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Abstract:   
This white paper is targeted at storage professionals familiar with the SNIA Performance Test 
Specifications (PTS), storage and software architects interested in understanding, testing and 
designing persistent memory into their storage architectures and Persistent Memory (PM) aware 
software applications and storage architects and marketing managers interested in PM storage 
solutions.  
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USAGE 
The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations 
and other business entities to use this document for internal use only (including internal copying, distribution, and 
display) provided that: 
 

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no 
alteration, and,  
 

2. Any document, printed or electronic, in which material from this document (or any portion hereof) is 
reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting 
permission for its reuse. 

 
Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this 
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved 
to SNIA. 
Permission to use this document for purposes other than those enumerated above may be requested by e-mailing 
tcmd@snia.org. Please include the identity of the requesting individual and/or company and a brief description of 
the purpose, nature, and scope of the requested use. 
 
All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the 
following license: 
 

BSD 3-Clause Software License 
 
Copyright (c) 2020, The Storage Networking Industry Association. 
 
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the 
following conditions are met: 
 
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following 
disclaimer. 
 
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following 
disclaimer in the documentation and/or other materials provided with the distribution. 
 
* Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may be 
used to endorse or promote products derived from this software without specific prior written permission. 
 
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR 
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
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DISCLAIMER 
The information contained in this publication is subject to change without notice. The SNIA makes no warranty of 
any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability 
and fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or 
consequential damages in connection with the furnishing, performance, or use of this specification. 
 
Suggestions for revisions should be directed to http://www.snia.org/feedback/. 
 
Copyright © 2020 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their 
respective owners. 
  

http://www.snia.org/feedback/
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I. Abstract 
 

Persistent	Memory	(PM)	is	generally	defined	using	the	following	characteristics:	

● Very	low	latency,	achieving	memory/DIMM	speeds 
● Non-volatile,	data	persists	through	power	cycles	and	beyond	application	and	

system	resets 
● Byte	Addressable,	can directly access storage media using byte address	 
● High	performance	for	applications	

Some	variants	also	deliver	higher	 capacity	 in	 the	memory	 tier	at	a	 lower	cost	 than	
DRAM.		In	general,	all	types	will	provide	higher	performance	than	solid-state	drives.	
	
Accordingly,	there	is	significant	interest	in	creating	a	Performance	Test	Specification	
(PTS)	 for	 PM.		 This	 would	 encompass	 test	 settings,	 metrics,	 methodologies,	
benchmarks,	and	reference	options.	These	tests	would	provide	reliable	results	over	
repeated	application.	
	
This	 white	 paper	 targets	 test	 development	 professionals	 working	 on	 storage	 and	
memory	 architectures.	 The	 current	 PM	 PTS	 v1.0.1	 is	 applicable	 to	 both	 block	 IO	
read/write	 tests	 as	 well	 as	 byte-addressable,	 load/store	 architecture.		 The	
specification	 is	 also	applicable	 across	 a	 variety	of	PM	such	as	3D	XPoint,	NVDIMM,	
MRAM,	ReRAM,	and	other	media.	Follow-on	White	Paper	targets	will	apply	the	tests	to	
more	specific	architectures	and	define	new	test	benchmarks.	
	
The	 PM	 PTS	 utilizes	 both	 synthetic	 and	 real-world	workloads.		 Synthetic	 tests	 are	
based	on	modifications	 from	 the	SNIA	PTS	v2.0.1	 for	NAND	Flash	SSD.		Real-world	
workload	tests	are	based	on	the	SNIA	Real	World	Storage	Workload	(RWSW)	PTS	for	
Datacenter	Storage	v1.0.7.	
	
On	release,	the	PM	PTS	v1.0.1	is	intended	to	allow	users	to	understand	and	optimize	
the	software	stack	for	PM	storage.		Interested	industry	professionals,	researchers,	and	
academia	are	invited	to	participate	in	the	development	of	the	PM	PTS	by	contacting	
SNIA	at	askcmsi@snia.org	
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II. Introduction 
 

Persistent Memory (PM) is broadly defined as high performance, low latency, byte 
addressable, non-volatile storage that sits on a cache-coherent link as opposed to traditional 
Block IO storage that sits on the PCIe bus.  Future coherent PCIe implementations could 
also support PM.  PM is expected to occupy a tier in the storage hierarchy below Main 
Memory DRAM and above NAND Flash based SSDs - see Figure 1 - Storage Hierarchy.   

