

Storage Networking Industry Association
Technical White Paper

Introduction to SNIA Persistent Memory
Performance Test Specification

October 2020

Abstract:
This white paper is targeted at storage professionals familiar with the SNIA Performance Test
Specifications (PTS), storage and software architects interested in understanding, testing and
designing persistent memory into their storage architectures and Persistent Memory (PM) aware
software applications and storage architects and marketing managers interested in PM storage
solutions.

October 2020 v1.0

2
Persistent Memory PTS WP SNIA SSS TWG

USAGE
The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no
alteration, and,

2. Any document, printed or electronic, in which material from this document (or any portion hereof) is
reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting
permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.
Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org. Please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the
following license:

BSD 3-Clause Software License

Copyright (c) 2020, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

October 2020 v1.0

3
Persistent Memory PTS WP SNIA SSS TWG

DISCLAIMER
The information contained in this publication is subject to change without notice. The SNIA makes no warranty of
any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2020 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their
respective owners.

http://www.snia.org/feedback/

October 2020 v1.0

4
Persistent Memory PTS WP SNIA SSS TWG

Table of Contents
I.	 Abstract 6	
II.	 Introduction 7	
III.	 Background – The Need for Performance Test Standards 8	
IV.	 Scope 10	
V.	 Background: Block IO v PM Byte Access 10	
VI.	 Byte v Block IO 11	
VII.	 Different IO Paths for PM access 13	

A.	 Block Access with Sector Atomicity 13	
B.	 Block Access without Sector Atomicity 14	
C.	 Direct Access 14	

VIII.	 PM Test Methodologies & Tests 15	
A.	 DIRTH Test 15	
B.	 REPLAY Test 16	
A.	 INDIVIDUAL STREAMS Test 17	

IX.	 Test Settings & Reference Test Platform 18	
X.	 Conclusions 18	
XI.	 About the Authors & Contributors 19	
	
	

	

October 2020 v1.0

5
Persistent Memory PTS WP SNIA SSS TWG

Table of Figures
Figure 1 - Storage Hierarchy 6	
Figure 2 - Storage Hierarchy: Capacity & Speed 6	
Figure 4 - Hardware View: Block v Byte Addressable Access 10	
Figure 5 - Software View: Block v Byte Addressable Access 11	
Figure 6 – Demand Intensity Outside Curve 14	
Figure 7 - IOPS & ART v Total OIO 14	
Figure 8 - Real Time Plot: IOPS & Response Times Quality of Service 15	
Figure 9 - Replay Test: Mmap, Msync, Non Temp W 16	
Figure 10 - Ind. Streams Test: Mmap, Msync, Non Temp W 16	

October 2020 v1.0

6
Persistent Memory PTS WP SNIA SSS TWG

I. Abstract

Persistent	Memory	(PM)	is	generally	defined	using	the	following	characteristics:	

● Very	low	latency,	achieving	memory/DIMM	speeds
● Non-volatile,	data	persists	through	power	cycles	and	beyond	application	and	

system	resets
● Byte	Addressable,	can directly access storage media using byte address	
● High	performance	for	applications	

Some	variants	also	deliver	higher	 capacity	 in	 the	memory	 tier	at	a	 lower	cost	 than	
DRAM.		In	general,	all	types	will	provide	higher	performance	than	solid-state	drives.	
	
Accordingly,	there	is	significant	interest	in	creating	a	Performance	Test	Specification	
(PTS)	 for	 PM.		 This	 would	 encompass	 test	 settings,	 metrics,	 methodologies,	
benchmarks,	and	reference	options.	These	tests	would	provide	reliable	results	over	
repeated	application.	
	
This	 white	 paper	 targets	 test	 development	 professionals	 working	 on	 storage	 and	
memory	 architectures.	 The	 current	 PM	 PTS	 v1.0.1	 is	 applicable	 to	 both	 block	 IO	
read/write	 tests	 as	 well	 as	 byte-addressable,	 load/store	 architecture.		 The	
specification	 is	 also	applicable	 across	 a	 variety	of	PM	such	as	3D	XPoint,	NVDIMM,	
MRAM,	ReRAM,	and	other	media.	Follow-on	White	Paper	targets	will	apply	the	tests	to	
more	specific	architectures	and	define	new	test	benchmarks.	
	
