pool is impacting an element allocated from it
This alert is only sent if the StoragePool was the subject of a Storage Pool Status Test or Storage Pool
Self-test and the pool is undergoing a process that is servicing the pool. The alert will identify the service
process in question. The service action is any process that may affect pool behavior, but is considered
“temporary.” For example, relocating a pool or rebuilding a RAID group are considered temporary
services. But if the process in question involves some sort of manual intervention (e.g., hardware
service), then the process is considered “indefinite” and not temporary.

The variables in this message are:

• Test – Identifies the Diagnostic Test instance that was run. This is the Name property of the DiagnosticTest
instance.

• Pool Moniker - Identifies a unique name for the storage pool under test that was specified. This could be one
of the following names:

• The Object path of the CIM_StoragePool

• The ElementName of the CIM_StoragePool

• A unique, user friendly name not in the model (such as, asset name)

The Pool Moniker can be any of these, but whichever one is used shall be used consistently for all storage
pools within the scoping profile.

• OperationalStatus - The OperationalStatus of the storage pool under test.

• Service Action - The temporary service that is in progress.

With this alert, the AlertType shall have the value 1 (Other). The OtherAlertType should be set to
“StoragePool servicing in progress”

With this alert, the PerceivedSeverity shall have the value 2 (Information).

27.3.12.4 DRM104 - The OperationalStatus of the Pool is impacting an element allocated from it

The test found that the OperationalStatus of the StoragePool is impacting an element that is allocated
from the pool.

This alert is only sent if the StoragePool was the subject of a Storage Pool Impact Test and the element
identified is adversely impacted. If multiple elements are adversely impacted, then multiple alerts will be
generated.

The variables in this message are:

• Test – Identifies the Diagnostic Test instance that was run. This is the Name property of the DiagnosticTest
instance.

• Pool Moniker - Identifies a unique name for the storage pool under test that was specified. This could be one
of the following names:

• The Object path of the CIM_StoragePool

• The ElementName of the CIM_StoragePool

• A unique, user friendly name not in the model (such as, asset name)

The Pool Moniker can be any of these, but whichever one is used shall be used consistently for all storage
pools within the scoping profile.

• OperationalStatus1 - The OperationalStatus of the storage pool under test.

• Named Element - The common name (e.g. Storage Pool or volume) for the impacted element
940

 DRM105 - The StoragePool OperationalStatus may be corrected by applying a spare
• Element Moniker - Identifies a unique name for the impacted element. This could be one of the following
names:

• The Object path of the CIM_ManagedElement (e.g., CIM_StoragePool or CIM_StorageVolume)

• The ElementName of the CIM_ManagedElement

• A unique, user friendly name not in the model (such as, asset name)

The Element Moniker can be any of these, but whichever one is used shall be used consistently for all such
elements within the scoping profile.

• OperationalStatus2 - The OperationalStatus of the impacted element.

With this alert, the AlertType shall have the value 1 (Other). The OtherAlertType should be set to
“Element Impacted”

With this alert, the PerceivedSeverity shall have the value 2 (Information).

27.3.12.5 DRM105 - The StoragePool OperationalStatus may be corrected by applying a spare

The test found that applying a spare will correct the OperationalStatus of the Pool.

This alert is only sent if the StoragePool was the subject of a Storage Pool ActionsTest and the spares
identified are available to be applied.

The variables in this message are:

• Test – Identifies the Diagnostic Test instance that was run. This is the Name property of the DiagnosticTest
instance.

• Pool Moniker - Identifies a unique name for the storage pool under test that was specified. This could be one
of the following names:

• The Object path of the CIM_StoragePool

• The ElementName of the CIM_StoragePool

• A unique, user friendly name not in the model (such as, asset name)

The Pool Moniker can be any of these, but whichever one is used shall be used consistently for all storage
pools within the scoping profile.

• OperationalStatus - The OperationalStatus of the storage pool under test.

• Named Element - The common name (e.g. extent or disk drive) for the spare element

• List of Spares - Identifies an array of element monikers of the available spares. This could be one of the
following names:

• The Object path of the CIM_ManagedElement (e.g., CIM_StorageExtent or CIM_DiskDrive)

• The ElementName of the CIM_ManagedElement

• A unique, user friendly name not in the model (such as, asset name)

The Element Moniker can be any of these, but whichever one is used shall be used consistently for all such
elements within the scoping profile.

With this alert, the AlertType shall have the value 1 (Other). The OtherAlertType should be set to “Deploy
Spare”

With this alert, the PerceivedSeverity shall have the value 2 (Information).
SNIA Technical Position 941

DRM106 - The StoragePool OperationalStatus may be corrected by relocating the pool
27.3.12.6 DRM106 - The StoragePool OperationalStatus may be corrected by relocating the pool

The test found that relocating the pool will correct the OperationalStatus of the pool.

This alert is only sent if the StoragePool was the subject of a Storage Pool ActionsTest and the pool may
be relocated to clear up the problem. The OperationalStatus of the pool would be a non-OK status and
relocating the pool would solve the problem (and get the OperationalStatus to OK).

The variables in this message are:

• Test – Identifies the Diagnostic Test instance that was run. This is the Name property of the DiagnosticTest
instance.

• Pool Moniker - Identifies a unique name for the storage pool under test that was specified. This could be one
of the following names:

• The Object path of the CIM_StoragePool

• The ElementName of the CIM_StoragePool

• A unique, user friendly name not in the model (such as, asset name)

The Pool Moniker can be any of these, but whichever one is used shall be used consistently for all storage
pools within the scoping profile.

• OperationalStatus - The OperationalStatus of the storage pool under test.

With this alert, the AlertType shall have the value 1 (Other). The OtherAlertType should be set to
“StoragePool may be relocated”

With this alert, the PerceivedSeverity shall have the value 2 (Information).

27.3.12.7 DRM107 - Pool experiencing interference from system workloads

The test found that the storage pool has its operational status because of interference from system
workloads.

This alert is only sent if the StoragePool was the subject of a Storage Pool Status or Self Test and system
workloads are impacting the operational status of the pool. This is likely to be a temporary impact.

The variables in this message are:

• Test – Identifies the Diagnostic Test instance that was run. This is the Name property of the DiagnosticTest
instance.

• Pool Moniker - Identifies a unique name for the storage pool under test that was specified. This could be one
of the following names:

• The Object path of the CIM_StoragePool

• The ElementName of the CIM_StoragePool

• A unique, user friendly name not in the model (such as, asset name)

The Pool Moniker can be any of these, but whichever one is used shall be used consistently for all storage
pools within the scoping profile.

• OperationalStatus - The OperationalStatus of the storage pool under test.

With this alert, the AlertType shall have the value 1 (Other). The OtherAlertType should be set to
“Workload interference”

With this alert, the PerceivedSeverity shall have the value 2 (Information).
942

 DRM108 - Pool performance degraded by component element
27.3.12.8 DRM108 - Pool performance degraded by component element

The test found that the activity in the storage pool may be experiencing performance problems because a
component element (e.g., parent storage pool or disk drive) has a non-OK OperationalStatus.

This alert is sent if the StoragePool was the subject of a Storage Pool RECE Test and a contributing
element has a non-OK OperationalStatus that is impacting the performance of the pool. This alert may
also be generated when the pool OperationalStatus changes to degraded.

The variables in this message are:

• Test – Identifies the Diagnostic Test instance that was run. This is the Name property of the DiagnosticTest
instance.

• Pool Moniker - Identifies a unique name for the storage pool under test that was specified. This could be one
of the following names:

• The Object path of the CIM_StoragePool

• The ElementName of the CIM_StoragePool

• A unique, user friendly name not in the model (such as, asset name)

The Pool Moniker can be any of these, but whichever one is used shall be used consistently for all storage
pools within the scoping profile.

• Named Element - The common name (e.g. Storage Extent or Disk Drive) for the non-OK contributing element

• Element Moniker - Identifies a unique name for the contributing element with the non-OK state. This could be
one of the following names:

• The Object path of the CIM_ManagedElement (e.g., CIM_StorageExtent or CIM_DiskDrive)

• The ElementName of the CIM_ManagedElement

• A unique, user friendly name not in the model (such as, asset name)

The Element Moniker can be any of these, but whichever one is used shall be used consistently for all such
elements within the scoping profile.

• OperationalStatus - The OperationalStatus of the component element.

With this alert, the AlertType shall have the value 1 (Other). The OtherAlertType should be set to
“Degraded by Element”

With this alert, the PerceivedSeverity shall have the value 2 (Information).

27.3.12.9 DRM109 - Pool degraded due to loss of RAID protection

The test found that the storage pool is degraded due to the loss of RAID protection (PackageRedundancy
or DataRedundancy).

This alert is sent if the StoragePool was the subject of a Storage Pool Status or Self Test and the capacity
of the storage pool has lost the RAID protection as defined by its StorageSettings. The pool and its data
is still functional, but not protected as intended when created. This alert may also be generated when the
pool OperationalStatus changes to degraded.

The variables in this message are:

• Test – Identifies the Diagnostic Test instance that was run. This is the Name property of the DiagnosticTest
instance.
SNIA Technical Position 943

DRM110 - Pool degraded due to loss of port redundancy
• Pool Moniker - Identifies a unique name for the storage pool under test that was specified. This could be one
of the following names:

• The Object path of the CIM_StoragePool

• The ElementName of the CIM_StoragePool

• A unique, user friendly name not in the model (such as, asset name)

The Pool Moniker can be any of these, but whichever one is used shall be used consistently for all storage
pools within the scoping profile.

With this alert, the AlertType shall have the value 1 (Other). The OtherAlertType should be set to “Loss of
RAID protection”

With this alert, the PerceivedSeverity shall have the value 2 (Information).

27.3.12.10 DRM110 - Pool degraded due to loss of port redundancy

The test found that the storage pool is degraded due to disk access degradation due to a failing port.

This alert is only sent if the StoragePool was the subject of a Storage Pool Status or Self Test and one or
more disks that it uses have lost port redundancy.

The variables in this message are:

• Test – Identifies the Diagnostic Test instance that was run. This is the Name property of the DiagnosticTest
instance.

• Pool Moniker - Identifies a unique name for the storage pool under test that was specified. This could be one
of the following names:

• The Object path of the CIM_StoragePool

• The ElementName of the CIM_StoragePool

• A unique, user friendly name not in the model (such as, asset name)

The Pool Moniker can be any of these, but whichever one is used shall be used consistently for all storage
pools within the scoping profile.

With this alert, the AlertType shall have the value 1 (Other). The OtherAlertType should be set to “Loss of
Port redundancy”

With this alert, the PerceivedSeverity shall have the value 2 (Information).

27.3.12.11DRM111 - Pool predicting failure due lack of available capacity

The test found that the storage pool is predicting failure because it is running low on available capacity.

This alert is only sent if the StoragePool was the subject of a Storage Pool Status or SelfTest and the pool
is running low on available capacity.

The variables in this message are:

• Test – Identifies the Diagnostic Test instance that was run. This is the Name property of the DiagnosticTest
instance.

• Pool Moniker - Identifies a unique name for the storage pool under test that was specified. This could be one
of the following names:

• The Object path of the CIM_StoragePool
944

 Disk drive alerts using common messages
• The ElementName of the CIM_StoragePool

• A unique, user friendly name not in the model (such as, asset name)

The Pool Moniker can be any of these, but whichever one is used shall be used consistently for all storage
pools within the scoping profile.

With this alert, the AlertType shall have the value 1 (Other). The OtherAlertType should be set to “Low
Available Capacity”

With this alert, the PerceivedSeverity shall have the value 2 (Information).

27.3.12.12 Disk drive alerts using common messages

27.3.12.12.1 Overview

In addition to the alert standard messages that are unique to the storage pools, the Storage Pool
Diagnostics Profile may also generate common diagnostic messages (including diagnostic job control
messages). Of specific note, the Storage Pool Diagnostics Profile may generate completion status
messages (such as DIAG0, DIAG3 or DIAG4) and job-related standard messages (such as DIAG19 or
DIAG20).

In addition, the implementation may generate DIAG43, DIAG50 or DIAG51 to cover capabilities or
settings alerts.

27.3.12.12.2 Common completion status messages

The Storage Pool Diagnostics Profile should generate completion status messages to reflect the
completion of the test (see DSP1002). These messages would include:

• DIAG0 - The test passed.

• DIAG3 - The device test failed.

• DIAG4 - The test was completed with warnings.

• DIAG44 - The test did not start.

• DIAG45 - The test aborted.

27.3.12.12.3 Diagnostic Job Control messages

The Storage Pool Diagnostics Profile should generate messages associated with the Diagnostic Job
Control Profile (see DSP1119). The messages would include:

• DIAG9 - Test continued after last interactive timeout using Default Values.

• DIAG12 - Job could not be started.

• DIAG19 - Test killed by client.

• DIAG20 - Test terminated by client.

• DIAG21 - Test suspended by client.

• DIAG34 - Request for Inputs\

• DIAG35 - Request for action

• DIAG36 - Test killed by test.

• DIAG37 - Test terminated by test.
SNIA Technical Position 945

Disk drive alerts using common messages
• DIAG38 - Test resumed by client.

• DIAG39 - JobSetting reset.

• DIAG40 - JobSetting defaults not used.

• DIAG48 - Test continued after an interim interactive timeout.

• DIAG49 - Test terminated after an interactive timeout.

27.3.12.12.4 Settings alert messages

Errors in values supplied in the DiagnosticSettings parameter (an embedded instance of
StoragePoolDiagnosticSettingData) of the RunDiagnosticService method would be reported by using
DIAG43 (The Requested DiagnosticSettings is not supported) or DIAG51 (Test aborted due an invalid
DiagnosticSettings value).

The DIAG43 message has the following format:

The <Diagnostic Test Name> test on the selected Element to test <Element Moniker> ran but the
requested DiagnosticSettings property <DiagnosticSettings Property> of <DiagnosticSettings Value> is not
supported. The value <DiagnosticSettings Used> was used instead.

The Element Moniker would be the storage pool moniker. The <DiagnosticSettings Property> could be
any one of the StoragePoolDiagnosticSettingData properties, including Depth.

The <DiagnosticSettings Value> would be the value supplied for the property. It is the value that is not
supported. The <DiagnosticSettings Used> would be the value that the test used instead of the value that
was supplied.

The DIAG51 message has the following format:

The <Diagnostic Test Name> test on the selected Element to test <Element Moniker> did not run because
the requested DiagnosticSettings property <DiagnosticSettings Property> of <DiagnosticSettings Value> is
not valid.

The Element Moniker would be the storage pool moniker. The <DiagnosticSettings Property> could be
any one of the StoragePoolDiagnosticSettingData properties, including SupportedDepths.

The <DiagnosticSettings Value> would be the value supplied for the property. It is the value that is invalid.

27.3.12.12.5 Capabilities alert messages

Errors in properties supplied in the DiagnosticSettings parameter (an embedded instance of
StoragePoolDiagnosticSettingData) of the RunDiagnosticService method would be reported by using
DIAG50 (Capability to set the DiagnosticSettings parameter not supported for test).

The DIAG50 message has the following format:

The <Diagnostic Test Name> test on the selected element to test <Element Moniker> ran, but
DiagnosticSettings parameter requested <Diag Setting Property> is not a supported capability and was
ignored.

The Element Moniker would be the storage pool moniker. <Diag Setting Property> could be any one of
the StoragePoolDiagnosticSettingData, including Depths. The message means that the parameter
(property) is not applicable to the test and was ignored.
946

 Key Elements
27.3.12.12.6 Other common messages

In addition, the Storage Pool Diagnostics Profile may also generate other common messages (see
DSP1002). For example, these messages might include common messages for general capabilities and
settings errors, such as LoopControl or LogOption errors.

27.3.13 Health and Fault Management Considerations

27.3.13.1 Key Elements

With the Storage Pool Diagnostics profile, the key elements of health and fault management are:

1) StoragePool OperationalStatus

2) The Diagnostic tests for storage pools

3) The SummaryDiagnostics class

In addition, if an implementation supports the RelatedElementCausingError association this may also be
useful.

Each of these, and their role in storage pool health and fault management are discussed in this section.

27.3.13.2 StoragePool OperationalStatus

The StoragePool.OperationalStatus contains the overall status of the storage pool, as summarized in
Table 685.

The OperationalStatus, particularly the primary OperationalStatus provides basic information about the
health of a storage pool. It will tell a client the general condition of the storage pool, but it does not
explain why the storage pool has the condition. There is enough variation across vendor products that it
is impossible to conclude the specific cause of a condition.

As a general guideline, the storage pool OperationalStatus could be caused by the following situations:

• OK

Table 685 - OperationalStatus for StoragePool

Primary
OperationalStatus

Subsidiary
OperationalStatus

Description

2 “OK” The storage pool is operational

2 “OK” 19 "Relocating” The storage pool is operational, but is undergoing relocation

3 "Degraded" The storage pool is operational, but at a lower quality of service
than requested

3 "Degraded" 19 "Relocating” The storage pool is operational, but at a lower quality of service
due to a relocation operation

5 “Predictive Failure” Storage pool is functioning normally but is predicting a failure in the
near future

6 "Error" The storage pool is in error

11 "In Service" Testing in progress on the storage pool
RAID group being rebuilt

15 "Dormant" The storage pool is not operational

15 "Dormant" 19 "Relocating” The storage pool is not operational due to a relocation operation
SNIA Technical Position 947

StoragePool OperationalStatus
• The pool is operational and functional with no reason to be concerned

• Degraded

The pool is operational and functional, but operations are degraded for one of the following reasons:

• its performance is degraded due to interference from system workloads

• Its performance is degraded due to conditions with related elements (e.g., disk drives, back-end ports, etc.)

• It is operating with a package or data redundancy that is below expectations

• It is operating with reduced redundancy in disk access

• Predictive Failure

The pool is operational and functional, but the pool is in danger of failing for one of the following reasons:

• One or more disk drive components are predicting failure

• The pool capacity running low

• Error

The pool is not operational or functional for one of the following reasons:

• One or more component disk drives have failure

• A component storage extent has a failure

• Back end ports have failed

• A disk drive fan is not working

• A power supply for disk drives is not working

• In Service

The pool is temporarily indisposed. It may be operational and functional, but the pool is undergoing interfering
processing for one of the following reasons:

• The storage pool is relocating

• A RAID group in the pool is being rebuilt

• An diagnostic test is being performed on the pool or its component elements

• Dormant

The pool is temporarily not operational and functional for one of the following reasons:

• The storage pool is being relocated

With any of these conditions, the reason for the condition may be any of the ones mentioned in this list or
it may be due to some vendor specific reason. To some extent RECE associations can provide some clue
for why a pool is not OK. But this is limited. For example, what does a RECE identify when a RAID group
is being rebuilt or a diagnostic test is being run or the pool is being relocated or capacity is running low?

One approach might be to define a long list of secondary OperationalStatus values. This might be
practical, if a definitive list with no vendor specific reasons could be defined. It is impractical when vendor
specific reasons are possible.
948

 Diagnostic tests for storage pools
27.3.13.3 Diagnostic tests for storage pools

The primary purpose of the storage pool diagnostic tests are for diagnosing storage pool problems. The
Status Test may also be used to verify the status of a storage pool. However, the primary purpose is to
diagnose problems.

Diagnostic tests are not state information, although they can set or reset state information. For example,
a diagnostic test might create a summary diagnostic record for the storage pool. Diagnostic test are run
on demand by a user (or client application) as part of their fault management processes. See subclause
27.5 for example uses of diagnostic tests in performing fault management tasks.