 

Figure 1 - Storage Hierarchy 

PM is cheaper and provides higher capacity than main memory DRAM but is more 
expensive and faster than SSDs - see Figure 2 - Storage Hierarchy: Capacity & Speed.  

 

 
Figure 2 - Storage Hierarchy: Capacity & Speed 

This WP focuses on the characterization, optimization and test of PM storage architectures as opposed to 
PM programming models and software optimization discussed in other SNIA technical works (such as the 
NVM Programming model which can be viewed at 
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf 
Examples of PM storage technologies include 3D XPoint, NVDIMM DRAM, Phase Change Memory, 
MRAM, ReRAM, STRAM and others. 

https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
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III. Background – The Need for Performance Test Standards 

Hard Disk Drives   
Early performance specifications for Hard Disk Drives (HDDs) focused largely on the need 
to define specific synthetic access test patterns to allow buyers to easily compare HDD 
performance.  The first benchmark “corner case stress” tests (such as random 4K write 
saturation tests) were designed to monitor HDD performance outside the range of normal 
operation – hence the moniker “corner case stress” tests.  Typical benchmark tests 
measured Random (RND) or Sequential (SEQ) Access of Read or Write (R/W) IOs of 
various Block Sizes (BS) and reported performance in terms of IO rate (IOPS), bandwidth 
(MB/s) and response times (or latencies).   
 
While HDD “speeds, feeds and capacities” continued to advance, HDD performance did 
not keep pace with the corresponding increase in performance of the CPU, main memory, 
memory caches and overall software/hardware (SW/HW) stack.  This gap in performance 
led to SW/HW stack optimizations to compensate for slower HDD performance.  Here, the 
faster SW/HW stack queues IO requests for the slower HDD storage tier to free the higher 
performance (and more expensive) CPU and main memory resources to conduct other tasks 
until the queued HDD IO requests are fulfilled. This compensator was traditionally 
implemented through DRAM based caches, which proved to be quite expensive. 
 
NAND Flash  
This performance separation between the slower HDD performance and the faster SW/HW 
stack created the need for a faster storage tier and paved the way for the introduction of 
NAND flash based Solid State Drives (SSDs).  SSDs are an order of magnitude, or more, 
faster than HDDs.  However, NAND flash based SSDs also introduce variables that affect 
the consistent and repeatable measurement of SSD performance.   
 
The increased speed of SSDs and the peculiarities of NAND flash storage (such as R/W 
asymmetry, FOB (Fresh-Out-of-Box) peak behavior, limited endurance write cycle life, 
block write/page erase operation, and the need for pre conditioning to measure performance 
at steady state) required the standardization of the test hardware platform, data path 
components and drivers, operating system, test software, test methodology, test settings 
and the specific test procedure used in order to consistently compare performance among 
different SSD products. 
 
To address these new issues, the SNIA Solid State Storage (SSS) Technical Working 
Group (TWG) developed and issued a series of SSS Performance Test Specifications (PTS) 
for client and enterprise class storage.  These PTS are intended to set forth standard 
synthetic benchmark tests and Reference Test Platforms (RTP) to normalize the effect of 
OS, hardware, test settings, test methodologies and test software on SSD performance 
results. The SSS PTS v2.0.1 defines a standardized test methodology to prepare and test 
NAND flash SSDs at Steady State.   
 
Real World Workloads 
The advance of storage solution architectures and applications (including storage 
virtualization, storage tiering, remote and fabric storage, data compression, data dedupe, 
encryption, open SSD, computational storage, AI and Machine Learning and other 
optimizations) has highlighted the importance of the test workload in benchmarking SSD 
performance.  SSDs are inherently sensitive to the IO Stream content and intensity, or 
Queue Depth (QD) of the workload.  Different types of IO Streams and the Demand 
Intensity of the workload (or QD) greatly affects IO, Bandwidth and Response Time 
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saturation and overall performance.  Because application workload content also changes at 
each layer of the SW stack and abstraction, the capture, analysis and test using real world 
workloads has become increasingly important to performance benchmarking. 
 
