
Storage Networking Industry Association
Technical White Paper

NVM PM Remote Access
for High Availability

Version 1.0
Feb 22, 2016

ABSTRACT: This paper explores the requirements that High Availability
extensions to the NVM.PM.FILE mode of the SNIA NVM Programming

Model might place on high speed networking, such as RDMA.

NVM PM Remote Access for High Availability SNIA Technical White Paper 2
Version 1.0

USAGE
The SNIA hereby grants permission for individuals to use this document for personal use only, and for
corporations and other business entities to use this document for internal use only (including internal
copying, distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no
alteration, and,

2. Any document, printed or electronic, in which material from this document (or any portion hereof)

is reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA
for granting permission for its reuse.

DISCLAIMER
The information contained in this publication is subject to change without notice. The SNIA makes no
warranty of any kind with regard to this white paper, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing, performance, or use
of this document.

Suggestions for revisions should be directed to tcmd@snia.org.

Copyright © 2016 SNIA. All rights reserved. All other trademarks or registered trademarks are the
property of their respective owners.

NVM PM Remote Access for High Availability SNIA Technical White Paper 3
Version 1.0

Revision History

Revision Date Sections Originator: Comments
V1.0 Feb 22, 2016 D. Voigt Initial Publication

NVM PM Remote Access for High Availability SNIA Technical White Paper 4
Version 1.0

Contents
1 PURPOSE ... 6

2 SCOPE .. 6

3 MEMORY ACCESS HARDWARE TAXONOMY .. 6

3.1 PERSISTENT MEMORY (PM) LATENCY LANDSCAPE .. 7
3.2 LOCAL PERSISTENT MEMORY ... 8
3.3 DISAGGREGATED PERSISTENT MEMORY .. 9
3.4 NETWORKED PERSISTENT MEMORY .. 10
3.5 VIRTUAL SHARED MEMORY ... 11

4 RECOVERABILITY DEFINITIONS ... 12

4.1 DATA DURABILITY VS. DATA AVAILABILITY .. 12
4.2 CONSISTENCY POINTS ... 14
4.3 CRASH CONSISTENCY IN DISK BASED SYSTEMS ... 14
4.4 CRASH CONSISTENCY IN PM SYSTEMS ... 15
4.5 RECOVERY POINT OBJECTIVE ... 16
4.6 RECOVERY SCENARIOS .. 17

4.6.1 In line recovery .. 18
4.6.2 Backtracking recovery ... 19
4.6.3 Local Application Restart ... 20
4.6.4 Application Failover ... 20

5 HA EXTENSIONS TO NVM.PM.FILE ... 21

6 RDMA FOR HA ... 22

6.1 PEER TO PEER DEPLOYMENT MODEL .. 23
6.2 ADDRESS SPACES ... 23
6.3 ASSURANCE OF REMOTE DURABILITY .. 25
6.4 CLIENT INITIATED RDMA PROTOCOL FLOW ... 25
6.5 HA ACROSS MULTIPLE PROCESSOR ARCHITECTURES .. 30

7 RDMA SECURITY .. 30

7.1 SECURITY CONCEPTS .. 31
7.2 RDMA SECURITY MODEL ... 31

7.2.1 Overview ... 31
7.2.2 Protection Domains ... 32
7.2.3 Partial Trust ... 33
7.2.4 Remote Partial Trust ... 33

7.3 THREAT MODELS ... 33
7.4 TRANSPORT SECURITY ... 34

7.4.1 iWARP ... 34
7.4.2 InfiniBand™ ... 34
7.4.3 RDMA over Converged Ethernet (RoCE) .. 34
7.4.4 RDMA over Converged Ethernet version 2 (RoCEv2) 34

8 ERROR HANDLING ... 34

8.1 HARDWARE ... 35
8.2 REPLICATION ... 36
8.3 APPLICATION ... 36

NVM PM Remote Access for High Availability SNIA Technical White Paper 5
Version 1.0

9 REQUIREMENTS SUMMARY .. 37

APPENDIX A – WORKLOAD GENERATION AND MEASUREMENT 38

APPENDIX B – HA PROTOCOL FLOW ALTERNATIVES .. 40

APPENDIX C – REMOTE ATOMICITY CONSIDERATIONS 40

APPENDIX D – REFERENCES .. 41

APPENDIX E – GLOSSARY .. 41

NVM PM Remote Access for High Availability SNIA Technical White Paper 6
Version 1.0

1 Purpose
The purpose of this document is to establish the context and requirements for the use of
RDMA as a transport for remote access to persistent memory (PM) in high availability
implementations of the SNIA NVM Programming model.

2 Scope
This non-normative document pertains specifically to the NVM.PM.FILE mode of the
SNIA NVM Programming Model. Some implementations of the programming model may
provide high availability (HA) by communicating with remote persistent memory. While
there are many ways to implement that communication it is thought that Remote Direct
Memory Access (RDMA) may be the transport of choice.

The term “Remote” refers to persistent memory that is not attached to the same CPU
complex as an application that is using the NVM Programming Model. In this context a
CPU complex comprises the CPU, memory and support chips for a single or multi-
socket server.

In referencing RDMA this document is not referring to any particular RDMA
implementation. The intent is to enable a range of implementations while describing
characteristics of RDMA that could reduce the overhead of correct HA operation.