The diagnostic tests, when supported, support the following tasks:

• Verifying the OperationalStatus - This can be done with either the Status Test or Self-Test

• Determining failing components of the pool - This can be done with the RECE Test

• Determining the elements based on the pool that are impacted - This can be done with the Impact Test

• Determining the available corrective actions - This can be done with the Actions Test

The results of these test are reported using standard alert message, log records (including alert indication
log entries) and may include the creation of SummaryDiagnostic records (which include embedded
instances of pertinent alert indications). Where there are no standard alert messages that apply, a vendor
can define their own unique vendor alert messages. In any case, these tests can be very explicit on
isolating the problems and identifying the actions required to rectify the situation.

27.3.13.4 SummaryDiagnostics class

One of the problems with the “on demand” nature of the diagnostic test is that the results are “transient”.
Once alert messages are sent, they are gone. The diagnostic log can retain a record of the alert
information (as well as other information). However, it is not likely that providers will retain logs
indefinitely. On the other hand, it is not desirable to make clients re-issue the tests to recreate the
information.

For this reason, this profile also includes a SummaryDiagnostic class for holding the pertinent information
from the last test run. The instances of SummaryDiagnostic are retained and associated to the element
(e.g., StoragePool) under test. Before running (or re-running) a test, the client should look for the
SummaryDiagnostic records for the element (e.g., StoragePool) and see how old they are. If they are
recent, that information may still apply.

27.3.13.5 RECE Association

The CIM_RelatedElementCausingError (RECE) association is not part of this profile, but is part of the
Health Package. An implementation that supports the Health Package will establish RECE associations
between the StoragePool and failing component elements that support the storage pool. RECE
associations would typically exist as long as the condition (OperationalStatus) exists. They presumably
come into existence when the condition (OperationalStatus) comes into existence.

The relationship between the RECE association and the Storage Pool Diagnostic Test is that RECE
associations shall minimally come into existence as a result of a RECE test. They will only come into
existence if the implementation claims support for the Health Package.

27.4 Methods

27.4.1 Overview

This clause details the requirements for supporting intrinsic operations and extrinsic methods for the CIM
elements defined by this profile.
SNIA Technical Position 949

Overview
27.4.2 Profile conventions for operations

Support for operations for each profile class (including associations) shall be as mandated in DSP1002,
clauses 8.5 through 8.24.

27.4.3 StoragePoolDiagnosticCapabilities

All operations are supported as defined for CIM_DiagnosticServiceCapabilities in DSP1002.

27.4.4 StoragePoolDiagnosticSettingData

All operations are supported as defined for CIM_DiagnosticSettingData in DSP1002.

27.4.5 StoragePoolDiagnosticTest

27.4.5.1 Overview

All operations are supported as defined for CIM_DiagnosticTest in DSP1002.

27.4.5.2 CIM_StoragePoolDiagnosticTest.RunDiagnosticService()

The RunDiagnosticService() method shall return one of the return code values defined in “Table 2 –
RunDiagnosticsService() Method: Return Code Values” of DSP1002.

The basic definition of the method is:

uint32 RunDiagnosticService(

 [IN, Description (

 "Specifies the element upon which the "

 "DiagnosticService SHOULD be run.")]

 CIM_ManagedElement REF ManagedElement,

 [IN, Description (

 "A string containing an encoding of the "

 "DiagnosticSettingData instance to be applied to "

 "the diagnostic. If null, the diagnostic\'s "

 "defaults are used."),

 EmbeddedInstance ("CIM_DiagnosticSettingData")]

 string DiagnosticSettings,

 [IN, Description (

 "A string containing an encoding of the "

 "JobSettingData instance to be applied to the "

 "resulting job. If null, the job\'s defaults are "

 "used."),

 EmbeddedInstance ("CIM_JobSettingData")]

 string JobSettings,

 [IN (false), OUT, Description (

 "Returns a reference to the resulting Job.")]

 CIM_ConcreteJob REF Job)

When this method is used with CIM_StoragePoolDiagnosticTest the following applies:

• The ManagedElement parameter shall be a reference to CIM_StoragePool (the pool under test)

• The DiagnosticSettings parameter shall be an embedded instance of CIM_StoragePoolDiagnosticSettingData
or a subclass
950

 Operation Summary
It should also be noted that when successful (Return Code 0), a test job shall be created and its reference
returned in the Job parameter.

The actual test that is run is the test represented by the CIM_StoragePoolDiagnosticTest instance.

27.4.6 SummaryDiagnostics

Table 686 lists implementation requirements for operations. If implemented, these operations shall be
implemented as defined in DSP0200. In addition, and unless otherwise stated in Table 686, all operations
in the default list in 8.4 shall be implemented as defined in DSP0200.

27.4.7 DiagnosticSubTestRecord

27.4.7.1 Operation Summary

Table 687 lists implementation requirements for operations. If implemented, these operations shall be
implemented as defined in DSP0200. In addition, and unless otherwise stated in Table 687, all operations
in the default list in 8.4 shall be implemented as defined in DSP0200.

27.4.7.2 CIM_DiagnosticSubTestRecord.DeleteInstance

This is required for compatibility with DSP1002. The preferred way to delete log records is with
DeleteInstance on the log itself (rather than individual records).

Table 686 - Operations: CIM_SummaryDiagnostics

Operation Requirement Messages

GetInstance Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None

ExecQuery Optional None

Associators Mandatory None

AssociatorNames Mandatory None

References Optional None

ReferenceNames Optional None

Table 687 - Operations: CIM_DiagnosticSubTestRecord

Operation Requirement Messages

DeleteInstance Mandatory None

GetInstance Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None

ExecQuery Optional None

Associators Mandatory None

AssociatorNames Mandatory None

References Optional None

ReferenceNames Optional None
SNIA Technical Position 951

CIM_DiagnosticSubTestRecord.DeleteInstance
27.4.8 ElementDiagnostics

Table 688 lists implementation requirements for operations. If implemented, these operations shall be
implemented as defined in DSP0200. In addition, and unless otherwise stated in Table 688, all operations
in the default list in 8.4 shall be implemented as defined in DSP0200.

27.4.9 LogToLog

Table 689 lists implementation requirements for operations. If implemented, these operations shall be
implemented as defined in DSP0200. In addition, and unless otherwise stated in Table 689, all operations
in the default list in 8.4 shall be implemented as defined in DSP0200.

Table 688 - Operations: CIM_ElementDiagnostics

Operation Requirement Messages

GetInstance Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None

Table 689 - Operations: CIM_LogToLog

Operation Requirement Messages

GetInstance Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None
952

 CIM_DiagnosticSubTestRecord.DeleteInstance
27.5 Use Cases

27.5.1 Example OperationalStatus Roll-up

Figure 179 illustrates a configuration of storage pools and related elements. OperationalStatus is shown
for each to convey a roll-up of OperationalStatus. The diagnostic tests that might exist are also shown. In
this example, a disk drive overheats due to a malfunctioning fan.

The test focus of this example is the StoragePoolDiagnostic test. The VolumeDiagnosticTest and the
DiskDriveDiagnosticTest, may or may not exist. Whether they exist or not, the RECE and Impact tests can
be supported to some degree.

The StoragePoolDiagnosticTest in Figure 179 would support any of the StoragePool instances in the
Array. In an ideal world, the StoragePoolDiagnosticTest could support all the storage pool tests (Status,
Self, RECE, Impact and Actions). A Status test on the RAID Group 2 pool would indicate that it is
degraded. A Self-Test with a depth of 65535 would indicate that the RAID Group 2 is degraded, because
the Primordial Pool is degraded, because disk drives are degraded. Without a Fan Test, this will likely
stop at the disk drive and the disk drive would likely report that it is overheated.

To fully support health and fault management for this environment, there should also be a fan diagnostic
test. But without the fan test, a client would be able to determine that the problem is with the disk drive.
With the disk drive test, the client would be able to discover that the drive is overheated. Even without

Figure 179 - Example OperationalStatus Roll-up

DiskDrive Z

OperationalStatus= ErrorDiskDrive Y

OperationalStatus= Error
Fan

OperationalStatus= Error

 Primordial
StoragePool

OperationalStatus= Degraded

RAID Group 1
StoragePool

OperationalStatus= OK

Storage Volume C
OperationalStatus= Degraded

DiskDrive X
OperationalStatus= Error

StoragePool
DiagnosticTest

RAID Group 2
StoragePool

OperationalStatus= Degraded

User 1
StoragePool

OperationalStatus= OK

User 2
StoragePool

OperationalStatus= Degraded

Storage Volume B
OperationalStatus= OK

Storage Volume A
OperationalStatus= OK

Disk Drive
DiagnosticTest

Volume
DiagnosticTest

R
E

C
E

T
es

ts

Im
p

a
ct

T
e

st
s

SNIA Technical Position 953

CIM_DiagnosticSubTestRecord.DeleteInstance
formally supporting the disk drive test, the Array might support internal invocation of SMART to determine
that the drive is overheated.

Getting back to the test of RAID Group 2. A Status test on RAID Group 2 would report:

• The RAID Group 2 StoragePool is Degraded (alert DRM102 - indicating the problem is a degraded primordial
Pool)

A Self test on RAID Group 2 with a “depth” of 65535 would report:

• The RAID Group 2 StoragePool is degraded (alert DRM102 - indicating the problem is a degraded primordial
Pool)

• The RAID Group 2 StoragePool is degraded (alert DRM102 - indicating the problem is disk drives in error)

• Three alerts for Disk Drive is in error (alert DIAG512 - indicating the Disk Drive in Error)

The self test would not report the actual problem is the fan, since there isn’t a fan test.

A RECE test on RAID Group 2 with a “depth” of 65535 would report:

• The RAID Group 2 StoragePool is degraded (alert DRM102 - indicating the problem is a degraded primordial
Pool)

• The RAID Group 2 StoragePool is degraded (alert DRM102 - indicating the problem is the disk drive in error)

• The RAID Group 2 StoragePool is degraded due to loss of RAID protection (alert DRM109)

• Three alerts for Disk Drive is in error (alert DIAG512 - indicating the Disk Drive in Error)

• Three alerts for Disk Drive is in error due to overheating (alert ACME1 - a vendor specific alert)

The ACME1 alert is a reference to a vendor specific alert (the DiskDriveDiagnosticTest does not have a
specific alert for an overheated drive).

An Impact test on RAID Group 2 would report:

• The RAID Group 2 StoragePool is impacting User 2 Pool (DRM104 - indication User 2 pool is degraded)

• The User 1 StoragePool is degraded due to loss of RAID protection (alert DRM109)

• The RAID Group 2 StoragePool is impacting Volume C (DRM104 - indication Volume C is degraded)

• The Volume C volume is degraded due to loss of RAID protection (alert ACME2)

The ACME2 alert is a reference to a vendor specific alert (assuming there is no standard
VolumeDiagnosticTest).

An Actions test on RAID Group 2 would report:

• Replace a failing fan (ACME3 - indicating a failing fan needs to be replaced)

• Fix RAID Group 2 by relocating the pool (DRM106)

• Fix RAID Group 2 by replacing the failed drive(s) with a spare drive (DRM105)
954

 Summary
27.5.2 Discovering Storage Pool Health and Fault Management Support

27.5.2.1 Summary

A health and fault management (HFM) application wants to know what HFM support is provided by an
implementation of an Array (or Storage Virtualizer) profile. This use case identifies the steps the client
application can use to determine the level of support provided.

27.5.2.2 Basic Course of Events

1) From the RegisteredProfile for the Array follow ReferencedProfile to component profiles

2) Filter the RegisterProfiles on the RegisteredName property looking for “Storage Pool Diagnostics”

3) If found, continue

4) Perform an associators call from the Array ComputerSystem following HostedService to Storage-
PoolDiagnosticTest instances

5) For each StoragePoolDiagnosticTest report the Name property (as a test that is supported)

27.5.2.3 Alternative Paths

1) Enumerate instances of StoragePoolDiagnosticTest in the implementation Namespace

2) From any StoragePool in the Array, perform an associators call to instances of StoragePoolDiag-
nosticTest following AvailableDiagnosticService

27.5.2.4 Exception Paths

1) If no “Storage Pool Diagnostics” RegisteredProfile exists, then there is no standard implementation
of the profile.

2) If no StoragePoolDiagnosticTest instances are returned, the no storage pool tests are supported

27.5.2.5 Triggers

This task would be triggered during the initialization of a Health and Fault Management application.

27.5.2.6 Assumptions

The implementation follows the (SMI-S) standard.

27.5.2.7 Preconditions

None.

27.5.2.8 Postconditions

None. The task reads model information. It does not execute any tests, and therefore there are no model
changes as a result of running this task.

27.5.3 Verifying the status of a StoragePool

27.5.3.1 Summary

A client application wishes to verify the status, and particularly the health, of a storage pool. This use
case identifies the approach the application can take to determine this.

27.5.3.2 Basic Course of Events

In an ideal world the application could perform the following steps:
SNIA Technical Position 955

Alternative Paths
1) Get the instance of the CIM_StoragePool and check the OperationalStatus

2) Subscribe to the Diagnostic Alert Indications

3) To verify the OperationalStatus, the application might execute a StatusTest on the pool

4) Receive and report the Alert Indications from the test

But this approach only works if the implementation supports OperationalStatus for StoragePools and the
Storage Pool Status Test.

27.5.3.3 Alternative Paths

The alternate paths are:

1) Read log, instead of receiving Indications

• When the test ends (see Job completion use case in Job Control), follow the UseOfLog association to the
DiagnosticLog

• Do an associators call on the DiagnosticLog following the LogManagesRecord association to get the
instance of DiagnosticServiceRecords

2) Just rely on the SummaryDiagnostics for the Status test (if SummaryDiagnostics are supported)

• When the test ends (see Job completion use case in Job Control), follow ElementDiagnostics from the
StoragePool to the SummaryDiagnostics

• Determine the results of the test from the Status Test SummaryDiagnostics instance.

3) Storage Pool Diagnostic Profile supported, but Status Test Not Supported

• Run a Self-Test with a depth of 0

4) Storage Pool Diagnostic Profile not supported, but OperationalStatus is supported

• Simply Get the instance of the Storage Pool and check the OperationalStatus

5) Neither the Storage Pool Diagnostic Profile nor OperationalStatus is supported

• Punt

27.5.3.4 Exception Paths

1) If the Status Test is not supported, try using the Self-Test with a “depth” of 0

2) If neither the Status Test or Self Test is supported, try using the RECE Test with a depth of 0

3) If no other tests are supported simply get the instance of the Storage Pool and check the Operation-
alStatus

27.5.3.5 Triggers

1) This task would be run if the user suspects something is amiss with the storage pool. This might be
the existence of a non-OK value in OperationalStatus

2) Or it might be triggered by a general check of the health of all storage pools

• Including an update of SummaryDiagnostics instances for storage pools

27.5.3.6 Assumptions

The implementation follows the (SMI-S) standard.
956

 Preconditions
27.5.3.7 Preconditions

The application should verify that StoragePoolDiagnosticTest is supported for Status Test, Self-Test or
RECETest.

27.5.3.8 Postconditions

1) Alert indications will be generated to report on the test results

2) The OperationalStatus of the storage pool may change as a result of running the test

3) Logs may be created for the test that is run

4) If the implementation supports SummaryDiagnostics, then any existing SummaryDiagnostics for the
test on the storage pool will be updated. If no such instance exists, then one will be created.

27.5.4 Determining why a pool is degraded

27.5.4.1 Summary

An application discovers that a storage pool has an OperationalStatus of “degraded”. In an ideal world,
the profile implementation supports the Storage Pool Diagnostic profile and its tests. This use case
identifies the steps for determining why the pool is degraded.

27.5.4.2 Basic Course of Events

In an ideal world the application could perform the following steps:

1) Determine that the RECE Test is supported

2) Subscribe to Diagnostic Alert indications

3) Run a RECE Test on the pool with “Depth” set to “65535

4) Receive Indications on elements reported

27.5.4.3 Alternative Paths

1) If the RECE test is not supported, look to see if the Health Package is supported

• If the Health Package is supported, the follow the RECE associations and perform Self-test on the
discovered elements

2) The application might also run the RECE test with a depth of “1” and “walk” the elements found after
each test

This would allow the test to be selective on what elements to pursue

27.5.4.4 Exception Paths

If the RECE test is not supported, then the application shall walk the “AllocatedFromStoragePool”
associations and perform a Self Test with a “Depth” of 1 on each ancestor pool found. After doing this on
the primordial storage pool, the application shall walk the AssociatedComponentExtent to the
StorageExtents for the Disk Drive and the MediaPresent association to get the DiskDrive. For each
DiskDrive, is shall check the OperationalStatus of the DiskDrive and perform a Self-test on the DiskDrive
if such a test is supported.

27.5.4.5 Triggers

A storage pool goes to a degraded state (OperationalStatus)
SNIA Technical Position 957

Assumptions
27.5.4.6 Assumptions

The implementation follows the (SMI-S) standard.

27.5.4.7 Preconditions

The pool is degraded.

27.5.4.8 Postconditions

1) Alert indications will be generated to report on the test results

2) The OperationalStatus of the storage pool may change as a result of running the test

3) Logs may be created for the test that is run

4) If the implementation supports SummaryDiagnostics, then any existing SummaryDiagnostics for the
RECE test on the storage pool will be updated. If no such instance exists, then one will be created.

27.5.5 Determining why a pool is in error

27.5.5.1 Summary

An application discovers that a storage pool has an OperationalStatus of “Error”. In an ideal world, the
profile implementation supports the Storage Pool Diagnostic profile and its tests. This use case identifies
the steps for determining why the pool is in an error condition.

27.5.5.2 Basic Course of Events

In an ideal world the application could perform the following steps:

1) Determine that the RECE Test is supported

2) Subscribe to Diagnostic Alert indications

3) Run a RECE Test on the pool with “Depth” set to 65535

4) Receive Indications on elements reported

27.5.5.3 Alternative Paths

1) If the RECE test is not supported, look to see if the Health Package is supported

• If the Health Package is supported, the follow the RECE associations and perform Self-test on the
discovered elements

2) The application might also run the RECE test with a depth of “1” and “walk” the elements found after
each test

This would allow the test to be selective on what elements to pursue

27.5.5.4 Exception Paths

If the RECE test is not supported, then the application shall walk the “AllocatedFromStoragePool”
associations and perform a Self Test with a “Depth” of 1 on each ancestor pool found. After doing this on
the primordial storage pool, then walk the AssociatedComponentExtent to the StorageExtents for the Disk
Drive and the MediaPresent association to get the DiskDrive. Check the OperationalStatus of the
DiskDrive and perform a Self-test on the DiskDrive if such a test is supported.

27.5.5.5 Triggers

A storage pool goes to an error state (OperationalStatus)
958

 Assumptions
27.5.5.6 Assumptions

The implementation follows the (SMI-S) standard.

27.5.5.7 Preconditions

The pool has an OperationalStatus of error.

27.5.5.8 Postconditions

1) Alert indications will be generated to report on the test results

2) The OperationalStatus of the storage pool may change as a result of running the test

3) Logs may be created for the test that is run

4) If the implementation supports SummaryDiagnostics, then any existing SummaryDiagnostics for the
RECE test on the storage pool will be updated. If no such instance exists, then one will be created.

27.5.6 Finding the elements that are impacted by a problem

27.5.6.1 Summary

An application discovers that a storage pool has an OperationalStatus of “Error”. In an ideal world, the
profile implementation supports the Storage Pool Diagnostic profile and its tests. This use case identifies
the steps for determining elements (child storage pools and volumes) are impacted by the error condition.

