

ABSTRACT: This paper explores the requirements and desirable design
characteristics that High Availability extensions to the NVM.PM.FILE mode of
the SNIA NVM Programming Model might impose on high speed networking.

NVM PM Remote Access
for High Availability

Technical White Paper
May 2019

Storage Networking Industry Association

NVM PM Remote Access for High Availability
May 2019 2

USAGE
The SNIA hereby grants permission for individuals to use this document for personal use only, and for
corporations and other business entities to use this document for internal use only (including internal
copying, distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no
alteration, and,

2. Any document, printed or electronic, in which material from this document (or any portion hereof)
is reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA
for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any
or this entire document, or distribute this document to third parties. All rights not explicitly granted are
expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by
e-mailing tcmd@snia.org. Please include the identity of the requesting individual and/or company and a
brief description of the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the
following license:

BSD 3-Clause Software License

Copyright (c) 2019, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NVM PM Remote Access for High Availability
May 2019 3

DISCLAIMER
The information contained in this publication is subject to change without notice. The SNIA makes no
warranty of any kind with regard to this document, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing, performance, or use
of this document.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2019 SNIA. All rights reserved. All other trademarks or registered trademarks are the
property of their respective owners.

NVM PM Remote Access for High Availability
May 2019 4

This page intentionally left blank

NVM PM Remote Access for High Availability
May 2019 5

Contents
1 PURPOSE ... 7

2 SCOPE .. 7

3 MEMORY ACCESS HARDWARE TAXONOMY .. 8

3.1 PERSISTENT MEMORY (PM) LATENCY LANDSCAPE .. 8
3.2 LOCAL PERSISTENT MEMORY ... 9
3.3 DISAGGREGATED PERSISTENT MEMORY .. 10
3.4 NETWORKED PERSISTENT MEMORY .. 12

4 RECOVERABILITY DEFINITIONS ... 13

4.1 DATA DURABILITY VS. DATA AVAILABILITY .. 13
4.2 VISIBILITY VS PERSISTENCE .. 15
4.3 CONSISTENCY POINTS ... 16
4.4 CRASH CONSISTENCY IN DISK BASED SYSTEMS ... 16
4.5 CRASH CONSISTENCY IN PM SYSTEMS ... 17
4.6 RECOVERY POINT OBJECTIVE ... 18
4.7 RECOVERY SCENARIOS .. 19

4.7.1 In line recovery .. 20
4.7.2 Backtracking recovery ... 21
4.7.3 Local Application Restart ... 22
4.7.4 Application Failover ... 22

4.8 FLUSH SYNCHRONIZATION, ORDERING AND SCOPE .. 23
4.9 INTEGRITY CHECKING ... 27

5 HA EXTENSIONS TO NVM.PM.FILE ... 27

6 RPMA FOR HA ... 29

6.1 PEER TO PEER DEPLOYMENT MODEL .. 29
6.2 ADDRESS SPACES ... 29
6.3 ASSURANCE OF REMOTE DURABILITY .. 31
6.4 RDMA EXAMPLE ... 31
6.5 HA ACROSS MULTIPLE PROCESSOR ARCHITECTURES .. 36

7 ERROR HANDLING ... 37

7.1 HARDWARE ... 39
7.2 REPLICATION ... 40
7.3 APPLICATION ... 40

8 REQUIREMENTS SUMMARY .. 41

APPENDIX A – HA PROTOCOL FLOW ALTERNATIVES .. 43

APPENDIX B – REMOTE ATOMICITY CONSIDERATIONS 43

APPENDIX C – REFERENCES .. 44

APPENDIX D – GLOSSARY .. 44

NVM PM Remote Access for High Availability
May 2019 6

Figure 1 – Storage Latency Ranges Impact Software ... 9
Figure 2 - Local Memory ... 10
Figure 3 - Disaggregated Memory ... 11
Figure 4 - Remote Memory ... 13
Figure 5 - High Durability vs High Availability .. 14
Figure 6 – Operation Streams and Ordering ... 25
Figure 7 – HA Extension to NVM.PM.FILE .. 28
Figure 8 – NVM.PM Peer to Peer HA Replication Deployment Diagram....................... 29
Figure 9 - Memory Mapping and Session Address Spaces ... 30
Figure 10 - Peer to Peer HA Replication using client initiated RPMA 32
Figure 11 - Uncorrectable Error Recovery ... 35
Figure 12 – Error Handling Layers .. 38

NVM PM Remote Access for High Availability
May 2019 7

1 Purpose
The purpose of this document is to establish the context and desirable design
characteristics for the use of high speed networks as a transport for remote access to
persistent memory (PM) in high availability implementations of the SNIA NVM
Programming model. The resulting set of requirements is summarized at the end of the
document.

2 Scope
This non-normative document pertains specifically to the NVM.PM.FILE mode of the
SNIA NVM Programming Model. Some implementations of the programming model may
provide high availability (HA) by communicating with remote persistent memory. The
term “Remote” refers to persistent memory that is not attached to the same CPU
complex as an application that is using the NVM Programming Model. The term
“application” refers to the user space consumer of PM as described in section 4 of the
NVM Programming Model. A CPU complex comprises the CPU, memory and support
chips for a single or multi-socket server. There are many ways to implement remote PM
communication including Remote Direct Memory Access (RDMA) over ethernet or
InfiniBand networks and other operations supported by OpenCAPI and Gen-Z.

With this in mind the following terms are used pervasively in this document in order to
avoid any unnecessary implication of implementation specifics.

• RPM – Remote Persistent Memory
• RPMA – Remote Persistent Memory Access

The intent of this terminology is to enable a range of RPM and RPMA implementations
while describing characteristics of RPMA that could reduce the overhead of correct HA
operation.

The term “High Availability” (HA) refers to the use of redundancy to achieve fault
tolerance that limits or eliminates downtime. Redundancy includes duplication of
hardware and data in patterns that avoid single (or multiple) points of failure. This in
turn involves reasoning about independent fault domains and a wide range of erasure
coding techniques. These techniques are generally well known and widely
implemented. They form an important backdrop for this document but they are not
broadly re-iterated herein.

This document neither addresses nor precludes shared data beyond the extent
necessary to enable failover of data access for high availability. This can be formally
described as a type of “Release Consistency” as defined by Gharachorloo et al. in
“Memory consistency and event ordering in scalable shared-memory multiprocessors,”
ISCA, 1990, pp. 15–26. Release consistency assures that memory state is made
globally consistent at certain release points. In this case, failover comprises the release
point. The failing unit is forced to cease operation and the state of one or more durable
replicas is used to establish global consistency by means of post processing such as
transaction aborts, completion of transaction commits or consistency checking
processes (e.g., fsck).

This document describes requirements and desirable design characteristics that are
visible to an application or within a data-path such that they affect performance or real

NVM PM Remote Access for High Availability
May 2019 8

time data recoverability. Management functionality is not addressed in this paper. For
example, hardware discovery, system configuration, monitoring and reliability,
availability and serviceability (RAS) capabilities such as troubleshooting and repair are
considered to be management capabilities.

Security considerations such as privacy and integrity are explored in the SNIA
“Persistent Memory Hardware Threat Model” white paper. While the treat model
exposes some new considerations related to PM, no new network requirements were
identified. This document does not cover those topics other than to suggest support for
integrity checking with RPM.

3 Memory Access Hardware Taxonomy
There are a number of ways to describe hardware access paths to memory. The
memory connectivity taxonomy in this section is intended to add clarity to various
remote memory access use cases, including those related to high availability.

High availability use cases described in this paper align with the networked persistent
memory access model described in sections 3.3 and 3.4. This is because a loosely
coupled server environment using is the most common way to assure the fault
independence needed for high availability.

3.1 Persistent Memory (PM) latency landscape
Latency is a key consideration in choosing a connectivity method for memory or
storage. Latency refers to the time it takes to complete an access such as a read, write,
load or store. Figure 1 illustrates storage latencies that span 6 orders of magnitude
between hard disks and memory. The span of each bar is intended to represent typical
range of latencies for example technologies.

There are two very important latency thresholds that change how applications see
storage or memory represented by the background color bands in this figure. These
thresholds are used by system designers when implementing access to stored data, to
determine whether the access is to be synchronous, polled or asynchronous. In today’s
large non-uniform memory access (NUMA) systems, latencies of up to 200 nS are
generally considered to be acceptable. NUMA systems must be very responsive
because CPU instruction processing on a core or thread is suspended during the
memory access. Latencies of more than 200 nS in a memory system quickly pile up,
resulting in wasted CPU time.

On the other hand, when an application does IO for a storage access that is expected to
take more than 2-3 uS, it will usually choose to block a thread or process. The CPU will
execute a context switch and make progress on another thread or process until it is
notified that the access is complete. For latencies between 200 nS and 2 uS it may be
preferable for the CPU to poll for IO completion as this consumes one thread or core but
does not slow down the rest of the CPU.

https://www.snia.org/sites/default/files/technical_work/Whitepapers/PM-HW-Threat-Model-v1.pdf

NVM PM Remote Access for High Availability
May 2019 9

Figure 1 – Storage Latency Ranges Impact Software

Local or disaggregated persistent memory (see sections 3.2 and 3.3) can fall into the
NUMA range of Figure 1. Networked persistent memory (sections 3.4) does not. Since
the high availability use cases described in this document involve networked persistent
memory, they can quickly slow applications down to IO speeds. This tends to reverse
the performance gains made in the transition to persistent memory unless remote direct
memory access (RDMA) is optimized for high availability persistent memory use cases.