This document neither addresses nor precludes shared data beyond the extent
necessary to enable failover of data access for high availability. This can be formally
described as a type of “Release Consistency” as defined by Gharachorloo et al. in
“Memory consistency and event ordering in scalable shared-memory multiprocessors,”
ISCA, 1990, pp. 15–26. Release consistency assures that memory state is made
globally consistent at certain release points. In this case, failover comprises the release
point. The failing unit is forced to cease operation and the state of one or more durable
replicas is used to establish global consistency by means of post processing such as
transaction aborts, completion of transaction commits or consistency checking
processes (e.g., fsck).

This document addresses requirements that are visible to an application or within a
data-path such that they affect performance or real time data recoverability.
Management functionality is not addressed in this paper. For example, hardware
discovery, system configuration, monitoring and reliability, availability and serviceability
(RAS) capabilities such as troubleshooting and repair are considered to be
management capabilities.

This document describes security measures applicable to RDMA, such as techniques to
encrypt data in flight and implementation guidelines to reduce exposure to attacks. It
does not address security of data at rest (i.e., encryption on the storage media), as that
is independent of the RDMA transport and is determined by the storage device model
implemented.

3 Memory Access Hardware Taxonomy
There are a number of ways to describe hardware access paths to memory. The
memory connectivity taxonomy in this section is intended to add clarity to various
remote memory access use cases, including those related to high availability.

NVM PM Remote Access for High Availability SNIA Technical White Paper 7
Version 1.0

High availability use cases described in this paper align with the networked persistent
memory access model described in section 3.4. This is because a loosely coupled
server environment using high speed networking is the most common way to assure the
fault independence needed for high availability.

3.1 Persistent Memory (PM) latency landscape
Latency is a key consideration in choosing a connectivity method for memory or
storage. Latency refers to the time it takes to complete an access such as a read, write,
load or store. Figure 1 illustrates storage latencies that span 6 orders of magnitude
between hard disks and memory. The span of each bar is intended to represent typical
range of latencies for example technologies.

There are two very important latency thresholds that change how applications see
storage or memory represented by the background color bands in this figure. These
thresholds are used by system designers when implementing access to stored data, to
determine whether the access is to be synchronous, polled or asynchronous. In today’s
large non-uniform memory access (NUMA) systems, latencies of up to 200 nS are
generally considered to be acceptable. NUMA systems must be very responsive
because CPU instruction processing on a core or thread is suspended during the
memory access. Latencies of more than 200 nS in a memory system quickly pile up,
resulting in wasted CPU time.

On the other hand, when an application does IO for a storage access that is expected to
take more than 2-3 uS, it will usually choose to block a thread or process. The CPU will
execute a context switch and make progress on another thread or process until it is
notified that the access is complete. For latencies between 200 nS and 2 uS it may be
preferable for the CPU to poll for IO completion as this consumes one thread or core but
does not slow down the rest of the CPU.

Figure 1 – Storage Latency Ranges Impact Software

La
te

nc
y

(L
og

)

200 nS

2 uS

HDD SATA
SSD

NVMe
Flash

Persistent
Memory

Context
Switch

NUMA

Min, Max Latencies For
Example Technologies

NVM PM Remote Access for High Availability SNIA Technical White Paper 8
Version 1.0

Local or disaggregated persistent memory (see sections 1.1 and 3.3) can fall into the
NUMA range of Figure 5. Networked persistent memory and virtual shared memory
(sections 3.4 and 3.5) do not. Since the high availability use cases described in this
document involve networked persistent memory, they can quickly slow applications
down to IO speeds. This tends to reverse the performance gains made in the transition
to persistent memory unless remote direct memory access (RDMA) is optimized for high
availability persistent memory use cases.

3.2 Local Persistent Memory
Local persistent memory is generally in the same server as the processors accessing it.
This is illustrated in Figure 2 in a dual socket system where DIMMs and NVDIMMs are
connected to CPU’s which are in turn connected using a cache coherent inter-socket
interconnect that is specific to the processor architecture. Local memory is accessed
using the NVM Programming Model without any remote access considerations. For the
purpose of this taxonomy, all of the memory in this illustration is local because it is part
of a single server node. Although the illustration assumes that memory controllers are
integrated into CPU’s, memory attached to controllers outside of CPU’s but within the
server is still considered local.

A single server does not avoid single points of failure and it integrates the attached
memory using cache coherency protocol into a single symmetric multi-processing
environment. This makes it a single fault domain for the purpose of high availability
management, meaning that there are single points of failure within the server that can
cause the entire server to fail.

Figure 2 - Local Memory

DIMMDIMM

CPU

DIMMS &
NVDIMMS

DIMMDIMM

CPU
DIMMS &
NVDIMMS

Cache Coherent
Inter-Socket Interconnect

IO

IO

Server

NVM PM Remote Access for High Availability SNIA Technical White Paper 9
Version 1.0

3.3 Disaggregated Persistent Memory
The concept of disaggregated memory is used to illustrate cases where memory that is
not contained within a server is still accessed at memory speed. It is shown in Figure 3
as a memory pool with its own controller connected through a low latency memory
interconnect. Disaggregated memory is not necessarily cache coherent with the CPUs
in the servers to which it is connected.

