
Swordfish Scalable Storage Management Error Handling Guide
Version 1.2.0
ABSTRACT: The Swordfish Scalable Storage Management Error Handling Guide provides a summary of the preferred handling of errors and
error messages in a Swordfish implementation.

Publication of this Working Draft for review and comment has been approved by the Scalable Storage Management Technical Work
Group. This draft represents a ‘best effort’ attempt by the Scalable Storage Management Technical Work Group to reach
preliminary consensus, and it may be updated, replaced, or made obsolete at any time. This document should not be used as
reference material or cited as other than a ‘work in progress.’ Suggestions for revision should be directed to
http://www.snia.org/feedback.

Working Draft
Last Updated 29 May 2020

USAGE
Copyright (c) 2019 - 2020 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their respective owners.

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations and other business entities to
use this document for internal use only (including internal copying, distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced must be reproduced in its entirety with no alteration, and,

2. Any document, printed or electronic, in which material from this document (or any portion hereof) is reproduced must acknowledge the
SNIA copyright on that material, and must credit the SNIA for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, or any portion thereof, or distribute this
document to third parties. All rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by emailing tcmd@snia.org. Please include the
identity of the requesting individual and/or company and a brief description of the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the following license:

BSD 3-Clause Software License

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

DISCLAIMER

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of any kind with regard to this
specification, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The SNIA shall not be
liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Revision History

Table 1: Revision history
Date Revision Notes

29 May 2020 1.2.0 Initial Release

Contact SNIA

SNIA Web Site

Current SNIA practice is to make updates and other information available through the SNIA web site at http://www.snia.org.

Swordfish SSM Error Handling Guide

Swordfish SSM
Error Handling Guide

WORKING DRAFT
Version 1.2.0 Page 2 of 17

FEEDBACK AND INTERPRETATIONS

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. They should be sent via the SNIA
Feedback Portal at http://www.snia.org/feedback/ or by mail to the Storage Networking Industry Association, 4360 ArrowsWest Drive,
Colorado Springs, Colorado 80907, U.S.A.

INTENDED AUDIENCE

This document is intended for use by individuals and companies engaged in storage management.

VERSIONING POLICY

This document is versioned material. Versioned material shall have a three-level revision identifier, comprised of a version number ‘v’, a release
number ‘r’ and an errata number ‘e’. Future publications of this document are subject to specific constraints on the scope of change that is
permissible from one revision to the next and the degree of interoperability and backward compatibility that should be assumed between products
designed to this standard. This versioning policy applies to all SNIA Swordfish versioned materials.

Version Number: Versioned material having version number ‘v’ shall be backwards compatible with all of revisions of that material that have the
same version number ‘v’. There is no assurance of interoperability or backward compatibility between revisions of a versioned material with
different version numbers.

Release Number: Versioned material with a version number ‘v’ and release number ‘r’ shall be backwards compatible with previous revisions of
the material with the same version number, and a lower release number. A minor revision represents a technical change to existing content or an
adjustment to the scope of the versioned material. Each minor revision causes the release number to be increased by one.

Errata Number: Versioned material having version number ‘v’, a release number ‘r’, and an errata number ‘e’ should be backwards compatible
with previous revisions of the material with the same version number and release number (“errata versions”). An errata revision of versioned
material is limited to minor corrections or clarifications of existing versioned material. An errata revision may be backwards incompatible, if the
incompatibility is necessary for correct operation of implementations of the versioned material.

Swordfish SSM Error Handling Guide

Swordfish SSM
Error Handling Guide

WORKING DRAFT
Version 1.2.0 Page 3 of 17

About SNIA
The Storage Networking Industry Association (SNIA) is a non-profit organization made up of member companies spanning information
technology. A globally recognized and trusted authority, SNIA’s mission is to lead the storage industry in developing and promoting vendor-neutral
architectures, standards and educational services that facilitate the efficient management, movement and security of information.

Acknowledgements
The SNIA Scalable Storage Management Technical Work Group, which developed and reviewed this work in progress, would like to recognize
the significant contributions made by the following members:

Table 2: Contributors
Member Representatives

Broadcom Inc. Richelle Ahlvers
Cisco Systems, Inc. Krishnakumar Gowravaram
Hewlett Packard Enterprise Chris Lionetti
NetApp, Inc. Don Deel

Swordfish SSM Error Handling Guide

Swordfish SSM
Error Handling Guide

WORKING DRAFT
Version 1.2.0 Page 4 of 17

1 Introduction
1.1 Audience
This guide is intended to provide a common repository of best practices, common tasks and education for handling error conditions in a Swordfish
implementation.