27.5.6.2 Basic Course of Events

In an ideal world the application could perform the following steps:

1) Determine that the Impact Test is supported

2) Subscribe to Diagnostic Alert indications

3) Run a Impact Test on the pool with a Depth of 65535

4) Receive Indications on elements reported

27.5.6.3 Alternative Paths

Model walk the AllocatedFromStoragePool looking for the elements that are dependent on the pool. If the
dependent element is a StoragePool, run a Self-Test with a depth of 1 on the dependent storage pool If
the dependent element is a Storage Volume look at the OperationalStatus of that Storage Volume. If it is
not OK, then assume the originating pool is causing the problem.

27.5.6.4 Exception Paths

It is possible that the problem with the StoragePool has no impact on things allocated from it.

27.5.6.5 Triggers

The user has a problem (non-OK OperationalStatus) with a storage pool and needs to know what and who
are impacted.

27.5.6.6 Assumptions

The implementation follows the (SMI-S) standard.

27.5.6.7 Preconditions

A storage pool has a problem (non-OK OperationalStatus).
SNIA Technical Position 959

Postconditions
27.5.6.8 Postconditions

1) Alert indications will be generated to report on the test results

2) Logs may be created for the test that is run

3) If the implementation supports SummaryDiagnostics, then any existing SummaryDiagnostics for the
Impact test on the storage pool will be updated. If no such instance exists, then one will be created.

27.5.7 Determining corrective actions for a problem

27.5.7.1 Summary

An application discovers that a storage pool has an OperationalStatus that is not “OK”. In an ideal world,
the profile implementation supports the Storage Pool Diagnostic profile and its tests. This use case
identifies the steps for determining steps that can be taken to clear the condition (and get back to an
OperationalStatus of OK).

27.5.7.2 Basic Course of Events

In an ideal world the application could perform the following steps:

1) Determine that the Actions Test is supported

2) Subscribe to Diagnostic Alert indications

3) Run an Actions Test on the pool

4) Receive Indications on elements reported

27.5.7.3 Alternative Paths

none

27.5.7.4 Exception Paths

none

27.5.7.5 Triggers

The user has a problem (non-OK OperationalStatus) with a storage pool and needs to know what
corrective actions are available to resolve the problem.

27.5.7.6 Assumptions

The implementation follows the (SMI-S) standard.

27.5.7.7 Preconditions

A storage pool has a problem (non-OK OperationalStatus).

27.5.7.8 Postconditions

1) Alert indications will be generated to report on the test results

2) Logs may be created for the test that is run

3) If the implementation supports SummaryDiagnostics, then any existing SummaryDiagnostics for the
Actions test on the storage pool will be updated. If no such instance exists, then one will be created.
960

 Postconditions
27.6 CIM Elements

27.6.1 Overview

Table 690 describes the CIM elements for Storage Pool Diagnostics.

Table 690 - CIM Elements for Storage Pool Diagnostics

Element Name Requirement Description

27.6.2 CIM_AvailableDiagnosticService Mandatory Association to link StoragePool diagnostic services that
can be launched against storage pools.

27.6.3 CIM_CorrespondingSettingDataRecord
(DiagnosticCompletionRecord)

Conditional Conditional requirement: Required if
CIM_DiagnosticSettingDataRecord is implemented.
Association to link a settings record to its corresponding
completion records.

27.6.4 CIM_CorrespondingSettingDataRecord
(DiagnosticServiceRecord)

Conditional Conditional requirement: Required if
CIM_DiagnosticSettingDataRecord is implemented.
Association to link a settings record to its corresponding
service records.

27.6.5 CIM_DiagnosticCompletionRecord Mandatory Records that contain serviced completion information.

27.6.6 CIM_DiagnosticLog (Diagnostic Log) Mandatory Although several legitimate mechanisms for logging
results exist (see
CIM_DiagnosticSettingData.LogStorage), aggregation of
diagnostic records to a diagnostic log is Mandatory.

27.6.7 CIM_DiagnosticLog (Subtest) Mandatory This is an instance of DiagnosticLog that represents a
subtest.

27.6.8 CIM_DiagnosticServiceRecord Mandatory Reports diagnostic test messages.

27.6.9 CIM_DiagnosticSettingDataRecord Optional Stores the settings used in a specific diagnostic test
execution.

27.6.10 CIM_DiagnosticSubTestRecord (Subtest Log
Entry)

Optional A log record that identifies the existence of a subtest log.

27.6.11 CIM_ElementCapabilities (Diagnostic Test
Capabilities)

Optional Associates a StoragePool diagnostic service with its
capabilities

27.6.12 CIM_ElementDiagnostics (Summary Test
Results)

Optional This associates an element to its summary diagnostic
instances.

27.6.13 CIM_ElementSettingData
(DiagnosticSettingData)

Optional Associates the StoragePool diagnostic service with its
default settings.

27.6.14 CIM_ElementSoftwareIdentity Mandatory Associates the StoragePool diagnostic service with its
version information.

27.6.15 CIM_HelpService Optional CIM_HelpService is the preferred way for a service to
publish online help information.

27.6.16 CIM_HostedService Mandatory Associates an instance of
CIM_StoragePoolDiagnosticTest or CIM_HelpService to
their scoping systems.

27.6.17 CIM_LogManagesRecord Mandatory Associates a log with its records.

27.6.18 CIM_LogToLog (Log to Subtest Log) Optional This associates a log entry to another log (a subtest log).

27.6.19 CIM_RecordAppliesToElement Optional Associates a record with the elements (diagnostic service
and device).

27.6.20 CIM_ServiceAffectsElement Mandatory Association between the StoragePool diagnostic service
and any storage pools affected by running the service.
SNIA Technical Position 961

Postconditions
27.6.21 CIM_ServiceAvailableToElement Mandatory Associates the StoragePool diagnostic service with its
help service information.

27.6.22 CIM_ServiceComponent Optional Associates an StoragePool test that is also part of another
test.

27.6.23 CIM_SoftwareIdentity Mandatory Used to publish version information about the diagnostic
test.

27.6.24 CIM_StoragePoolDiagnosticServiceCapabilities Optional This class constrains CIM_DiagnosticServiceCapabilities
as defined in the Diagnostics Profile.

27.6.25 CIM_StoragePoolDiagnosticSettingData (Client) Optional This class specializes CIM_DiagnosticSettingData as
defined in the Diagnostics Profile.

27.6.26 CIM_StoragePoolDiagnosticSettingData (Default) Optional This class specializes CIM_DiagnosticSettingData as
defined in the Diagnostics Profile.

27.6.27 CIM_StoragePoolDiagnosticTest (DiagnosticTest) Mandatory CIM_StoragePoolDiagnosticTest is used to represent the
Diagnostic Testing for an StoragePool.

27.6.28 CIM_SummaryDiagnostics (Summary Test
Results)

Optional A summary of test results for the last execution of the test
identified by the ServiceName.

27.6.29 CIM_UseOfLog Mandatory Associates a log with a port controller or StoragePool
diagnostic service.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG1"

Optional CQL -The reason for the test failure is unknown.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG0"

Optional CQL -The test passed.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG3"

Optional CQL -The test failed.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG4"

Optional CQL -The test completed with warnings.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG5"

Optional CQL -The requested test is not supported.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG6"

Optional CQL -The required test setup steps have not been
performed.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG7"

Optional CQL -The test ran but HaltOnError is not supported.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG8"

Optional CQL -The test halted due to an error.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG10"

Optional CQL -The test ran but QuickMode is not supported.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG11"

Optional CQL -The requested LoopControl type is not supported.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG13"

Optional CQL -The test did not run because logging could not be
started.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG14"

Optional CQL -The test ran but logging errors occurred.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG15"

Optional CQL -The requested LogStorage type is not supported.

Table 690 - CIM Elements for Storage Pool Diagnostics

Element Name Requirement Description
962

 Postconditions
SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG16"

Optional CQL -The specified LoopControlParameter does not
match its corresponding LoopControl argument.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG17"

Optional CQL -The requested VerbosityLevel is not supported.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG18"

Optional CQL -The requested PercentOfTestCoverage level was
not completed.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG22"

Optional CQL -The test terminated because the specified
ErrorCount was excceeded.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG23"

Optional CQL -The test terminated because the specified the
number of interations specified by LoopControl has
completed.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG24"

Optional CQL -The test terminated because the specified time limit
specified by LoopControl was reached.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG25"

Optional CQL -The test terminated for an unknown reason.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG26"

Optional CQL -No NonDestructive tests can be run.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG27"

Optional CQL -The capability to set LoopControl is not supported.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG28"

Optional CQL -The capability to set LogStorage is not supported.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG29"

Optional CQL -The capability to set VerbosityLevel is not
supported.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG30"

Optional CQL -The capability to set PercentOfTestCoverage is not
supported.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG31"

Optional CQL -The capability to set QuickMode is not supported.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG32"

Optional CQL -The capability to set HaltOnError is not supported.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG33"

Optional CQL -The capability to set NonDestructive is not
supported.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG46"

Optional CQL - LogStorage mismatch with capabilities

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG47"

Optional CQL - Capability to set the DiagnosticsSettings parameter
not supported

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG48"

Optional CQL - Test continued after an interim interactive timeout

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG49"

Optional CQL - Test terminated after an interactive timeout

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="DMTF" and MessageID="DIAG50"

Optional CQL - Capability to set the DiagnosticSettings parameter
not supported for test

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="DRM101"

Optional CQL -StoragePool is healthy

See Storage Management Technical Specification, Part 4
Block Devices, 1.8.0 Rev 4 27.3.12.1 DRM101 -
StoragePool is healthy

Table 690 - CIM Elements for Storage Pool Diagnostics

Element Name Requirement Description
SNIA Technical Position 963

Postconditions
SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="DRM102"

Optional CQL -StoragePool is dependent on an element with
problems

See Storage Management Technical Specification, Part 4
Block Devices, 1.8.0 Rev 4 27.3.12.2 DRM102 -
StoragePool is dependent on an element with problems

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="DRM103"

Optional CQL -The StoragePool is being serviced

See Storage Management Technical Specification, Part 4
Block Devices, 1.8.0 Rev 4 27.3.12.3 DRM103 - The
StoragePool is being serviced

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="DRM104"

Optional CQL -The OperationalStatus of the Pool is impacting an
element allocated from it

See Storage Management Technical Specification, Part 4
Block Devices, 1.8.0 Rev 4 27.3.12.4 DRM104 - The
OperationalStatus of the Pool is impacting an element
allocated from it

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="DRM105"

Optional CQL -The StoragePool OperationalStatus may be
corrected by applying a spare

See Storage Management Technical Specification, Part 4
Block Devices, 1.8.0 Rev 4 27.3.12.5 DRM105 - The
StoragePool OperationalStatus may be corrected by
applying a spare.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="DRM106"

Optional CQL -The StoragePool OperationalStatus may be
corrected by relocating the pool

See Storage Management Technical Specification, Part 4
Block Devices, 1.8.0 Rev 4 27.3.12.6 DRM106 - The
StoragePool OperationalStatus may be corrected by
relocating the pool

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="DRM107"

Optional CQL -Pool experiencing interference from system
workloads

See Storage Management Technical Specification, Part 4
Block Devices, 1.8.0 Rev 1 27.3.11.7 DRM107 – Pool
experiencing interference from system workloads

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="DRM108"

Optional CQL -Pool performance degraded by component element

See Storage Management Technical Specification, Part 4
Block Devices, 1.8.0 Rev 1 27.3.11.8 DRM108 – Pool
performance degraded by component element

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="DRM109"

Optional CQL -Pool degraded due to loss of RAID protection

See Storage Management Technical Specification, Part 4
Block Devices, 1.8.0 Rev 1 27.3.11.9 DRM109 – Pool
degraded due to loss of RAID protection

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="DRM110"

Optional CQL -Pool degraded due to loss of port redundancy

See Storage Management Technical Specification, Part 4
Block Devices, 1.8.0 Rev 1 27.3.11.10 DRM110 – Pool
degraded due to loss of port redundancy

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="DRM111"

Optional CQL -Pool predicting failure due lack of available capacity

See Storage Management Technical Specification, Part 4
Block Devices, 1.8.0 Rev 1 27.3.11.11 DRM111 – Pool
predicting failure due lack of available capacity

Table 690 - CIM Elements for Storage Pool Diagnostics

Element Name Requirement Description
964

 Postconditions
27.6.2 CIM_AvailableDiagnosticService

CIM_AvailableDiagnosticService is used to discover the StoragePool diagnostic services that are
installed for a particular Storage Pool. The class definition specializes the
CIM_AvailableDiagnosticService definition in the Diagnostics profile.Properties or methods not inherited
are marked accordingly as '(overridden)' or '(added)' in the left most column.

Requirement: Mandatory

Table 691 describes class CIM_AvailableDiagnosticService.

27.6.3 CIM_CorrespondingSettingDataRecord (DiagnosticCompletionRecord)

CIM_CorrespondingSettingDataRecord is used to associate a completion record with the corresponding
setting data record.

Requirement: Required if CIM_DiagnosticSettingDataRecord is implemented.

Table 692 describes class CIM_CorrespondingSettingDataRecord (DiagnosticCompletionRecord).

27.6.4 CIM_CorrespondingSettingDataRecord (DiagnosticServiceRecord)

CIM_CorrespondingSettingDataRecord is used to associate a service record with the corresponding
setting data record.

Requirement: Required if CIM_DiagnosticSettingDataRecord is implemented.

Table 691 - SMI Referenced Properties/Methods for CIM_AvailableDiagnosticService

Properties Flags Requirement Description & Notes

EstimatedDurationOfServi
ce

Mandatory

EstimatedDurationQualifier Optional

ServiceProvided
(overridden)

Mandatory This property shall be a reference to an instance of
CIM_StoragePoolDiagnosticTest.

UserOfService
(overridden)

Mandatory This property shall be a reference to an instance of CIM_StoragePool.

Table 692 - SMI Referenced Properties/Methods for CIM_CorrespondingSettingDataRecord (Diagnostic-
CompletionRecord)

Properties Flags Requirement Description & Notes

DataRecord Mandatory This property shall be a reference to an instance of
CIM_DiagnosticCompletionRecord.

SettingsRecord Mandatory This property shall be a reference to an instance of
CIM_DiagnosticSettingDataRecord.
SNIA Technical Position 965

Postconditions
Table 693 describes class CIM_CorrespondingSettingDataRecord (DiagnosticServiceRecord).

27.6.5 CIM_DiagnosticCompletionRecord

CIM_DiagnosticCompletionRecord is used to report the final state of diagnostic execution (OK, Failed,
Incomplete, Aborted, and so on).

Requirement: Mandatory

Table 694 describes class CIM_DiagnosticCompletionRecord.

Table 693 - SMI Referenced Properties/Methods for CIM_CorrespondingSettingDataRecord (Diagnostic-
ServiceRecord)

Properties Flags Requirement Description & Notes

DataRecord Mandatory This property shall be a reference to an instance of
CIM_DiagnosticServiceRecord.

SettingsRecord Mandatory This property shall be a reference to an instance of
CIM_DiagnosticSettingDataRecord.

Table 694 - SMI Referenced Properties/Methods for CIM_DiagnosticCompletionRecord

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key: InstanceID should be constructed using the following preferred
algorithm: <ConcreteJob.InstanceID>:<n>

Where <ConcreteJob.InstanceID> is <OrgID>:<LocalID> as described in
ConcreteJob and <n> is an increment value that provides uniqueness.
<n> should be set to "0" for the first record created by the job, and
incremented for each subsequent record.

CreationTimeStamp Mandatory None.

RecordData Mandatory None.

RecordFormat Mandatory None.

ServiceName Mandatory This property shall be constructed as follows: <OrgID>:<TestName>.

ManagedElementName Mandatory This property shall be formatted as a freeform string of variable length.

RecordType Mandatory The record type shall be “2 (Results).

ExpirationDate Mandatory

CompletionState Mandatory

OtherCompletionStateDes
cription

Conditional Conditional requirement: This is required if CompletionState has the value
of 1 (Other).

LoopsPassed Optional If looping is supported, this property is Mandatory.

LoopsFailed Optional If looping is supported, this property is Mandatory.

ErrorCode N Mandatory This property shall be an array that contains the error codes of all errors
generated by the diagnostic test execution.

If there are no errors this property may have the value NULL.

ErrorCount N Mandatory This property shall be an array where each position should contain the
number of times that an error (which can be identified by the same position
of the ErrorCode array) happened.

If there are no errors this property may have the value NULL.
966

 Postconditions
27.6.6 CIM_DiagnosticLog (Diagnostic Log)

CIM_DiagnosticLog represents a log that aggregates all of the results (records) that the execution of a
diagnostic generates.

Requirement: Mandatory

Table 695 describes class CIM_DiagnosticLog.

27.6.7 CIM_DiagnosticLog (Subtest)

CIM_DiagnosticLog (Subtest) represents a log that aggregates all of the results (records) that the
execution of a diagnostic subtest generates.

Requirement: Mandatory

Table 696 describes class CIM_DiagnosticLog (Subtest).

27.6.8 CIM_DiagnosticServiceRecord

CIM_DiagnosticServiceRecord is used to report diagnostic test messages such as results, errors,
warnings, and status.

Requirement: Mandatory

Table 695 - SMI Referenced Properties/Methods for CIM_DiagnosticLog

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key: InstanceID should be constructed using the following preferred
algorithm:

<OrgID>:<LocalID>.

ClearLog()() Mandatory

Table 696 - SMI Referenced Properties/Methods for CIM_DiagnosticLog (Subtest)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key: InstanceID should be constructed using the following preferred
algorithm:

<OrgID>:<LocalID>.

ClearLog()() Mandatory
SNIA Technical Position 967

Postconditions
Table 697 describes class CIM_DiagnosticServiceRecord.

27.6.9 CIM_DiagnosticSettingDataRecord

CIM_DiagnosticSettingDataRecord stores the settings used in a specific diagnostic test execution.

Requirement: Optional

Table 697 - SMI Referenced Properties/Methods for CIM_DiagnosticServiceRecord

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key: InstanceID should be constructed using the following preferred
algorithm: <ConcreteJob.InstanceID>:<n>

Where <ConcreteJob.InstanceID> is <LocalID> as described in
ConcreteJob and <n> is an increment value that provides uniqueness.
<n> should be set to "0" for the first record created by the job, and
incremented for each subsequent record.

CreationTimeStamp Mandatory None.

RecordData Mandatory None.

RecordFormat Mandatory None.

LoopsPassed Mandatory None.

LoopsFailed Mandatory None.

ErrorCode Optional If the RecordType value is 7(Device Errors) or 8 (Service Errors), this
property shall be an array that contains only one error code number.

If the RecordType value is 2 (Results), this property shall be an array that
contains the error codes of all errors generated by the diagnostic test or
subtest execution at the time when the record was logged.

If the RecordType value is not 2 (Results) or 7(Device Errors) or 8 (Service
Errors), this this property may be NULL.

The property will be formatted as a free-form string of variable length.

ErrorCount Optional If the RecordType value is 7(Device Errors) or 8 (Service Errors), this
property shall be an array that has just one element whose value is 1.

If the RecordType value is 2 (Results), this property should be an array
where each position should contain the number of times that an error
occurred which can be identified by the same position in the ErrorCode
array.

If the RecordType value is not 2 (Results) or 7(Device Errors) or 8 (Service
Errors), this this property may be NULL.

ServiceName Mandatory This property shall be constructed as follows: <OrgID>:<TestName>.

ManagedElementName Mandatory This property shall be formatted as a freeform string of variable length.

RecordType Mandatory A RecordType value of 2 (Results) shall be used to log interim results from
the diagnostic service or subtest execution.

In contrast, final results shall use the DiagnosticCompletionRecord class.

OtherRecordTypeDescripti
on

Conditional Conditional requirement: This is required if RecoredType has the value of
1 (Other).

ExpirationDate Mandatory
968

 Postconditions
Table 698 describes class CIM_DiagnosticSettingDataRecord.