Disaggregated memory still looks like memory to CPU’s. It operates at memory speed in
cache line size units and it is subject to distance limitations to insure sufficiently low
latency. Disaggregated memory is made feasible through the use of optical networks
such as those based on silicon photonics to increase the distance of memory speed
interfaces. Memory speed refers to access that is suitable for a Load/Store
programming model. This requires an operation (Load/Store) rate and latency that
allows CPU’s to stall during memory access without unacceptable loss of overall CPU
performance.

Some disaggregated memory systems may allow memory that is directly connected
with one CPU to be part of the pool that is shared with another. Since disaggregated
memory is not necessarily cache coherent, distributed programming techniques such as
those used in clusters must be applied rather than the symmetric multi-processing
techniques that apply within a single server.

NVM PM Remote Access for High Availability SNIA Technical White Paper 10
Version 1.0

Disaggregated memory may not be a separate fault domain from the servers depending
on implementation.

Figure 3 - Disaggregated Memory

3.4 Networked Persistent Memory
Networked memory is accessed through a high speed network rather than directly
through a memory interface. Figure 4 shows two servers connected with network
adapters. Memory access is achieved over the network using either message passing
or RDMA. The two servers in Figure 4 are in separate fault domains.

The network adapter communicates with the NVDIMMS through the CPU in this
configuration. Depending on the CPU architecture there may be volatile buffers or
caches on the path from the network adapter to the NVDIMMs.

Networked persistent memory is not cache coherent with the CPU. Unlike local or
disaggregated persistent memory where all of the NVDIMMs can be part of a single
system image, the NVDIMMs on a remote node are not part of a single system image.

Although only two servers are illustrated in Figure 4, many servers may be attached to
the same network. There may be many-to-many relationships between the data stored

DIMMDIMM

CPU

DIMMS &
NVDIMMSIO

DIMMDIMM

CPU

DIMMS &
NVDIMMS

IO

DIMMDIMMDIMMS &
NVDIMMS

DIMMDIMMDIMMS &
NVDIMMS

Controller

Low Latency
Memory Semantic Interconnect

May not be cache coherent

Server

Server

Disaggregated Memory Pool

NVM PM Remote Access for High Availability SNIA Technical White Paper 11
Version 1.0

in various servers. It is also possible to have servers with no NVDIMMs access
networked persistent memory on other servers.

Figure 4 - Remote Memory

3.5 Virtual Shared Memory
Virtual shared memory is a means of emulating cache coherent shared memory across
networked memory using software as shown in Figure 5. A uniform view of memory is
presented to a number of servers, often using their processors memory management
units. The servers are configured such that each write to a shared memory page causes
a page fault which in turn causes invalidation of data on the other servers. Reads of
invalidated data on one server also cause page faults so as to transfer that data over
the network from a server with an up to date copy. A number of optimizations can be
added to this basic principle to create the illusion of a symmetric multi-processing
environment across the servers.

DIMMDIMM

CPU

DIMMS &
NVDIMMSIO

DIMMDIMM

CPU

DIMMS &
NVDIMMS

IO

Network
Adapter

Network
Adapter

Network
Switch(s)

Server

Server

NVM PM Remote Access for High Availability SNIA Technical White Paper 12
Version 1.0

This approach to sharing is not favored for persistent memory because it adds
considerable software overhead to many workloads.

Figure 5 - Virtual Shared Memory

4 Recoverability Definitions
Since recovery from failure is the purpose of high availability use cases it is important to
understand recovery and recoverability in some detail. There is considerable precedent
for this in enterprise storage systems but less is known about persistent memory
recovery.

4.1 Data Durability vs. Data Availability
Common approaches to redundancy generally support one or both of the following
goals.

• High Durability – Data will not be lost regardless of failures, up to the number of
failures that the redundancy scheme is designed to tolerate. If the media
containing the data can be removed, re-inserted into a new slot and recovered,
data is only lost if removable media modules themselves fail. Otherwise failures
of system components other than media modules can also cause data loss.

• High Availability – Data will remain accessible to hosts regardless of failures up
to the number of failures that the redundancy scheme is designed to tolerate.
Failure of any component between a given host and the data may make that data
inaccessible to that host, so redundancy is required for all such components.

If an application requires only high durability, local data redundancy such as RAID
across NVDIMMs will suffice. If an application requires high availability as well, remote

DIMMDIMM

CPU

DIMMS &
NVDIMMSIO

DIMMDIMM

CPU

DIMMS &
NVDIMMS IO

Network
Adapter

Network
Adapter

Network
Switch(s)

Server

Server

Page Fault

Page Fault Virtual Shared
Memory

Virtual Shared
Memory

NVM PM Remote Access for High Availability SNIA Technical White Paper 13
Version 1.0

data redundancy such as RAID across servers or external storage nodes is required.
This is illustrated by Figure 6 wherein the local and remote memory of Figure 4 are
overlayed with red lines indicating the data flow of a store (ST) operation.

Figure 6 - High Durability vs High Availability

With persistent memory the need to update data redundancy begins with a CPU
instruction with an operand that changes a memory location. This is illustrated in Figure
6 within the upper CPU as “St”. A high durability function is represented by the circled
numeral 1 where data is mirrored between NVDIMMs in the same server. A high
availability function that also provides high durability is represented by the circled
numeral 2 where data is mirrored between NVDIMMs on separate servers.