1.2 Documentation structure
This document assumes that the reader has a solid foundation in restful APIs in general and Swordfish in particular. Based on that understanding,
this document presents a set of error handling scenarios that capture common situations and best practices. They are intended to promote the
complete, correct, and consistent handling of errors and error messaging across Swordfish implementations.

Each error case uses a common template. Table 3 lists each field of the template and its description.

Table 3: Guidelines for the Use Case Template
Name Description

Title A description of the high-level scope of the error
Summary A high-level summary of the error
Example The specific example that will be used to illustrate the error case
Basic Course of
Events A sequence of API requests, including required headers, the body of the request, and the expected reply

Additional Context Clarifying material, and additional detail intended to clarify subtleties of the error case or to highlight additional response
options.

1.3 Base implementation assumptions
This document assumes that some fundamental configuration issues have been properly implemented, and will not need to be addressed in any
detail. In particular, this document assumes:

An appropriate security infrastructure (e.g., TLS 1.2)
A functional Swordfish/Redfish installation, in either a standalone, aggregator, or distributed configuration
Any required login credentials

1.4 Knowledge assumptions
The Swordfish API conforms to the standards defined in the Redfish API. More generally, it is provides a RESTful interface. The reader is
assumed to be familiar with common conventions for RESTful APIs. Those readers who are interested in additional background information are
encouraged to refer to the following sources:

For RESTful APIs: Wikipedia
For HTTP standards: Wikipedia
For Redfish standards: Redfish Specification
For Swordfish standards: Swordfish Specification
For Swordfish API tutorials: Swordfish Tutorials

2 HTTP status codes
2.1 Overview
The HTTP status codes are defined by RFC2616 by W3.org, and are intended to address a broad range of HTTP implementations. Both the
Redfish specification and the Swordfish specification provide information about usage for a subset of HTTP status codes. In addition, the server
can return extended status information as a simple JSON object to further clarify the handling and outcome of a particular API request; guidance
on when to use extended status and error information is also specified in the Redfish and Swordfish Specifications.

While Swordfish clients may receive any of the standard HTTP status codes, the Redfish and Swordfish Specifications include an explicit list that
must be supported. In addition, as this subset of HTTP codes provides a detailed mapping from generic HTTP status codes to domain-specific

Swordfish SSM Error Handling Guide

Swordfish SSM
Error Handling Guide

WORKING DRAFT
Version 1.2.0 Page 6 of 17

http://redfish.dmtf.org
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://redfish.dmtf.org
http://www.snia.org/swordfish
http://www.snia.org/swordfish

situations and probable causes, they should be the most common and as the only required status codes, implementations should target their use
exclusively as much as possible. This enables clients to implement with little to no vendor-specific instrumentation.

2.2 Related information
For more information, see:

The Swordfish Specification
The Redfish Specification
The HTTP Protocol definition of HTTP status codes.

3 Error Types
3.1 General Errors
This group of error cases deals with general error cases.

Errors in this group tend to be simple, non-specific mistakes or general notification that are handled through an error message, and do not reflect
any problem with the storage system or its configuration.

Table 4: General Error Summary
Error Case Common Error Cause(s)
NoOperation The request will neither result in a change in the service, nor a change to a resource.

3.2 Action Errors
This group of error cases deals with errors arising from actions.

Errors in this group tend to indicate invalid parameters, or a resource/parameter/action mismatch.

Table 6: Action Error Summary
Error Message Common Error Cause(s)

ActionNotSupported The requested action is not supported by the selected resource.
ActionParameterDuplicate The body of the request contains duplicate parameter settings.
ActionParameterMissing The requested action requires a parameter that was not supplied.
ActionParameterNotSupported The parameter supplied for the action is not supported on the resource.
ActionParameterUnknown The request contains unknown parameter settings.

ActionParameterValueTypeError A parameter was given the wrong value type, such as when a number is supplied for a parameter that requires a
string.

3.3 JSON Errors
This group of error cases deals with mistakes in formatting the JSON required by an API request.

Errors in this group are simple syntactic mistakes or omissions in the API request, and do not reflect any problem with the storage system or its
configuration.