This focus on the content of real world application workloads, and the effects of the 
SW/HW stack on workload composition and SSD performance, has resulted in the release 
of the SNIA Real World Storage Workload (RWSW) PTS for Datacenter Storage v1.0.7.  
This RWSW PTS sets forth standards for the capture, analysis and test of real world 
workloads. 
 
Non Volatile Memory Programming Model 
The continued advance of SW/HW stack performance has also created the need for a new 
storage tier closer to main memory.   SNIA released the NVM Programming Model to 
address the ongoing proliferation of new non-volatile memory (NVM) functionality and 
new NVM technologies and defines recommended behavior between various user space 
and operating system (OS) kernel components supporting NVM. This NVM Programming 
Model defines the behavior user-space software used to access PM and has driven the 
creation of standard programming models for persistent memory and associated PM 
drivers.  This has, in turn, created the conditions for yet another new storage tier. 
 
Persistent Memory Storage  
Persistent Memory (PM) storage is the most recent storage tier to be developed and resides 
between main memory DRAM and NVMe SSD storage.  This new class of PM storage is 
in turn driving the need for a PM PTS to set forth industry standard methodologies for both 
block IO read-write and byte addressable load-store performance optimization and 
benchmarking.   
 
PM storage and PM applications can access storage using both byte and block addressable 
IOs via the traditional IO stack or directly from user space.  Traditional IO stack access can 
be done synchronously (pread or pwrite) or asynchronously (libaio).  Another interesting 
attribute of persistent memory user space access is there may be a required cache flush step 
to make stores persistent, something which is relevant to performance.  PM applications 
also tend to use smaller data transfer sizes (64 bytes to 8KB) as opposed to traditional 
Block IO transfer sizes.  These factors have led to the need to define and standardize PM 
storage test settings, hardware configurations and test methodologies. 
 
SNIA Vendor Neutrality & Product Agnosticism 
The PM PTS v1.0.1 is intended to address the need for defining block and byte addressable 
performance benchmark methodologies and tests while maintaining the SNIA policy of 
vendor neutrality and storage architecture agnosticism.  Accordingly, while new PM 
embodiments may only be a single or few sources at this time, every effort is made to 
maintain vendor neutrality and storage agnosticism.   
 
For example, PM Modules are referred to by their general technology type rather than 
market name (e.g., 3D XPoint or Data Center PM Modules).  Thus, while the first PM 
storage technologies addressed by the PM PTS are 3D XPoint technology and 
NVMDIMM-N/P, it is intended that subsequent revisions will include other PM storage 
architectures and technologies as they become commercially available. 
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IV. Scope 
This PM PTS White Paper (WP) is targeted at storage professionals familiar with the SNIA 
PTS specifications, storage and software architects interested in understanding, testing and 
designing persistent memory into their storage architectures and PM aware software 
applications and storage architects and marketing managers interested in PM storage 
solutions. 

V. Background: Block IO v PM Byte Access 
In traditional block IO access, data is accessed in data units of some number of sectors 
expressed as a logical block address (LBA).  Typically, the sector size is 512 bytes with 
the minimum LBA size of 512 bytes (0.5 KB) or 4096 bytes (4 KB).  Additional bytes can 
be added to the sector size to accommodate data integrity fields resulting in 520 byte, 528 
byte or other sector size.   
 
Logical blocks are accessed across a storage protocol such as PCIe to the NAND Flash 
SSD or other storage (Hard Disk, Optical Disk, Tape, etc.).  In this case, CPU IO requests 
cannot directly access the block IO storage and must rely upon a drive protocol to access 
the LBAs.   
 

 
Figure 3 - Traditional Block IO v PM Direct Access Mode 

In byte access load-store, the CPU (and IO request) can directly access storage media using 
byte address access to cache lines (such as 64 byte cache lines).  When using a PM device 
in block IO mode, a PM aware driver converts block IO requests into byte addressable 
(cache line) memory copies.  This conversion is transparent to the user and results in an 
increase in “traditional” block IO performance when applied to a PM across the PM Driver.   
 