Figure 6 shows exactly 2 copies of data for simplicity. More sophisticated redundancy
schemes such as RAID 5 or local erasure coding also apply. The ability of a more
sophisticated redundancy scheme to provide high durability and/or high availability
depends on how data is laid out across NVDIMMs and servers. The chief motivations
for remote or even geographically distributed copies is the criticality of distributing
copies across fault domains.

The distinction between high durability and high availability makes it clear that high
availability requires networked access to persistent memory. The network in this figure
plays an important “fault isolation” role for high availability. It minimizes the probability
that a hardware failure in one server can affect access to redundant data. The role of
networks in providing fault isolation for high availability exposes the dilemma of high
availability at memory speed.

CPU DIMMS &
NVDIMMS

IO

CPU IO

Network
Adapter

Network
Adapter

Network
Switch(s)

Server

Server
2

1St

St

DIMMS &
NVDIMMS

NVM PM Remote Access for High Availability SNIA Technical White Paper 14
Version 1.0

4.2 Consistency Points
In order to recover correctly from a failure, all of the data items recovered must have
correct values relative to each other from the application’s point of view. The meaning of
“correct” in this case is entirely up to the application. For example if a hardware failure
occurs while Fred is transferring money from his account to Barney’s, recovery from the
failure cannot result in a state where both Fred and Barney have the money.

Applications use a variety of techniques to assure consistency, primarily by controlling
the order of changes to individual data items in such a way that a consistent state can
always be achieved after failure. One common way to achieve this is to use
transactions. There is often some data processing required after a failure to bring an
entire data image into a consistent state. For example, uncommitted transactions may
need to be rolled back.

Since a failure can occur at any time, systems must be prepared to convert any data
state that could result from a hardware failure or restart into a consistent state. This is
much easier to achieve if applications designate certain instants in time during
execution as consistency points. By identifying consistency points an application can
allow underlying infrastructure to orchestrate recovery that always results in a consistent
data image.

For example, in today’s enterprise storage systems applications can coordinate the
creation of snapshots with storage systems using protocols like Microsoft’s Volume
Shadow Copy Service (VSS™). VSS allows applications to orchestrate storage
snapshots at points in time when application data is consistent. That is fine for backups
because they are infrequent compared to IO’s, and even more infrequent compared to
memory accesses.

As another example, suppose an application was able to involve persistent memory in
transactions so that the completion of each transaction represented a consistency point.
“NVM Atomics”, the subject of a SNIA white paper, suggests a standard way for
applications to view transactions that could enable this type of interaction.

The important thing about consistency points relative to high availability is that they
create opportunities to optimize networked persistent memory communication.

4.3 Crash Consistency in Disk Based Systems
Crash consistency is another common recovery model in today’s storage systems.
Since the dawn of computing time, disk drives have defined the gold standard for all
types of storage system behavior. Disk drives perform multiple reads and/or writes
concurrently so the order of completion of outstanding operations is indeterminate.
 In addition, if power fails during a write it may be partially completed. Some storage
systems offer additional guarantees about write completion. These give rise to the
“Atomicity Granularity” attributes of the SNIA NVM Programming Model. Operating
systems may provide additional semantics atop these primitive behaviors as well.

Since disk drives and storage systems offer such weak ordering guarantees,
applications must be prepared to recover from any state of the writes that were in flight
when a failure occurs. This brings us to the concept of crash consistency, in which the

NVM PM Remote Access for High Availability SNIA Technical White Paper 15
Version 1.0

state of a storage system after a failure need only match the indeterminate write order
guarantee of a group of disk drives.

More formally, a storage subsystem state is considered crash consistent if it could have
resulted from power loss of a group of direct attached disks given the sequence of write
commands and completions leading up to the failure. This means that there is a rolling
window of outstanding write requests whose order is uncertain. Applications must be
able to recover from any order of those requests and must account for storage system
atomicity nuances in the process. For an application, recovery from a crash consistent
image is the same as a cold restart after a system crash.

4.4 Crash Consistency in PM Systems
Now consider the map-and-sync methodology described in the NVM.PM.FILE mode of
the NVM Programming Model. Sync has a very specific meaning. The only guarantee
that sync makes is that all stores in the address range of the sync that occurred before
the sync are in persistent memory when the sync completes. Sync does not otherwise
restrict the order in which data reached persistent memory. For example, if cache lines
1 through 5 were written in order by the application before the sync, cache line 5 might
have reached persistent memory first, possibly before the sync even started. This
flexibility enables potential write order optimization for cache performance.
Unfortunately it also creates ordering uncertainty analogous to that of crash consistency
in disk based systems.

The lack of ordering certainty gives rise to a lowest common denominator for
NVM.PM.FILE recovery similar to that which exists for disk drives. Specifically, the
application is uncertain as to which of the store instructions between two sync actions
will appear in persistent memory after a failure that occurs before completion of the
second sync action. If the actions and attributes of the NVM Programming Model V1 are
all that is available then the application must execute additional sync actions whenever
the order of stores to persistent memory matters.