Table 6: JSON Error Summary
Error Message Common Error Cause(s)
EmptyJSON The request requires a JSON body, and none was included
MalformedJSON The JSON body included in the request is malformed, and could not be parsed

3.4 Property Errors
This group of error cases deals with error in the selection or handling of property values.

Errors in this group tend to arise from property-level constraints in the schema or a particular implementation.

Swordfish SSM Error Handling Guide

Swordfish SSM
Error Handling Guide

WORKING DRAFT
Version 1.2.0 Page 7 of 17

http://snia.org/swordfish
http://redfish.dmtf.org
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Table 7: Property Error Summary
Error Message Common Error Cause(s)

PropertyMissing The request does not include all of the properties required to process it.
PropertyNotWritable The request to change a single property, references a property that is read-only.

PropertyValueNotInList The request uses a valid value type for a given property according to the Swordfish specification, but the implementation
does not support that value.

3.5 Resource Errors
This group of error cases deals with general error cases.

Errors in this group tend to be simple, non-specific mistakes or general notification that are handled through an error message, and do not reflect
any problem with the storage system or its configuration.

Table 8: Resource Error Summary
Error Message Common Error Cause(s)

ResourceAlreadyExists A CREATE the implementation cannot be accepted, because the resource already exists.
ResourceCannotBeDeleted The named resource cannot be deleted.
ResourceInUse The requested change cannot be completed because the resource is in use or in transition.
ResourceNotFound The DELETE request references a resource that cannot be found.

4 Error Cases
4.1 Error Case: ActionNotSupported
Summary: When a client sends a request to a Swordfish implementation and the action supplied with the POST operation is defined within the
schema, but is not supported by the implementation, the ActionNotSupported message shall be returned.

Example: User tries to suspend replication on a Volume.

Basic Course of Events:

1. The user attempts to suspend replication on a Volume.

Request: POST /redfish/v1/StorageServices/ISC/Volumes/1/Volume.SuspendReplication

Headers: No additional headers required.

Body:

HTTP Status Code Returned: 400

Headers: No additional headers required.

Body:

4.2 Error Case: ActionParameterDuplicate
Summary: When a client sends a request to a Swordfish implementation and more than one value is provided for a parameter to the action, the

 {
 "TargetVolume": "/redfish/v1/Storage/1/Volumes/650973452245"
 }

 {
 "error": {
 "code": "Base.1.6.ActionNotSupported",
 "message": "The action SuspendReplication is not supported by the resource."
 }
 }

Swordfish SSM Error Handling Guide

Swordfish SSM
Error Handling Guide

WORKING DRAFT
Version 1.2.0 Page 8 of 17

ActionParameterDuplicate message shall be returned.

Example: User attempts to create a new volume to serve as a target replica for an existing source volume, but provides duplicate or conflicting
values for ReplicaUpdateMode.

Basic Course of Events:

1. Post (as an Action) the request on the source Volume.

This instructs the service to use the identified Volume as the source Volume for the specified replication relationship. For any additional details
required, the service will rely on default values.

Request: POST /redfish/v1/Storage/1/Volumes/1/Volume.CreateReplicaTarget

Headers: No additional headers required.

Body:

HTTP Status Code Returned: 400

Headers: No additional headers required.

Body:

4.3 Error Case: ActionParameterMissing
Summary: When a client sends a request to a Swordfish implementation, but omits one or more of the required parameters for the action, the
ActionParameterMissing message shall be returned.

Example: User attempts to create a new volume to serve as a target replica for an existing source volume, but fails to specify the
TargetStoragePool for the new Volume.

Basic Course of Events:

1. Post (as an Action) the request on the source Volume.

This instructs the service to use the identified Volume as the source Volume for the specified replication relationship. For any additional details
required, the service will rely on default values.

Request: POST /redfish/v1/Storage/1/Volumes/1/Volume.CreateReplicaTarget

Headers: No additional headers required.