For PM Aware applications, cache lines can be directly accessed by the CPU and result in 
much higher performance than block IO over a PM driver or traditional block IO across 
PCIe.   



October 2020  v1.0 

11 
Persistent Memory PTS WP  SNIA SSS TWG 

VI. Byte v Block IO  
 

Block IO Access.  The fact that CPU and storage are separated has some implications, the 
most important being the fact that the CPU cannot talk directly to the storage subsystem. 
By directly, it is meant that an instruction executed by the CPU cannot issue a read/write 
(i.e., IO) operation directly against a storage device. Instead, the CPU needs to send 
requests to a device over an IO bus using a protocol, such as PCIe. Since this 
communication is handled by a driver, a call to the operating system (OS) is inevitable 
(often times, including the mandatory context switch to the OS, there may also be a context 
switch to other process to run on the same CPU core). To hide some of the latencies 
involved, IO requests are made in blocks of some predetermined large size such as 4 
kibibytes (KiB) (4096 bytes). Moreover, data may need to be copied to an intermediate 
Dynamic Random Access Memory (DRAM) buffer in user space, which is different from 
the page cache where the application accesses it using regular load and store instructions. 
 
Byte Access.  The previous paragraph describes block access. In contrast to block IO 
access, byte access  allows the CPU to talk directly to the media. In some places, you see 
this type of media being referred to as byte-addressable. An example of byte-addressable 
media is Double Data Rate (DDR) memory. Any of the persistent memory technologies 
that sit on the memory bus are also byte-addressable. Figure 4 shows the difference 
between these two modes of access at the hardware level while Figure 5 looks at these 
differences at the software level. 
 

 
 

Figure 4 - Hardware View: Block v Byte Addressable Access 
 

Hardware Steps – Block IO access path.  The numerals in Figure 4 specify different steps 
in the IO path. In the case of Block access, Figure 4a, all IO operations require the CPU to: 

(1) Queue requests in the device; 
(2) Run requests by the device itself which may trigger additional step(s) – see next. 
(3) Direct Memory Access (DMA) operation to read blocks from DRAM and write 

them to the storage media, or the other way around where the page cache can be 
bypassed. For the sake of simplicity, Figure 4 only considers the case with page 
cache. It is also important to consider that Block IO typically takes long enough 
that the OS will switch away to other runnable processes while waiting for the 
device to complete the IO, then switch back when the IO is done.  

(4) The application simply reads the data if the operation was a read, or writes the 
data before issuing a write operation. 
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Hardware Steps – Byte IO access path.  In Figure 5b Byte access, the CPU can directly 
access the data in the device at cache line granularity and in a single step. 

 

 
 

Figure 5 - Software View: Block v Byte Addressable Access 
 

Software Steps – Difference between Block and Byte Access.  In Figure 5, we can see the 
two main differences between block and byte access at the software level.  

1) The first difference is that all IO done in Figure 4b is always done at cache line 
granularity, even when blocks are read or written through a file system.  

 
2) The second difference is that it is possible to bypass the OS by memory mapping 

a file. The application can, in this case, access the file through loads and stores, as 
well as flush data out of the CPU caches, directly from user space. 

 
While Figures 4 and 5 do not cover all of the possible ways in which applications can do 
IO, they are adequate for the sake of this discussion. As an example, consider the case of 
an application that memory maps a file in the block access case, Figure 5a, and then 
accesses the data using load and store instructions. Even in that case, the file system still 
needs to fetch those blocks from the device and store them in DRAM. In fact, accessing 
bytes from a non-cached (but mapped) block is essentially the same as issuing a read 
request to the device for that whole block. Also, the file system is involved when the 
application wants to flush pending writes out of DRAM buffers to make sure they are 
persistent. 
 
Before moving on, let’s summarize the important lessons to take away from this section. 
 
In block access: 

1. Access to data in the media is done in blocks. 
2. The CPU cannot access the data directly. 
3. The OS is always needed in the IO path. 
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In byte access: 

1. Access to data in the media is always done at cache line granularity, even when IO 
is done through a file system calling read/write. Operations larger than a cache line 
are broken up. 

2. The CPU can access the data directly. 
3. System calls to the OS can be avoided by memory mapping files, which allows the 

user to issue loads, stores, and flush data out of the CPU caches completely from 
user space. 