The	 PM	 PTS	 utilizes	 both	 synthetic	 and	 real-world	workloads.		 Synthetic	 tests	 are	
based	on	modifications	 from	 the	SNIA	PTS	v2.0.1	 for	NAND	Flash	SSD.		Real-world	
workload	tests	are	based	on	the	SNIA	Real	World	Storage	Workload	(RWSW)	PTS	for	
Datacenter	Storage	v1.0.7.	
	
On	release,	the	PM	PTS	v1.0.1	is	intended	to	allow	users	to	understand	and	optimize	
the	software	stack	for	PM	storage.		Interested	industry	professionals,	researchers,	and	
academia	are	invited	to	participate	in	the	development	of	the	PM	PTS	by	contacting	
SNIA	at	askcmsi@snia.org	

October 2020 v1.0

7
Persistent Memory PTS WP SNIA SSS TWG

II. Introduction

Persistent Memory (PM) is broadly defined as high performance, low latency, byte
addressable, non-volatile storage that sits on a cache-coherent link as opposed to traditional
Block IO storage that sits on the PCIe bus. Future coherent PCIe implementations could
also support PM. PM is expected to occupy a tier in the storage hierarchy below Main
Memory DRAM and above NAND Flash based SSDs - see Figure 1 - Storage Hierarchy.

Figure 1 - Storage Hierarchy

PM is cheaper and provides higher capacity than main memory DRAM but is more
expensive and faster than SSDs - see Figure 2 - Storage Hierarchy: Capacity & Speed.

Figure 2 - Storage Hierarchy: Capacity & Speed

This WP focuses on the characterization, optimization and test of PM storage architectures as opposed to
PM programming models and software optimization discussed in other SNIA technical works (such as the
NVM Programming model which can be viewed at
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
Examples of PM storage technologies include 3D XPoint, NVDIMM DRAM, Phase Change Memory,
MRAM, ReRAM, STRAM and others.

https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

October 2020 v1.0

8
Persistent Memory PTS WP SNIA SSS TWG

III. Background – The Need for Performance Test Standards

Hard Disk Drives
Early performance specifications for Hard Disk Drives (HDDs) focused largely on the need
to define specific synthetic access test patterns to allow buyers to easily compare HDD
performance. The first benchmark “corner case stress” tests (such as random 4K write
saturation tests) were designed to monitor HDD performance outside the range of normal
operation – hence the moniker “corner case stress” tests. Typical benchmark tests
measured Random (RND) or Sequential (SEQ) Access of Read or Write (R/W) IOs of
various Block Sizes (BS) and reported performance in terms of IO rate (IOPS), bandwidth
(MB/s) and response times (or latencies).

While HDD “speeds, feeds and capacities” continued to advance, HDD performance did
not keep pace with the corresponding increase in performance of the CPU, main memory,
memory caches and overall software/hardware (SW/HW) stack. This gap in performance
led to SW/HW stack optimizations to compensate for slower HDD performance. Here, the
faster SW/HW stack queues IO requests for the slower HDD storage tier to free the higher
performance (and more expensive) CPU and main memory resources to conduct other tasks
until the queued HDD IO requests are fulfilled. This compensator was traditionally
implemented through DRAM based caches, which proved to be quite expensive.

NAND Flash
This performance separation between the slower HDD performance and the faster SW/HW
stack created the need for a faster storage tier and paved the way for the introduction of
NAND flash based Solid State Drives (SSDs). SSDs are an order of magnitude, or more,
faster than HDDs. However, NAND flash based SSDs also introduce variables that affect
the consistent and repeatable measurement of SSD performance.

The increased speed of SSDs and the peculiarities of NAND flash storage (such as R/W
asymmetry, FOB (Fresh-Out-of-Box) peak behavior, limited endurance write cycle life,
block write/page erase operation, and the need for pre conditioning to measure performance
at steady state) required the standardization of the test hardware platform, data path
components and drivers, operating system, test software, test methodology, test settings
and the specific test procedure used in order to consistently compare performance among
different SSD products.

To address these new issues, the SNIA Solid State Storage (SSS) Technical Working
Group (TWG) developed and issued a series of SSS Performance Test Specifications (PTS)
for client and enterprise class storage. These PTS are intended to set forth standard
synthetic benchmark tests and Reference Test Platforms (RTP) to normalize the effect of
OS, hardware, test settings, test methodologies and test software on SSD performance
results. The SSS PTS v2.0.1 defines a standardized test methodology to prepare and test
NAND flash SSDs at Steady State.