More formally, a persistent memory range is crash consistent if its contents at the start
of recovery could have resulted from the pattern of stores and syncs executed on the
initiators (processors or other sources of memory access) with data in flight to the
persistent memory prior to failure. In both disk drives and persistent memory, some
aspect of data atomicity with respect to failure is built into the crash consistency
assertion. Specifically, both the order and atomicity properties that are guaranteed for
local media must be duplicated at the remote site. The NVM programming model
describes atomicity for both disk drives and persistent memory. Based on the PM
model, unless the atomicity of fundamental data types provided by the local processor is
conveyed to the remote node, applications will need to use error checking such as CRC
on all data structures that need atomicity. The error check must be stored in such a way
that atomicity can be verified after a failure that calls the remote copy of the data into
use. This is covered in more detail in section 6.5.

Crash consistency applies to literal data images as seen by processors. If crash
consistency is applied across nodes with different types of processors, the memory
layout at each node must be such that the applications running on the processor(s)
connected to that memory see the same data image created at the local site. This must
account for processor architecture specific bit and byte ordering practices. Crash

NVM PM Remote Access for High Availability SNIA Technical White Paper 16
Version 1.0

consistency does not account for other types of data formatting as might appear in the
presentation layer of a network stack.

Crash consistency is a complex approach to recovery from an application standpoint. It
also forces considerable overhead to precisely communicate every sync action to
networked persistent memory. This further illustrates the motivation for some notion of
consistency points such as persistent memory transactions and their relevance to high
availability use cases.

4.5 Recovery Point Objective
Another analogy between persistent memory and enterprise storage systems relates to
the concept of a recovery point objective (RPO). A recovery point objective is the
maximum acceptable time period prior to a failure or disaster during which changes to
data may be lost as a consequence of recovery. Data changes preceding a failure or
disaster by at least this time period are preserved for recovery. Recovery point
objectives are part of today’s disk based disaster recovery service level agreements.
Although they are most often expressed in terms of time, recovery point objectives can
also be specified as an amount of data changed, either in terms of bytes or operations
such as writes, stores or transactions.

Zero is a valid RPO value. In today’s disaster recovery systems an RPO of 0 mandates
synchronous remote replication. As a result at least one round trip to the remote site
and back is added to the time it takes to do a write. In addition, enough bandwidth must
be available to transmit every write to a remote site even if the same data blocks are
written repeatedly in rapid succession. Clearly this high level of consistency comes at a
significant cost in performance.

A non-zero RPO allows writes to flow to remote sites without slowing down local writes,
as long as the remote site does not get too far behind the local site. In addition, there
are opportunities to gather multiple writes to the same address within the RPO time
window into one write to the remote site.

The NVM.PM.FILE mode of the NVM Programming model includes an “Optimized
Flush” action which insures that a list of memory address ranges have been flushed
from the CPU to PM. These groups of address ranges must also, at some point,
become redundant in networked persistent memory. If we apply the recovery point
objective concept to persistent memory then we can delay transmission of data to
networked persistent memory so long as a consistency point is achieved at the remote
side within the RPO time window. Delayed transmission allows data transmission to be
batched into larger messages which reduces the net overhead of high availability.

Having introduced the concept of RPO we can consider the state of memory at the end
of any “Optimized Flush” action to be used as a consistency point. If an application is
managing durability using only “Optimized Flush” and/or “Sync” actions then the
consistency point can be at least crash consistent. If an application is more involved in
managing durability atomically as with transactional persistent memory, the consistency
point may be more optimal. In either case the RPO can be used to determine how often
one of those candidate consistency points actually appears in remote PM. As with
remote replication, this requires additional time in order to optimize the flow of data to
networked persistent memory.

NVM PM Remote Access for High Availability SNIA Technical White Paper 17
Version 1.0

The data for a consistency point can be placed in networked PM in any order that
results in a state that meets the requirements of a candidate consistency point. For a
crash consistent candidate, the state of networked PM must adhere to the constraints
imposed by optimized flush or sync actions generated by the application. If the
consistency point is stronger, the constraints imposed by additional application
interaction such as transaction constructs must also be applied to the state of
networked PM. Both of these include the atomicity considerations described in section
4.3.

Write intensive applications that truly require RPO=0 are not likely to experience good
performance with persistent memory. RPO=0 imposes at least one network round trip
per optimized flush or sync. In addition, today’s systems do not assure that data has
reached persistent memory on the remote PM before the remote data placement
completes from the local server’s point of view. This could require another network
round trip just to assure durability at the remote node.

4.6 Recovery Scenarios
To explore data recovery scenarios more deeply, consider the implications of the Error
Handling appendix of the NVM Programming Model specification. This, combined with
reasoning about sync/flush semantics and consistency points enables enumeration of
several scenarios based on the following criteria:

• Did a server fail? Server failures include anything that inhibits an application
running on a server other than a storage or memory device from accessing the
data that is in its local memory.

• Was a server forced to restart?
• Did a precise, contained memory exception occur?
• Is the application able to backtrack to a recent consistency point without

restarting, such as by aborting transactions?
• How up to date (fresh) is the redundant data?

NVM PM Remote Access for High Availability SNIA Technical White Paper 18
Version 1.0

Permutations of these criteria create a handful of recovery scenarios.