3.2 Local Persistent Memory
Local persistent memory is generally in the same server as the processors accessing it.
This is illustrated in Figure 2 in a dual socket system where DIMMs and NVDIMMs are
connected to CPU’s which are in turn connected using a cache coherent inter-socket
interconnect that is specific to the processor architecture. Local memory is accessed
using the NVM Programming Model without any remote access considerations. For the
purpose of this taxonomy, all of the memory in this illustration is local because it is part
of a single server node. Although the illustration assumes that memory controllers are
integrated into CPU’s, memory attached to controllers outside of CPU’s but within the
server is still considered local.

A single server does not avoid single points of failure and it integrates the attached
memory using cache coherency protocol into a single symmetric multi-processing
environment. This makes it a single fault domain for the purpose of high availability
management, meaning that there are single points of failure within the server that can
cause the entire server to fail.

La
te

nc
y

(L
og

)

200 nS

2 uS

HDD SATA
SSD

NVMe
Flash

Persistent
Memory

Context
Switch

NUMA

Min, Max Latencies For
Example Technologies

NVM PM Remote Access for High Availability
May 2019 10

Figure 2 - Local Memory

3.3 Disaggregated Persistent Memory
The concept of disaggregated memory is used to illustrate cases where memory that is
not contained within a server is still accessed at memory speed. It is shown in Figure 3
as a memory pool with its own controller connected through a low latency memory
interconnect. Implementations of disaggregated memory include recently defined open
memory interconnect standards such as Gen-Z and OpenCAPI. Disaggregated
memory may or may not be cache coherent with the CPUs in the servers to which it is
connected.

Disaggregated memory still looks like memory to CPU’s. It operates at memory speed in
cache line size units and it may be subject to distance limitations to insure sufficiently
low latency. Disaggregated memory is made scalable through the use of optical
networks such as those based on silicon photonics to increase the distance of memory
speed interfaces. Memory speed refers to access that is suitable for a Load/Store
programming model. This requires an operation (Load/Store) rate and latency that
allows CPU’s to stall during memory access without unacceptable loss of overall CPU
performance.

Some disaggregated memory systems may allow memory that is directly connected
with one CPU to be part of the pool that is shared with another. Disaggregated memory
that is not cache coherent requires the use of distributed programming techniques such
as those used in clusters rather than the symmetric multi-processing techniques that
apply within a single server.

DIMMDIMM

CPU

DIMMS &
NVDIMMS

DIMMDIMM

CPU
DIMMS &
NVDIMMS

Cache Coherent
Inter-Socket Interconnect

IO

IO

Server

NVM PM Remote Access for High Availability
May 2019 11

Disaggregated memory may or may not be a separate fault domain from the servers
depending on implementation.

Figure 3 - Disaggregated Memory

While open memory interconnect standards can implement disaggregated memory they
are not limited to that purpose. They also enable memory driven computing that
includes access to storage, networks and accelerators in a memory semantic
interconnect. Physical configurations other than that illustrated by Figure 3 are feasible
including co-location of memory pool components with processors. A much broader
range of use cases is illustrated in “New Interconnects”. In addition to cache line
memory access, open memory interconnect standards allow asynchronous bulk data
transfers using operations such as “Put” and “Get”.

DIMMDIMM

CPU

DIMMS &
NVDIMMSIO

DIMMDIMM

CPU

DIMMS &
NVDIMMS

IO

DIMMDIMMDIMMS &
NVDIMMS

DIMMDIMMDIMMS &
NVDIMMS

Controller

Low Latency
Memory Semantic Interconnect

May not be cache coherent

Server

Server

Disaggregated Memory Pool

https://www.snia.org/sites/default/files/SDC/2017/presentations/General_Session/Keeton_Kimberly_Spence_Susan_Persistent_Memory_New_Tier_or_Storage_Replacement.pdf
https://www.snia.org/sites/default/files/PM-Summit/2018/presentations/13_PMSummit_18_interconnects_UPDATED.pdf

NVM PM Remote Access for High Availability
May 2019 12

For the purpose of this document disaggregated memory is viewed as an RPM use
case even though its remote-ness is a matter of degree. Note that Figure 3 illustrates
the potential for redundancy with multiple paths to multiple instances of memory pool
components.

3.4 Networked Persistent Memory
Networked memory is accessed through a high speed network rather than directly
through a memory interface. Figure 4 shows two servers connected with network
adapters. Memory access is achieved over the network using protocols such as
message passing and RDMA. The two servers in Figure 4 are in separate fault
domains.

The network adapter communicates with the NVDIMMs through the CPU in this
configuration. Depending on the CPU architecture there may be volatile buffers or
caches on the path from the network adapter to the NVDIMMs.

Networked persistent memory is not cache coherent with the CPU. Unlike local or
disaggregated persistent memory where all of the NVDIMMs can be part of a single
system image, the NVDIMMs on a remote node are not part of a single system image.

Although only two servers are illustrated in Figure 4, many servers may be attached to
the same network. There may be many-to-many relationships between the data stored
in various servers. It is also possible to have servers with no NVDIMMs access
networked persistent memory on other servers.

NVM PM Remote Access for High Availability
May 2019 13

Figure 4 - Remote Memory

Disaggregated and Networked PM techniques may appear in the same system. The
result is a system architecture that includes common access to PM across CPU’s,
accelerators and storage or network interface cards. That architecture enables the
following data flows without CPU intervention.

• network adapters can implement RPM by directly accessing disaggregated PM.
• accelerators can use RPM.
• Memory controller features such as encryption can be applied directly to RPM

4 Recoverability Definitions
Since recovery from failure is the purpose of high availability use cases it is important to
understand recovery and recoverability in some detail. There are established principles
for this in enterprise storage systems but less is known about persistent memory
recovery.

4.1 Data Durability vs. Data Availability
Common approaches to redundancy generally support one or both of the following
goals.

• High Durability – Data will not be lost regardless of failures, up to the number of
failures that the redundancy scheme is designed to tolerate. If the media
containing the data can be removed, re-inserted into a new slot and recovered,

DIMMDIMM

CPU

DIMMS &
NVDIMMSIO

DIMMDIMM

CPU

DIMMS &
NVDIMMS

IO

Network
Adapter

Network
Adapter

Network
Switch(es)

Server

Server

NVM PM Remote Access for High Availability
May 2019 14

data is only lost if removable media modules themselves fail. Otherwise failures
of system components other than media modules can also cause data loss.

• High Availability – Data will remain accessible to hosts regardless of failures up
to the number of failures that the redundancy scheme is designed to tolerate.
Failure of any component between a given host and the data may make that data
inaccessible to that host, so redundancy is required for all such components.

If an application requires only high durability, local data redundancy such as RAID
across NVDIMMs will suffice. If an application requires high availability as well, remote
data redundancy such as RAID across servers or external storage nodes is required.
This is illustrated by Figure 5 wherein the local and remote memory of Figure 4 are
overlayed with red lines indicating the data flow of a store (ST) operation.

Figure 5 - High Durability vs High Availability

With persistent memory the need to update data redundancy begins with a CPU
instruction with an operand that changes a memory location. This is illustrated in Figure
5 within the upper CPU as “St”. A high durability function is represented by the circled
numeral 1 where data is mirrored between NVDIMMs in the same server. A high
availability function that also provides high durability is represented by the circled
numeral 2 where data is mirrored between NVDIMMs on separate servers.

Figure 5 shows exactly 2 copies of data for simplicity. More sophisticated redundancy
schemes such as RAID 5 or local erasure coding also apply. The ability of a more
sophisticated redundancy scheme to provide high durability and/or high availability

CPU
NVDIMMS

IO

CPU IO

Network
Adapter

Network
Adapter

Network
Switch(es)

Server

Server
2

1St

St

NVDIMMS

NVM PM Remote Access for High Availability
May 2019 15

depends on how data is laid out across NVDIMMs and servers. The chief motivations
for remote or even geographically distributed copies is the criticality of distributing
copies across fault domains.

The distinction between high durability and high availability makes it clear that high
availability requires networked access to persistent memory. The network in this figure
plays an important “fault isolation” role for high availability. It minimizes the probability
that a hardware failure in one server can affect access to redundant data. The role of
networks in providing fault isolation for high availability exposes the dilemma of high
availability at memory speed.

4.2 Visibility vs Persistence
PM implementation experience has shown that developers need to be sensitive to the
distinction between cross-process visibility of data written to local PM, and persistence
of data in PM. The term visibility refers to the ability of computation or device elements
in a system to read (or “see”) an updated data value that originated elsewhere. This is
different from persistence, which refers to the ability of data to survive power loss. Both
concepts have to do with the propagation of data being written. As a specific example,
it is incorrect to assume that a compare and swap instruction with an operand that
refers to PM is sufficient to implement a persistent lock. This is not true because the
result of the instruction may become visible to other processes before it becomes
persistent. As a result a lock may be granted to a process just before a power loss that
causes the lock to revert to a prior state, leading to incorrect concurrency. In other
words in today’s systems, visibility and persistence are not achieved together
atomically.

When a full range of PM and RPM are taken into consideration, visibility and
persistence may occur in either order. For example, in a local multi-processor
implementation, symmetric multi-processing protocols insure that all processes on all
processors see updates to data either before or at the same time as the data becomes
persistent. On the other hand some RPM use cases implement eventual consistency
whereby data propagates throughout a distributed system in the background
concurrently with ongoing usage. With eventual consistency, persistence may occur
before data is visible to all potential consumers.