Real World Workloads
The advance of storage solution architectures and applications (including storage
virtualization, storage tiering, remote and fabric storage, data compression, data dedupe,
encryption, open SSD, computational storage, AI and Machine Learning and other
optimizations) has highlighted the importance of the test workload in benchmarking SSD
performance. SSDs are inherently sensitive to the IO Stream content and intensity, or
Queue Depth (QD) of the workload. Different types of IO Streams and the Demand
Intensity of the workload (or QD) greatly affects IO, Bandwidth and Response Time

October 2020 v1.0

9
Persistent Memory PTS WP SNIA SSS TWG

saturation and overall performance. Because application workload content also changes at
each layer of the SW stack and abstraction, the capture, analysis and test using real world
workloads has become increasingly important to performance benchmarking.

This focus on the content of real world application workloads, and the effects of the
SW/HW stack on workload composition and SSD performance, has resulted in the release
of the SNIA Real World Storage Workload (RWSW) PTS for Datacenter Storage v1.0.7.
This RWSW PTS sets forth standards for the capture, analysis and test of real world
workloads.

Non Volatile Memory Programming Model
The continued advance of SW/HW stack performance has also created the need for a new
storage tier closer to main memory. SNIA released the NVM Programming Model to
address the ongoing proliferation of new non-volatile memory (NVM) functionality and
new NVM technologies and defines recommended behavior between various user space
and operating system (OS) kernel components supporting NVM. This NVM Programming
Model defines the behavior user-space software used to access PM and has driven the
creation of standard programming models for persistent memory and associated PM
drivers. This has, in turn, created the conditions for yet another new storage tier.

Persistent Memory Storage
Persistent Memory (PM) storage is the most recent storage tier to be developed and resides
between main memory DRAM and NVMe SSD storage. This new class of PM storage is
in turn driving the need for a PM PTS to set forth industry standard methodologies for both
block IO read-write and byte addressable load-store performance optimization and
benchmarking.

PM storage and PM applications can access storage using both byte and block addressable
IOs via the traditional IO stack or directly from user space. Traditional IO stack access can
be done synchronously (pread or pwrite) or asynchronously (libaio). Another interesting
attribute of persistent memory user space access is there may be a required cache flush step
to make stores persistent, something which is relevant to performance. PM applications
also tend to use smaller data transfer sizes (64 bytes to 8KB) as opposed to traditional
Block IO transfer sizes. These factors have led to the need to define and standardize PM
storage test settings, hardware configurations and test methodologies.

SNIA Vendor Neutrality & Product Agnosticism
The PM PTS v1.0.1 is intended to address the need for defining block and byte addressable
performance benchmark methodologies and tests while maintaining the SNIA policy of
vendor neutrality and storage architecture agnosticism. Accordingly, while new PM
embodiments may only be a single or few sources at this time, every effort is made to
maintain vendor neutrality and storage agnosticism.

For example, PM Modules are referred to by their general technology type rather than
market name (e.g., 3D XPoint or Data Center PM Modules). Thus, while the first PM
storage technologies addressed by the PM PTS are 3D XPoint technology and
NVMDIMM-N/P, it is intended that subsequent revisions will include other PM storage
architectures and technologies as they become commercially available.

October 2020 v1.0

10
Persistent Memory PTS WP SNIA SSS TWG

IV. Scope
This PM PTS White Paper (WP) is targeted at storage professionals familiar with the SNIA
PTS specifications, storage and software architects interested in understanding, testing and
designing persistent memory into their storage architectures and PM aware software
applications and storage architects and marketing managers interested in PM storage
solutions.

V. Background: Block IO v PM Byte Access
In traditional block IO access, data is accessed in data units of some number of sectors
expressed as a logical block address (LBA). Typically, the sector size is 512 bytes with
the minimum LBA size of 512 bytes (0.5 KB) or 4096 bytes (4 KB). Additional bytes can
be added to the sector size to accommodate data integrity fields resulting in 520 byte, 528
byte or other sector size.

Logical blocks are accessed across a storage protocol such as PCIe to the NAND Flash
SSD or other storage (Hard Disk, Optical Disk, Tape, etc.). In this case, CPU IO requests
cannot directly access the block IO storage and must rely upon a drive protocol to access
the LBAs.