Body:

HTTP Status Code Returned: 400

 {
 "VolumeName" : "Mirror of Volume 65",
 "ReplicaUpdateMode" : "Synchronous",
 "ReplicaUpdateMode" : "Asynchronous",
 "TargetStoragePool" : "/redfish/v1/Storage/1/StoragePools/PrimaryPool",
 "ReplicaType" : "Mirror"
 }

 {
 "error": {
 "code": "Base.1.6.ActionParameterDuplicate",
 "message": "The action CreateReplicaTarget was submitted with more than one value for the parameter

ReplicaUpdateMode."
 }
 }

 {
 "ReplicaUpdateMode" : "Synchronous",
 "ReplicaType" : "Mirror"
 }

Swordfish SSM Error Handling Guide

Swordfish SSM
Error Handling Guide

WORKING DRAFT
Version 1.2.0 Page 9 of 17

Headers: No additional headers required.

Body:

4.4 Error Case: ActionParameterNotSupported
Summary: When a client invokes an action against a Resource, but the body of the request include a parameter that is not supported by the
current implementation, the ActionParameterNotSupported message shall be returned.

Example: The user attempts to remove a replica relationship, and includes the DeleteTargetVolume property, which is not supported in the current
implementation.

Basic Course of Events:

1. The user attempts to delete the replication relationship.

Request: POST /redfish/v1/Storage/Volumes/1/Volume.RemoveReplicaRelationship

Headers: No additional headers required.

Body:

HTTP Status Code Returned: 400

Headers: No additional headers required.

Body:

4.5 Error Case: ActionParameterUnknown
Summary: When a client sends a request to a Swordfish implementation, but includes an unknown parameter in the action, the
ActionParameterUnknown message shall be returned.

Example: User attempts to create a new volume to serve as a target replica for an existing source volume, but includes an unknown parameter
(“capacity”) in the body of the request.

Basic Course of Events:

1. Post (as an Action) the request on the source Volume.

Request: POST /redfish/v1/Storage/1/Volumes/1/Volume.CreateReplicaTarget

Headers: No additional headers required.

Body:

 {
 "error": {
 "code": "Base.1.6.ActionParameterMissing",
 "message": "The action CreateReplicaTarget requires the parameter TargetStoragePool to be present in

the request body."
 }
 }

 {
 "TargetVolume" : "/redfish/v1/Storage/1/Volumes/42524988",
 "DeleteTargetVolume" : true
 }

 {
 "error": {
 "code": "Base.1.6.ActionParameterNotSupported",
 "message": "The parameter DeleteTargetVolume for the action RemoveReplicaRelationship is not supported

on the target resource."
 }
 }

Swordfish SSM Error Handling Guide

Swordfish SSM
Error Handling Guide

WORKING DRAFT
Version 1.2.0 Page 10 of 17

HTTP Status Code Returned: 400

Headers: No additional headers required.

Body:

4.6 Error Case: ActionParameterValueTypeError
Summary: When a client sends a request to a Swordfish implementation, but uses a wrong value type for one or more parameter(s), the
ActionParameterValueTypeError message shall be returned.

Example: User attempts to create a new volume to serve as a target replica for an existing source volume, but specifies an integer value for the
VolumeName.

Basic Course of Events:

1. Post (as an Action) the request on the source Volume.

This instructs the service to use the identified Volume as the source Volume for the specified replication relationship. For any additional details
required, the service will rely on default values.

Request: POST /redfish/v1/Storage/1/Volumes/1/Volume.CreateReplicaTarget

Headers: No additional headers required.

Body:

HTTP Status Code Returned: 400

Headers: No additional headers required.

Body:

4.7 Error Case: EmptyJSON
Summary: When a client sends a request to a Swordfish implementation, but fails to include any properties required to process the request when
one or more properties are expected, the EmptyJSON message shall be returned.

Example: User tries to create a Volume, but omits any properties.

 {
 "Capacity": 100002334153,
 "ReplicaUpdateMode" : "Synchronous",
 "TargetStoragePool" : "/redfish/v1/Storage/1/StoragePools/PrimaryPool",
 "ReplicaType" : "Mirror"
 }

 {
 "error": {
 "code": "Base.1.6.ActionParameterUnknown",
 "message": "The action CreateReplicaTarget was submitted with the invalid parameter Capacity."
 }
 }

 {
 "VolumeName": 123456,
 "ReplicaUpdateMode" : "Synchronous",
 "TargetStoragePool" : "/redfish/v1/Storage/1/StoragePools/PrimaryPool",
 "ReplicaType" : "Mirror"
 }

 {
 "error": {
 "code": "Base.1.6.ActionParameterValueTypeError",
 "message": "The value 123456 for the parameter VolumeName in the action CreateReplicaTarget is of a

different type than the parameter can accept."
 }
 }

Swordfish SSM Error Handling Guide

Swordfish SSM
Error Handling Guide

WORKING DRAFT
Version 1.2.0 Page 11 of 17

Basic Course of Events:

1. Post the definition of the new volume to the Volumes resource collection with no Body.

Request: POST /redfish/v1/Storage/1/Volumes

Headers: No additional headers required.