In RPM use cases it is possible for partial completion of a write to achieve visibility but
not persistence even though both are intended. This makes it important to separate
consumers of visibility and consumers of persistence into distinct two roles. Actions that
are intended to achieve persistence should fail if persistence was not achieved
regardless of whether visibility was achieved.

The response to remote persistence failure and the ongoing relationship between
visibility and persistence is up to the application and the user mode libraries that it uses.
For example, one can imagine several responses to persistence failure after visibility
success.

• Visibility is reversed and so the entire action fails and can be retried
• Visibility is enabled while an ongoing process tries to resynchronize persistence
• A distributed application is designed to require only eventual persistence

NVM PM Remote Access for High Availability
May 2019 16

Note that the last two responses may be applicable at the same time.

4.3 Consistency Points
In order to recover correctly from a failure, all of the data items recovered must have
correct values relative to each other from the application’s point of view. The meaning of
“correct” in this case is entirely up to the application. For example financial transactions
involving multiple accounts must yield a correct result even if a hardware failure occurs
during the transaction.

Applications use a variety of techniques to assure consistency, primarily by controlling
the order of changes to individual data items in such a way that a consistent state can
always be achieved after failure. One common way to achieve this is to use
transactions. There is often some data processing required after a failure to bring an
entire data image into a consistent state. For example, uncommitted transactions may
need to be rolled back.

Since a failure can occur at any time, systems must be prepared to convert any data
state that could result from a hardware failure or restart into a consistent state. This is
much easier to achieve if applications designate certain instants in time during
execution as consistency points. By identifying consistency points an application can
allow underlying infrastructure to orchestrate recovery that always results in a consistent
data image.

For example, in today’s enterprise storage systems applications can coordinate the
creation of snapshots with storage systems and file systems using protocols like
Microsoft’s Volume Shadow Copy Service (VSS™). VSS allows applications to
orchestrate storage snapshots at points in time when application data is consistent.
That is fine for backups because they are infrequent compared to IO’s, and even more
infrequent compared to memory accesses.

As another example, suppose an application was able to involve persistent memory in
transactions so that the completion of each transaction represented a consistency point.
“NVM Atomics”, the subject of a SNIA white paper, suggests a standard way for
applications to view transactions that could enable this type of interaction.

The important thing about consistency points relative to RPM and high availability is that
they create opportunities to optimize networked persistent memory communication.
This application level requirement may feed subordinate requirements that can affect
RPM implementations such as ordering and atomicity with respect to failure (power or
hardware) or reset.

4.4 Crash Consistency in Disk Based Systems
Crash consistency is another common recovery model in today’s storage systems.
Since the dawn of computing time, disk drives have defined the gold standard for all
types of storage system behavior. Disk drives perform multiple reads and/or writes
concurrently so the order of completion of outstanding operations is indeterminate.
 In addition, if power fails during a write it may be partially completed. Some storage
systems offer additional guarantees about write completion. These give rise to the

https://www.snia.org/sites/default/files/technical_work/Whitepapers/PM_Atomics_and_Transactions.pdf

NVM PM Remote Access for High Availability
May 2019 17

“Atomicity Granularity” attributes of the SNIA NVM Programming Model. Operating
systems may provide additional semantics atop these primitive behaviors as well.

Since disk drives and storage systems offer such weak ordering guarantees,
applications must be prepared to recover from any state of the writes that were in flight
when a failure occurs. This brings us to the concept of crash consistency, in which the
state of a storage system after a failure need only match the indeterminate write order
guarantee of a group of disk drives.

More formally, a storage subsystem state is considered crash consistent if it could have
resulted from power loss of a group of direct attached disks given the sequence of write
commands and completions leading up to the failure. This means that there is a rolling
window of outstanding write requests whose order is uncertain. Applications must be
able to recover from any order of those requests and must account for storage system
atomicity nuances in the process. For an application, recovery from a crash consistent
image is the same as a cold restart after a system crash.

4.5 Crash Consistency in PM Systems
Now consider the map-and-sync methodology described in the NVM.PM.FILE mode of
the NVM Programming Model. Sync has a very specific meaning. The only guarantee
that sync makes is that all stores in the address range of the sync that occurred before
the sync are in persistent memory when the sync completes. Sync does not otherwise
restrict the order in which data reached persistent memory. For example, if cache lines
1 through 5 were written in order by the application before the sync, cache line 5 might
have reached persistent memory first, possibly before the sync even started. This
flexibility enables potential write order optimization for cache performance.
Unfortunately it also creates ordering uncertainty analogous to that of crash consistency
in disk based systems.

The lack of ordering certainty gives rise to a lowest common denominator for
NVM.PM.FILE recovery similar to that which exists for disk drives. Specifically, the
application is uncertain as to which of the store instructions between two sync actions
will appear in persistent memory after a failure that occurs before completion of the
second sync action. If the actions and attributes of the NVM Programming Model are all
that is available then the application must execute additional sync actions whenever the
order of stores to persistent memory matters.

More formally, a persistent memory range is crash consistent if its contents at the start
of recovery could have resulted from the pattern of stores and syncs executed on the
initiators (processors or other sources of memory access) with data in flight to the
persistent memory prior to failure. In both disk drives and persistent memory, some
aspect of data atomicity with respect to failure is built into the crash consistency
assertion. Specifically, both the order and atomicity properties that are guaranteed for
local media must be duplicated at the remote site. The NVM programming model
describes atomicity for both disk drives and persistent memory. Based on the PM
model, unless the atomicity of fundamental data types provided by the local processor is
conveyed to the remote node, applications will need to use error checking such as CRC
on all data structures that need atomicity. The error check must be stored in such a way

NVM PM Remote Access for High Availability
May 2019 18

that atomicity can be verified after a failure that calls the remote copy of the data into
use. This is covered in more detail in section 6.5.

Crash consistency applies to literal data images as seen by processors. If crash
consistency is applied across nodes with different types of processors, the memory
layout at each node must be such that the applications running on the processor(s)
connected to that memory see the same data image created at the local site. This must
account for processor architecture specific bit and byte ordering practices. Crash
consistency does not account for other types of data formatting as might appear in the
presentation layer of a network stack.

Crash consistency is a complex approach to recovery from an application standpoint. It
also forces considerable overhead to precisely communicate every sync action to
networked persistent memory. This further illustrates the motivation for some notion of
consistency points such as persistent memory transactions and their relevance to high
availability use cases.

4.6 Recovery Point Objective
Another analogy between persistent memory and enterprise storage systems relates to
the concept of a recovery point objective (RPO). A recovery point objective is the
maximum acceptable time period prior to a failure or disaster during which changes to
data may be lost as a consequence of recovery. Data changes preceding a failure or
disaster by at least this time period are preserved for recovery. Recovery point
objectives are part of today’s disk based disaster recovery service level agreements.
Although they are most often expressed in terms of time, recovery point objectives can
also be specified as an amount of data changed, either in terms of bytes or operations
such as writes, stores or transactions.

Zero is a valid RPO value. In today’s disaster recovery systems an RPO of 0 mandates
synchronous remote replication. As a result at least one round trip to the remote site
and back is added to the time it takes to do a write. In addition, enough bandwidth must
be available to transmit every write to a remote site even if the same data blocks are
written repeatedly in rapid succession. Clearly this high level of consistency comes at a
significant cost in performance.

A non-zero RPO allows writes to flow to remote sites without slowing down local writes,
as long as the remote site does not get too far behind the local site. In addition, there
are opportunities to gather multiple writes to the same address within the RPO time
window into one write to the remote site.

The NVM.PM.FILE mode of the NVM Programming model includes an “Optimized
Flush” action which insures that a list of memory address ranges have been flushed
from the CPU to PM. These groups of address ranges must also, at some point,
become redundant in networked persistent memory. If we apply the recovery point
objective concept to persistent memory then we can delay transmission of data to
networked persistent memory so long as a consistency point is achieved at the remote
side within the RPO time window. Delayed transmission allows data transmission to be
batched into larger messages which reduces the net overhead of high availability.

NVM PM Remote Access for High Availability
May 2019 19

Having introduced the concept of RPO we can consider the state of memory at the end
of any “Optimized Flush” action to be used as a consistency point. If an application is
managing durability using only “Optimized Flush” and/or “Sync” actions then the
consistency point can be at least crash consistent. If an application is more involved in
managing durability atomically as with transactional persistent memory, the consistency
point may be more optimal. In either case the RPO can be used to determine how often
one of those candidate consistency points actually appears in remote PM. As with
remote replication, this requires additional time in order to optimize the flow of data to
networked persistent memory.

The data for a consistency point can be placed in networked PM in any order that
results in a state that meets the requirements of a candidate consistency point. For a
crash consistent candidate, the state of networked PM must adhere to the constraints
imposed by optimized flush or sync actions generated by the application. If the
consistency point is stronger, the constraints imposed by additional application
interaction such as transaction constructs must also be applied to the state of
networked PM. Both of these include the atomicity considerations described in section
4.4.

Write intensive applications that truly require RPO=0 are not likely to experience good
performance with persistent memory. RPO=0 imposes at least one network round trip
per optimized flush or sync. In addition, today’s systems do not assure that data has
reached persistent memory on the remote PM before the remote data placement
completes from the local server’s point of view. This could require another network
round trip just to assure durability at the remote node.