S
ce

na
rio

R
ed

un
da

nc
y

fre
sh

ne
ss

E
xc

ep
tio

n

A
pp

lic
at

io
n

ba
ck

tra
ck

w

ith
ou

t r
es

ta
rt

S
er

ve
r R

es
ta

rt

S
er

ve
r F

ai
lu

re

In Line Recovery Better than
sync

Precise and
contained

NA No No

Backtracking Recovery Consistency
point

Imprecise and
contained

Yes No No

Local application restart Consistency
point

Not contained No NA No
NA NA Yes No

Application Failover Consistency
point

NA NA NA Yes

The following sections elaborate on each scenario.

4.6.1 In line recovery

In this scenario, the primary copy of a memory location is lost and if a copy is available
(or the equivalent) the data is recovered during a memory exception without any
application disruption. The control flow for this scenario is as follows:

• A precise, contained memory exception interrupts the application. The exception
handler of the NVM.PM.FILE implementation handles the exception,

• The NVM.PM.FILE implementation determines that it can recover the lost data
either locally or from networked PM.

• The NVM.PM.FILE implementation restores the lost data to local PM
• The application returns from the exception, causing the interrupted instruction to

successfully retry the memory access.
• The application continues from that point without any application level exception

handling or recovery.

This type of recovery requires that the recovered data be the most recently written data.
Sync semantics do not guarantee sufficient recency for this type of recovery. Consider
the following sequence of events:

A := 1;
OptimizedFlush(…&A…);
A := 2;
B:= A;
<processor automatically flushes 2 -> A before sync>
C:= A;
<failure to read A from PM causes interrupt during C:=A;>
<NVM.PM.FILE implementation restores value 1 -> A based on latest sync>
<processor repeats C:=A, assigns value 1->C;
OptimizedFlush(…&A,&B,&C…);

NVM PM Remote Access for High Availability SNIA Technical White Paper 19
Version 1.0

If there were no failure, A, B and C would all equal 2 at the end of the above code
segment. However, a failure may occur such that B equals 2 and A and C equal 1. That
is because nothing about map and sync semantics keeps the processor from flushing
cached variables to PM before the sync action. Therefore any redundancy that is
created during or after sync may not be sufficiently up to date to restore data in such a
way as to assure correct application execution without backtracking (see section 4.6.2).

The RPO logic described above commences with the sync command. This means that
even when RPO=0, backtracking is required during recovery to adjust work in progress,
by means such as aborting transactions. Note also that this is really a high durability
scenario rather than a high availability scenario because there was no server failure.

4.6.2 Backtracking recovery

In this scenario an application is able to recover from memory exceptions by identifying,
aborting and retrying transactions, or other application specific equivalents.
 The control flow for this scenario is as follows:

• A contained memory exception interrupts the application. The exception handler
of the NVM.PM.FILE implementation handles the exception. Backtracking
recovery is potentially applicable even if the exception is not precise. An
imprecise exception does not allow resumption of execution at the interrupted
instruction.

• The NVM.PM.FILE implementation determines that it can recover the lost data
either locally or from networked PM.

• The NVM.PM.FILE implementation restores the lost data to local PM. The
restored data is not guaranteed to be any more recent than the last consistency
point. All committed transactions must be included in the last consistency point or
in consistency points before that.

• NVM.PM.FILE may be able to determine whether the page containing read data
in error has been modified since the last flush. If it has not been modified, the
error handler can restore the data and transparently resume execution without
backtracking. If that happens then the remaining steps in this description do not
apply.

• The application receives an exception event or signal along with an indication of
the address ranges that were restored. If all of the restored data is guaranteed to
be covered by committed transactions then the application can return from the
exception and continue processing in line. Depending on the application and/or
transaction implementation the contents of some roll forward logs in committed
transactions may need to be re-applied to the recovered page before returning
from the exception. If some of the data is covered by uncommitted transactions
and the rest is covered by committed transactions then backtracking recovery
proceeds by aborting transactions and resuming application work flow at a point
that will cause aborted transactions to be retried.

This scenario clearly describes a relationship between transactions and recovery, since
aborting transactions is the means of backtracking referenced. It would be helpful for
the transaction service to assist in determining which of the recovered data items are
related to a given transaction. Such a determination could then be used to ascertain the
minimum set of transactions that need to be aborted or reapplied to recover from the
restoration.

NVM PM Remote Access for High Availability SNIA Technical White Paper 20
Version 1.0

Depending on the application this type of recovery may require RPO=0 with respect to
transaction commits. On the other hand, some applications may be able to recover from
arbitrarily old memory states without restarting.

4.6.3 Local Application Restart

In this scenario an application restarts in order to complete recovery from a data loss.
The term restart is used here to refer to the resumption of application execution from an
initial state such as would occur after the application’s process(es) were killed. This
scenario applies if neither the in line nor the backtracking scenarios were applicable and
the server running the application has not failed. The control flow for this scenario is as
follows.

• The application restarts. This could be the result of decisions by the application
itself, some other hardware, software or administrative intervention, or power
loss.

• Recovery code that may be specific to the application or part of a transaction
service uses NVM.PM.FILE.GET_ERROR_INFO to identify persistent memory
ranges that may require recovery over and above that which may have occurred
before the restart. If data recovery is required, human or file system intervention
may be required to restore data to a consistency point based on file system
redundancy features or backups.

• At this point the persistent memory image must represent a consistency point as
described above. Application specific code or a transaction service cleans up the
consistency point by completing committed transactions and aborting
uncommitted transactions.