Body:

HTTP Status Code Returned: 400

Headers: No additional headers required.

Body:

AdditionalContext: Note: The EmptyJSON case is technically a subset case of the PropertyMissing case. This may end up deprecated from the
Redfish Message Registry in time and replaced by pointers to Property Missing instead.

If desired, the implementation can return an ExtendedInfo structure that includes the information about the specific issue (in this case, a pointer to
the duplicate CapacityBytes property).

AdditionalContext: None.

4.8 Error Case: MalformedJSON
Summary: When a client sends a request to a Swordfish implementation, but the request contains malformed JSON. This could be anything, such
as duplicate properties, syntax errors, and the like. In this case, the MalformedJSON message shall be returned.

Example: User tries to create a Volume, but omits a required quotation mark.

Basic Course of Events:

{

}

 {
 "error": {
 "code": "Base.1.6.EmptyJSON",
 "Message": "The request body submitted contained an empty JSON object and the service is unable to

process it."
 }
 }

 {
 "error": {
 "code": "Base.1.6.EmptyJSON",
 "Message": "The request body submitted contained an empty JSON object and the service is unable to

process it.",
 "@Message.ExtendedInfo": [
 {
 "@odata.type": "#Message.v1_0_0.Message",
 "MessageId": "Base.1.6.PropertyMissing",
 "RelatedProperties": [
 "#/CapacityBytes"
],
 "Message": "The property CapacityBytes is a required property and must be included in the

request.",
 "MessageArgs": [
 "CapacityBytes"
],
 "Severity": "Warning",
 "Resolution": "Ensure that the property is in the request body and has a valid value and resubmit

the request if the operation failed."
 }
]
 }
 }

Swordfish SSM Error Handling Guide

Swordfish SSM
Error Handling Guide

WORKING DRAFT
Version 1.2.0 Page 12 of 17

1. Post the definition of the new volume to the Volumes resource collection with no Body.

Request: POST /redfish/v1/Storage/1/Volumes

Headers: No additional headers required.

Body:

HTTP Status Code Returned: 400

Headers: No additional headers required.

Body:

AdditionalContext: None.

4.9 Error Case: NoOperation
Summary: When a client sends a valid request to a Swordfish implementation, but that request will neither result in a change in the service, nor a
change to the resource, the NoOperation message should be returned.

Example: User tries to expand an existing Volume, but provides a new value equal to the existing size.

Basic Course of Events:

1. Post the definition of the new volume to the Volumes resource collection with no Body.

Request: PATCH /redfish/v1/Storage/1/Volumes

Headers: No additional headers required.

Body:

HTTP Status Code Returned: 400

Headers: No additional headers required.

Body:

4.10 Error Case: PropertyMissing

{
 "Name" : "MyVolume,
 "RAIDType" : "RAID1",
 "CapacityBytes": 34576345685
 }

 {
 "error": {
 "code": "Base.1.6.MalformedJSON",
 "Message": "The request body submitted was malformed JSON and could not be parsed by the receiving

service."
 }
 }

{
 "Name" : "MyVolume",
 "RAIDType" : "RAID1",
 "CapacityBytes": 23049823948
 }

 {
 "error": {
 "code": "Base.1.6.NoOperation",
 "Message": "The request body submitted contain no data to act upon and no changes to the resource took

place."
 }
 }

Swordfish SSM Error Handling Guide

Swordfish SSM
Error Handling Guide

WORKING DRAFT
Version 1.2.0 Page 13 of 17

Summary: When a client sends a request to a Swordfish implementation, but fails to include all of the properties required to process the request,
the PropertyMissing message shall be returned.

This example demonstrates the usage of that message.

Example: User tries to create a Volume, but omits the desired capacity for the volume.

Basic Course of Events:

1. Post the definition of the new volume to the Volumes resource collection but omit the capacity property.

Request: POST /redfish/v1/Storage/1/Volumes

Headers: No additional headers required.