Network characteristics can be very important to the ability of a system to meet RPO’s
that involve RPM. Generally, network deployments must be analyzed to determine the
range of RPO’s a network can support based primarily on its latency and bandwidth
characteristics. Such analysis is a well understood topic unto itself that is beyond the
scope of this white paper.

4.7 Recovery Scenarios
To explore data recovery scenarios more deeply, consider the implications of the Error
Handling appendix of the NVM Programming Model specification. This, combined with
reasoning about sync/flush semantics and consistency points enables enumeration of
several scenarios based on the following criteria:

• Did a server fail? Server failures include anything that inhibits an application
running on a server other than a storage or memory device from accessing the
data that is in its local memory.

• Was a server forced to restart?
• Did a precise, contained memory exception occur?
• Is the application able to backtrack to a recent consistency point without

restarting, such as by aborting transactions?
• How up to date (fresh) is the redundant data?

NVM PM Remote Access for High Availability
May 2019 20

Permutations of these criteria create a handful of recovery scenarios.

S
ce

na
rio

R
ed

un
da

nc
y

fre
sh

ne
ss

E
xc

ep
tio

n

A
pp

lic
at

io
n

ba
ck

tra
ck

w

ith
ou

t r
es

ta
rt

S
er

ve
r R

es
ta

rt

S
er

ve
r F

ai
lu

re

In Line Recovery Better than
sync

Precise and
contained

NA No No

Backtracking Recovery Consistency
point

Imprecise and
contained

Yes No No

Local application restart Consistency
point

Not contained No NA No
NA NA Yes No

Application Failover Consistency
point

NA NA NA Yes

The following sections elaborate on each scenario.

4.7.1 In line recovery

In this scenario, the primary copy of a memory location is lost and if a copy is available
(or the equivalent) the data is recovered during a memory exception without any
application disruption. The control flow for this scenario is as follows:

• A precise, contained memory exception interrupts the application. The exception
handler of the NVM.PM.FILE implementation handles the exception,

• The NVM.PM.FILE implementation determines that it can recover the lost data
either locally or from networked PM.

• The NVM.PM.FILE implementation restores the lost data to local PM
• The application returns from the exception, causing the interrupted instruction to

successfully retry the memory access.
• The application continues from that point without any application level exception

handling or recovery.

This type of recovery requires that the recovered data be the most recently written data.
Sync semantics do not guarantee sufficient recency for this type of recovery. Consider
the following sequence of events:

A := 1;
OptimizedFlush(…&A…);
A := 2;
B:= A;
<processor automatically flushes 2 -> A before sync>
C:= A;
<failure to read A from PM causes interrupt during C:=A;>
<NVM.PM.FILE implementation restores value 1 -> A based on latest sync>
<processor repeats C:=A, assigns value 1->C;
OptimizedFlush(…&A,&B,&C…);

NVM PM Remote Access for High Availability
May 2019 21

If there were no failure, A, B and C would all equal 2 at the end of the above code
segment. However, a failure may occur such that B equals 2 and A and C equal 1. That
is because nothing about map and sync semantics keeps the processor from flushing
cached variables to PM before the sync action. Therefore any redundancy that is
created during or after sync may not be sufficiently up to date to restore data in such a
way as to assure correct application execution without backtracking (see section 4.7.2).

The RPO logic described above commences with the sync command. This means that
even when RPO=0, backtracking is required during recovery to adjust work in progress,
by means such as aborting transactions. Note also that this is really a high durability
scenario rather than a high availability scenario because there was no server failure.

4.7.2 Backtracking recovery

In this scenario an application is able to recover from memory exceptions by identifying,
aborting and retrying transactions, or other application specific equivalents.
 The control flow for this scenario is as follows:

• A contained memory exception interrupts the application. The exception handler
of the NVM.PM.FILE implementation handles the exception. Backtracking
recovery is potentially applicable even if the exception is not precise. An
imprecise exception does not allow resumption of execution at the interrupted
instruction.

• The NVM.PM.FILE implementation determines that it can recover the lost data
either locally or from networked PM.

• The NVM.PM.FILE implementation restores the lost data to local PM. The
restored data is not guaranteed to be any more recent than the last consistency
point. All committed transactions must be included in the last consistency point or
in consistency points before that.

• NVM.PM.FILE may be able to determine whether the page containing read data
in error has been modified since the last flush. If it has not been modified, the
error handler can restore the data and transparently resume execution without
backtracking. If that happens then the remaining steps in this description do not
apply.

• The application receives an exception event or signal along with an indication of
the address ranges that were restored. If all of the restored data is guaranteed to
be covered by committed transactions then the application can return from the
exception and continue processing in line. Depending on the application and/or
transaction implementation the contents of some roll forward logs in committed
transactions may need to be re-applied to the recovered page before returning
from the exception. If some of the data is covered by uncommitted transactions
and the rest is covered by committed transactions then backtracking recovery
proceeds by aborting transactions and resuming application work flow at a point
that will cause aborted transactions to be retried.

This scenario clearly describes a relationship between transactions and recovery, since
aborting transactions is the means of backtracking referenced. It would be helpful for
the transaction service to assist in determining which of the recovered data items are
related to a given transaction. Such a determination could then be used to ascertain the

NVM PM Remote Access for High Availability
May 2019 22

minimum set of transactions that need to be aborted or reapplied to recover from the
restoration.

Depending on the application this type of recovery may require RPO=0 with respect to
transaction commits. On the other hand, some applications may be able to recover from
arbitrarily old memory states without restarting.

4.7.3 Local Application Restart

In this scenario an application restarts in order to complete recovery from a data loss.
The term restart is used here to refer to the resumption of application execution from an
initial state such as would occur after the application’s process(es) were killed. This
scenario applies if neither the in line nor the backtracking scenarios were applicable and
the server running the application has not failed. The control flow for this scenario is as
follows.

• The application restarts. This could be the result of decisions by the application
itself, some other hardware, software or administrative intervention, or power
loss.

• Recovery code that may be specific to the application or part of a transaction
service uses NVM.PM.FILE.GET_ERROR_INFO to identify persistent memory
ranges that may require recovery over and above that which may have occurred
before the restart. If data recovery is required, human or file system intervention
may be required to restore data to a consistency point based on file system
redundancy features or backups.

• At this point the persistent memory image must represent a consistency point as
described above. Application specific code or a transaction service cleans up the
consistency point by completing committed transactions and aborting
uncommitted transactions.

• The application completes the restart based on the cleaned up persistent
memory image and resumes processing. Application work flows that involved
aborted transactions may need to retry those transactions.

This type of recovery can use RPO>0 on all of the data in a persistent memory image.
The reference here to a persistent memory image is significant in that all of the data
within the scope of the application must be restored to a state that represents the same
consistency point.

4.7.4 Application Failover

In this scenario a server failure forces the application to restart on another server. This
is generally the result of hardware failure that causes data to be inaccessible to
applications running on a server, or that renders it incapable of running an application.
For the purpose of this description the entire server is considered to be failed if any part
of it has failed. In cases of intermittent or partial failure a failover policy must determine
when the server is designated as failed.

A failover relationship must be constructed and maintained with the target server(s) of a
failover including the following capabilities.

• Server failure must be detected and communicated to a server capable of taking
over.

NVM PM Remote Access for High Availability
May 2019 23

• The failing server must stop execution and be isolated from non-failing servers so
as to insure that no artifacts of its execution could interfere with ongoing
operation.

• The server taking over must have or obtain access to a persistent memory image
that represents a consistency point from which the application can restart.

An example control flow for this scenario is as follows.

• A non-failing server capable of taking over an application (or a portion thereof)
from a failing server is notified of the server failure. This can be the result of the
failing server detecting its own failure, or it can be detected by a monitoring
service such as a heartbeat.

• The non-failing server identifies all of the PM relevant to the application based on
configuration information and takes measures to insure that the failing server no
longer has access to the surviving copy or copies of the data.

• If the non-failing server does not have local access to all of the PM relevant to
the application, data is migrated to local PM from networked PM on other non-
failing servers.

• The application restarts on the non-failing server as described in section 4.7.3
except that it uses an image of a consistency point that does not depend on any
PM that is contained within the failing server and is fresh enough to adhere to the
RPO.

• During or after application restart, data that lost redundancy due to the server
failure is rebuilt provided that PM resources are available for that purpose.

• After the server is repaired or replaced it can resume participation in the HA
system running the application once it has regained access to a complete local
PM image.

Note that this scenario involves logistics of application failover that go beyond PM.
These logistics are generally provided by additional failover services related to the OS
or hypervisor that integrates a failover cluster.

4.8 Flush synchronization, ordering and scope

Version 1 of this white paper motivated additional work on the
“NVM.PM.FILE.OPTIMIZED_FLUSH” action that appears in the “NVM Programming
Model”. OPTIMIZED_FLUSH comprises a series of flushes followed by a store barrier.
As a result there is no way specified in the programming model to initiate flushes
concurrently with ongoing activity. Such concurrency would be desirable so as to
reduce the time spent completing the store barrier, especially when RPM is involved.
For this reason the TWG is acting on a proposal to optionally split OPTIMIZED_FLUSH
into two actions.