27.6.10 CIM_DiagnosticSubTestRecord (Subtest Log Entry)

An instance of CIM_DiagnosticSubTestRecord shall identify the existance of a subtest log (an instance of
CIM_DiagnosticLog). The diagnostic subtest record will identify the test that was applied, the element
that was tested and nature of the completion (not completed, aborted, no problems, OK but warnings,
etc.).

Requirement: Optional

Table 699 describes class CIM_DiagnosticSubTestRecord (Subtest Log Entry).

Table 698 - SMI Referenced Properties/Methods for CIM_DiagnosticSettingDataRecord

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key InstanceID should be constructed using the following preferred
algorithm: <ConcreteJob.InstanceID>:<n>. <ConcreteJob.InstanceID> is
<OrgID>:<LocalID> as described in CIM_ConcreteJob, and <n> is an
increment value that provides uniqueness. <n> should be set to
\0\'forthefirstrecordcreatedbythejob,andincrementedforeachsubsequentre
cord.'

CreationTimeStamp Mandatory None.

ServiceName Mandatory This property shall be constructed as follows: <OrgID>:<TestName>.

ManagedElementName Mandatory This property will be formatted as a free-form string of variable length.

ExpirationDate Mandatory

Settings Optional This property is set to a string that encodes a DiagnosticSettingData
instance.

If an instance of CIM_DiagnosticSettingData is associated through
CIM_ElementSettingData to the instance of CIM_DiagnosticTest at the
time the diagnostic test is run, this property is Mandatory.

Table 699 - SMI Referenced Properties/Methods for CIM_DiagnosticSubTestRecord (Subtest Log Entry)

Properties Flags Requirement Description & Notes

InstanceID Mandatory InstanceID should be constructed using the following preferred algorithm:

ConcreteJob.InstanceID:n

Where 'ConcreteJob.InstanceID' is 'OrgID:LocalID' as described in
ConcreteJob and 'n' is an increment value that provides uniqueness.

ServiceName Mandatory This is the name of the subtest that was run.

ManagedElementName Mandatory This is the ElementName of the element (e.g., storage pool or disk drive)
subjected to the subtest.

RecordType Mandatory This shall be '3' (Subtests).
SNIA Technical Position 969

Postconditions
27.6.11 CIM_ElementCapabilities (Diagnostic Test Capabilities)

CIM_ElementCapabilities associates an StoragePool diagnostic service with its capabilities. The class
definition specializes the CIM_ElementCapabilities definition in the Diagnostics profile. Properties or
methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Requirement: Optional

Table 700 describes class CIM_ElementCapabilities (Diagnostic Test Capabilities).

27.6.12 CIM_ElementDiagnostics (Summary Test Results)

This associates an element to its summary diagnostic instances. Note that the element may not be a
StoragePool. This is because subtests should also generate summary diagnostic instances.

Requirement: Optional

Table 701 describes class CIM_ElementDiagnostics (Summary Test Results).

TestCompletionStatus Mandatory This is the message id of the completion status message. The possible
values are:

DIAG0 - The test passed.

DIAG3 - The device test failed.

DIAG4 - The test was completed with warnings.

DIAG44 - The test did not start.

DIAG45 - The test aborted.

ExpirationDate Mandatory The date and time that the record instance should be deleted. The
expiration datetime should be set when the record is fully populated with
record data. The value should be calculated using the ResultPersistence
property of the DiagnosticSetting class. Once the Expiration Date has
been reached, record instances should be deleted as soon as possible.

CreationTimeStamp Mandatory A timestamp indicating when the record was created.

Table 700 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Diagnostic Test Capabilities)

Properties Flags Requirement Description & Notes

ManagedElement
(overridden)

Mandatory This property shall be a reference to an instance of
CIM_StoragePoolDiagnosticTes

Capabilities (overridden) Mandatory This property shall be a reference to an instance of
CIM_StoragePoolDiagnosticServiceCapabilities.

Table 701 - SMI Referenced Properties/Methods for CIM_ElementDiagnostics (Summary Test Results)

Properties Flags Requirement Description & Notes

Antecedent Mandatory A reference to the element (storage pool or disk drive) on which the test or
subtest was run.

Dependent Mandatory A reference to an instance of summary diagnostics for the element.

Table 699 - SMI Referenced Properties/Methods for CIM_DiagnosticSubTestRecord (Subtest Log Entry)

Properties Flags Requirement Description & Notes
970

 Postconditions
27.6.13 CIM_ElementSettingData (DiagnosticSettingData)

CIM_ElementSettingData associates the StoragePool diagnostic service with its default. The class
definition specializes the CIM_ElementSettingData definition in the Diagnostics profile. Properties or
methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Requirement: Optional

Table 702 describes class CIM_ElementSettingData (DiagnosticSettingData).

27.6.14 CIM_ElementSoftwareIdentity

CIM_ElementSoftwareIdentity associates the StoragePool diagnostic service with its version information.
The class definition specializes the CIM_ElementSoftwareIdentity definition in the Diagnostics profile.
Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most
column

Requirement: Mandatory

Table 703 describes class CIM_ElementSoftwareIdentity.

27.6.15 CIM_HelpService

CIM_HelpService is the preferred way for a service to publish online help information.

Requirement: Optional

Table 702 - SMI Referenced Properties/Methods for CIM_ElementSettingData (DiagnosticSettingData)

Properties Flags Requirement Description & Notes

IsDefault Mandatory If the instance of CIM_DiagnosticSettingData is the default setting, this
property shall have the value of TRUE.

ManagedElement
(overridden)

Mandatory This property shall be a reference to an instance of
CIM_StoragePoolDiagnosticTest.

SettingData (overridden) Mandatory This property shall be a reference to an instance of
CIM_StoragePoolDiagnosticSettingData.

Table 703 - SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity

Properties Flags Requirement Description & Notes

Antecedent Mandatory This property shall be a reference to an instance of CIM_SoftwareIdentity.

Dependent (overridden) Mandatory This property shall be a reference to an instance of
CIM_StoragePoolDiagnosticTest.
SNIA Technical Position 971

Postconditions
Table 704 describes class CIM_HelpService.

27.6.16 CIM_HostedService

CIM_HostedService is used to associate an instance of CIM_StoragePoolDiagnosticTest with an instance
of CIM_ComputerSystem to which the CIM_StoragePoolDiagnosticTest is scoped and to associate an
instance of CIM_HelpService with an instance of CIM_ComputerSystem to which the CIM_HelpService is
scoped. The class definition specializes the CIM_HostedService definition in the Diagnostics profile.
Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most
column.

Requirement: Mandatory

Table 705 describes class CIM_HostedService.

27.6.17 CIM_LogManagesRecord

CIM_LogManagesRecord associates a log with its records (service records, setting records, or
completion records).

Table 704 - SMI Referenced Properties/Methods for CIM_HelpService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory Key.

SystemName Mandatory Key.

CreationClassName Mandatory Key.

Name Mandatory Key: This property will be formatted as a free-form string of variable
length.

ElementName Mandatory This property will be formatted as a free-form string of variable length.

DeliveryOptions Mandatory None.

OtherDeliveryOptionDescri
ption

Conditional Conditional requirement: This is required if DeliveryOptions has the value
of 1 (Other).

DocumentsAvailable Mandatory This property will be formatted as a free-form string of variable length.

DocumentDescriptions Mandatory None.

DocumentFormat Mandatory None.

OtherDocumentFormatDes
cription

Conditional Conditional requirement: This is required if DocumentFormat has the
value of 1 (Other).

GetHelp()() Mandatory

Table 705 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory This property shall be a reference to an instance of
CIM_ComputerSystem.

Dependent (overridden) Mandatory This property shall be a reference to an instance of
CIM_StoragePoolDiagnosticTest or CIM_HelpService.
972

 Postconditions
Requirement: Mandatory

Table 706 describes class CIM_LogManagesRecord.

27.6.18 CIM_LogToLog (Log to Subtest Log)

This associates a log entry to another log (a subtest log).

Requirement: Optional

Table 707 describes class CIM_LogToLog (Log to Subtest Log).

27.6.19 CIM_RecordAppliesToElement

CIM_RecordAppliesToElement associates a record with the elements (diagnostic service and device) that
have a relationship with this record. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Requirement: Optional

Table 708 describes class CIM_RecordAppliesToElement.

27.6.20 CIM_ServiceAffectsElement

CIM_ServiceAffectsElement is used to associate to the StoragePool diagnostic service any storage pools
that are affected by the running of the service. The class definition specializes the
CIM_ServiceAffectsElement definition in the Diagnostics profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Requirement: Mandatory

Table 706 - SMI Referenced Properties/Methods for CIM_LogManagesRecord

Properties Flags Requirement Description & Notes

Log Mandatory This property shall be a reference to an instance of CIM_ DiagnosticLog.

Record Mandatory This property shall be a reference to an instance of
CIM_DiagnosticRecord.

Table 707 - SMI Referenced Properties/Methods for CIM_LogToLog (Log to Subtest Log)

Properties Flags Requirement Description & Notes

Antecedent Mandatory A reference to the instance of CIM_DiagnosticSubTestRecord in the
parent log.

Dependent Mandatory A reference to a CIM_DiagnosticLog for the subtest.

Table 708 - SMI Referenced Properties/Methods for CIM_RecordAppliesToElement

Properties Flags Requirement Description & Notes

Antencedent Mandatory This property shall be a reference to an instance of
CIM_DiagnosticRecord.

Dependent (overridden) Mandatory This property shall be a reference to an instance of CIM_StorgePool.
SNIA Technical Position 973

Postconditions
Table 709 describes class CIM_ServiceAffectsElement.

27.6.21 CIM_ServiceAvailableToElement

CIM_ServiceAvailableToElement associates the StoragePool diagnostic service with its help service
information. The class definition specializes the CIM_ServiceAvailableToElement definition in the
Diagnostics profile. Properties or methods not inherited are marked accordingly as '(overridden)' or
'(added)' in the left most column.

Requirement: Mandatory

Table 710 describes class CIM_ServiceAvailableToElement.

27.6.22 CIM_ServiceComponent

CIM_ServiceComponent associates an StoragePool test that is also part of another test. This class is
used when DiagnosticTest.Characteristics includes the value 6 (Is Package) and subtests are
implemented as separate instances of DiagnosticTest. The class definition specializes the
CIM_ServiceComponent definition in the Diagnostics profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Requirement: Optional

Table 711 describes class CIM_ServiceComponent.

27.6.23 CIM_SoftwareIdentity

CIM_SoftwareIdentity is used to publish version information about the diagnostic test. Table 712 provides
information about the properties of CIM_SoftwareIdentity.

Table 709 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement

Properties Flags Requirement Description & Notes

AffectedElement
(overridden)

Mandatory This property shall be a reference to an instance of CIM_StoragePool

AffectingElement
(overridden)

Mandatory This property shall be a reference to an instance of
CIM_StoragePoolDiagnosticTest.

Table 710 - SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement

Properties Flags Requirement Description & Notes

ServiceProvided Mandatory This property shall be a reference to an instance of CIM_HelpService.

UserOfService
(overridden)

Mandatory This property shall be a reference to an instance of
CIM_StoragePoolDiagnosticTest.

Table 711 - SMI Referenced Properties/Methods for CIM_ServiceComponent

Properties Flags Requirement Description & Notes

GroupComponent Mandatory This property shall be a reference to an instance of CIM_DiagnosticTest.

PartComponent
(overridden)

Mandatory This property shall be a reference to an instance of
CIM_StoragePoolDiagnosticTest.
974

 Postconditions
Requirement: Mandatory

Table 712 describes class CIM_SoftwareIdentity.

27.6.24 CIM_StoragePoolDiagnosticServiceCapabilities

CIM_StoragePoolDiagnosticServiceCapabilities is used to provide information on the capabilities for the
StoragePool Diagnostic Service. This class specializes CIM_DiagnosticServiceCapabilities as defined in
the Diagnostics Profile. The class definition specializes the CIM_DiagnosticServiceCapabilities definition
in the Diagnostics profile. Properties or methods not inherited are marked accordingly as '(overridden)' or
'(added)' in the left most column.

Requirement: Optional

Table 713 describes class CIM_StoragePoolDiagnosticServiceCapabilities.

Table 712 - SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Properties Flags Requirement Description & Notes

InstanceID Mandatory InstanceID should be constructed using the following preferred algorithm:
<OrgID>:<LocalID>.

MajorVersion Mandatory None.

MinorVersion Mandatory None.

RevisionNumber Mandatory None.

VersionString Mandatory None.

Manufacturer Mandatory This property will be formatted as a free-form string of variable length.

Table 713 - SMI Referenced Properties/Methods for CIM_StoragePoolDiagnosticServiceCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key: InstanceID shall be unique and should be constructed using the
following preferred algorithm:

<OrgID>:<LocalID>

<LocalID> should be set to the Name property value of the Service to
which these capabilities apply.

ElementName (overridden) Mandatory For the StoragePoolDiagnosticServiceCapabilities the value of this
property shall be one of the following: StoragePool Status Test,
StoragePool Self Test, StoragePool RECE Test, StoragePool Impact Test
or StoragePool Actions Test.

SupportedServiceModes Optional If service modes are supported, they shall be published using this
property.

OtherSupportedServiceMo
desDescriptions

Conditional Conditional requirement: This is required if SupportedServiceModes has
the value of 1 (Other).

SupportedLoopControl Optional If looping is supported, its controls shall be published using this property.

OtherSupportedLoopContr
olDescriptions

Conditional Conditional requirement: This is required if SupportedLoopControl has the
value of 1 (Other).

SupportedLogOptions Optional If any log options are supported, they shall be published using this
property.
SNIA Technical Position 975

Postconditions
27.6.25 CIM_StoragePoolDiagnosticSettingData (Client)

This class specializes CIM_DiagnosticSettingData as defined in the Diagnostics Profile. The class
definition specializes the CIM_DiagnosticSettingData definition in the Diagnostics profile. Properties or
methods not inheritedare marked accordingly as '(overridden)' or '(added)' in the left most column.

Requirement: Optional

Table 714 describes class CIM_StoragePoolDiagnosticSettingData (Client).

OtherSupportedLogOption
sDescriptions

Conditional Conditional requirement: This is required if SupportedLogOptions has the
value of 1 (Other).

SupportedLogStorage Optional If any log storage options are supported, they shall be published using this
property.

OtherSupportedLogStorag
eDescriptions

Conditional Conditional requirement: This is required if SupportedLogStorage has the
value of 1 (Other).

SupportedExecutionContro
ls

Optional If any execution controls are supported, they shall be published using this
property.

OtherSupportedExecution
ControlsDescriptions

Conditional Conditional requirement: This is required if SupportedExecutionControls
has the value of 1 (Other).

SupportedDepths (added) Optional This property is used by a provider to advertise the depths that are
supported for certain tests.

Table 714 - SMI Referenced Properties/Methods for CIM_StoragePoolDiagnosticSettingData (Client)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key: InstanceID should be constructed using the following preferred
algorithm: <OrgID>:<LocalID>. <LocalID> should be set to a time stamp
(CIM DateTime).

ElementName (overridden) Mandatory For the StoragePoolDiagnosticSettingData the value of this property shall
be one of the following: StoragePool Status Test, StoragePool Self Test,
StoragePool RECE Test, StoragePool Impact Test or StoragePool Actions
Test.

HaltOnError Optional If the DiagnosticServiceCapabilities.SupportedServiceModes includes a
value of 4 (HaltOnError), this property can be used to affect test behavior.

When this property is TRUE, the service should halt after finding the first
error.

QuickMode Optional If the DiagnosticServiceCapabilities.SupportedServiceModes includes a
value of 3 (QuickMode), this property can be used to affect test behavior.

When this property is TRUE, the service should attempt to run in an
accelerated fashion either by reducing the coverage or number of tests
performed.

PercentOfTestCoverage Optional If the DiagnosticServiceCapabilities.SupportedServiceModes includes a
value of 2 (PercentOfTestCoverage), this property can be used to affect
test behavior.

This property requests the service to reduce test coverage to the specified
percentage.

Table 713 - SMI Referenced Properties/Methods for CIM_StoragePoolDiagnosticServiceCapabilities

Properties Flags Requirement Description & Notes
976

 Postconditions
27.6.26 CIM_StoragePoolDiagnosticSettingData (Default)

This class specializes CIM_DiagnosticSettingData as defined in the Diagnostics Profile. The class
definition specializes the CIM_DiagnosticSettingData definition in the Diagnostics profile. Properties or
methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Requirement: Optional

LoopControl Optional This property is used in combination with LoopControlParameter to set
one or more loop control mechanisms that limit the number of times that a
test should be repeated.

LoopControlParameter Optional If a LoopControl includes the value of 3 (Count) or 5 (ErrorCount), the
corresponding LoopControlParameter array element shall represent a
uint32 numeric value.

If a LoopControl includes the value of 4 (Timer), the corresponding
LoopControlParameter array element shall represent a datetime value.

OtherLoopControlDescripti
ons

Conditional Conditional requirement: This is required if LoopControl has the value of 1
(Other).

ResultPersistence Mandatory If the DiagnosticServiceCapabilities.SupportedServiceModes array
contains a value of 5 (ResultPersistence), this property can be used to
affect test behavior.

This property specifies how many seconds the records should persist after
service execution finishes. 0 (zero) indicates "no persistence" and
0xFFFFFFFF indicates "persist forever"“.

LogOptions Optional This property specifies the types of data that should be logged by the
diagnostic test.

OtherLogOptionsDescripti
ons

Conditional Conditional requirement: This is required if LogOptions has the value of 1
(Other).

LogStorage Optional This property specifies the logging mechanism to store the diagnostic
results.

This property shall be one of the values in
DiagnosticServiceCapabilities.LogStorage.

OtherLogStorageDescripti
ons

Conditional Conditional requirement: This is required if LogStorage has the value of 1
(Other).

VerbosityLevel Optional This property specifies the desired volume or detail logged by a diagnostic
test.

Depth (added) Optional This property is used by a client to identify the depth of search for failing
components.

Table 714 - SMI Referenced Properties/Methods for CIM_StoragePoolDiagnosticSettingData (Client)

Properties Flags Requirement Description & Notes
SNIA Technical Position 977

Postconditions
Table 715 describes class CIM_StoragePoolDiagnosticSettingData (Default).

Table 715 - SMI Referenced Properties/Methods for CIM_StoragePoolDiagnosticSettingData (Default)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key: InstanceID should be constructed using the following preferred
algorithm: <OrgID>:<LocalID>. <LocalID> should be set to a time stamp
(CIM DateTime).

ElementName (overridden) Mandatory For the StoragePoolDiagnosticSettingData the value of this property shall
be one of the following: StoragePool Status Test, StoragePool Self Test,
StoragePool RECE Test, StoragePool Impact Test or StoragePool Actions
Test.

HaltOnError Optional If the DiagnosticServiceCapabilities.SupportedServiceModes includes a
value of 4 (HaltOnError), this property can be used to affect test behavior.

When this property is TRUE, the service should halt after finding the first
error.

QuickMode Optional If the DiagnosticServiceCapabilities.SupportedServiceModes includes a
value of 3 (QuickMode), this property can be used to affect test behavior.

When this property is TRUE, the service should attempt to run in an
accelerated fashion either by reducing the coverage or number of tests
performed.

PercentOfTestCoverage Optional If the DiagnosticServiceCapabilities.SupportedServiceModes includes a
value of 2 (PercentOfTestCoverage), this property can be used to affect
test behavior.

This property requests the service to reduce test coverage to the specified
percentage.

LoopControl Optional This property is used in combination with LoopControlParameter to set
one or more loop control mechanisms that limit the number of times that a
test should be repeated.