Body:

HTTP Status Code Returned: 400

Headers: No additional headers required.

Body:

AdditionalContext: For this example, we have used “capacity”; there are several caveats to note here: First, the implementation could use one of
two different properties to specify capacity. Either the CapacityBytes, or the Capacity.Data.AllocatedBytes property could be used to specify the
desired/required capacity for the new volume.

Additionally, this event code could be used to specify a missing Redfish.required property (such as Name or Id). In this example, we have chosen
to specify a “required in context” property. This requirement is not explicitly noted in the Volume schema; it is instead noted in the general
requirements for implementations, in the user’s guide examples, and in profile definitions.

4.11 Error Case: PropertyNotWritable
Summary: When a client sends a request to a Swordfish implementation to change a single property, but the requested property is read-only, the
PropertyNotWritable message shall be returned.

Example: User tries to set the Name property on a Volume.

Basic Course of Events:

1. The user attempts to PATCH the Volume name.

Request: PATCH /redfish/v1/StorageServices/ISC/Volumes/1

Headers: No additional headers required.

Body:

{
 "Name" : "MyVolume",
 "RAIDType" : "RAID1"
 }

 {
 "error": {
 "code": "Base.1.6.PropertyMissing",
 "Message": "The property CapacityBytes is a required property and must be included in the request."
 }
 }

{
 "@Redfish.Copyright": "Copyright 2015-2019 SNIA. All rights reserved.",
 "@odata.context": "/redfish/v1/$metadata#Volume.Volume",
 "@odata.id": "/redfish/v1/StorageServices/ISC/Volumes/1",
 "@odata.type": "#Volume.v1_2_1.Volume",
 "Id": "1",
 "Name": "Danny's Volume"
}

Swordfish SSM Error Handling Guide

Swordfish SSM
Error Handling Guide

WORKING DRAFT
Version 1.2.0 Page 14 of 17

HTTP Status Code Returned: 400

Headers: No additional headers required.

Body:

4.12 Error Case: PropertyValueNotInList
Summary: When a client sends a request to a Swordfish implementation using a correct value type for a given property, but the implementation
does not support the selected value, the PropertyValueNotInList message shall be returned.

Example: User requests an unsupported replication type on AssignReplicaTarget

Inputs:

URL for target volume: /redfish/v1/Storage/1/Volumes/650973452245

Requested replica type: TokenizedClone

ReplicaUpdateMode: Synchronous

Basic Course of Events:

1. Post (as an Action) the request on the source Volume.

This instructs the service to use the identified Volume as the source Volume for the specified replication relationship. For any additional details
required, the service will rely on default values.

Request: POST /redfish/v1/Storage/1/Volumes/1/Volume.AssignReplicaTarget

Headers: No additional headers required.

Body:

HTTP Status Code Returned: 501 Not Implemented

Headers: None

Body:

4.13 Error Case: ResourceAlreadyExists
Summary: When a client requests a create operation on a resource, but the implementation will not accept the request because the resource
already exists and returns ResourceAlreadyExists error.

Example: User tries to add a volume with the same ID as an existing volume.

 {
 "error": {
 "code": "Base.1.6.PropertyValueNotWritable",
 "message": "The property Name is a read only property and cannot be assigned a value."
 }
 }

{
"ReplicaUpdateMode": "Synchronous",
"TargetVolume": "/redfish/v1/Storage/1/Volumes/650973452245",
"ReplicaType": "`TokenizedClone`"
}

{
 "error": {
 "code": "Base.1.6.PropertyValueNotInList",
 "message": "The value TokenizedClone for the property ReplicaType is not in the list of acceptable

values."
 }
}

Swordfish SSM Error Handling Guide

Swordfish SSM
Error Handling Guide

WORKING DRAFT
Version 1.2.0 Page 15 of 17

Basic Course of Events:

1. POST the volume to the Volumes collection.

Request: POST /redfish/v1/Systems/1/Storage/1/Volumes

Headers: No additional headers required.

Body:

HTTP Status Code Returned: 409

Headers: No additional headers required.

Body:

Additional Context: This message also technically covers a PATCH case (“change or”) in the Redfish Base Message Registry (v1.6.1). At this
time, we do not have any specific examples to cover this case.

4.14 Error Case: ResourceCannotBeDeleted
Summary: When a client requests a delete operation on a resource that cannot be deleted, the implementation will return a
ResourceCannotBeDeleted error.