• NVM.PM.FILE.ASYNC_FLUSH – Initiate flushes for one or more memory ranges
but do not wait for flushes to complete

• NVM.PM.FILE.ASYNC_DRAIN – Wait for all flushes within the scope of the drain
to complete

ASYNC_FLUSH is useful for accelerating RPMA by enabling more concurrent data flow
leading up to a synchronization point, such as the end of a transaction, that triggers

NVM PM Remote Access for High Availability
May 2019 24

ASYNC_DRAIN. The split also benefits some local PM in some scenarios as well.
Note that the use of the “ASYNC” prefix is intended to connote asynchrony between
flush and drain. It does not denote non-blocking actions as ASYNC_DRAIN
implementations, in particular, may block. Although OPTIMIZED_FLUSH will continue
to exist in the Programming Model the remainder of this section describes ordering in
terms of ASYNC_FLUSH and ASYNC_DRAIN. OPTIMIZED_FLUSH is simply a hard
coded sequence of the two.

Figure 6 provides a context for reasoning about RPMA ordering. Here we see an
application comprised of multiple application components such as threads or processes
running on Node 1. Each application component creates a stream of RPM operations
such as Load, Store and Move instructions as well as ASYNC_FLUSH and
ASYNC_DRAIN calls. An RPMA library translates the stream into operations that can
be interpreted by underlying network adapters and switches.

The ordering of operations enforced by the network is represented by an Order Nexus,
the precise nature of which is implementation specific. At Node 2, Network hardware
and software applies the operations in each stream to PM regions. Even though no
overlapping PM regions are shown, certain ordering constraints apply the all of the
regions even across streams. If regions were to overlap each other, applications would
need to implement additional explicit ordering constraints that are beyond the scope of
this document. The node and network labels overlap intentionally to indicate that
networking may involve both hardware and software. The order nexus overlaps the
application to indicate that application access to networks must be configured in a way
that accounts for the network’s order nexus implementation. The order nexus overlaps
RPM to indicate that RPM implementations may also need to account for ordering.

NVM PM Remote Access for High Availability
May 2019 25

Figure 6 – Operation Streams and Ordering

The only point of store or move ordering required by the NVM Programming Model that
applies to RPMA is a type of store barrier that is represented by ASYNC_DRAIN. Store
barrier semantics state that all stores or moves to ranges where flush has been
requested will reach persistence in a way that enforces a happens-before order
relationship. Specifically, the completion of all ASYNC_FLUSH actions that apply to
memory regions in the same scope as an ASYNC_DRAIN must happen before any
actions that follow the ASYNC_DRAIN. The order nexus boxes in Figure 6 represent the
scope of happens-before relationships.

Application

Application
Component

1

Application
Component

2

Application
Component

3

RPMA Library

Stream 1 Stream 2 Stream 3

Adapters,
Switches

Adapters,
Switches

RPM

Region
1

Region
2

Region
3

Region
4

Region
5

Region
6

Region
7

N
od

e
1

N
et

w
or

k/
In

te
rc

on
ne

ct

N
od

e
2,

 P
M

Coordination

Order
Nexus

Order
Nexus

NVM PM Remote Access for High Availability
May 2019 26

In this model, an Order Nexus is assigned to each application component during its
initialization. We will refer to this initialization as session creation. When multiple
application components share an order nexus, ASYNC_DRAIN actions in any of their
streams apply to the memory regions named in ASYNC_FLUSH actions across all of
their streams. On the other hand if an application has components assigned to multiple
Order Nexus’s it is up to the application to coordinate ASYNC_DRAINS across its
components.

The NVM Programming Model specifies that data must be within a persistence domain
prior to the completion of OPTIMIZED_FLUSH. The implementation of this requirement
depends on various aspects of systems including ordering implementation. Some
implementations may apply this same requirement to RPM. This does not necessarily
require network services to wait for store barriers to complete as long as
ASYNC_DRAIN and OPTIMIZED_FLUSH have some means of implementing the NVM
Programming Model requirement.

ASYNC_DRAIN allows implementations to force additional data to RPM over and above
the ranges described in ASYNC_FLUSHes. This becomes a tradeoff between
implementation complexity in the form of tracking metadata for individual ranges, and
data pipeline efficiency in the form of minimized data movement. The order nexus
abstraction is intended to allow implementations make this tradeoff while leveraging
native constructs such as queue pairs and enforcing order in a well-defined manner with
respect to the Programming Model.

The native constructs that implement an order nexus may also be relevant to system
initialization and failure recovery such as the following.

• Although the means of associating applications with network resources are
network and protocol specific, they become associated with an order nexus
implementation. The application must be configured during session creation in
such a way that the order nexus associations implied by the network
configuration properly insure data consistency.

• In the event of network failure, sessions may need to be created over again so
that native constructs that form an order nexus are re-initialized. Should this
occur, recovery actions must assure application data consistency. This may
involve multiple layers of RPM stack implementation over and above hardware
and order nexus implementations. Additional detail on error recovery is covered
in section 7.

ASYNC_FLUSH and ASYNC_DRAIN expose another application level tradeoff
regarding how long to wait between Stores (or Moves) and ASYNC_FLUSHes.
Likewise, there may be application choices regarding the accumulation of
ASYNC_FLUSHes before an ASYNC_DRAIN. If the system implements an RPO as
described in section 4.6, these decisions are likely to be thereby constrained. Since
these decisions may be influenced by the presence of RPMA in the stack so it would be
useful for the application to be able to detect that presence. Beyond that, these
considerations are application specific and beyond the scope of this document.

NVM PM Remote Access for High Availability
May 2019 27

4.9 Integrity Checking
The NVM programming model version 1.0 included an “Optimized Flush and Verify”
action that was initially thought by some to be analogous to “Write and Verify” SCSI
command for disk drives. Further investigation proved that verification is at best
expensive and often impractical. In RPM scenarios, given various network, CPU and
memory component implementations, it can be so difficult to assure that data became
persistent that applications should consider explicit integrity checking of data after it
reaches persistent media. This could be done using actions that enable a hash
computation that is known to both the consumer and the provider of the RPM.
Implementation could include the following.

• Upper layers of an RPMA stack negotiate common hash algorithms implemented
in storage, network or software infrastructure.

• RPM providers could compute hashes for each region designated in a new
“Integrity Hash Calculation” option or action. In this scenario RPM consumers
would compare hashes with known correct values.

• -or- RPM consumers could compute hashes and send them to RPM providers
where they are re-computed using stored data and compared. Verification could
occur during writes and/or in response to a separate action or option.

Additional benefits of integrity checking include the following.
• Faster detection and isolation of data corruption, giving corrupted data less time

to propagate.
• Greater assurance of correct and timely error recovery, thus reducing the

negative impact of exceptions.
• More rigorous and efficient background data scrubbing to detect data issues

sooner, reduce repair time, increase availability and decrease probability of data
loss in redundant systems.

Those familiar with SCSI can see how this generalized description could include a
range of implementations, some of which align with DIF/DIX features.

5 HA Extensions to NVM.PM.FILE
Figure 7 illustrates a layering of software modules that includes the following features.

• User space NVM.PM.FILE implementation represented as libraries to the
application

• User space based replication via RPMA (e.g. RDMA or Memory Interconnect
protocol) to persistent memory in separate hardware

• Local and remote file systems. The local file system is PM aware and supports
memory mapping. The remote file system stores data in PM and allows it to be
accessed using an RPMA protocol such as RDMA.

• User space optimization to access remote memory

NVM PM Remote Access for High Availability
May 2019 28

Figure 7 – HA Extension to NVM.PM.FILE

The application is presented with an implementation of NVM.PM.FILE with the
assistance of user space libraries. One of these consists of the standard file system API
while the other implements NVM.PM.FILE.OPTIMIZED_FLUSH. The load/store
capability of the application is shown in the center of the diagram as it is enabled once
files are memory mapped.

Using the NVM.PM.FILE mode we see that replication software (e.g. RAID or erasure
coding) is implemented in the user space library. This software enables construction of
a high availability solution by communicating with both the local file system and a
remote file system via the network file system client and adapter illustrated to the right
of the PM-aware file system and the PM device.

The user space library is capable of setting up a remote memory access session with
the remote file system using well known means such as RDMA, OFA libfabric or an
open memory interconnect. The session can then be accessed from user space to
enable data to be written to networked PM for redundancy without context switching.
The user space “msync” and “opt_flush” use the session for this purpose during sync
and optimized flush actions respectively as represented by the black dotted arrow.
Replication for HA is achieved when the remote write reaches the persistence domain in
the remote system as a result of the remote memory access. The optimized flush and
native API paths may use each other’s implementations should it be advantageous to
do so.

Application

Opt_flushNative file
API

libc libpmem

Load/store
NVM.PM.FILE mode

User space

Kernel space

MMU MappingsPM-aware file system

PM device

Network file system
client

opt_flushmsync

Adapter

RPMA Operation Requests

NVM PM Remote Access for High Availability
May 2019 29

6 RPMA for HA
This section provides additional detail on Remote Persistent Memory Access (RPMA)
for HA in the context of the software model described in section 5.

6.1 Peer to Peer Deployment Model
The following figure illustrates two servers, each of which runs an NVM.PM.FILE
implementation in cross-communicating client server file systems.

Figure 8 – NVM.PM Peer to Peer HA Replication Deployment Diagram

Peer A and Peer B are physically separate servers or server blades connected by a
network or memory interconnect. Each server has access to the other’s file system in a
client/server configuration such as NFS or SMB. Both message passing and RPMA
communication passes between the remote access clients and servers as indicated in
Figure 7. Each peer only has memory mapped access to local NVM .

The adapters in this figure are specific to the services used to implement RPMA. If
RDMA is used, the adapters may be, for example, HCAs or RNICs. If a memory
interconnect is used the adapter may be part of an IO memory controller implementation
for a protocol such as Gen-Z or OpenCAPI.