Figure 3 - Traditional Block IO v PM Direct Access Mode

In byte access load-store, the CPU (and IO request) can directly access storage media using
byte address access to cache lines (such as 64 byte cache lines). When using a PM device
in block IO mode, a PM aware driver converts block IO requests into byte addressable
(cache line) memory copies. This conversion is transparent to the user and results in an
increase in “traditional” block IO performance when applied to a PM across the PM Driver.

For PM Aware applications, cache lines can be directly accessed by the CPU and result in
much higher performance than block IO over a PM driver or traditional block IO across
PCIe.

October 2020 v1.0

11
Persistent Memory PTS WP SNIA SSS TWG

VI. Byte v Block IO

Block IO Access. The fact that CPU and storage are separated has some implications, the
most important being the fact that the CPU cannot talk directly to the storage subsystem.
By directly, it is meant that an instruction executed by the CPU cannot issue a read/write
(i.e., IO) operation directly against a storage device. Instead, the CPU needs to send
requests to a device over an IO bus using a protocol, such as PCIe. Since this
communication is handled by a driver, a call to the operating system (OS) is inevitable
(often times, including the mandatory context switch to the OS, there may also be a context
switch to other process to run on the same CPU core). To hide some of the latencies
involved, IO requests are made in blocks of some predetermined large size such as 4
kibibytes (KiB) (4096 bytes). Moreover, data may need to be copied to an intermediate
Dynamic Random Access Memory (DRAM) buffer in user space, which is different from
the page cache where the application accesses it using regular load and store instructions.

Byte Access. The previous paragraph describes block access. In contrast to block IO
access, byte access allows the CPU to talk directly to the media. In some places, you see
this type of media being referred to as byte-addressable. An example of byte-addressable
media is Double Data Rate (DDR) memory. Any of the persistent memory technologies
that sit on the memory bus are also byte-addressable. Figure 4 shows the difference
between these two modes of access at the hardware level while Figure 5 looks at these
differences at the software level.

Figure 4 - Hardware View: Block v Byte Addressable Access

Hardware Steps – Block IO access path. The numerals in Figure 4 specify different steps
in the IO path. In the case of Block access, Figure 4a, all IO operations require the CPU to:

(1) Queue requests in the device;
(2) Run requests by the device itself which may trigger additional step(s) – see next.
(3) Direct Memory Access (DMA) operation to read blocks from DRAM and write

them to the storage media, or the other way around where the page cache can be
bypassed. For the sake of simplicity, Figure 4 only considers the case with page
cache. It is also important to consider that Block IO typically takes long enough
that the OS will switch away to other runnable processes while waiting for the
device to complete the IO, then switch back when the IO is done.

(4) The application simply reads the data if the operation was a read, or writes the
data before issuing a write operation.

October 2020 v1.0

12
Persistent Memory PTS WP SNIA SSS TWG

Hardware Steps – Byte IO access path. In Figure 5b Byte access, the CPU can directly
access the data in the device at cache line granularity and in a single step.

Figure 5 - Software View: Block v Byte Addressable Access

Software Steps – Difference between Block and Byte Access. In Figure 5, we can see the
two main differences between block and byte access at the software level.

1) The first difference is that all IO done in Figure 4b is always done at cache line
granularity, even when blocks are read or written through a file system.

2) The second difference is that it is possible to bypass the OS by memory mapping

a file. The application can, in this case, access the file through loads and stores, as
well as flush data out of the CPU caches, directly from user space.

While Figures 4 and 5 do not cover all of the possible ways in which applications can do
IO, they are adequate for the sake of this discussion. As an example, consider the case of
an application that memory maps a file in the block access case, Figure 5a, and then
accesses the data using load and store instructions. Even in that case, the file system still
needs to fetch those blocks from the device and store them in DRAM. In fact, accessing
bytes from a non-cached (but mapped) block is essentially the same as issuing a read
request to the device for that whole block. Also, the file system is involved when the
application wants to flush pending writes out of DRAM buffers to make sure they are
persistent.

Before moving on, let’s summarize the important lessons to take away from this section.

In block access:

1. Access to data in the media is done in blocks.
2. The CPU cannot access the data directly.
3. The OS is always needed in the IO path.