 

VII.  Different IO Paths for PM access 
 

As discussed, PM is both fast (low latency) and persistent (nonvolatile) and occupies the 
storage hierarchy gap between the fastest SSD found in the market and DRAM memory 
(see Figure 1). In terms of latency, PM response times are much closer to DRAM’s than to 
SSD latencies. This powerful combination of low latency and persistence provides 
additional IO access advantages to the storage architect and software developer.   
 
Application developers can take full advantage of PM in the type of IO accesses used.  
Without PM, developers may need to rely upon workarounds such as using large SEQ 
block sizes to mask high (slow) non PM access latencies associated with smaller block 
RND and SEQ accesses.  However, with PM, developers can now rely on faster, smaller 
block RND and SEQ access as well as memory copies (load and store instructions) directly 
from user space without invoking a system call to the OS. 
 
Nevertheless, PM can still be used with traditional IO stacks as well as allowing use with 
existing non PM aware applications. The following subsections introduce the different 
modes in which PM can be used by applications. 
 

A. Block Access with Sector Atomicity 
 

It is possible to use persistent memory as storage without changing your application or file 
system, as long as you have the proper PM drivers and tools installed in the system. 
 
As was mentioned before, all IO done against persistent memory is done at cache line 
granularity (typically 64 byte). This means that all IO operations are converted by the driver 
into memory copies.  PM does not provide power fail write atomicity for applications and 
file systems that rely on write atomicity at the block/sector level. This means that 
applications’ data can be corrupted by torn sectors in the event of a crash or power failure 
(because x86 architectures only guarantee 8 bytes will not be torn by crash or power 
failure). 
 
To avoid such a scenario, the PM driver supports a mode allowing atomic sector writes 
called sector mode. In this mode, the driver maintains a data structure called the Block 
Translation Table (BTT) to make sure torn sectors do not occur (see Figure 3). 
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B. Block Access without Sector Atomicity 
 
Modern file systems, such as ext4 and xfs in Linux, are persistent memory-aware since 
Linux kernel version 4.2 and hence will work fine with persistent memory media, which 
does not provide power fail write atomicity. The mode to use PM without power fail write 
atomicity is called fsdax. 
 
Keep in mind, the protection that persistent memory-aware file systems provide only 
relates to the file system metadata, and never the application’s data. If your application 
relies on write atomicity for sectors of data, you may need to redesign your application. 
Likewise, if you use the device without a file system (as some databases do), the application 
will also need to be aware of this fact. 

 
C. Direct Access 

 
Direct access, or DAX, is a “special case” of fsdax where applications can memory map 
files and read/write to them through memory copies directly from user space. How DAX 
can be configured in a system differs by OS. In Linux, for example, this is accomplished 
by mounting a persistent memory-aware file system with the option “DAX”.  
 
Here, DAX means direct access from the point of view of applications (remember that the 
CPU always has direct access to persistent memory devices).  
 
It is important to point out that the DAX option for fsdax was designed for programming 
against persistent memory devices following the NVM Programming Model (NVMPM) 
standard developed by the Storage and Networking Industry Association (SNIA). In other 
words, it was designed specifically to allow applications to access bytes in place through a 
direct pointer to the media, instead of copying them to a local buffer first. In fact, doing the 
latter may just produce an extra, and probably unnecessary, data copy between two memory 
devices (DRAM to PM) on the same bus. 
 
The DAX option, apart from allowing applications to access the persistent media directly 
from user space when files are memory-mapped, also automatically bypasses the page 
cache (it must do so). It should be mentioned that bypassing the page cache has always 
been possible with traditional file systems. For example, in the case of POSIX, page cache 
can be bypassed by opening files with O_DIRECT. The difference here is that in the 
traditional case: 
 

1. All IO is still done to/from user-space buffers (no direct pointers to media). 
2. The OS is still in the IO path. 

 
Although DAX can be considered a better way to bypass the page cache when using PM 
devices in general, whether you should use DAX or O_DIRECT may depend on your 
application. 
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VIII. PM Test Methodologies & Tests 
 

The PM PTS sets forth test methodologies and tests designed to benchmark various types 
of Persistent Memory using both Synthetic and Real World Workloads.  These tests are 
based, in large part, on SNIA SSS PTS v2.0.1 for SSDs and the RWSW PTS for Datacenter 
Storage v1.0.7.  In both cases, modifications are made to accommodate the behaviors of 
PM storage as opposed to those of NAND Flash SSDs. For example, PM does not display 
the write hysteresis of NAND Flash and thus eliminates the need for much of the test 
process steps associated with a device Purge, pre-conditioning to steady state and block 
size/demand intensity sequencing in test flows. 
 