6.2 Address Spaces
The use of RPMA with memory mapped files introduces additional address spaces
which must be correlated by various elements of the system. Figure 9 enumerates
those address spaces. The vertical axis represents numerical address assignments.
The placement of the arrows illustrates the fact that only the physical addresses used in
the file system’s view of the media coincide.

Operating System

Application

open/
close

map/
unmap

sync/
opt-flush

load/
store

Remote Access
Client

Remote Access
Server

NVM

Operating System

Application

open/
close

map/
unmap

sync/
opt-flush

load/
store

Remote Access
Client

Remote Access
Server

NVM

A
da

pt
er

A
da

pt
erremote

write
remote
write

NVM PM Remote Access for High Availability
May 2019 30

Figure 9 - Memory Mapping and Session Address Spaces

Starting at the left we see the physical PM address space as viewed by the CPU
running the application. The notions of virtual and physical addressing are always
relative to a point of view. In this case, the CPU observes contiguous ranges of physical
memory addresses that represent a file resident in PM according to the file system’s
metadata and allocation policies. Media controllers closer to the actual physical media
may introduce additional address virtualization for purposes such as defective media
replacement.

The application address space column represents the CPU’s memory mapping unit
providing the application with virtual addresses for ranges of PM as part of the
NVM.PM.FILE.MAP implementation. The mapping between the first and second
columns of Figure 9 is typically maintained by operating systems using page tables.
This virtual address space must align with the application’s method of resolving pointers
among persistent data structures. The alternatives for pointer resolution are described
in the NVM Programming Model Appendix A.

RPMA is initialized by creating a session for exchanging data between servers. When
the session is created using things like RDMA, libfabric or memory interconnect
protocols, an additional address space is created to rapidly and securely correlate
registered memory across the adapters in Peer A and Peer B. This session address

NVM PM Remote Access for High Availability
May 2019 31

space has no numerical alignment with any of the other address spaces. The mapping
between the session address space and the application and server address spaces is
under the control of the session-aware layers in the adapters and related software on
each peer. The RPMA session is used by the user space msync and opt_flush
implementations shown in Figure 7. These implementations use remote write
operations to copy portions of the application address space from the client to the
server for replication. This copy process is represented in Figure 9 as a single arrow
from the application address space to the session address space. The other arrows
appear in pairs to represent address range mappings at multiple layers in the system.

The server address space column represents the virtual memory address space in the
peer running the remote access server as shown in Figure 9. For HA purposes the
application and server virtual address spaces do not necessarily need to align as long
as the file system metadata reflects the byte-wise correlation of redundant data within
files. As with the application, the mapping between the server address space and the
device address space is maintained by the OS on the server.

As described in the scope of this document, sharing data in PM for purposes other than
HA is not considered here. If real time sharing were a consideration, additional
constraints might apply to the correlation of the virtual address spaces between the
application and server columns.

6.3 Assurance of Remote Durability
In most of today’s hardware implementations, completion of a write is not sufficient to
guarantee that data has reached persistent memory. This is because the path from an
adapter to an NVDIMM as shown in Figure 4 goes through several buffering stages as it
traverses the peers, including I/O busses, networks and CPUs. Within the CPU there
are generally buffers or caches that are not necessarily flushed by the CPU before the
network adapter responds to the remote write. For example, in some CPU architectures
there are several levels of volatile buffers or caches that may need to be flushed
depending on system configuration. This may include PCI buffers, Memory controller
buffers and possibly CPU caches. This creates hidden inconsistency between
redundant PM images that could lead to inaccurate recovery from hardware failure after
power loss.

This can be rectified if peer A signals peer B to trigger a flush of any buffers on the IO
bus (generally PCI) to memory path. Unfortunately this creates significant overhead
compared to the low latencies of local NVM.PM.FILE access. It would be highly
desirable to avoid this overhead.

6.4 RDMA Example
Figure 10 illustrates the interaction between the two servers and the adapters that
interface them to the network as illustrated in Figure 4 and Figure 8. RDMA terminology
is used in this example although the same sequences of events can be orchestrated
using other RPMA technologies.

NVM PM Remote Access for High Availability
May 2019 32

Figure 10 - Peer to Peer HA Replication using client initiated RPMA

App: SW PeerA:
Host SW

PeerA:
Adapter

PeerB:
Adapter PeerB: PMPeerB:

Host SW

Map
Open

Map

Register
Memory

Async_Drain

RDMAWrite

RDMAWrite

Write

RDMAWrite

Write

RDMAWrite

Flush

Flush

Flush

Unmap
Unmap

Deregister
Memory

1

2

3

RDMAWrite

Flush

RDMAWrite

Write

Store

Store
Store

Async_Flush

Async_Flush

<Library> <Verb> <Network> <IO Bus> <Memory Bus>

NVM PM Remote Access for High Availability
May 2019 33

This flow illustrates interaction between 6 actors; an application, Peer A, Peer B, the
Adapters in peers A and B and the persistent memory in peer B. The annotations at the
top of the diagram provide additional context for the interaction between the actors
represented by adjacent columns. Communication between the first two columns
generally takes the form of software library calls. The actions that result from these
calls generally flow to adapters in the form of verbs. The adapters communicate with
each other over the network, and with host CPU’s over an IO bus such as PCIe.
Finally, hosts use memory busses to communicate with memory. IO bus and memory
bus interactions are called out specifically on Peer B to illustrate tradeoffs in that area
that are described below.

The context provided by these annotations is necessary to differentiate the
interpretation of terms such as “RDMAWrite” and “Flush” which, although they recur
across columns in the diagram, have slightly different meanings based on the context.
For example, “Flush” takes the form of a verb (ala InfiniBand) when it flows from a host
to an adapter, but it takes the form of a network protocol when communicated between
adapters. Similar distinctions occur in each context.

Some implementation specific session initialization must occur prior to the activity
shown in this diagram. This includes initializing and opening adapters, creating queues,
authenticating the Peers and querying for attributes. At the start of the diagram, Peer A
opens an RDMA session with Peer B while memory mapping a file. It establishes a
remote address mapping and registers it with the adapter. Within this session,
application addresses on Peer A are used to access persistent memory devices on
Peer B in a way that aligns with file system metadata. This is illustrated in detail by
Figure 9.

The application then uses CPU instructions to store data to a number of possibly
discontiguous memory ranges on Peer A. This is illustrated on the application thread
right after the Map. In this example the application uses the Async_Flush action after
the first store to trigger a copy to PeerB. The application may use Async_Flush multiple
times. After all of the necessary stores have occurred the application uses the
Async_Drain action to ensure that the stores are persistent on PeerB. Async_Flush
actions causes the remaining Writes, if any, to be transmitted from Peer A to Adapter A.
As represented near circled numeral 1, Host A can get a completion notification for each
Write however this may not indicate that the data has progressed beyond Adapter A.
This is analogous to the semantics of a local store within a CPU.

After Async_Flush Adapter A transmits data to adapter B which uses Peer B’s IO bus
(i.e. PCIe) to deliver data to PM on Peer B. It is up to Adapter A to determine how many
Write transmissions occur between itself and RNIC B. Since no acknowledgement is
required in that exchange this decision has miniscule effect on latency. As per section
6.3, at this point there is no guarantee that data has actually reached PM. Figure 10
illustrates this with the asynchronous write process in which writes reach the PM actor
at unknown times after they are received by Adapter B.

RDMA implementations are required to ensure that the signal indicting receipt of a
SEND (and certain other verbs) cannot be generated by Adapter B until all of the writes
that precede it have been delivered by Adapter B. Therefore an upper layer can

NVM PM Remote Access for High Availability
May 2019 34

implement the flush operation using a SEND at circled numeral 2 which is processed by
the software in Peer B at circled numeral 3. The flush is required to insure that all of the
writes that preceded the flush are in PM before Adapter B responds back to Adapter A
indicating completion of the flush. The gray box near item 3 indicates that multiple flush
implementations are possible that also reflect Async_Drain semantics. This may
involve remote host software, remote host hardware, or other approaches such as a
flush protocol operation on the wire that may involve extensions to existing protocols.

By this means writes and flushes are orchestrated in such a way that the net effect of
the original Async_Flush and Async_Drain actions is the same on Peer A and Peer B,
namely that all of the data referenced by the Async_Drain has reached PM before the
completion of the Async_Drain. Used correctly by applications, this is sufficient to
enable crash consistency with RPO=0 (relative to Async_Drain actions) in backtracking
recovery scenarios as described in section 4.7.2. As described in section 4.8, this
entire sequence can be implemented using Optimized_Flush instead of Async_Drain, in
which cases the Async_Flush actions would not appear.

When the application is finished modifying the memory mapped file it cleans up by
deregistering and closing the RDMA session.

Like local memory access, this scenario does not require that all Write’s reach the PM in
Peer B in the same order that they did in Peer A, as long as the memory state on both
peers adheres to the definition of Optimized_Flush and Async_Drain. For RPO=0,
Optimized_Flush and Async_Drain actions are executed in the same order on both Peer
A and Peer B. Ordering constraints for RPO > 0 are implementation dependent so long
as reordering does not corrupt a consistency point that may become visible to Peer A
during recovery. Remember also that Optimized_Flush and Async_Drain do not make
atomicity guarantees. This means that remote PM must account for the local atomicity
that originates with the local CPU.

NVM PM Remote Access for High Availability
May 2019 35

Figure 11 illustrates the use of redundancy on Peer B to recover from an unrecoverable
ECC error on Peer A.