October 2020 v1.0

13
Persistent Memory PTS WP SNIA SSS TWG

In byte access:

1. Access to data in the media is always done at cache line granularity, even when IO
is done through a file system calling read/write. Operations larger than a cache line
are broken up.

2. The CPU can access the data directly.
3. System calls to the OS can be avoided by memory mapping files, which allows the

user to issue loads, stores, and flush data out of the CPU caches completely from
user space.

VII. Different IO Paths for PM access

As discussed, PM is both fast (low latency) and persistent (nonvolatile) and occupies the
storage hierarchy gap between the fastest SSD found in the market and DRAM memory
(see Figure 1). In terms of latency, PM response times are much closer to DRAM’s than to
SSD latencies. This powerful combination of low latency and persistence provides
additional IO access advantages to the storage architect and software developer.

Application developers can take full advantage of PM in the type of IO accesses used.
Without PM, developers may need to rely upon workarounds such as using large SEQ
block sizes to mask high (slow) non PM access latencies associated with smaller block
RND and SEQ accesses. However, with PM, developers can now rely on faster, smaller
block RND and SEQ access as well as memory copies (load and store instructions) directly
from user space without invoking a system call to the OS.

Nevertheless, PM can still be used with traditional IO stacks as well as allowing use with
existing non PM aware applications. The following subsections introduce the different
modes in which PM can be used by applications.

A. Block Access with Sector Atomicity

It is possible to use persistent memory as storage without changing your application or file
system, as long as you have the proper PM drivers and tools installed in the system.

As was mentioned before, all IO done against persistent memory is done at cache line
granularity (typically 64 byte). This means that all IO operations are converted by the driver
into memory copies. PM does not provide power fail write atomicity for applications and
file systems that rely on write atomicity at the block/sector level. This means that
applications’ data can be corrupted by torn sectors in the event of a crash or power failure
(because x86 architectures only guarantee 8 bytes will not be torn by crash or power
failure).

To avoid such a scenario, the PM driver supports a mode allowing atomic sector writes
called sector mode. In this mode, the driver maintains a data structure called the Block
Translation Table (BTT) to make sure torn sectors do not occur (see Figure 3).

October 2020 v1.0

14
Persistent Memory PTS WP SNIA SSS TWG

B. Block Access without Sector Atomicity

Modern file systems, such as ext4 and xfs in Linux, are persistent memory-aware since
Linux kernel version 4.2 and hence will work fine with persistent memory media, which
does not provide power fail write atomicity. The mode to use PM without power fail write
atomicity is called fsdax.

Keep in mind, the protection that persistent memory-aware file systems provide only
relates to the file system metadata, and never the application’s data. If your application
relies on write atomicity for sectors of data, you may need to redesign your application.
Likewise, if you use the device without a file system (as some databases do), the application
will also need to be aware of this fact.

C. Direct Access

Direct access, or DAX, is a “special case” of fsdax where applications can memory map
files and read/write to them through memory copies directly from user space. How DAX
can be configured in a system differs by OS. In Linux, for example, this is accomplished
by mounting a persistent memory-aware file system with the option “DAX”.

Here, DAX means direct access from the point of view of applications (remember that the
CPU always has direct access to persistent memory devices).

It is important to point out that the DAX option for fsdax was designed for programming
against persistent memory devices following the NVM Programming Model (NVMPM)
standard developed by the Storage and Networking Industry Association (SNIA). In other
words, it was designed specifically to allow applications to access bytes in place through a
direct pointer to the media, instead of copying them to a local buffer first. In fact, doing the
latter may just produce an extra, and probably unnecessary, data copy between two memory
devices (DRAM to PM) on the same bus.

The DAX option, apart from allowing applications to access the persistent media directly
from user space when files are memory-mapped, also automatically bypasses the page
cache (it must do so). It should be mentioned that bypassing the page cache has always
been possible with traditional file systems. For example, in the case of POSIX, page cache
can be bypassed by opening files with O_DIRECT. The difference here is that in the
traditional case:

1. All IO is still done to/from user-space buffers (no direct pointers to media).
2. The OS is still in the IO path.

Although DAX can be considered a better way to bypass the page cache when using PM
devices in general, whether you should use DAX or O_DIRECT may depend on your
application.