• The application completes the restart based on the cleaned up persistent
memory image and resumes processing. Application work flows that involved
aborted transactions may need to retry those transactions.

This type of recovery can use RPO>0 on all of the data in a persistent memory image.
The reference here to a persistent memory image is significant in that all of the data
within the scope of the application must be restored to a state that represents the same
consistency point.

4.6.4 Application Failover

In this scenario a server failure forces the application to restart on another server. This
is generally the result of hardware failure that causes data to be inaccessible to
applications running on a server, or that renders it incapable of running an application.
For the purpose of this description the entire server is considered to be failed if any part
of it has failed. In cases of intermittent or partial failure a failover policy must determine
when the server is designated as failed.

A failover relationship must be constructed and maintained with the target server(s) of a
failover including the following capabilities.

• Server failure must be detected and communicated to a server capable of taking
over.

• The failing server must stop execution and be isolated from non-failing servers so
as to insure that no artifacts of its execution could interfere with ongoing
operation.

NVM PM Remote Access for High Availability SNIA Technical White Paper 21
Version 1.0

• The server taking over must have or obtain access to a persistent memory image
that represents a consistency point from which the application can restart.

An example control flow for this scenario is as follows.

• A non-failing server capable of taking over an application (or a portion thereof)
from a failing server is notified of the server failure. This can be the result of the
failing server detecting its own failure, or it can be detected by a monitoring
service such as a heartbeat.

• The non-failing server identifies all of the PM relevant to the application based on
configuration information and takes measures to insure that the failing server no
longer has access to the surviving copy or copies of the data.

• If the non-failing server does not have local access to all of the PM relevant to
the application, data is migrated to local PM from networked PM on other non-
failing servers.

• The application restarts on the non-failing server as described in section 4.5.3
except that it uses an image of a consistency point that does not depend on any
PM that is contained within the failing server and is fresh enough to adhere to the
RPO.

• During or after application restart, data that lost redundancy due to the server
failure is rebuilt provided that PM resources are available for that purpose.

• After the server is repaired or replaced it can resume participation in the HA
system running the application once it has regained access to a complete local
PM image.

Note that this scenario involves logistics of application failover that go beyond PM.
These logistics are generally provided by additional failover services related to the OS
or hypervisor that integrates a failover cluster.

5 HA Extensions to NVM.PM.FILE
Figure 7 illustrates a layering of software modules that includes the following features.

• User space NVM.PM.FILE implementation represented as libraries to the
application

• User space based replication via RDMA (or similar protocol) to persistent
memory in separate hardware

• Local and remote file systems. The local file system is PM aware and supports
memory mapping. The remote file system stores data in PM and allows it to be
accessed using RDMA.

• User space optimization to access remote networked memory

NVM PM Remote Access for High Availability SNIA Technical White Paper 22
Version 1.0

Figure 7 – HA Extension to NVM.PM.FILE

The application is presented with an implementation of NVM.PM.FILE with the
assistance of user space libraries. One of these consists of the standard file system API
while the other implements NVM.PM.FILE.OPTIMIZED_FLUSH. The load/store
capability of the application is shown in the center of the diagram as it is enabled once
files are memory mapped.

Using the NVM.PM.FILE mode we see that replication software (e.g. RAID or erasure
coding) is implemented in the user space library. This software enables construction of
a high availability solution by communicating with both the local file system and a
remote file system via the network file system client and RNIC illustrated to the right of
the PM-aware file system and the PM device.

The user space library is capable of setting up an RDMA session with the remote file
system. The RDMA session can then be accessed from user space to enable data to be
written to networked PM for redundancy without context switching. The user space
“msync” and “opt_flush” use the RDMA session for this purpose during sync and
optimized flush actions respectively as represented by the black dotted arrow.
Replication for HA is achieved when the remote write reaches the persistence domain in
the remote system as a result of the RDMA. The optimized flush and native API paths
may use each other’s implementations should it be advantageous to do so.

6 RDMA for HA
This section provides additional detail on RDMA for HA in the context of the software
model described in section 5.

Application

Opt_flushNative file
API

libc libpmem

Load/store
NVM.PM.FILE mode

User space

Kernel space

MMU MappingsPM-aware file system

PM device

Network file system
client

opt_flushmsync

RNIC

RDMA Operation Requests

NVM PM Remote Access for High Availability SNIA Technical White Paper 23
Version 1.0

6.1 Peer to Peer Deployment Model
The following figure illustrates two servers, each of which runs an NVM.PM.FILE
implementation in cross-communicating client server file systems.

Figure 8 – NVM.PM Peer to Peer HA Replication Deployment Diagram

Peer A and Peer B are physically separate servers or server blades connected by a
network. Each server has access to the other’s file system in a client/server
configuration such as NFS or SMB. Both message passing and RDMA communication
passes between the remote access clients and servers as indicated in Figure 7. Each
peer only has memory mapped access to local NVM .

6.2 Address Spaces
The use of RDMA with memory mapped files introduces additional address spaces
which must be correlated by various elements of the system. Figure 9enumerates those
address spaces. The vertical axis represents numerical address assignments. The
placement of the arrows illustrates the fact that only the physical addresses used in the
file system’s view of the media coincide.