Figure 11 - Uncorrectable Error Recovery

[load receives uncorrectable ECC error]

PeerB:AdapterPeerB:HostPeerA:HostApp:SW

cond

Peer-to-peer NVM.PM HA recovery scenario

Open

Mmap
registerMemory

OptimizedFlush

OptimizedFlush

[load receives uncorrectable ECC error]

readError

recoverPage
remoteRead

Backtrack
OptimizedFlush

OptimizedFlush

Map

[load receives uncorrectable ECC error]

NVM PM Remote Access for High Availability
May 2019 36

For graphic simplicity the PM thread of this figure has been removed. It participates in
OptimizedFlush (used here instead of Async_Drain) as described in Figure 10. This
scenario proceeds as before until the error occurs, represented by the box labeled “load
receives uncorrectable ECC error”. At that point the application is shown encountering a
“read error” which represents an exception that is fielded by the file system. The
resiliency function described in section 5 does a remote read to recover the lost data.
Since the data is only as recent as the last time it was referenced by an
Optimized_Flush, backtracking (such as a transaction abort) may be required on the
application’s exception handling thread as described in section 4.7.2. Any aborts may
require additional Write and Flush actions prior to the completion of the exception
handling, after which the application resumes normal operation. As in Figure 10 the
application eventually ends the RPMA session (not shown).

6.5 HA across multiple processor architectures
The use of RPMA for direct data transfer to PM in a remote node does not address any
potential architectural incompatibilities between local and remote nodes. For example,
with RDMA specifically the application is responsible for addressing data representation
differences such as endian-ness or floating point number encoding. If remote access
for HA is attempted across divergent processor architectures then portable data
structures are required, especially in the event of failover from one processor
architecture to another.

A similar issue arises with respect to atomicity of fundamental data-types (NVM
Programming Model Version 1.2 section 10.1.1 – “Applications and PM Consistency”).
It is common for PM optimized data structures to depend on atomic updates to
fundamental data types such as integers and pointers. Such dependencies may not be
conveyed across RPMA operations due to processor architecture differences or
packetization of data within or below the transport layer of the network protocol stack.

Since there are no common specifications of failure atomicity related to either RPMA or
processor architectures there is no way to guarantee correct handling of atomicity short
of detailed end to end review of the component implementations involved in a given
deployment. Some existing protocols include atomic operations however these do not
address persistence. In the absence of a failure atomic store as a primitive for remote
fundamental data type operations forces applications to fall back to checksum based
atomicity.

At a minimum these considerations create a requirement that the architectural similarity
of two nodes in an HA relationship be ascertainable by management software. This
should provide a warning in conditions where access to data structures after failover
may be in doubt. In addition, any applicable atomicity granularity attributes should
account for remote atomicity. Finally, restrictions on component replacements or VM
relocations that cross processor architecture boundaries may also apply.

Additional exploration of potential failure atomicity considerations appears in Appendix
C.

NVM PM Remote Access for High Availability
May 2019 37

7 Error Handling
There are numerous sources of errors in the processes described in section 6. Rather
than attempting an exhaustive enumeration of these, this section describes a systematic
approach to error detection, recovery and reporting in the context of Figure 12 below.
In general, error recovery should occur at the lowest level possible. If recovery is not
possible at a given layer, the error should be propagated upward to the next highest
layer in the stack. With this in mind, error handling processes or actions can be
categorized as follows.
• Detection – some piece of hardware or software detects an error.
• Local Recovery – the portions of the system affected by the error take action that

allows them to continue operation, if possible, in spite of the error.
• Global Recovery – software at some level in the system ensures that the entire

system has responded to the error in such a way that the system can continue
operation without risk of data corruption or inconsistency. This may involve
parts of the system that were not initially involved in error detection or local
recovery.

• Reporting – software logs the error. Each error detected should be reported at the
lowest layer possible. Error information should be propagated upward only to enable
recovery. Recovery attempted and its success or failure should be reported by the
layer that initiated recovery.

Figure 12 shows 3 layers of error handling operating across 2 nodes. Many
implementations may involve more nodes or nested recovery in which complex
recovery processes are embedded within a single layer. Even so, this model is useful
to illustrate how different types of recovery are layered.

NVM PM Remote Access for High Availability
May 2019 38

Figure 12 – Error Handling Layers

Here we see Application, Replication and Driver/HW layers stacked on 2 separate
nodes. Although most layers may be bypassed in real time, the data path
conceptually flows through all of the layers that may become involved in recovery.
The arrows across the middle represent categories of recovery action that may be
coordinated across networks between corresponding layers. They are dashed
because they represent virtual communication that is actually tunneled through lower
layers. They are bidirectional because commands flow to the right while status and
error information flows to the left. The driver, hardware and physical layers are
conjoined to illustrate that the placement of low level recovery actions depends on
implementation.
In the software layering of Figure 12, most of these actions are performed at one of
three layers in the system:
• Hardware and low level software such as drivers – NICs, PM devices or

processors detect and possibly locally recover from errors. For soft errors,
hardware may take all of the necessary action to globally recover from the error

Application

Replication

Drivers,
HW

Application

Replication

Drivers,
HW

Physical Layer
R

W

RW

Node 1 Node 2

NVM PM Remote Access for High Availability
May 2019 39

without involving software beyond the associated drivers. Network fault tolerance
techniques such as multi-pathing, forward error correction, etc. are grouped in this
category. Note that local persistent memory error handing is not addressed here
as it is covered in the Error Handling content of the NVM Programming Model
specification.

• Storage Resiliency – Resiliency is implemented as a replication layer using
techniques such as RAID or erasure coding. The replication layer is seldom the
first to detect errors but it is often the locus of global recovery. In this case the
replication layer is a user mode library as shown in Figure 7.

• Application – In some cases the application must respond to errors, especially if
backtracking is involved. For this purpose, transaction functionality is considered
to be part the application.

These layers are listed above from lowest to highest levels in an escalation hierarchy.
Each layer performs best effort recovery within its scope. If that recovery completely
resolves the error and no other recovery action is needed then that layer has achieved
global recovery and higher layers are not involved. Otherwise the layer that detected
the error performs whatever local recovery it can, and escalates the failure to the next
layer up, where the process repeats. The application layer is the last resort for global
recovery. Failure of global recovery at the application layer renders the system at
least partially inoperable pending manual intervention.
For example, at the lowest layer shown in Figure 12 error recovery generally
involves some combination of low-level error correction and operation retry. This is
illustrated by the “Retry” arrow across the driver/HW layer of Figure 12. Initial error
detection may occur at either end of a network connecting multiple nodes.
Although the division of recovery responsibility is implementation specific the
greater burden generally falls on the initiating end (Node 1 in this case) where the
need to execute a read or write originated.
If the driver/HW layer cannot fully recover, the resiliency layer may attempt recovery
from redundant data using such processes as the rebuilding of data in a RAID
implementation. If the resiliency layer fails, or if there is question regarding the
consistency of recovered data, the error is escalated to the application layer where
processes such as transaction recovery or restoration from an earlier backup may
occur. These are illustrated by the “Backtrack” arrow because they often involve
some loss of work. Generally, failure of the resiliency or application layers is
detected at the initiating node (Node 1 in this case) although exceptions may arise
due to background processing such as data scrubbing or consistency checking ala
Section 4.9.

7.1 Hardware
Networking hardware, drivers and/or protocol stack are expected to detect, report and
locally recover from the following types of errors:

• Loss of network access
• Loss of remote server power
• Transient network errors – network is expected to achieve global recovery

NVM PM Remote Access for High Availability
May 2019 40

• Unrecoverable transmission errors – For global recovery at the replication or
application levels this is expected to be converted into a data loss or a loss of
network access depending on the pervasiveness and type of errors.

7.2 Replication
The replication layer is expected to report and locally recover from the following types of
errors. Additional expectations are listed case by case. Local recovery without
detection is triggered by error reporting from hardware layers:

• Loss of network access – The application may proceed without redundancy.
The replication layer may need to do local recovery. The replication layer is
expected to report the failure and achieve global recovery by resynchronization
local and remote data after network access is re-established so that both
represent the same consistency point(s) as defined in section 4.

• Loss of remote server power – The replication layer is expected to detect and
locally recover. The replication layer may also detect the error. In addition, the
file system layer is expected to report the error and achieve global recovery as
with loss of network access.

• Remote server or file service reset – The replication layer responsibilities are the
same as with loss of remote server power, assuming no lapse in network
accessibility.

• Loss of local data – The replication layer reports and locally recovers from this
type of error. If global recovery can be achieved without backtracking then it may
be accomplished by the file system layer. Otherwise the application layer must
participate.

• Loss of local data with additional error such as loss of remote data or remote
server access – Since this case involves multiple failures the replication layer
may be unable to achieve global recovery. This can only be achieved at the
application layer.

• Data corruption – The replication layer may need to participate in local recovery.

7.3 Application
The hardware and replication layers make every effort to detect and recover from errors
without application assistance, however in backtracking and/or data loss scenarios the
application layer must participate as follows. The application layer reports its
involvement in any of these scenarios:

• Loss of remote server access – This represents a group of error conditions in
which the replication layer orchestrates global recovery using backtracking to a
prior consistency point. The application may need to participate in backtracking
by, for example, aborting and/or retrying transactions.

• Loss of local data – The application or local PMFS detects this error, reports it,
and may participate in global recovery.

• Loss of local data with additional error or loss of both local and remote data – the
application must orchestrate global recovery by restoring data from backup
(outside of the replication layer) and restarting.