Example: User tries to remove a storage controller.

Basic Course of Events:

1. Delete the storage controller from the Storage object.

Request: DELETE /redfish/v1/Systems/1/Storage/1#/StorageController/0

Headers: No additional headers required.

Body: None.

HTTP Status Code Returned: 405

Headers: No additional headers required.

Body:

Additional Context: This use case covers deletions that are prevented by schema notation (i.e., deletable = false). It also covers deletions
that are allowed by the schema but are prohibited by the implementation.

4.15 Error Case: ResourceInUse

 {
 "ID":"1",
 "CapacityBytes": "9284327497"
 }

 {
 "error": {
 "code": "Base.1.6.ResourceAlreadyExists",
 "Message": "The requested resource of type Volume with the property ID with the value 1 already

exists."
 }
 }

 {
 "error": {
 "code": "Base.1.6.ResourceCannotBeDeleted",
 "Message": "The delete request failed because the resource requested cannot be deleted."
 }
 }

Swordfish SSM Error Handling Guide

Swordfish SSM
Error Handling Guide

WORKING DRAFT
Version 1.2.0 Page 16 of 17

Summary: When a client requests a change to a resource, but the change is rejected by the implementation due to the resource being in use or a
transitional state, returns the ResourceInUse error.

Example: User tries to delete a volume marked with a VolumeUsage of “InUse”.

Basic Course of Events:

1. DELETE the volume.

Request: DELETE /redfish/v1/Systems/1/Storage/1/Volumes/3

Headers: No additional headers required.

Body:

None.

HTTP Status Code Returned: 400

Headers: No additional headers required.

Body:

4.16 Error Case: ResourceNotFound
Summary: When a client requests a delete operation on a resource that cannot be found, the implementation will accept the request but then
return a ResourceNotFound error.

Example: User tries to remove a volume that has already been deleted by another client or some other task.

Basic Course of Events:

1. Delete the volume from the Volumes collection.

Request: DELETE /redfish/v1/Systems/1/Storage/1/Volumes/1

Headers: No additional headers required.

Body: None.

HTTP Status Code Returned: 404

Headers: No additional headers required.

Body:

Additional Context: While the Redfish specification allows implementations to return a status code of 200 for this case, Swordfish recommends a
404 return code, to clarify a successful deletion from the detection of a prior deletion.

 {
 "error": {
 "code": "Base.1.6.ResourceInUse",
 "Message": "The change to the requested resource failed because the resource is in use or in

transition."
 }
 }

 {
 "error": {
 "code": "Base.1.6.ResourceNotFound",
 "Message": "The requested resource of type Volume named 1 was not found."
 }
 }

Swordfish SSM Error Handling Guide

Swordfish SSM
Error Handling Guide

WORKING DRAFT
Version 1.2.0 Page 17 of 17

	USAGE
	DISCLAIMER
	Revision History
	Contact SNIA
	SNIA Web Site

	FEEDBACK AND INTERPRETATIONS
	INTENDED AUDIENCE
	VERSIONING POLICY

	About SNIA
	Acknowledgements
	Table of Contents
	1 Introduction
	1.1 Audience
	1.2 Documentation structure
	1.3 Base implementation assumptions
	1.4 Knowledge assumptions

	2 HTTP status codes
	2.1 Overview
	2.2 Related information

	3 Error Types
	3.1 General Errors
	3.2 Action Errors
	3.3 JSON Errors
	3.4 Property Errors
	3.5 Resource Errors

	4 Error Cases
	4.1 Error Case: ActionNotSupported
	4.2 Error Case: ActionParameterDuplicate
	4.3 Error Case: ActionParameterMissing
	4.4 Error Case: ActionParameterNotSupported
	4.5 Error Case: ActionParameterUnknown
	4.6 Error Case: ActionParameterValueTypeError
	4.7 Error Case: EmptyJSON
	4.8 Error Case: MalformedJSON
	4.9 Error Case: NoOperation
	4.10 Error Case: PropertyMissing
	4.11 Error Case: PropertyNotWritable
	4.12 Error Case: PropertyValueNotInList
	4.13 Error Case: ResourceAlreadyExists
	4.14 Error Case: ResourceCannotBeDeleted
	4.15 Error Case: ResourceInUse
	4.16 Error Case: ResourceNotFound