The Synthetic tests in the draft PM PTS v0.3 are: 

1. DIRTH Single Stream test – single Block Size/RW mix IO Stream applied across 
a range of Demand Intensity 

2. DIRTH Multiple Stream test – multiple Block Size/RW mix IO Streams applied 
across a range of Demand Intensity 

 
The Real World Workload tests in the draft PM PTS v0.3 are: 

1. Replay test – apply the sequence and combination of IO Streams and QDs observed 
in the real world workload capture 

2. Individual Streams test – testing each of the observed and selected IO Streams 
from the real world workload as single Block Size/RW mix saturation test. 

 
A. DIRTH Test 
 
The DIRTH test is an acronym for the Demand Intensity Response Time Histogram test.  
It is a cornerstone test of the SNIA PTS for SSDs and the Real World Storage Workload 
PTS for Datacenter Storage because it can be used to apply any fixed stimulus – synthetic 
benchmark or real world workload IO streams – to assess storage performance (IO, 
Bandwidth, Response Time, CPU saturation) across a range of Demand Intensity.    

 

	 	
Figure	6	–	Demand	Intensity	Outside	Curve	 Figure	7	-	IOPS	&	ART	v	Total	OIO	

 
Any storage performance measurements depend, in large part, on the Demand Intensity of 
the workload.  In this case, Demand Intensity (DI) refers to the number of Outstanding IOs 
(or more simply put jobs, threads or requests) that are applied to the storage – if there is 
insufficient DI, there are not enough requests to get to the maximum IO or Bandwidth 
performance of the storage; if there is excessive DI, bottlenecks caused by too many IOs 
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simultaneously trying to access the storage will result in elevated response times and 
decreased IO rates. 
 
The advantage of the DIRTH test is that the user can simultaneously assess multiple 
dimensions of performance:  IOs, Bandwidth (BW), Response Times (RT), CPU Usage 
and Demand Intensity.  Generally, when DI is low, IOPS are lower but Response Times 
are faster.  Conversely, when DI is high, IOPS and Bandwidth are higher but associated 
Response Times are slower and CPU System % usage is higher. See Figures 6 & 7. 
 
The key value of this test is to see at what level of DI that the storage attains peak 
IO/BW/RT performance and at what point RTs saturate and become increasingly slow or 
CPU System % usage becomes increasingly high. 
 
By plotting IO, BW & RTs against Response Times, the test operator can plot both: a) 
Demand Intensity Outside Curves that shows IO/BW as a function of DI, as well as b) 
IO/BW/RT/CPU % against total Outstanding IOs (or DI) to show the expected 
performance of the storage device subjected to the workload across a range of Demand 
Intensity (or Users/Thread Count).  See Figures 7. 

 
B. REPLAY Test 

 
The Replay test applies the sequence of IO Streams and QDs observed in the original real 
world workload IO Capture to the test storage.  Defined in the RWSW PTS 1.0.7 for DC 
Storage, the Replay test re-creates the sequence of changing IO Streams and QDs from the 
IO Capture workload.  Each step of the Replay test is applied to the test storage for a period 
of time (or step duration) as desired by the test operator. 
 
The Replay test allows the reader to see the target test storage performance subjected to the 
workload IO Streams and QDs captured from the real world application storage server.  
Key performance indicators, such as IOPS, Bandwidth, Response Times, Queue Depths, 
CPU Usage %, power consumption, temperature, LBA Range address, TRIMs, write 
amplification factor and other metrics can be viewed.  See Figure 8 below. 