LoopControlParameter Optional If a LoopControl includes the value of 3 (Count) or 5 (ErrorCount), the
corresponding LoopControlParameter array element shall represent a
uint32 numeric value.

If a LoopControl includes the value of 4 (Timer), the corresponding
LoopControlParameter array element shall represent a datetime value.

OtherLoopControlDescripti
ons

Conditional Conditional requirement: This is required if LoopControl has the value of 1
(Other).

ResultPersistence Mandatory If the DiagnosticServiceCapabilities.SupportedServiceModes array
contains a value of 5 (ResultPersistence), this property can be used to
affect test behavior.

This property specifies how many seconds the records should persist after
service execution finishes. 0 (zero) indicates “no persistence” and
0xFFFFFFFF indicates "persist forever”.

LogOptions Optional This property specifies the types of data that should be logged by the
diagnostic test.

OtherLogOptionsDescripti
ons

Conditional Conditional requirement: This is required if LogOptions has the value of 1
(Other).

LogStorage Optional This property specifies the logging mechanism to store the diagnostic
results.

This property shall be one of the values in
DiagnosticServiceCapabilities.LogStorage.

OtherLogStorageDescripti
ons

Conditional Conditional requirement: This is required if LogStorage has the value of 1
(Other).
978

 Postconditions
27.6.27 CIM_StoragePoolDiagnosticTest (DiagnosticTest)

CIM_StoragePoolDiagnosticTest is used to represent the Diagnostic Testing for a StoragePool. This class
specializes CIM_DiagnosticTest as defined in the Diagnostics Profile. The class definition specializes the
CIM_DiagnosticTest definition in the Diagnostics profile. Properties or methods not inherited are marked
accordingly as '(overridden)' or '(added)' in the left most column.

Requirement: Mandatory

Table 716 describes class CIM_StoragePoolDiagnosticTest (DiagnosticTest).

27.6.28 CIM_SummaryDiagnostics (Summary Test Results)

A summary of test results for the last execution of the test identified by the ServiceName. Note that an
element would typically have multiple instances of CIM_SummaryDiagnostics, one for each test that was
run on the element.

VerbosityLevel Optional This property specifies the desired volume or detail logged by a diagnostic
test.

Depth (added) Optional This property is used by a provider to identify the default depth of search
for failing components.

Table 716 - SMI Referenced Properties/Methods for CIM_StoragePoolDiagnosticTest (DiagnosticTest)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory Key.

SystemName Mandatory Key.

CreationClassName Mandatory Key.

Name Mandatory Key: The Name property shall be constructed as follows:
<OrgID>:<TestName>.

ElementName Mandatory The property will be formatted as a free-form string of variable length.

Characteristics Mandatory

OtherCharacteristicsDescripti
ons

Conditional Conditional requirement: This is required if Characteristics has the
value of 1 (Other).

TestTypes (overridden) Optional An array property that may contain the following values: 0 (Unknown),
1 (Other), 2 (Functional), 3 (Stress), 4 (Health Check), 5 (Access Test)
or 6 (Media Verify). This array is correlated with the
StoragePoolTestType array.

StoragePoolTestType (added) Mandatory The value may be: 2 (StoragePool Status Test), 3 (StoragePool Self
Test), 4 (StoragePool RECE Test), 5 (StoragePool Impact Test) or 6
(StoragePool Actions Test). This may be extended with vendor specific
tests, but to support the profile at least one of the original values must
be supported.

OtherStoragePoolTestTypeDe
scription (added)

Conditional Conditional requirement: This is required if StoragePoolTestType has
the value of 1 (Other). Used if 1 (Other) is specified. It is not used for
vendor specific tests.

RunDiagnosticService()() Mandatory

Table 715 - SMI Referenced Properties/Methods for CIM_StoragePoolDiagnosticSettingData (Default)

Properties Flags Requirement Description & Notes
SNIA Technical Position 979

Postconditions
Requirement: Optional

Table 717 describes class CIM_SummaryDiagnostics (Summary Test Results).

27.6.29 CIM_UseOfLog

CIM_UseOfLog associates a log with a port controller or StoragePool diagnostic service whose
information is stored in the log. The class definition specializes the CIM_UseOfLog definition in the
Diagnostics profile. Properties or methods not inherited are marked accordingly as '(overridden)' or
'(added)' in the left most column.

Requirement: Mandatory

Table 718 describes class CIM_UseOfLog.

EXPERIMENTAL

Table 717 - SMI Referenced Properties/Methods for CIM_SummaryDiagnostics (Summary Test Results)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key: InstanceID should be constructed using the following preferred
algorithm:

<OrgID>:<LocalID>.

ServiceName Mandatory This is the name of the subtest that was run.

TestCompletionStatus Mandatory This is the message id of the completion status message. The possible
values are:

DIAG0 - The test passed.

DIAG3 - The device test failed.

DIAG4 - The test was completed with warnings.

DIAG44 - The test did not start.

DIAG45 - The test aborted.

TestTimeStamp Mandatory A timestamp indicating when the test was run.

ErrorAlerts N Mandatory An array of strings that are embedded instances of CIM_AlertIndication for
errors generated by the test.

WarningAlerts N Mandatory An array of strings that are embedded instances of CIM_AlertIndication for
warnings generated by the test.

Table 718 - SMI Referenced Properties/Methods for CIM_UseOfLog

Properties Flags Requirement Description & Notes

Antecedent Mandatory This property shall be a reference to an instance of CIM_DiagnosticLog.

Dependent (overridden) Mandatory This property shall be a reference to an instance of
CIM_StoragePoolDiagnosticTest.
980

1

2

3

4

5

6

7

8

9

Annex A (informative) SMI-S Information Model

This standard is based on DMTF’s CIM schema, Version 2.51. The DMTF schema is available in the
machine-readable Managed Object Format (MOF) format. DMTF MOFs are simultaneously released both
as an "Experimental" and a "Final" version of the schema. This provides developers with early access to
experimental parts of the models. Both versions are available at http://www.dmtf.org/standards/cim.

Content marked as “Experimental” or “Implemented” may be based on DMTF’s Experimental MOFs.
SNIA Technical Position 207

http://www.dmtf.org/standards/cim
http://www.dmtf.org/standards/cim
http://www.dmtf.org/standards/cim
http://www.dmtf.org/standards/cim
http://www.dmtf.org/standards/cim
http://www.dmtf.org/standards/cim

208

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
EXPERIMENTAL

Annex B (informative) Registry of StorageExtent Definitions

Table B.1 lists a registry of StorageExtent definitions in SMI-S and the properties that distinguish the
extents from each other.

These definitions are not mutually exclusive. That is, a single StorageExtent instance may satisfy multiple
of these definitions. For example, it would not be uncommon for a StorageExtent (Primordial Disk Drive
Extent) to also be a StorageExtent (Spare). However, some are mutually exclusive. For example, all the
extents defined in Extent Composition are mutually exclusive with the StorageExtent (Primordial Disk
Drive Extent). The Extent Composition extents all have Primordial='false' and the StorageExtent
(Primordial Disk Drive Extent) has Primordial='true'. So an instance cannot be both a disk drive
StorageExtent and an Extent Composition storage extent. The known valid combinations are discussed in
B.3.

B.1 ExtentDiscriminator Definitions

The Values for ExtentDiscriminator are defined as follows:

SNIA:Pool Component - A StorageExtent (or CompositeExtent) that represents storage of a StoragePool,
but is not a remaining extent.

Table B.1 - Registry of StorageExtent Definitions

Extent (Usage) Profile Primordial ExtentDiscriminator

StorageExtent (Intermediate) Extent Composition 'false' 'SNIA:Intermediate'

StorageExtent (Pool Component) Extent Composition 'false' 'SNIA:Pool Component'

CompositeExtent (Composite
Intermediate)

Extent Composition 'false' 'SNIA:Intermediate' and
'SNIA:Composite'

CompositeExtent (Composite Pool
Component)

Extent Composition 'false' 'SNIA:Pool Component' and
'SNIA:Composite'

StorageExtent (Remaining) Extent Composition 'false' 'SNIA:Remaining'

StorageExtent (Primordial Disk Drive
Extent)

Disk Drive Lite 'true' 'SNIA:Pool Component' and
'SNIA:DiskDrive'

StorageExtent (Imported Extents) Storage Virtualizer 'true' 'SNIA:Pool Component' and
'SNIA:Imported'

StorageExtent (Spare) Disk Sparing either 'SNIA:Spare'

StorageVolume (Allocated) Block Services, Disk Sparing 'false' 'SNIA:Allocated'

LogicalDisk (Allocated) Block Services, Disk Sparing 'false' 'SNIA:Allocated'

StorageVolume (Constituent) Pools from Volumes 'false' 'SNIA:Pool Component'

StorageVolume (Shadow) Storage Virtualizer, NAS
Head, Replication Services

'false' 'SNIA:Shadow'

LogicalDisk (Shadow) Host Filesystem 'false' 'SNIA:Shadow'

LogicalDisk (Filesystem) NAS Head, Self-contained
NAS

'false' 'SNIA:Allocated' and
'SNIA:Reserved'

LogicalDisk (Intermediate) Volume Management 'false' 'SNIA:Intermediate'

LogicalDisk (Primordial) Volume Management 'true' 'SNIA:Imported'
SNIA Technical Position 983

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
SNIA:Intermediate - A StorageExtent (or CompositeExtent) that is neither a Pool Component nor a
Remaining Extent (it does not represent storage in the pool, remaining or otherwise).

SNIA:Composite - A StorageExtent that is a CompositeExtent.

SNIA:Remaining - A StorageExtent that has an AssociatedRemainingExtent to a StoragePool
(representing free storage in the StoragePool).

SNIA:DiskDrive - A StorageExtent that is the media on a Disk Drive.

SNIA:Imported - A StorageExtent that is imported from an external source.

SNIA:Spare - A StorageExtent that acts as a spare for other StorageExtents (and has the IsSpare
association).

SNIA:Allocated - A StorageExtent that is subclassed to StorageVolume or LogicalDisk, and has an
AllocatedFromStoragePool association from a Concrete StoragePool.

SNIA:Shadow - A StorageExtent (or subclass) that represents a StorageExtent in another autonomous
profile (e.g., the StorageVirtualizer has StorageVolumes (Shadow) that represent StorageVolumes
exported by Arrays).

SNIA:Reserved - A StorageExtent that is reserved for some system use within the autonomous profile
(e.g., in NAS profiles, an Allocated LogicalDisk is reserved for holding Filesystems).

B.2 Association Significance of the Various Extent Definitions

B.2.1 Scope

Each of the Extent Definitions has significance relative to the associations that may exist for the Extent
definition. This clause lists the associations implied by the various definitions.

B.2.2 StorageExtent (Intermediate)

An intermediate StorageExtent has the following associations defined on it:

• The Antecedent of a BasedOn Association from a StorageVolume (or LogicalDisk) (Optional)

• The Antecedent of a "mid level" BasedOn association (Optional)

• The Dependent of a "mid level" BasedOn association (Optional)

• The Antecedent on a CompositeExtentBasedOn (Optional)

B.2.3 StorageExtent (Pool Component)

A pool component StorageExtent has the following associations defined on it:

• The PartComponent of a ConcreteComponent to a "concrete" StoragePool (Mandatory, but Deprecated)

• The PartComponent of a AssociatedComponentExtent to a "concrete" StoragePool (Mandatory)

• The Antecedent of a BasedOn Association from a StorageVolume (or LogicalDisk) (Optional)

• The Antecedent of a "mid level" BasedOn association (Optional)

• The Dependent of a "mid level" BasedOn association (Optional)

• The Antecedent on a CompositeExtentBasedOn (Optional)

.

984

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83
B.2.4 CompositeExtent (Composite Intermediate)

An intermediate CompositeExtent has the following associations defined on it:

• The Dependent on a CompositeExtentBasedOn (Optional)

• The Dependent on a BasedOn in striping cases (Optional)

• The Antecedent of a BasedOn Association from a StorageVolume (or LogicalDisk) (Optional)

• The Antecedent of a "mid level" BasedOn association (Optional)

• The Antecedent on a CompositeExtentBasedOn (Optional)

B.2.5 CompositeExtent (Composite Pool Component)

A pool component CompositeExtent has the following associations defined on it:

• The PartComponent of a ConcreteComponent to a "concrete" StoragePool (Mandatory, but Deprecated)

• The PartComponent of a AssociatedComponentExtent to a "concrete" StoragePool (Mandatory)

• The Dependent on a CompositeExtentBasedOn (Mandatory)

• The Antecedent of a BasedOn Association from a StorageVolume (or LogicalDisk) (Optional)

• The Antecedent of a "mid level" BasedOn association (Optional)

• The Antecedent on a CompositeExtentBasedOn (Optional)

B.2.6 StorageExtent (Remaining)

A remaining StorageExtent has the following associations defined on it:

• The Dependent of a "mid level Remaining" BasedOn association (Mandatory)

• The PartComponent of a AssociatedRemainingExtent to a "concrete" StoragePool (Mandatory)

• The PartComponent of a ConcreteComponent to a StoragePool (Mandatory, but Deprecated)

B.2.7 StorageExtent (Primordial Disk Drive Extent)

A Disk drive StorageExtent has the following associations defined on it:

• The Dependent of a MediaPresent to DiskDrive (Mandatory)

• The PartComponent of a SystemDevice to a ComputerSystem (Mandatory)

• The PartComponent of a ConcreteComponent to a "Primordial" StoragePool (Mandatory, but Deprecated)

• The Antecedent of a "Bottom level" BasedOn association (Conditional on Extent Composition)

• The PartComponent of a AssociatedComponentExtent to a "Primordial" StoragePool (Conditional on Extent
Composition)

• The Dependent of a ProtocolControllerAccessesUnit to ProtocolController (Optional)

• The LogicalUnit of a SCSIInitiatorTargetLogicalUnitPath to Initiator & Target ProtocolEndpoints (Optional)

B.2.8 StorageExtent (Imported Extents)

An imported StorageExtent has the following associations defined on it:
SNIA Technical Position 985

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114
• The PartComponent of a SystemDevice to a ComputerSystem (Mandatory)

• The PartComponent of a ConcreteComponent to a "Primordial" StoragePool (Mandatory, but Deprecated)

• The Antecedent of a "Bottom level" BasedOn association (Conditional on Extent Composition)

• The PartComponent of a AssociatedComponentExtent to a "Primordial" StoragePool (Conditional on Extent
Composition)

B.2.9 StorageExtent (Spare)

A spare StorageExtent has the following associations defined on it:

• The Antecedent of an IsSpare association (Mandatory)

• The Antecedent of a Spared association (Mandatory)

• The PartComponent of a AssociatedComponentExtent to a "Primordial" StoragePool (Conditional on Extent
Composition)

• The PartComponent of a ConcreteComponent to a StoragePool

B.2.10 StorageVolume (Allocated)

An Allocated StorageVolume has the following associations defined on it:

• The ManagedElement of an ElementSettingData to a StorageSetting (Mandatory)

• The Dependent of an AllocatedFromStoragePool to a "Concrete" StoragePool (Mandatory)

• The PartComponent of a SystemDevice to a ComputerSystem (Mandatory)

• The ManagedElement of an ElementCapabilities to a StorageCapabilities (Optional)

B.2.11 LogicalDisk (Allocated)

An Allocated LogicalDisk has the following associations defined on it:

• The ManagedElement of an ElementSettingData to a StorageSetting (Mandatory)

• The Dependent of an AllocatedFromStoragePool to a "Concrete" StoragePool (Mandatory)

• The PartComponent of a SystemDevice to a ComputerSystem (Mandatory)

• The ManagedElement of an ElementCapabilities to a StorageCapabilities (Optional)

B.2.12 StorageVolume (Pool Component)

A Pool Component StorageVolume has the following associations defined on it:

• The Dependent of an AllocatedFromStoragePool to a "Concrete" StoragePool (Mandatory)

• The PartComponent of a SystemDevice to a ComputerSystem (Mandatory)

B.2.13 StorageVolume (Shadow)

A Shadow StorageVolume has the following associations defined on it:

• The PartComponent of a SystemDevice to a "Shadow" ComputerSystem (Mandatory)

• A SystemElement of a LogicalIdentity to an "Imported" StorageExtent (Mandatory)

• A member of a MemberOfCollection to a CIM_AllocatedResources (Mandatory)
986

115

116

117

118

119

120

121

122

123

124

125

126
• A member of a MemberOfCollection to a CIM_RemoteResources (Optional)

B.2.14 LogicalDisk (Shadow)

A Shadow LogicalDisk has the following associations defined on it:

• The PartComponent of a SystemDevice to a "Shadow" ComputerSystem (Mandatory)

• A SystemElement of a LogicalIdentity to an "Imported" StorageExtent (Mandatory)

• A member of a MemberOfCollection to a CIM_AllocatedResources (Mandatory)

• A member of a MemberOfCollection to a CIM_RemoteResources (Optional)

B.3 Example Valid Combinations of Extent Definitions

Table B.2 shows the known valid combinations of Extent Definitions. These refer to StorageExtent
instances that have multiple Usages.

B.4 Combinations of Extent Definitions not defined in this Release of the Standard

Currently, this release of the standard does not directly or indirectly support the combinations of Extent
Definitions. Some example of combinations not defined in this standard are identified in Table B.3.

Table B.2 - Example Valid Combinations of Extent Definitions

Extent Usage Extent
Usage

Primordi
al

ExtentDiscriminators Notes

Primordial Disk
Drive Extent

Spare 'true' 'SNIA:Pool Component',
'SNIA:DiskDrive' and
'SNIA:Spare'

A disk drive extent may be a spare.

Imported Extents Spare 'true' 'SNIA:Pool Component',
'SNIA:Imported' and
'SNIA:Spare'

An imported extent may be a spare.

Composite Pool
Component

Spare 'false' 'SNIA:Pool Component',
'SNIA:Composite' and
'SNIA:Spare'

A composite Pool component (a
concrete extent) may be a spare

Pool Component Spare 'false' 'SNIA:Pool Component' and
'SNIA:Spare'

A Pool Component (a concrete extent)
may be a spare

Table B.3 - Extent Combinations not defined in this Release of the Standard

Extent Usage Extent
Usage

Primordial ExtentDiscriminators Notes

Primordial Disk
Drive Extent

Intermediate Conflicted 'SNIA:Intermediate' and
'SNIA:DiskDrive'

An Intermediate Extent is always a
concrete extent

Imported Extents Intermediate Conflicted 'SNIA:Intermediate' and
'SNIA:Imported'

An Intermediate Extent is always a
concrete extent

Remaining Intermediate ‘false’ 'SNIA:Intermediate' and
'SNIA:Remaining'

An Intermediate Extent is used to
represent storage that is in use (and
remaining is free space).

Remaining Pool Component ‘false’ 'SNIA:Pool Component' and
'SNIA:Remaining'

A Remaining Extent represents
unallocated storage in a Pool and
cannot be a component of a Pool.
SNIA Technical Position 987

127

128

129

130

131

Several of the rows in Table B.3 have the value “Conflicted” in the Primordial column. This means one
type of extent is supposed to have the value ‘true’ and the other type of extent is supposed to have the
value ‘false’. For example, the standard defines a “Primordial Disk Drive Extent” to always have
Primordial=’true’ and a “Composite Pool Component” to always have Primordial=’false’. So a “Primordial
Disk Drive Extent” can never be a “Composite Pool Component”.

EXPERIMENTAL

Primordial Disk
Drive Extent

Composite Pool
Component

Conflicted 'SNIA:Pool Component',
'SNIA:Composite' and
'SNIA:DiskDrive'

An Composite Extent is always a
concrete extent and a drive extent is
primordial.