NVM PM Remote Access for High Availability
May 2019 41

• Data corruption – the application must detect this error and orchestrate global
recovery. This may involve rolling back through backups until one is discovered
that does not have the corruption.

8 Requirements Summary
This document describes some specific examples in terms of RDMA, but
RDMA per se is not the only way to address these requirements, hence the
pervasive references to RPMA throughout the document. In addition, the
description in section 6 includes some implementation specific details in
order to concisely communicate a desired outcome.
This requirements summary adds to the behaviors common to RDMA
transports. In the interest of clarity each of the following items is framed as a
general requirement with implementation specific examples to further
illustrate the nature of the requirement:

• Assurance of durability
This requirement motivates some protocol to force data into PM at
the RDMA data sink (i.e. the remote peer in Figure 8) including
confirmation of same back to the application. This could involve
additional flow between client and server or it could be built into the
transport as a latency reduction.

• Efficient byte range transfers
This requirement represents a strong desire to reduce the latency
of HA for Load/Store workloads to a much larger degree than can
be achieved with today’s RDMA implementations. For example,
load/store access tends to create sets of small byte ranges that can
be packaged in one RDMA and piggybacked with remote flushing
to persistent memory. This requirement also motivates a kind of
scatter gather RPMA that operates at both the application and the
remote access server as shown in Figure 9. Of course byte range
transfer optimization should not come at the expense of large
transfer optimization. It should be reasonable to assume that the
transport can self- optimize based on the expression of byte ranges
in the application’s call to optimized flush.

• Order Nexus
Support an order nexus abstraction sufficient to meet the
requirements of NVM.PM.ASYNC_DRAIN in coordination with the
release of that feature in the NVM Programming Model
specification.

• Discoverability of architectural incompatibilities
Gaps in the ability to fail over to another node and recover data on
that node should be discoverable. One known type of gap has to

NVM PM Remote Access for High Availability
May 2019 42

do with data representation. This is described in more detail in
section 6.5. As described there, the architectural similarity of two
nodes in an HA relationship should be ascertainable by
management software. Configuration software should provide at
least a warning in conditions where access to data structures after
failover may be in doubt.

• Atomicity of fundamental data types
PM related software may depend on atomicity (all or nothing
updates) of fundamental data types (integers and pointers) with
respect to power failure. When available, this is a feature of
processors. If this requirement cannot be met by a given network
and processor implementation, then application level CRC will be
required. Section 6.5 outlines the issues and alternatives related to
remote failure atomicity. Some option validation, experimentation
and most likely new implementation is needed. In any case the
NVM Programming model specification should include atomicity
granularity and/or other attributes that account for remote atomicity.

• Isolation/HW fencing after failure
Correct failure recovery generally assumes fail stop behavior of failing nodes
before remaining nodes resume activity. Fail stop means that a failing
component cannot come back to life or otherwise behave in a way that
disrupts the rest of the system during or after recovery. Fail stop behavior
must include scenarios that involve concurrent power loss and hardware
failure. Failing components are required to be isolated from the rest of the
system even in those scenarios.

• Error handling
Error recovery should occur at the lowest level of an implementation that is
capable of recovery. When a layer cannot recover, errors should be reported
to upper levels (e.g. replication or application in Figure 12) to enable data
recovery techniques described in section 4.7, up to and including application
level backtracking.

Several ongoing areas of requirement investigation include the following.
• Security – See the SNIA PM Hardware Threat Model White Paper
• Resource management – There is a general notion that buffer management

can be simplified relative to the use of RDMA, for example, in today’s non-
PM file systems. In PM systems, remote access flows directly to and from
persistent memory that is permanently allocated (or semi-permanently
allocated for the duration of a memory mapping) for the purpose of mirroring
specific client data. This is expected to eliminate buffer resource
management considerations., thus potentially enabling the elimination of a
network round trip in HA solutions for PM.

NVM PM Remote Access for High Availability
May 2019 43

Appendix A – HA Protocol Flow Alternatives
As shown in Figure 10, since the PCIe bus doesn't have a persistence barrier
transaction, and the memory systems on modern systems use multiple distributed
memory controllers, the ordering of writes to the persistence domain is indeterminate if
the writes end up on more than one memory controller (also assuming DDIO is
disabled). It is not clear that systems will be able to implement this optimization any time
soon so a CPU will have to be involved with the flush.

This leaves an open question that is subject to experimentation and analysis. Given that
a CPU has to be involved for the flush, would it be just as well for it to parse the packet
and place the data too? If so then perhaps a straight message-based protocol would be
as good as, or better than an RDMA-based protocol. By expressing requirements in
terms of an abstract networking protocol this document enables RDMA and bus
protocols to evolve.

Appendix B – Remote Atomicity Considerations
Additional effort is needed to evaluate approaches to remote failure atomicity. This
appendix contains some information that could form a framework for such investigation.

Since the desired atomicity property occurs when data is written to PM it must involve
the implementation of the sink RNIC (i.e. RNIC B in Figure 10) and the way data is
flushed. Given implementation of a failure atomic flush between an RNIC and PM, the
RNIC can apply this primitive in several ways. The following table suggests a ranking of
several options relative to each other (i.e. lower numbers are better) based on the
following criteria:

• Overhead – how much additional latency occurs when failure atomicity is applied
• Selectiveness – to what degree can the overhead be applied only when needed
• Compatibility – how intrusive is the potential protocol impact of the option

Option Over-
head

Selective-
ness

RDMA
Compat-
ibility

NVMP
Compat-
ibility

A - Apply to atomic actions surfaced by
existing protocols

1 1 1 3

B - Apply to all RDMA writes 2 3 1 1
C - Apply to all RDMA writes in a given
session based on a registration option

2 2 2 1

D - Apply to individual RDMA writes
based on a flag in each RDMA write

1 1 2 3

E - Use checksum when atomicity is
required

3 2 1 2

At this point there is no quantitative data on relative overheads of these options so it is
difficult to draw conclusions from such a ranking. Any of these options other than CRC
requires a failure atomic sink RNIC write implementation (i.e. at RNIC B in Figure 10).
Options A and D may have “convoy” alternatives in which multiple atomic writes are

NVM PM Remote Access for High Availability
May 2019 44

communicated at once. Various consistency and alignment considerations may come
into play within each of these options.

Appendix C – References

“Memory consistency and event ordering in scalable shared-memory multiprocessors,”
Gharachorloo et al, ISCA, 1990, pp. 15–26

“NVM Programming Model” created by the SNIA NVMP TWG -
http://www.snia.org/sites/default/files/NVMProgrammingModel_v1.pdf

“Persistent Memory Atomics and Transactions” –
https://www.snia.org/sites/default/files/technical_work/Whitepapers/PM_Atomics_and_T
ransactions.pdf

“PM Hardware Threat Model” - https://www.snia.org/PM-Hardware-Threat-Model-
Technical-WP

iWARP (RFC 5040) - http://tools.ietf.org/html/rfc5040

InfiniBand (InfiniBand Trade Association specification) including annexes A16 and A17
regarding ROCE and ROCE2 -
http://www.infinibandta.org/content/pages.php?pg=technology_public_specification

IOZONE - http://iozone.org/

Appendix D – Glossary

NVM – Non-Volatile Memory – In the context of the SNIA NVM Programming TWG,
NVM refers to all types of storage including storage class memory, persistent memory,
SSD’s and rotating media disk drives.

PM – Persistent Memory – In the context of the SNIA NVM Programming TWG, PM
refers to durable media that operates at memory speed and enables byte or cache line
access.

RDMA – Remote Direct Memory Access – A means of directly accessing memory in a
remote location over a network. RDMA is a key feature of InfiniBand interface, among
others.

RNIC – RDMA NIC – A Network Interface Card that supports Remote Direct Memory
Access

RPO – Recovery Point Objective – A metric specifying the amount of work that might be
lost in the event of a failure.

http://www.snia.org/sites/default/files/NVMProgrammingModel_v1.pdf
http://tools.ietf.org/html/rfc5040

	Binder2.pdf
	NVM PM Remote Access for High Availability.pdf
	1 Purpose
	2 Scope
	3 Memory Access Hardware Taxonomy
	3.1 Persistent Memory (PM) latency landscape
	3.2 Local Persistent Memory
	3.3 Disaggregated Persistent Memory
	3.4 Networked Persistent Memory

	4 Recoverability Definitions
	4.1 Data Durability vs. Data Availability
	4.2 Visibility vs Persistence
	4.3 Consistency Points
	4.4 Crash Consistency in Disk Based Systems
	4.5 Crash Consistency in PM Systems
	4.6 Recovery Point Objective
	4.7 Recovery Scenarios
	4.7.1 In line recovery
	4.7.2 Backtracking recovery
	4.7.3 Local Application Restart
	4.7.4 Application Failover

	4.8 Flush synchronization, ordering and scope
	4.9 Integrity Checking

	5 HA Extensions to NVM.PM.FILE
	6 RPMA for HA
	6.1 Peer to Peer Deployment Model
	6.2 Address Spaces
	6.3 Assurance of Remote Durability
	6.4 RDMA Example
	6.5 HA across multiple processor architectures

	7 Error Handling
	7.1 Hardware
	7.2 Replication
	7.3 Application

	8 Requirements Summary
	Appendix A – HA Protocol Flow Alternatives
	Appendix B – Remote Atomicity Considerations
	Appendix C – References
	Appendix D – Glossary

	Binder1.pdf
	NVMPMRemoteAccessCover