 

 
Figure 8 - Real Time Plot: IOPS & Response Times Quality of Service 

 
Replay test performance can be reported on a Real Time Plot that shows performance over 
time (each time step of the Replay test) or can be reported as a single summary value (such 
as average IOPS over some portion or all of the time steps of the Replay test).   
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The key value of the Replay test is to show how test storage responds to the changing 
combinations of IO Streams and QDs observed in the real world workload capture as 
opposed to synthetic corner case tests that measure a single IO Stream or fixed combination 
of IO Streams.  As such, Replay tests can show you how well your test storage may respond 
to the intended real world application workload. 

 
A. INDIVIDUAL STREAMS Test 

 
The Individual Streams test measures the performance of each individual IO Stream 
observed and tested in the Replay test.  By applying the WSAT (Write Saturation) test, the 
test operator can measure the steady state performance of each individual IO Stream and 
compare that value to manufacturer or test specification values for corner case tests. 
 
Traditional storage manufacturer performance test specifications tend to highlight a few 
commonly used metrics such as RND 4K Read/Write (for IOPS), SEQ 128K Read/Write 
(for Bandwidth) and RND/SEQ 4K Read/Write Latency (or Response Time at a single 
outstanding IO). 
 
However, as it quickly becomes apparent, real world workload IO Stream content is rarely 
comprised of a single IO Stream.  Further, the major IO Streams of a real world workload 
usually contain nontraditional benchmark BS/RW mix such as 1K, 2K, 0.5K, 396K and 
other BS fragments.  In those instances when the real world workload does contain 
traditional BS streams (such as RND 4K R/W or SEQ 128K R/W), those IO Streams are 
usually a small percentage of the total IO Streams of the real world workload. 
 
Figure 9 below shows the IOPS, Average Response Times and 5 9s Quality of Service 
(QoS) in 3 modes (Mmap, Msync and Non Temporal Writes) for a Datacenter Storage 
Replay test where all of the IO streams are averaged over the duration of the test.  Figure 
10 below shows the performance of each individual IO stream observed in the Replay test 
where each IO Stream is tested individually to Steady State. 

 

	 	
Figure	9	-	Replay	Test:	Mmap,	Msync,	Non	Temp	W	 Figure	10	-	Ind.	Streams:	Mmap,	Msync,	Non	Temp	W	

 
The key value of the Individual Streams test is to: 1) show which BS/RW mix IO Streams 
are in the real world workload; 2) show the performance of each of those individual IO 
Streams at steady state; and 3) compare real world workload IO Stream performance to 
manufacturer specification benchmark values for the same single BS/RW mix IO Stream. 
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IX. Test Settings & Reference Test Platform 
 

The PM PTS will define a PM Reference Test Platform (PM RTP) for each type of PM 
covered by the specification.  The RTP is only a recommended test platform and not a 
requirement of the PM PTS and is listed in an effort to normalize the hardware and software 
environment and test settings to allow consistent, repeatable and comparable performance 
benchmark data. 
 
The PM RTP will be posted on the SNIA website and will be updated from time to time to 
reflect modifications to the PM PTS and the release of more advanced commercial 
platforms on software. 
 

X. Conclusions 
 

Persistent Memory storage products are filling the gap in the storage hierarchy by offering 
fast, low latency and persistent storage that moves memory closer to the CPU.  The PM 
PTS is intended to introduce the concepts of Persistent Memory, PM Storage and the 
software and hardware requirements for use, development and integration of PM Storage 
and PM aware applications. 
 
Early adoption of 3D XPOINT and NVDIMM-N can be seen in applications that require 
large in memory data sets (e.g. in-memory database and metadata and logging for AI 
mission critical systems), fast nonvolatile storage tiers and easily accessible storage space 
for high speed, computationally intensive applications. 
 
This white paper is intended to help storage architects, software developers and marketing 
professionals to understand how PM fits in the storage hierarchy and to help define a 
technical and marketing roadmap for new PM aware applications. 
 
Interested parties are invited to participate in this exciting area.  Questions and comments 
can be directed to askcmsi@snia.org.  By joining SNIA, individuals and companies can 
participate in SNIA Technical Working Groups and Initiatives to help drive the creation 
and adoption of Persistent Memory standards, evangelize PM storage architectures and 
contribute to PM educational materials. 
 

 
  

mailto:askcmsi@snia.org
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