Imported Extents Composite Pool
Component

Conflicted 'SNIA:Pool Component',
'SNIA:Composite' and
'SNIA:Imported'

An Composite Extent is always a
concrete extent and an imported extent
is primordial.

Primordial Disk
Drive Extent

Imported
Extents

‘true’ 'SNIA:DiskDrive' and
'SNIA:Imported'

An extent cannot be both imported and
represent a DiskDrive

Spare Intermediate ‘false’ 'SNIA:Spare' and
'SNIA:Intermediate'

This version of the standard only
defines sparing of Pool Components

Spare Remaining ‘false’ 'SNIA:Spare' and
'SNIA:Remaining'

This version of the standard only
defines sparing of Pool Components

Table B.3 - Extent Combinations not defined in this Release of the Standard

Extent Usage Extent
Usage

Primordial ExtentDiscriminators Notes
988

	Revision History
	List of Figures
	List of Tables
	Foreword
	1 Scope
	2 Normative References
	2.1 Overview
	2.2 Approved references
	2.3 References under development
	2.4 Other references

	3 Terms, Definitions, Symbols, Abbreviations, and Conventions
	4 Array Profile
	4.1 Description
	4.1.1 Synopsis
	4.1.2 Overview

	4.2 Health and Fault Management
	4.3 Cascading Considerations
	4.4 Methods of the Profile
	4.5 Use Cases
	4.5.1 Discover the Capacity Optimization Support in an Array

	4.6 CIM Elements
	4.6.1 Element Overview
	4.6.2 CIM_ComputerSystem (Top Level System)
	4.6.3 CIM_ElementCapabilities (ImplementationCapabilities to System)
	4.6.4 CIM_ImplementationCapabilities (ImplementationCapabilities)
	4.6.5 CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View)
	4.6.6 CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View)
	4.6.7 CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)
	4.6.8 CIM_SCSIProtocolController (All LUNs View)
	4.6.9 CIM_SystemDevice (System to SCSIArbitraryLogicalUnit)
	4.6.10 CIM_SystemDevice (System to SCSIProtocolController)

	5 Block Services Package
	5.1 Description
	5.1.1 Synopsis
	5.1.2 Overview
	5.1.3 Storage Capacity States
	5.1.4 StoragePools
	5.1.5 Blocks, Metadata, and Capacity Reported
	5.1.6 StoragePool Management Instance Diagram
	5.1.7 StoragePool, StorageVolume and LogicalDisk Manipulation
	5.1.8 Declaring Storage Configuration Options
	5.1.9 StorageVolume Creation Instance Diagram
	5.1.10 Capacity Management
	5.1.11 Mapping of RAID levels to Data Redundancy and Package Redundancy
	5.1.12 Storage Setting Associations to Storage Capabilities
	5.1.13 The Usage Property
	5.1.14 Read-Only Model Requirements
	5.1.15 StorageExtent Conservation
	5.1.16 Formulas For Calculating Capacity
	5.1.17 Storage Element Manipulation
	5.1.18 Storage Compression support in Block Services

	5.2 Health and Fault Management Considerations
	5.2.1 Overview
	5.2.2 StoragePool OperationalStatus
	5.2.3 StorageVolume OperationalStatus
	5.2.4 LogicalDisk OperationalStatus

	5.3 Cascading Considerations
	5.4 Methods of this Profile
	5.4.1 Extrinsic Methods on StorageCapabilities
	5.4.2 Intrinsic Methods on StorageSetting
	5.4.3 Extrinsic Methods on StorageConfiguration
	5.4.4 Extrinsic Methods on StoragePool
	5.4.5 Extrinsic Methods on StorageConfigurationCapabilities

	5.5 Use Cases
	5.5.1 Representative Instance Diagram
	5.5.2 Goals and Settings
	5.5.3 Representative StoragePool Creation Example
	5.5.4 Representative example of StorageVolume or LogicalDisk Creation

	5.6 CIM Elements
	5.6.1 Element Summary
	5.6.2 CIM_AllocatedFromStoragePool (Pool from Pool)
	5.6.3 CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)
	5.6.4 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or LogicalDisk)
	5.6.5 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool)
	5.6.6 CIM_ElementCapabilities (ImplementationCapabilities to System)
	5.6.7 CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService)
	5.6.8 CIM_ElementCapabilities (StorageCapabilities to StoragePool)
	5.6.9 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationService)
	5.6.10 CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool)
	5.6.11 CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool)
	5.6.12 CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool)
	5.6.13 CIM_ElementCapabilities (Used to declare the naming capabilities of the StorageVolume or LogicalDisk)
	5.6.14 CIM_ElementSettingData
	5.6.15 CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService)
	5.6.16 CIM_EnabledLogicalElementCapabilities (For StoragePool)
	5.6.17 CIM_HostedService
	5.6.18 CIM_HostedStoragePool
	5.6.19 CIM_ImplementationCapabilities (ImplementationCapabilities)
	5.6.20 CIM_LogicalDisk
	5.6.21 CIM_OwningJobElement
	5.6.22 CIM_StorageCapabilities
	5.6.23 CIM_StorageConfigurationCapabilities (Concrete)
	5.6.24 CIM_StorageConfigurationCapabilities (Global)
	5.6.25 CIM_StorageConfigurationCapabilities (Primordial)
	5.6.26 CIM_StorageConfigurationService
	5.6.27 CIM_StoragePool (Concrete)
	5.6.28 CIM_StoragePool (Empty)
	5.6.29 CIM_StoragePool (Primordial)
	5.6.30 CIM_StorageSetting
	5.6.31 CIM_StorageSettingWithHints
	5.6.32 CIM_StorageSettingsAssociatedToCapabilities
	5.6.33 CIM_StorageSettingsGeneratedFromCapabilities
	5.6.34 CIM_StorageVolume
	5.6.35 CIM_SystemDevice (System to StorageVolume or LogicalDisk)

	6 Block Storage Views Profile
	6.1 Description
	6.1.1 Synopsis
	6.1.2 Overview
	6.1.3 Goals of View Classes
	6.1.4 Specific Requirements and Objectives of View Classes
	6.1.5 Class Diagram for Block Storage Views View Classes
	6.1.6 Implementation

	6.2 Health and Fault Management Consideration
	6.3 Cascading Considerations
	6.4 Methods of the Profile
	6.4.1 Extrinsic Methods of the Profile
	6.4.2 Intrinsic Methods of the Profile

	6.5 Client Considerations and Recipes
	6.5.1 Use Cases
	6.5.2 Recipes

	6.6 CIM Elements
	6.6.1 Element Summary
	6.6.2 CIM_AllocatedFromStoragePoolView (StoragePoolView to StoragePool)
	6.6.3 CIM_AllocatedFromStoragePoolView (Volume to StoragePoolView)
	6.6.4 CIM_AllocatedFromStoragePoolView (VolumeView to StoragePool)
	6.6.5 CIM_AllocatedFromStoragePoolViewView (PoolView to PoolView)
	6.6.6 CIM_AllocatedFromStoragePoolViewView (VolumeView to PoolView)
	6.6.7 CIM_BasedOnView (ExtentOnDriveExtent)
	6.6.8 CIM_BasedOnView (VolumeOnExtent)
	6.6.9 CIM_ConcreteComponentView
	6.6.10 CIM_ContainerView
	6.6.11 CIM_DiskDriveView
	6.6.12 CIM_DriveComponentViewView
	6.6.13 CIM_ElementCapabilities (View Capabilities)
	6.6.14 CIM_ElementStatisticalDataView (DiskDriveView)
	6.6.15 CIM_ElementStatisticalDataView (VolumeView)
	6.6.16 CIM_ElementView (DiskDrive)
	6.6.17 CIM_ElementView (StorageSetting)
	6.6.18 CIM_ElementView (Volume)
	6.6.19 CIM_ExtentComponentView
	6.6.20 CIM_HostedStoragePoolView
	6.6.21 CIM_MappingProtocolControllerView
	6.6.22 CIM_MaskingMappingExposedDeviceView
	6.6.23 CIM_MaskingMappingView
	6.6.24 CIM_ProtocolControllerForUnitView
	6.6.25 CIM_ReplicaPairView
	6.6.26 CIM_StoragePoolView
	6.6.27 CIM_SystemDeviceView (DiskDriveViews)
	6.6.28 CIM_SystemDeviceView (MappingProtocolControllerViews)
	6.6.29 CIM_SystemDeviceView (ReplicaPairViews)
	6.6.30 CIM_SystemDeviceView (VolumeViews)
	6.6.31 CIM_ViewCapabilities
	6.6.32 CIM_VolumeView

	7 Block Server Performance Profile
	7.1 Description
	7.1.1 Synopsis
	7.1.2 Overview
	7.1.3 Profile Variations
	7.1.4 Performance Data Rate

	7.2 Implementation
	7.2.1 Performance Additions Overview
	7.2.2 Block Statistics Capabilities
	7.2.3 Performance Additions to base Array Profile
	7.2.4 Performance Additions to base Storage Virtualizer Profile
	7.2.5 Performance Additions to base Volume Management Profile
	7.2.6 Summary of BlockStorageStatisticsData support by Profile
	7.2.7 Server Profile Support for the Block Server Performance Profile
	7.2.8 Default Manifest Collection
	7.2.9 Performance Additions applied to Multiple Computer Systems
	7.2.10 Performance Additions to Backend Ports
	7.2.11 Performance Additions to Extent Composition
	7.2.12 Performance Additions to Disk Drives
	7.2.13 Performance Additions to SCSIArbitraryLogicalUnits (Controller LUNs)
	7.2.14 Performance Additions for Remote Mirrors
	7.2.15 Client Defined Manifest Collections
	7.2.16 Capabilities Support for Block Server Performance Profile

	7.3 Health and Fault Management Considerations
	7.4 Cascading Considerations
	7.5 Methods of the Profile
	7.5.1 Extrinsic Methods of the Profile
	7.5.2 Intrinsic Methods of the Profile
	7.5.3 GetRateStatisticsCollection

	7.6 Client Considerations and Recipes
	7.6.1 Recipes
	7.6.2 Summary of Statistics Support by Element
	7.6.3 Formulas and Calculations
	7.6.4 Block Server Performance Supported Capabilities Patterns
	7.6.5 Correlation of Block Storage Statistics and Fabric Statistics

	7.7 CIM Elements
	7.7.1 Element Overview
	7.7.2 CIM_AssociatedBlockStatisticsManifestCollection (Client defined collection)
	7.7.3 CIM_AssociatedBlockStatisticsManifestCollection (Provider defined collection)
	7.7.4 CIM_BlockStatisticsCapabilities
	7.7.5 CIM_BlockStatisticsManifest (Client Defined)
	7.7.6 CIM_BlockStatisticsManifest (Provider Support)
	7.7.7 CIM_BlockStatisticsManifestCollection (Client Defined)
	7.7.8 CIM_BlockStatisticsManifestCollection (Provider Defined)
	7.7.9 CIM_BlockStatisticsService
	7.7.10 CIM_BlockStorageStatisticalData
	7.7.11 CIM_ElementCapabilities
	7.7.12 CIM_ElementStatisticalData (Back end Port Stats)
	7.7.13 CIM_ElementStatisticalData (Component System Stats)
	7.7.14 CIM_ElementStatisticalData (Disk Stats)
	7.7.15 CIM_ElementStatisticalData (Extent Stats)
	7.7.16 CIM_ElementStatisticalData (Front end Port Stats)
	7.7.17 CIM_ElementStatisticalData (Logical Disk Stats)
	7.7.18 CIM_ElementStatisticalData (Remote Copy Stats)
	7.7.19 CIM_ElementStatisticalData (Top Level System Stats)
	7.7.20 CIM_ElementStatisticalData (Volume Stats)
	7.7.21 CIM_HostedCollection (Client Defined)
	7.7.22 CIM_HostedCollection (Default)
	7.7.23 CIM_HostedCollection (Provider Supplied)
	7.7.24 CIM_HostedService
	7.7.25 CIM_MemberOfCollection (Member of client defined collection)
	7.7.26 CIM_MemberOfCollection (Member of pre-defined collection)
	7.7.27 CIM_MemberOfCollection (Member of statistics collection)
	7.7.28 CIM_StatisticsCollection

	8 CKD Block Services Profile
	8.1 Description
	8.1.1 Synopsis
	8.1.2 Overview
	8.1.3 Implementation

	8.2 Health and Fault Management Consideration
	8.3 Cascading Considerations
	8.4 Methods of the Profile
	8.5 Use case
	8.6 CIM Elements
	8.6.1 Element Overview
	8.6.2 CIM_AllocatedFromStoragePool (Pool from Pool)
	8.6.3 CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)
	8.6.4 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or LogicalDisk)
	8.6.5 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool)
	8.6.6 CIM_ElementCapabilities (ImplementationCapabilities to System)
	8.6.7 CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService)
	8.6.8 CIM_ElementCapabilities (StorageCapabilities to StoragePool)
	8.6.9 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationService)
	8.6.10 CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool)
	8.6.11 CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool)
	8.6.12 CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool)
	8.6.13 CIM_ElementCapabilities (Used to declare the naming capabilities of the StorageVolume or LogicalDisk)
	8.6.14 CIM_ElementSettingData
	8.6.15 CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService)
	8.6.16 CIM_EnabledLogicalElementCapabilities (For StoragePool)
	8.6.17 CIM_HostedService
	8.6.18 CIM_HostedStoragePool
	8.6.19 CIM_ImplementationCapabilities (ImplementationCapabilities)
	8.6.20 CIM_LogicalDisk
	8.6.21 CIM_OwningJobElement
	8.6.22 CIM_StorageConfigurationCapabilities (Concrete)
	8.6.23 CIM_StorageConfigurationCapabilities (Global)
	8.6.24 CIM_StorageConfigurationCapabilities (Primordial)
	8.6.25 CIM_StorageConfigurationService
	8.6.26 CIM_StoragePool (Concrete)
	8.6.27 CIM_StoragePool (Empty)
	8.6.28 CIM_StoragePool (Primordial)
	8.6.29 CIM_StorageSettingWithHints
	8.6.30 CIM_StorageSettingsAssociatedToCapabilities
	8.6.31 CIM_StorageSettingsGeneratedFromCapabilities
	8.6.32 CIM_SystemDevice (System to StorageVolume or LogicalDisk)
	8.6.33 CIM_StorageCapabilities
	8.6.34 CIM_StorageSetting
	8.6.35 CIM_StorageVolume

	9 Copy Services Profile
	9.1 Description
	9.1.1 Synopsis
	9.1.2 Overview
	9.1.3 Copy Services Discovery
	9.1.4 Copy Services Capabilities
	9.1.5 Replication modeling
	9.1.6 Associations
	9.1.7 Durable Names and Correlatable IDs of the Profile
	9.1.8 Accessibility to Created Elements
	9.1.9 Completion of Long Operations
	9.1.10 State Management For Associated Replicas
	9.1.11 Reporting Time of Synchronization
	9.1.12 State Transition Rules
	9.1.13 State Transitions
	9.1.14 Accessibility to Associations and Elements
	9.1.15 Host Access Restrictions
	9.1.16 Settings, Specialized Elements and Pools for Replicas
	9.1.17 Backward Compatibility
	9.1.18 Mutually Exclusive Capabilities
	9.1.19 Deleting the Target Elements
	9.1.20 Using StorageSettings for Replicas
	9.1.21 Finding and Creating Target Elements
	9.1.22 Using StoragePools for Replicas
	9.1.23 Thinly Provisioned Elements
	9.1.24 Indication Events

	9.2 Health and Fault Management Considerations
	9.2.1 Health Indications
	9.2.2 Replication Error Messages

	9.3 Cascading Considerations
	9.4 Supported Profiles and Packages
	9.5 Methods of the Profile
	9.5.1 Intrinsic Methods of the Profile
	9.5.2 Extrinsic Methods of the Profile

	9.6 Client Considerations and Recipes
	9.6.1 Discovery of Copy support and Capabilities
	9.6.2 Creating and Managing Replicas
	9.6.3 Using StorageSetting for Replicas
	9.6.4 Finding and Creating Target Elements
	9.6.5 Creating and Managing Pools for Delta Replicas
	9.6.6 Creating and Managing Mirrors
	9.6.7 Creating a Clone and Redirected Restore Operations
	9.6.8 Creating and Managing Snapshots
	9.6.9 Managing Background Copy
	9.6.10 Recipes

	9.7 CIM Elements
	9.7.1 Overview
	9.7.2 CIM_ElementCapabilities (Associates ReplicationServiceCapabilities and ReplicationService)
	9.7.3 CIM_ElementCapabilities (Associates StorageReplicationCapabilities and StorageConfigurationService)
	9.7.4 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationService)
	9.7.5 CIM_ElementCapabilities (StorageConfigurationCapabilities to StoragePool)
	9.7.6 CIM_HostedService (Replication Service)
	9.7.7 CIM_HostedService (Storage Configuration Service)
	9.7.8 CIM_ReplicaPoolForStorage
	9.7.9 CIM_ReplicationService
	9.7.10 CIM_ReplicationServiceCapabilities
	9.7.11 CIM_ReplicationSettingData
	9.7.12 CIM_SettingsDefineState
	9.7.13 CIM_StorageCapabilities
	9.7.14 CIM_StorageConfigurationCapabilities
	9.7.15 CIM_StorageConfigurationService
	9.7.16 CIM_StoragePool
	9.7.17 CIM_StorageReplicationCapabilities
	9.7.18 CIM_StorageSetting
	9.7.19 CIM_StorageSynchronized
	9.7.20 CIM_StorageSynchronized (Between StorageExtent elements)
	9.7.21 CIM_SynchronizationAspect

	10 Disk Drive Lite Profile
	10.1 Synopsis
	10.2 Description
	10.3 Modeling
	10.3.1 Base model
	10.3.2 Associations to external classes
	10.3.3 Active Management
	10.3.4 Diagram of CIM Elements
	10.3.5 Durable Names and Correlatable IDs of the Profile
	10.3.6 Conditional Associations to other profiles
	10.3.7 Optional Associations to other profiles

	10.4 Health and Fault Management Considerations
	10.4.1 Overview
	10.4.2 Disk Drive Dependency

	10.5 Cascading Considerations
	10.6 Methods of this Profile
	10.6.1 Extrinsic Methods on Disk Drives

	10.7 CIM Elements
	10.7.1 Overview
	10.7.2 CIM_ATAPort (Disk Drive Target ATA Port)
	10.7.3 CIM_ATAProtocolEndpoint (Disk Drive target ATA Protocol Endpoint)
	10.7.4 CIM_AssociatedComponentExtent (Pool Component to Primordial Pool)
	10.7.5 CIM_BasedOn (Bottom Level BasedOn)
	10.7.6 CIM_ConcreteComponent (Disk Extent to Primordial Pool)
	10.7.7 CIM_Container
	10.7.8 CIM_DeviceSAPImplementation (ATA)
	10.7.9 CIM_DeviceSAPImplementation (SCSI)
	10.7.10 CIM_DiskDrive
	10.7.11 CIM_ElementSoftwareIdentity
	10.7.12 CIM_FCPort (Disk Drive Target FC Port)
	10.7.13 CIM_MediaPresent
	10.7.14 CIM_PhysicalPackage
	10.7.15 CIM_ProtocolControllerAccessesUnit
	10.7.16 CIM_Realizes
	10.7.17 CIM_ResourcePoolDriveDependency
	10.7.18 CIM_SAPAvailableForElement
	10.7.19 CIM_SASPort (Disk Drive Target SAS Port)
	10.7.20 CIM_SCSIInitiatorTargetLogicalUnitPath
	10.7.21 CIM_SCSIProtocolEndpoint (Disk Drive target SCSI Protocol Endpoint)
	10.7.22 CIM_SoftwareIdentity
	10.7.23 CIM_StorageElementDriveDependency
	10.7.24 CIM_StorageExtent (Primordial Disk Drive Extent)
	10.7.25 CIM_SystemDevice (Disk Drive System)
	10.7.26 CIM_SystemDevice (Port System)
	10.7.27 CIM_SystemDevice (Storage Extent System)