October 2020 v1.0

15
Persistent Memory PTS WP SNIA SSS TWG

VIII. PM Test Methodologies & Tests

The PM PTS sets forth test methodologies and tests designed to benchmark various types
of Persistent Memory using both Synthetic and Real World Workloads. These tests are
based, in large part, on SNIA SSS PTS v2.0.1 for SSDs and the RWSW PTS for Datacenter
Storage v1.0.7. In both cases, modifications are made to accommodate the behaviors of
PM storage as opposed to those of NAND Flash SSDs. For example, PM does not display
the write hysteresis of NAND Flash and thus eliminates the need for much of the test
process steps associated with a device Purge, pre-conditioning to steady state and block
size/demand intensity sequencing in test flows.

The Synthetic tests in the draft PM PTS v0.3 are:

1. DIRTH Single Stream test – single Block Size/RW mix IO Stream applied across
a range of Demand Intensity

2. DIRTH Multiple Stream test – multiple Block Size/RW mix IO Streams applied
across a range of Demand Intensity

The Real World Workload tests in the draft PM PTS v0.3 are:

1. Replay test – apply the sequence and combination of IO Streams and QDs observed
in the real world workload capture

2. Individual Streams test – testing each of the observed and selected IO Streams
from the real world workload as single Block Size/RW mix saturation test.

A. DIRTH Test

The DIRTH test is an acronym for the Demand Intensity Response Time Histogram test.
It is a cornerstone test of the SNIA PTS for SSDs and the Real World Storage Workload
PTS for Datacenter Storage because it can be used to apply any fixed stimulus – synthetic
benchmark or real world workload IO streams – to assess storage performance (IO,
Bandwidth, Response Time, CPU saturation) across a range of Demand Intensity.

	 	
Figure	6	–	Demand	Intensity	Outside	Curve	 Figure	7	-	IOPS	&	ART	v	Total	OIO	

Any storage performance measurements depend, in large part, on the Demand Intensity of
the workload. In this case, Demand Intensity (DI) refers to the number of Outstanding IOs
(or more simply put jobs, threads or requests) that are applied to the storage – if there is
insufficient DI, there are not enough requests to get to the maximum IO or Bandwidth
performance of the storage; if there is excessive DI, bottlenecks caused by too many IOs

October 2020 v1.0

16
Persistent Memory PTS WP SNIA SSS TWG

simultaneously trying to access the storage will result in elevated response times and
decreased IO rates.

The advantage of the DIRTH test is that the user can simultaneously assess multiple
dimensions of performance: IOs, Bandwidth (BW), Response Times (RT), CPU Usage
and Demand Intensity. Generally, when DI is low, IOPS are lower but Response Times
are faster. Conversely, when DI is high, IOPS and Bandwidth are higher but associated
Response Times are slower and CPU System % usage is higher. See Figures 6 & 7.

The key value of this test is to see at what level of DI that the storage attains peak
IO/BW/RT performance and at what point RTs saturate and become increasingly slow or
CPU System % usage becomes increasingly high.

By plotting IO, BW & RTs against Response Times, the test operator can plot both: a)
Demand Intensity Outside Curves that shows IO/BW as a function of DI, as well as b)
IO/BW/RT/CPU % against total Outstanding IOs (or DI) to show the expected
performance of the storage device subjected to the workload across a range of Demand
Intensity (or Users/Thread Count). See Figures 7.

B. REPLAY Test

The Replay test applies the sequence of IO Streams and QDs observed in the original real
world workload IO Capture to the test storage. Defined in the RWSW PTS 1.0.7 for DC
Storage, the Replay test re-creates the sequence of changing IO Streams and QDs from the
IO Capture workload. Each step of the Replay test is applied to the test storage for a period
of time (or step duration) as desired by the test operator.

The Replay test allows the reader to see the target test storage performance subjected to the
workload IO Streams and QDs captured from the real world application storage server.
Key performance indicators, such as IOPS, Bandwidth, Response Times, Queue Depths,
CPU Usage %, power consumption, temperature, LBA Range address, TRIMs, write
amplification factor and other metrics can be viewed. See Figure 8 below.

Figure 8 - Real Time Plot: IOPS & Response Times Quality of Service

Replay test performance can be reported on a Real Time Plot that shows performance over
time (each time step of the Replay test) or can be reported as a single summary value (such
as average IOPS over some portion or all of the time steps of the Replay test).

October 2020 v1.0

17
Persistent Memory PTS WP SNIA SSS TWG

The key value of the Replay test is to show how test storage responds to the changing
combinations of IO Streams and QDs observed in the real world workload capture as
opposed to synthetic corner case tests that measure a single IO Stream or fixed combination
of IO Streams. As such, Replay tests can show you how well your test storage may respond
to the intended real world application workload.

A. INDIVIDUAL STREAMS Test

The Individual Streams test measures the performance of each individual IO Stream
observed and tested in the Replay test. By applying the WSAT (Write Saturation) test, the
test operator can measure the steady state performance of each individual IO Stream and
compare that value to manufacturer or test specification values for corner case tests.

Traditional storage manufacturer performance test specifications tend to highlight a few
commonly used metrics such as RND 4K Read/Write (for IOPS), SEQ 128K Read/Write
(for Bandwidth) and RND/SEQ 4K Read/Write Latency (or Response Time at a single
outstanding IO).

However, as it quickly becomes apparent, real world workload IO Stream content is rarely
comprised of a single IO Stream. Further, the major IO Streams of a real world workload
usually contain nontraditional benchmark BS/RW mix such as 1K, 2K, 0.5K, 396K and
other BS fragments. In those instances when the real world workload does contain
traditional BS streams (such as RND 4K R/W or SEQ 128K R/W), those IO Streams are
usually a small percentage of the total IO Streams of the real world workload.

Figure 9 below shows the IOPS, Average Response Times and 5 9s Quality of Service
(QoS) in 3 modes (Mmap, Msync and Non Temporal Writes) for a Datacenter Storage
Replay test where all of the IO streams are averaged over the duration of the test. Figure
10 below shows the performance of each individual IO stream observed in the Replay test
where each IO Stream is tested individually to Steady State.

	 	
Figure	9	-	Replay	Test:	Mmap,	Msync,	Non	Temp	W	 Figure	10	-	Ind.	Streams:	Mmap,	Msync,	Non	Temp	W	

The key value of the Individual Streams test is to: 1) show which BS/RW mix IO Streams
are in the real world workload; 2) show the performance of each of those individual IO
Streams at steady state; and 3) compare real world workload IO Stream performance to
manufacturer specification benchmark values for the same single BS/RW mix IO Stream.

October 2020 v1.0

18
Persistent Memory PTS WP SNIA SSS TWG

IX. Test Settings & Reference Test Platform

The PM PTS will define a PM Reference Test Platform (PM RTP) for each type of PM
covered by the specification. The RTP is only a recommended test platform and not a
requirement of the PM PTS and is listed in an effort to normalize the hardware and software
environment and test settings to allow consistent, repeatable and comparable performance
benchmark data.

The PM RTP will be posted on the SNIA website and will be updated from time to time to
reflect modifications to the PM PTS and the release of more advanced commercial
platforms on software.

X. Conclusions

Persistent Memory storage products are filling the gap in the storage hierarchy by offering
fast, low latency and persistent storage that moves memory closer to the CPU. The PM
PTS is intended to introduce the concepts of Persistent Memory, PM Storage and the
software and hardware requirements for use, development and integration of PM Storage
and PM aware applications.

Early adoption of 3D XPOINT and NVDIMM-N can be seen in applications that require
large in memory data sets (e.g. in-memory database and metadata and logging for AI
mission critical systems), fast nonvolatile storage tiers and easily accessible storage space
for high speed, computationally intensive applications.

This white paper is intended to help storage architects, software developers and marketing
professionals to understand how PM fits in the storage hierarchy and to help define a
technical and marketing roadmap for new PM aware applications.

Interested parties are invited to participate in this exciting area. Questions and comments
can be directed to askcmsi@snia.org. By joining SNIA, individuals and companies can
participate in SNIA Technical Working Groups and Initiatives to help drive the creation
and adoption of Persistent Memory standards, evangelize PM storage architectures and
contribute to PM educational materials.

mailto:askcmsi@snia.org

October 2020 v1.0

19
Persistent Memory PTS WP SNIA SSS TWG

XI. About the Authors & Contributors

The SNIA Solid State Storage Technical Working Group, which developed and reviewed this document,
recognizes the significant contributions made by the following individuals and companies:

• Eduardo Berrocal, Intel
• Jim Fister, The Decision Place
• Eden Kim, Calypso Systems, Inc.
• Chuck Paridon, dxc
• Andy Rudoff, Intel

	TableOfContents