	11 Disk Sparing Profile
	11.1 Description
	11.1.1 Synopsis
	11.1.2 Overview
	11.1.3 Durable Names and Correlatable IDs of the Profile
	11.1.4 Sparing Model
	11.1.5 Modeling Fail Over, Past and Present
	11.1.6 Sparing Configuration and Control

	11.2 Health and Fault Management Considerations
	11.3 Cascading Conjurations
	11.4 Methods of the Profile
	11.4.1 AssignSpares
	11.4.2 UnassignSpares
	11.4.3 GetAvailableSpareExtents
	11.4.4 FailOver
	11.4.5 RebuildStorageExtent
	11.4.6 CheckParityConsistency
	11.4.7 RepairParity
	11.4.8 CheckStorageElement

	11.5 Use Cases
	11.6 CIM Elements
	11.6.1 Overview
	11.6.2 CIM_AssociatedComponentExtent (Spare to Storage Pool)
	11.6.3 CIM_ConcreteDependency (Extent to LogicalDisk)
	11.6.4 CIM_ConcreteDependency (Extent to Pool)
	11.6.5 CIM_ConcreteDependency (Extent to StorageVolume)
	11.6.6 CIM_ElementCapabilities
	11.6.7 CIM_HostedCollection (ComputerSystem to FailoverStorageExtentsCollection)
	11.6.8 CIM_HostedCollection (ComputerSystem to RedundancySet)
	11.6.9 CIM_HostedService (ComputerSystem to SpareConfigurationService)
	11.6.10 CIM_IsSpare
	11.6.11 CIM_LogicalDisk
	11.6.12 CIM_MemberOfCollection
	11.6.13 CIM_Spared
	11.6.14 CIM_StorageExtent (Spare)
	11.6.15 CIM_StoragePool
	11.6.16 CIM_StorageRedundancySet
	11.6.17 CIM_StorageVolume
	11.6.18 CIM_FailoverStorageExtentsCollection
	11.6.19 CIM_SpareConfigurationCapabilities
	11.6.20 CIM_SpareConfigurationService

	12 Erasure Profile
	12.1 Description
	12.1.1 Synopsis
	12.1.2 Overview
	12.1.3 Existing Erasure standards

	12.2 Health and Fault Management Considerations
	12.3 Cascading Considerations
	12.4 Methods of the Profile
	12.5 Use Cases
	12.6 CIM Elements
	12.6.1 Overview
	12.6.2 CIM_AllocatedFromStoragePool
	12.6.3 CIM_LogicalDisk
	12.6.4 CIM_StoragePool
	12.6.5 CIM_StorageVolume
	12.6.6 CIM_StorageErasureCapabilities
	12.6.7 CIM_StorageErasureService
	12.6.8 CIM_StorageErasureSetting

	13 Extent Composition Profile
	13.1 Description
	13.1.1 Synopsis
	13.1.2 Overview
	13.1.3 Decomposition
	13.1.4 Composition
	13.1.5 Model Element Summary
	13.1.6 Relation to other Packages and Profiles
	13.1.7 Remaining Extents
	13.1.8 Scenarios

	13.2 Health and Fault Management Considerations
	13.3 Cascading Considerations
	13.4 Methods of the Profile
	13.5 Use Cases
	13.5.1 Find the Primordial Extents used by a Storage Volume or Logical Disk

	13.6 CIM Elements
	13.6.1 Overview
	13.6.2 CIM_AssociatedComponentExtent (Pool Component to Concrete Pool)
	13.6.3 CIM_AssociatedRemainingExtent (Pool to its remaining extents)
	13.6.4 CIM_BasedOn (Mid level BasedOn)
	13.6.5 CIM_BasedOn (Top level BasedOn)
	13.6.6 CIM_CompositeExtent (Composite Intermediate)
	13.6.7 CIM_CompositeExtent (Composite Pool Component)
	13.6.8 CIM_CompositeExtentBasedOn
	13.6.9 CIM_ConcreteComponent (Pool Component to Concrete Pool)
	13.6.10 CIM_ConcreteComponent (Remaining Extent to Pool)
	13.6.11 CIM_StorageExtent (Intermediate)
	13.6.12 CIM_StorageExtent (Pool Component)
	13.6.13 CIM_StorageExtent (Remaining)
	13.6.14 CIM_SystemDevice (Composite Extent System)
	13.6.15 CIM_SystemDevice (Storage Extent System)

	14 Masking and Mapping Profile
	14.1 Description
	14.1.1 Synopsis
	14.1.2 Overview
	14.1.3 Views and Paths

	14.2 Health and Fault Management Considerations
	14.3 Cascading Considerations
	14.4 Methods of the Profile
	14.4.1 ExposePaths
	14.4.2 ExposePathsWithNameAndHostType
	14.4.3 HidePaths
	14.4.4 ExposeDefaultLUs
	14.4.5 HideDefaultLUs
	14.4.6 CreateStorageHardwareID
	14.4.7 DeleteStorageHardwareID
	14.4.8 CreateHardwareIDCollection
	14.4.9 AddHardwareIDsToCollection
	14.4.10 DeleteProtocolController
	14.4.11 GetElementNameCapabilities

	14.5 Use Cases
	14.6 CIM Elements
	14.6.1 Overview
	14.6.2 CIM_AssociatedPrivilege
	14.6.3 CIM_AuthorizedPrivilege
	14.6.4 CIM_AuthorizedSubject
	14.6.5 CIM_AuthorizedTarget
	14.6.6 CIM_ConcreteDependency (Associates ControllerConfiguirationService and ProtocolController)
	14.6.7 CIM_ConcreteDependency (Associates PrivilegeManagementService and AuthorizedPrivilege)
	14.6.8 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and StorageHardwareID)
	14.6.9 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and SystemSpecificCollection)
	14.6.10 CIM_ControllerConfigurationService
	14.6.11 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ControllerConfigurationService)
	14.6.12 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ProtocolController)
	14.6.13 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareID)
	14.6.14 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareIDManagementService)
	14.6.15 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to SystemSpecificCollection)
	14.6.16 CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities)
	14.6.17 CIM_ElementSettingData (Associates ComputerSystem and StorageClientSettingData)
	14.6.18 CIM_ElementSettingData (Associates Port and StorageClientSettingData)
	14.6.19 CIM_ElementSettingData (Associates ProtocolController and StorageClientSettingData)
	14.6.20 CIM_ElementSettingData (Associates StorageHardwareID and StorageClientSettingData)
	14.6.21 CIM_EnabledLogicalElementCapabilities
	14.6.22 CIM_HostedCollection
	14.6.23 CIM_HostedService (Associates ComputerSystem and ControllerConfigurationService)
	14.6.24 CIM_HostedService (Associates ComputerSystem and PrivilegeManagementService)
	14.6.25 CIM_HostedService (Associates ComputerSystem and StorageHardwareIDManagementService)
	14.6.26 CIM_MemberOfCollection
	14.6.27 CIM_PrivilegeManagementService
	14.6.28 CIM_ProtocolController
	14.6.29 CIM_ProtocolControllerForUnit
	14.6.30 CIM_ProtocolControllerMaskingCapabilities
	14.6.31 CIM_SAPAvailableForElement
	14.6.32 CIM_StorageClientSettingData
	14.6.33 CIM_StorageHardwareID
	14.6.34 CIM_StorageHardwareIDManagementService
	14.6.35 CIM_SystemSpecificCollection
	14.6.36 CIM_SystemDevice (System to ProtocolController)

	15 Storage Server Asymmetry Profile
	15.1 Description
	15.1.1 Synopsis
	15.1.2 Overview
	15.1.3 Relationship to Multiple Computer System Profile
	15.1.4 Relationship to Masking and Mapping Profile
	15.1.5 Relationship to T10
	15.1.6 Behavior, Characteristics, and Capabilities
	15.1.7 Model

	15.2 Health and Fault Management Consideration
	15.3 Cascading Considerations
	15.4 Methods of the Profile
	15.4.1 Assign Storage Resource Affinity

	15.5 Use Cases
	15.6 CIM Elements
	15.6.1 Overview
	15.6.2 CIM_AsymmetricAccessibility
	15.6.3 CIM_ElementCapabilities (To Top-level ComputerSystem)
	15.6.4 CIM_HostedCollection (Top-Level System to Load Group)
	15.6.5 CIM_HostedCollection (Top-Level System to Port Group)
	15.6.6 CIM_MemberOfCollection (SATA Target Port Group)
	15.6.7 CIM_MemberOfCollection (SB Target Port Group)
	15.6.8 CIM_MemberOfCollection (SCSI Target Port Group)
	15.6.9 CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage Pools)
	15.6.10 CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage Volumes)
	15.6.11 CIM_MemberOfCollection (iSCSI Target Port Group)
	15.6.12 CIM_StorageConfigurationService
	15.6.13 CIM_StorageProcessorAffinity (StorageResourceLoadGroup)
	15.6.14 CIM_StorageProcessorAffinity (Target Port Group)
	15.6.15 CIM_StorageResourceLoadGroup (Load Groups)
	15.6.16 CIM_StorageServerAsymmetryCapabilities
	15.6.17 CIM_TargetPortGroup (Port Groups)

	16 Storage Virtualizer Profile
	16.1 Synopsis
	16.2 Description
	16.3 Instance Diagrams
	16.3.1 Overview
	16.3.2 Primordial StorageExtent Dependency
	16.3.3 Storage Virtualization System
	16.3.4 Disk Drive Lite
	16.3.5 Controller Software
	16.3.6 Device Management Access
	16.3.7 Physical Modeling
	16.3.8 Services
	16.3.9 Ports
	16.3.10 Model Element Summary

	16.4 Health and Fault Management
	16.5 Storage Virtualizer Support for Cascading
	16.6 Methods of the Profile
	16.7 Use Cases
	16.7.1 Discover the Capacity Optimization Support in an Storage Virtualizer

	16.8 CIM Elements
	16.8.1 CIM_AssociatedComponentExtent (Pool Component to Primordial Pool)
	16.8.2 CIM_ComputerSystem (Shadow)
	16.8.3 CIM_ComputerSystem (Top Level System)
	16.8.4 CIM_ConcreteComponent (Imported Extents to Primordial Pool)
	16.8.5 CIM_Dependency (Systems)
	16.8.6 CIM_ElementCapabilities (ImplementationCapabilities to System)
	16.8.7 CIM_HostedCollection (Allocated Resources)
	16.8.8 CIM_HostedCollection (Remote Resources)
	16.8.9 CIM_ImplementationCapabilities (ImplementationCapabilities)
	16.8.10 CIM_LogicalIdentity (Shadow Storage Volume)
	16.8.11 CIM_MemberOfCollection (Allocated Resources)
	16.8.12 CIM_MemberOfCollection (Remote Resources)
	16.8.13 CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View)
	16.8.14 CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View)
	16.8.15 CIM_RemoteServiceAccessPoint (Shadow)
	16.8.16 CIM_ResourcePoolExtentDependency (PoolExtentDepedency)
	16.8.17 CIM_SAPAvailableForElement
	16.8.18 CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)
	16.8.19 CIM_SCSIProtocolController (All LUNs View)
	16.8.20 CIM_StorageElementExtentDependency (ElementExtentDependency)
	16.8.21 CIM_StorageExtent (Imported Extents)
	16.8.22 CIM_StorageVolume (Shadow)
	16.8.23 CIM_SystemDevice (Shadow StorageVolumes)
	16.8.24 CIM_SystemDevice (System to SCSIArbitraryLogicalUnit)
	16.8.25 CIM_SystemDevice (System to SCSIProtocolController)
	16.8.26 CIM_SystemDevice (System to StorageExtent)
	16.8.27 CIM_AllocatedResources
	16.8.28 CIM_RemoteResources

	17 Volume Composition Profile
	17.1 Description
	17.1.1 Synopsis
	17.1.2 Overview
	17.1.3 Relationship to Block Services Package
	17.1.4 Relationship to Extent Composition
	17.1.5 Model
	17.1.6 Quality of Service (QoS) Considerations
	17.1.7 Composite Stripe Length and Depth
	17.1.8 Examples

	17.2 Striped and Concatenated Composite Volumes
	17.3 Health and Fault Management Consideration
	17.4 Cascading Considerations
	17.5 Methods of the Profile
	17.5.1 Overview
	17.5.2 CreateOrModifyCompositeElement
	17.5.3 CreateOrModifyCompositeElementFromStoragePool
	17.5.4 RemoveElementsFromElement
	17.5.5 ReturnElementToElements
	17.5.6 GetAvailableElements
	17.5.7 GetCompositeElements
	17.5.8 GetSupportedStripeLengths
	17.5.9 GetSupportedStripeLengthRange
	17.5.10 GetSupportedStripeDepths
	17.5.11 GetSupportedStripeDepthRange

	17.6 Use Cases
	17.6.1 Indications
	17.6.2 Recipes

	17.7 CIM Elements
	17.7.1 Overview
	17.7.2 CIM_CompositeExtent
	17.7.3 CIM_CompositeExtentBasedOn (Volume Composition)
	17.7.4 CIM_ElementCapabilities
	17.7.5 CIM_ElementSettingData
	17.7.6 CIM_HostedService (Associates ComputerSystem and the ElementCompositionService)
	17.7.7 CIM_StorageElementCompositionCapabilities
	17.7.8 CIM_StorageElementCompositionService
	17.7.9 CIM_StorageSetting
	17.7.10 CIM_StorageVolume

	18 Volume Management Profile
	19 Storage Element Protection Profile
	19.1 Description
	19.1.1 Synopsis
	19.1.2 Overview
	19.1.3 Use Cases
	19.1.4 Functionality
	19.1.5 Class Model
	19.1.6 Access permission
	19.1.7 Retention period
	19.1.8 Protection State Transition
	19.1.9 Sample Usage Scenario
	19.1.10 Overview

	19.2 Health and Fault Management Consideration
	19.3 Cascading Considerations
	19.4 Methods of the Profile
	19.4.1 Protect
	19.4.2 ProtectWithEndoints

	19.5 Client Considerations and Recipes
	19.6 CIM Elements
	19.6.1 CIM_ElementCapabilities
	19.6.2 CIM_HostedService
	19.6.3 CIM_ElementStorageProtectionSettingData
	19.6.4 CIM_StorageProtectionCapabilities
	19.6.5 CIM_StorageProtectionService
	19.6.6 CIM_StorageProtectionSetting

	20 Replication Services Profile
	20.1 Description
	20.1.1 Synopsis
	20.1.2 Overview
	20.1.3 Key Features
	20.1.4 Replication Services and Copy Services Profiles
	20.1.5 Key Components
	20.1.6 Replication Services Discovery
	20.1.7 Replication Services Capabilities
	20.1.8 SyncTypes
	20.1.9 Modes
	20.1.10 Locality of Target Elements
	20.1.11 Remote Replication
	20.1.12 Undiscovered Resources
	20.1.13 Multi-hop Replication
	20.1.14 Groups
	20.1.15 Associations
	20.1.16 Operations on List of Synchronizations
	20.1.17 State Management For Associated Replicas
	20.1.18 Unsynchronized and Skewed CopyStates
	20.1.19 Accessibility to Associations and Elements
	20.1.20 Host Access Restrictions
	20.1.21 Read Only Elements
	20.1.22 Deleting the Target Elements
	20.1.23 Completion of Long Operations
	20.1.24 Managing Background Copy
	20.1.25 Managing CopyPriority
	20.1.26 Using StorageSettings for Replicas
	20.1.27 Finding and Creating Target Elements
	20.1.28 Using StoragePools (e.g. ResourcePools) for Replicas
	20.1.29 Provider Configurations for Remote Replication
	20.1.30 Thinly Provisioned Elements
	20.1.31 Data Compressed Elements
	20.1.32 Indications

	20.2 Health and Fault Management Consideration
	20.3 Cascading Considerations
	20.3.1 Overview
	20.3.2 ServiceAccessPoint and SharedSecret Instances
	20.3.3 Cascading Support

	20.4 Mapping of Copy Services and Replication Services Properties and Methods
	20.5 Methods of the Profile
	20.5.1 Overview
	20.5.2 Group Management Methods
	20.5.3 Replication Management Methods
	20.5.4 Capabilities Methods
	20.5.5 Replication Services and Copy Services Properties and Methods Mapping

	20.6 Use Cases
	20.6.1 Creating and Managing Replicas

	20.7 CIM Elements
	20.7.1 Overview
	20.7.2 CIM_AllocatedResources
	20.7.3 CIM_ElementCapabilities
	20.7.4 CIM_GroupSynchronized
	20.7.5 CIM_HostedAccessPoint (ForProtocolEndpoint)
	20.7.6 CIM_HostedAccessPoint (ForRemoteServiceAccessPoint)
	20.7.7 CIM_HostedCollection (Allocated Resources)
	20.7.8 CIM_HostedCollection (Between ComputerSystem and RemoteReplicationCollection)
	20.7.9 CIM_HostedCollection (Between ComputerSystem and ReplicationGroup)
	20.7.10 CIM_HostedCollection (Remote Resources)
	20.7.11 CIM_HostedService
	20.7.12 CIM_MemberOfCollection (Allocated Resources)
	20.7.13 CIM_MemberOfCollection (ProtocolEndpoints to RemoteReplicationCollection)
	20.7.14 CIM_MemberOfCollection (Remote Resources)
	20.7.15 CIM_MemberOfCollection (Storage elements to RemoteReplicationCollection)
	20.7.16 CIM_OrderedMemberOfCollection
	20.7.17 CIM_ProtocolEndpoint
	20.7.18 CIM_RemoteReplicationCollection
	20.7.19 CIM_RemoteResources
	20.7.20 CIM_RemoteServiceAccessPoint
	20.7.21 CIM_ReplicaPoolForStorage
	20.7.22 CIM_ReplicationEntity
	20.7.23 CIM_ReplicationGroup
	20.7.24 CIM_ReplicationService
	20.7.25 CIM_ReplicationServiceCapabilities
	20.7.26 CIM_ReplicationSettingData
	20.7.27 CIM_SAPAvailableForFileShare
	20.7.28 CIM_ServiceAffectsElement (Between ReplicationService and RemoteReplicationCollection)
	20.7.29 CIM_ServiceAffectsElement (Between ReplicationService and ReplicationEntity)
	20.7.30 CIM_ServiceAffectsElement (Between ReplicationService and ReplicationGroup)
	20.7.31 CIM_SettingsAffectSettings (Between SynchronizationAspect and child SynchronizationAspects)
	20.7.32 CIM_SettingsDefineState (Between ReplicationGroup and SynchronizationAspect)
	20.7.33 CIM_SettingsDefineState (Between storage object and SynchronizationAspect)
	20.7.34 CIM_SharedSecret
	20.7.35 CIM_StorageSynchronized
	20.7.36 CIM_SynchronizationAspect

	21 Pools from Volumes Profile
	21.1 Description
	21.1.1 Synopsis
	21.1.2 Overview
	21.1.3 Terminology
	21.1.4 Relationship to Block Services Package
	21.1.5 Relationship to Extent Composition
	21.1.6 Class Model
	21.1.7 Model Elements
	21.1.8 Example

	21.2 Block Services Enhancements
	21.2.1 StoragePool Manipulation Methods
	21.2.2 Declaring Storage Configuration Options
	21.2.3 The Usage Property

	21.3 Health and Fault Management Considerations
	21.4 Cascading Considerations
	21.5 Methods of the Profile
	21.5.1 New Methods
	21.5.2 CreateOrModifyStoragePool
	21.5.3 DeleteStoragePool
	21.5.4 Storage Element Modification

	21.6 Use Cases
	21.7 CIM Elements
	21.7.1 Overview
	21.7.2 CIM_AllocatedFromStoragePool (Volume from Pool)
	21.7.3 CIM_ElementCapabilities
	21.7.4 CIM_StorageCapabilities
	21.7.5 CIM_StorageVolume
	21.7.6 CIM_SystemDevice
	21.7.7 CIM_StorageConfigurationCapabilities
	21.7.8 CIM_StoragePool
	21.7.9 CIM_StorageSetting

	22 Group Masking and Mapping Profile
	22.1 Description
	22.1.1 Synopsis
	22.1.2 Overview
	22.1.3 Model Elements
	22.1.4 Device Numbers
	22.1.5 Group Masking and Mapping Capabilities

	22.2 Health and Fault Management Consideration
	22.3 Cascading Considerations
	22.4 Methods of the Profile
	22.4.1 Extrinsic and Intrinsic Methods
	22.4.2 CreateGroup
	22.4.3 DeleteGroup
	22.4.4 AddMembers
	22.4.5 RemoveMembers
	22.4.6 MoveMembers
	22.4.7 CreateOrModifyMaskingGroup
	22.4.8 CreateMaskingView
	22.4.9 DeleteMaskingView
	22.4.10 ModifyMaskingView

	22.5 Use Cases
	22.5.1 Using Groups in Masking and Mapping

	22.6 CIM Elements
	22.6.1 Overview
	22.6.2 CIM_AssociatedDeviceMaskingGroup
	22.6.3 CIM_AssociatedInitiatorMaskingGroup
	22.6.4 CIM_AssociatedTargetMaskingGroup
	22.6.5 CIM_AuthorizedPrivilege
	22.6.6 CIM_AuthorizedSubject
	22.6.7 CIM_AuthorizedTarget
	22.6.8 CIM_ConcreteDependency (Associates ControllerConfiguirationService and ProtocolController)
	22.6.9 CIM_ConcreteDependency (Associates PrivilegeManagementService and AuthorizedPrivilege)
	22.6.10 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and StorageHardwareID)
	22.6.11 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and SystemSpecificCollection)
	22.6.12 CIM_DeviceMaskingGroup
	22.6.13 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ControllerConfigurationService)
	22.6.14 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ProtocolController)
	22.6.15 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareID)
	22.6.16 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareIDManagementService)
	22.6.17 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to SystemSpecificCollection)
	22.6.18 CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities)
	22.6.19 CIM_ElementSettingData (Associates ComputerSystem and StorageClientSettingData)
	22.6.20 CIM_ElementSettingData (Associates Port and StorageClientSettingData)
	22.6.21 CIM_ElementSettingData (Associates ProtocolController and StorageClientSettingData)
	22.6.22 CIM_ElementSettingData (Associates StorageHardwareID and StorageClientSettingData)
	22.6.23 CIM_EnabledLogicalElementCapabilities
	22.6.24 CIM_GroupMaskingMappingCapabilities
	22.6.25 CIM_GroupMaskingMappingService
	22.6.26 CIM_HostedCollection
	22.6.27 CIM_HostedService (Associates ComputerSystem and ControllerConfigurationService)
	22.6.28 CIM_HostedService (Associates ComputerSystem and PrivilegeManagementService)
	22.6.29 CIM_HostedService (Associates ComputerSystem and StorageHardwareIDManagementService)
	22.6.30 CIM_InitiatorMaskingGroup
	22.6.31 CIM_MemberOfCollection
	22.6.32 CIM_PrivilegeManagementService
	22.6.33 CIM_ProtocolController
	22.6.34 CIM_ProtocolControllerForUnit
	22.6.35 CIM_SAPAvailableForElement
	22.6.36 CIM_ServiceAffectsElement (Between GroupMaskingMappingService and MaskingGroup)
	22.6.37 CIM_StorageClientSettingData
	22.6.38 CIM_StorageHardwareID
	22.6.39 CIM_StorageHardwareIDManagementService
	22.6.40 CIM_SystemSpecificCollection
	22.6.41 CIM_TargetMaskingGroup
	22.6.42 CIM_AssociatedPrivilege
	22.6.43 CIM_SystemDevice (System to ProtocolController)

	23 Storage Relocation Profile
	23.1 Description
	23.1.1 Synopsis
	23.1.2 Relocation Types
	23.1.3 Model
	23.1.4 Implementation
	23.1.5 Indications

	23.2 Health and Fault Management Consideration
	23.3 Cascading Considerations
	23.4 Mapping & Masking Considerations
	23.5 Methods of the Profile
	23.5.1 Status Codes
	23.5.2 RelocateStorageVolumesToStoragePool
	23.5.3 RelocateStoragePoolsToStoragePool
	23.5.4 RelocateStorageVolumeToStorageExtents
	23.5.5 RelocateStoragePoolToStorageExtents
	23.5.6 RelocateLogicalDiskToStorageExtents
	23.5.7 GetAvailableTargetRelocationExtents

	23.6 Use Cases
	23.6.1 Relocate StorageVolume to StoragePool for data migration
	23.6.2 Relocate StoragePool for merge
	23.6.3 Relocate StorageVolume to new StorageExtent group for hotspot tuning

	23.7 CIM Elements
	23.7.1 Overview
	23.7.2 CIM_AffectedJobElement (LogicalDisk to ConcreteJob)
	23.7.3 CIM_AffectedJobElement (StorageExtent to ConcreteJob)
	23.7.4 CIM_AffectedJobElement (StoragePool to ConcreteJob)
	23.7.5 CIM_AffectedJobElement (StorageVolume to ConcreteJob)
	23.7.6 CIM_ElementCapabilities (StorageConfigurationCapabilities to StoragePool)
	23.7.7 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageRelocationService)
	23.7.8 CIM_HostedService (StorageRelocationService to ComputerSystem)
	23.7.9 CIM_LogicalDisk
	23.7.10 CIM_OwningJobElement (StorageRelocationService to ConcreteJob)
	23.7.11 CIM_StorageConfigurationCapabilities (Concrete)
	23.7.12 CIM_StorageConfigurationCapabilities (Global)
	23.7.13 CIM_StorageConfigurationCapabilities (Primordial)
	23.7.14 CIM_StorageExtent (Relocatable)
	23.7.15 CIM_StoragePool (Concrete)
	23.7.16 CIM_StoragePool (Primordial)
	23.7.17 CIM_StorageRelocationService
	23.7.18 CIM_StorageVolume

	24 Thin Provisioning Profile
	24.1 Description
	24.1.1 Synopsis
	24.1.2 Overview
	24.1.3 Background
	24.1.4 Model

	24.2 Health and Fault Management Consideration
	24.3 Cascading Considerations
	24.4 Methods of the Profile
	24.4.1 Overview
	24.4.2 StoragePool GetSupportedSizes() and GetSupportedSizeRanges()
	24.4.3 StorageSetting CreateSetting
	24.4.4 StorageConfigurationService CreateOrModifyStoragePool()
	24.4.5 StorageConfigurationService CreateOrModifyElementFromElements()
	24.4.6 StorageConfigurationService CreateOrModifyElementFromStoragePool()

	24.5 Use Cases
	24.5.1 Create a Pool from a Parent Pool
	24.5.2 Create a Pool from Extents
	24.5.3 Creating a Thinly Provisioned Volume
	24.5.4 Capacity Properties for Fully-provisioned RAID1 Volume
	24.5.5 Capacity Properties for Thin Provisioning

	24.6 CIM Elements
	24.6.1 Overview
	24.6.2 CIM_AllocatedFromStoragePool (Pool from Pool)
	24.6.3 CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)
	24.6.4 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or LogicalDisk)
	24.6.5 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool)
	24.6.6 CIM_ElementCapabilities (ImplementationCapabilities to System)
	24.6.7 CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService)
	24.6.8 CIM_ElementCapabilities (StorageCapabilities to StoragePool)
	24.6.9 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationService)
	24.6.10 CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool)
	24.6.11 CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool)
	24.6.12 CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool)
	24.6.13 CIM_ElementCapabilities (Used to declare the naming capabilities of the StorageVolume or LogicalDisk)
	24.6.14 CIM_ElementSettingData
	24.6.15 CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService)
	24.6.16 CIM_EnabledLogicalElementCapabilities (For StoragePool)
	24.6.17 CIM_HostedService
	24.6.18 CIM_HostedStoragePool
	24.6.19 CIM_ImplementationCapabilities (ImplementationCapabilities)
	24.6.20 CIM_LogicalDisk
	24.6.21 CIM_OwningJobElement
	24.6.22 CIM_StorageCapabilities
	24.6.23 CIM_StorageConfigurationCapabilities (Concrete)
	24.6.24 CIM_StorageConfigurationCapabilities (Global)
	24.6.25 CIM_StorageConfigurationCapabilities (Primordial)
	24.6.26 CIM_StorageConfigurationService
	24.6.27 CIM_StoragePool (Concrete)
	24.6.28 CIM_StoragePool (Empty)
	24.6.29 CIM_StoragePool (Primordial)
	24.6.30 CIM_StorageSetting
	24.6.31 CIM_StorageSettingWithHints
	24.6.32 CIM_StorageSettingsAssociatedToCapabilities
	24.6.33 CIM_StorageSettingsGeneratedFromCapabilities
	24.6.34 CIM_StorageVolume
	24.6.35 CIM_SystemDevice (System to StorageVolume or LogicalDisk)

	25 Automated Storage Tiering Profile
	25.1 Description
	25.1.1 Synopsis
	25.1.2 Overview
	25.1.3 Key Components
	25.1.4 Automated Storage Tiering Discovery
	25.1.5 Storage Tiers
	25.1.6 StorageTier and StoragePool
	25.1.7 TierDomain
	25.1.8 Support for Sub-LUN tiering
	25.1.9 Storage Tiering Capabilities

	25.2 Methods of the Profile
	25.2.1 Status Codes
	25.2.2 CreateStorageTier
	25.2.3 DeleteStorageTier
	25.2.4 AddToStorageTier
	25.2.5 RemoveFromStorageTier
	25.2.6 CreateTierDomain
	25.2.7 DeleteTierDomain
	25.2.8 ModifyStorageTierDomainAssociation
	25.2.9 GetStorageTierCandidateObjects
	25.2.10 RequestDataMovementStateChange

	25.3 Client Considerations and Recipes
	25.3.1 Recipes
	25.3.2 Automated Storage Tiering
	25.3.3 Creating StorageVolumes with Storage Tiering

	25.4 CIM Elements
	25.4.1 Overview
	25.4.2 CIM_AdvancedStorageSetting
	25.4.3 CIM_AssociatedElementTier
	25.4.4 CIM_AssociatedResourcePool
	25.4.5 CIM_ConcreteDependency (TierDomain to StorageTier)
	25.4.6 CIM_ElementCapabilities
	25.4.7 CIM_HostedService
	25.4.8 CIM_MemberOfCollection (Identifies StorageExtents comprising a tier)
	25.4.9 CIM_MemberOfCollection (Identifies StoragePools comprising a tier)
	25.4.10 CIM_MemberOfCollection (Identifies StorageVolumes comprising a tier)
	25.4.11 CIM_MemberOfCollection (Identifies primordial StorageExtents comprising a tier)
	25.4.12 CIM_ServiceAffectsElement (Between TierService and StorageTier)
	25.4.13 CIM_ServiceAffectsElement (Between TierService and TierDomain)
	25.4.14 CIM_SettingsDefineCapabilities (Between StorageTierCapabilities and TierSettingData)
	25.4.15 CIM_SettingsDefineCapabilities (Between TierServiceCapabilities and TierSettingData)
	25.4.16 CIM_StorageTier
	25.4.17 CIM_StorageTierCapabilities
	25.4.18 CIM_StorageVolume (Constituent)
	25.4.19 CIM_StorageVolume (Regular)
	25.4.20 CIM_SystemComponent (TierDomain to ComputerSystem)
	25.4.21 CIM_TierDomain
	25.4.22 CIM_TierService
	25.4.23 CIM_TierServiceCapabilities
	25.4.24 CIM_TierSettingData

	26 Automated Storage Tiering Policy Profile
	26.1 Synopsis
	26.2 Description
	26.3 Policies
	26.4 Key Components
	26.5 Implementation
	26.5.1 Automated Storage Tiering Policy Discovery
	26.5.2 Time Period
	26.5.3 PolicyTimePeriodCondition
	26.5.4 ManagedElements Subject to Tiering
	26.5.5 Tiering Policy Capabilities
	26.5.6 Health and Fault Management Consideration

	26.6 Methods
	26.6.1 Status Codes
	26.6.2 CreateStorageTierPolicyRule
	26.6.3 DeleteStorageTierPolicyRule
	26.6.4 ModifyStorageTierPolicyRule

	26.7 Use Cases
	26.7.1 Overview
	26.7.2 Use Case -- Is Storage Tiering Policy is supported ?

	26.8 CIM Elements
	26.8.1 Overview
	26.8.2 CIM_AdvancedStorageSetting
	26.8.3 CIM_AssociatedElementTier
	26.8.4 CIM_AssociatedResourcePool
	26.8.5 CIM_AssociatedTierPolicy
	26.8.6 CIM_ConcreteDependency (TierDomain to StorageTier)
	26.8.7 CIM_ElementCapabilities
	26.8.8 CIM_ElementSettingData
	26.8.9 CIM_HostedService
	26.8.10 CIM_MemberOfCollection (Identifies StorageExtents comprising a tier)
	26.8.11 CIM_MemberOfCollection (Identifies StoragePools comprising a tier)
	26.8.12 CIM_MemberOfCollection (Identifies StorageVolumes comprising a tier)
	26.8.13 CIM_MemberOfCollection (Identifies primordial StorageExtents comprising a tier)
	26.8.14 CIM_PolicySetValidityPeriod
	26.8.15 CIM_PolicyTimePeriodCondition
	26.8.16 CIM_ServiceAffectsElement (Between TierPolicyService and TierPolicyRule)
	26.8.17 CIM_ServiceAffectsElement (Between TierService and StorageTier)
	26.8.18 CIM_ServiceAffectsElement (Between TierService and TierDomain)
	26.8.19 CIM_SettingsDefineCapabilities (Between StorageTierCapabilities and TierSettingData)
	26.8.20 CIM_SettingsDefineCapabilities (Between TierServiceCapabilities and TierSettingData)
	26.8.21 CIM_StorageTier
	26.8.22 CIM_StorageTierCapabilities
	26.8.23 CIM_StorageVolume (Constituent)
	26.8.24 CIM_StorageVolume (Regular)
	26.8.25 CIM_SystemComponent (TierDomain to ComputerSystem)
	26.8.26 CIM_TierDomain
	26.8.27 CIM_TierPolicyRule
	26.8.28 CIM_TierPolicyService
	26.8.29 CIM_TierPolicyServiceCapabilities
	26.8.30 CIM_TierPolicySetAppliesToElement
	26.8.31 CIM_TierPolicySettingData

	27 Storage Pool Diagnostics Profile
	27.1 Synopsis
	27.2 Description
	27.3 Implementation
	27.3.1 Overview
	27.3.2 Storage Pool Test Information
	27.3.3 CIM_StoragePoolDiagnosticTest
	27.3.4 CIM_StoragePoolDiagnosticCapabilities
	27.3.5 CIM_StoragePoolDiagnosticSettingData
	27.3.6 CIM_DiagnositcSubTestRecord
	27.3.7 CIM_LogToLog
	27.3.8 CIM_DiagnosticLog (Subtest)
	27.3.9 CIM_SummaryDiagnostic
	27.3.10 CIM_ElementDiagnostic
	27.3.11 Storage Pool Diagnostics Profile indications support
	27.3.12 Diagnostics alert indications and standard messages
	27.3.13 Health and Fault Management Considerations

	27.4 Methods
	27.4.1 Overview
	27.4.2 Profile conventions for operations
	27.4.3 StoragePoolDiagnosticCapabilities
	27.4.4 StoragePoolDiagnosticSettingData
	27.4.5 StoragePoolDiagnosticTest
	27.4.6 SummaryDiagnostics
	27.4.7 DiagnosticSubTestRecord
	27.4.8 ElementDiagnostics
	27.4.9 LogToLog

	27.5 Use Cases
	27.5.1 Example OperationalStatus Roll-up
	27.5.2 Discovering Storage Pool Health and Fault Management Support
	27.5.3 Verifying the status of a StoragePool
	27.5.4 Determining why a pool is degraded
	27.5.5 Determining why a pool is in error
	27.5.6 Finding the elements that are impacted by a problem
	27.5.7 Determining corrective actions for a problem

	27.6 CIM Elements
	27.6.1 Overview
	27.6.2 CIM_AvailableDiagnosticService
	27.6.3 CIM_CorrespondingSettingDataRecord (DiagnosticCompletionRecord)
	27.6.4 CIM_CorrespondingSettingDataRecord (DiagnosticServiceRecord)
	27.6.5 CIM_DiagnosticCompletionRecord
	27.6.6 CIM_DiagnosticLog (Diagnostic Log)
	27.6.7 CIM_DiagnosticLog (Subtest)
	27.6.8 CIM_DiagnosticServiceRecord
	27.6.9 CIM_DiagnosticSettingDataRecord
	27.6.10 CIM_DiagnosticSubTestRecord (Subtest Log Entry)
	27.6.11 CIM_ElementCapabilities (Diagnostic Test Capabilities)
	27.6.12 CIM_ElementDiagnostics (Summary Test Results)
	27.6.13 CIM_ElementSettingData (DiagnosticSettingData)
	27.6.14 CIM_ElementSoftwareIdentity
	27.6.15 CIM_HelpService
	27.6.16 CIM_HostedService
	27.6.17 CIM_LogManagesRecord
	27.6.18 CIM_LogToLog (Log to Subtest Log)
	27.6.19 CIM_RecordAppliesToElement
	27.6.20 CIM_ServiceAffectsElement
	27.6.21 CIM_ServiceAvailableToElement
	27.6.22 CIM_ServiceComponent
	27.6.23 CIM_SoftwareIdentity
	27.6.24 CIM_StoragePoolDiagnosticServiceCapabilities
	27.6.25 CIM_StoragePoolDiagnosticSettingData (Client)
	27.6.26 CIM_StoragePoolDiagnosticSettingData (Default)
	27.6.27 CIM_StoragePoolDiagnosticTest (DiagnosticTest)
	27.6.28 CIM_SummaryDiagnostics (Summary Test Results)
	27.6.29 CIM_UseOfLog

	Annex A (informative) SMI-S Information Model
	Annex B (informative) Registry of StorageExtent Definitions
	B.1 ExtentDiscriminator Definitions
	B.2 Association Significance of the Various Extent Definitions
	B.2.1 Scope
	B.2.2 StorageExtent (Intermediate)
	B.2.3 StorageExtent (Pool Component)
	B.2.4 CompositeExtent (Composite Intermediate)
	B.2.5 CompositeExtent (Composite Pool Component)
	B.2.6 StorageExtent (Remaining)
	B.2.7 StorageExtent (Primordial Disk Drive Extent)
	B.2.8 StorageExtent (Imported Extents)
	B.2.9 StorageExtent (Spare)
	B.2.10 StorageVolume (Allocated)
	B.2.11 LogicalDisk (Allocated)
	B.2.12 StorageVolume (Pool Component)
	B.2.13 StorageVolume (Shadow)
	B.2.14 LogicalDisk (Shadow)

	B.3 Example Valid Combinations of Extent Definitions
	B.4 Combinations of Extent Definitions not defined in this Release of the Standard