R
N

IC

R
N

IC

NVM PM Remote Access for High Availability SNIA Technical White Paper 24
Version 1.0

Figure 9 - Memory Mapping and RDMA Address Spaces

Starting at the left we see the physical PM address space as viewed by the CPU
running the application. The notions of virtual and physical addressing are always
relative to a point of view. In this case, the CPU observes contiguous ranges of physical
memory addresses that represent a file resident in PM according to the file system’s
metadata and allocation policies. Media controllers closer to the actual physical media
may introduce additional address virtualization for purposes such as defective media
replacement.

The application address space column represents the CPU’s memory mapping unit
providing the application with virtual addresses for ranges of PM as part of the
NVM.PM.FILE.MAP implementation. The mapping between the first and second
columns of Figure 9 is typically maintained by operating systems using page tables.
This virtual address space must align with the application’s method of resolving pointers
among persistent data structures. The alternatives for pointer resolution are described
in the NVM Programming Model Appendix A.

When RDMA is initialized to establish the session for sending data to a server, an
additional RDMA address space is created to rapidly and securely correlate registered
memory across the RDMA NICs in Peer A and Peer B. This RDMA address space has
no numerical alignment with any of the other address spaces. The mapping between
the RDMA address space and the application and server address spaces is under the
control of the RDMA-aware layers on each peer. The RDMA-aware layers include the
user space msync and opt_flush implementations shown in Figure 7. These

Mapping controlled
by client peer OS

Mapping controlled by RNIC
Mapping controlled
by server peer OS

NVM PM Remote Access for High Availability SNIA Technical White Paper 25
Version 1.0

implementations use RDMA to copy portions of the application address space from the
client to the server for replication. This copy process is represented in Figure 9 as a
single arrow from the application address space to the RDMA address space. The
other arrows appear in pairs to represent address range mappings at multiple layers in
the system.

The server address space column represents the virtual memory address space in the
peer running the remote access server as shown in Figure 9. For HA purposes the
application and server virtual address spaces do not necessarily need to align as long
as the file system metadata reflects the byte-wise correlation of redundant data within
files. As with the application, the mapping between the server address space and the
device address space is maintained by the OS on the server.

As described in the scope of this document, sharing data in PM for purposes other than
HA is not considered here. If real time sharing were a consideration, additional
constraints might apply to the correlation of the virtual address spaces between the
application and server columns.

6.3 Assurance of Remote Durability
In most of today’s hardware implementations, completion of an RDMA write is not
sufficient to guarantee that data has reached persistent memory. This is because the
path from a network adapter to an NVDIMM as shown in Figure 4 goes through several
buffering stages as it traverses the peers, including I/O busses, networks and CPUs.
Within the CPU there are generally buffers or caches that are not necessarily flushed by
the CPU before the network adapter responds to the RDMA. For example, in some CPU
architectures there are several levels of volatile buffers or caches that may need to be
flushed depending on system configuration. This may include PCI buffers, Memory
controller buffers and possibly CPU caches. This creates hidden inconsistency between
redundant PM images that could lead to inaccurate recovery from hardware failure after
power loss.

This can be rectified if peer A signals peer B to trigger a flush of any buffers on the IO
bus (generally PCI) to memory path. Unfortunately this creates significant overhead
considering the low latencies of local NVM.PM.FILE access. It would be highly desirable
to avoid this overhead.

6.4 Client initiated RDMA Protocol Flow
Figure 10 illustrates the interaction between the two servers and the RDMA NICs that
interface them to the network as illustrated in Figure 4 and Figure 8.

NVM PM Remote Access for High Availability SNIA Technical White Paper 26
Version 1.0

Figure 10 - Peer to Peer HA Replication using client initiated RDMA

App: SW PeerA:
Host SW

PeerANIC:
RNic

PeerBNIC:
RNic

PeerB PM:
PM

PeerB:
Host SW

Map
RDMAOpen

RDMAMmap
register
Memory

Optimized
Flush RDMAWrite

RDMAWrite

Write

RDMAWrite

Write

RDMAWrite

Flush

Flush

Flush

Unmap
RDMAUnmap

unregister
Memory

1

2

3

RDMAWrite

Flush
RDMAWrite

Write

Store

Store

Store

NVM PM Remote Access for High Availability SNIA Technical White Paper 27
Version 1.0

This flow illustrates interaction between 6 actors; an application, Peer A, Peer B, the
RDMA Network Interface Cards (RNICs) in peers A and B and the persistent memory in
peer B. Some implementation specific RDMA session initialization must occur prior to
the activity shown in this diagram. This includes initializing and opening network
adapters, creating queue pairs, authenticating the Peers and querying for attributes. At
the start of the diagram, Peer A opens an RDMA session with Peer B while memory
mapping a file. It establishes an RDMA address mapping and registers it with the RNIC.
Within this session, application addresses on Peer A are used to access persistent
memory devices on Peer B in a way that aligns with file system metadata. This is
illustrated in detail by Figure 9.

The application then uses CPU instructions to store data to a number of possibly
discontiguous memory ranges on Peer A. This is illustrated on the application thread
right after the Map. The application then uses the NVM.PM.FILE.OptimizedFlush action
to insure that the stores are persistent. There may be some advantage to
communicating stored data to Peer B prior to the OptimizedFlush. In the simplified
example of the diagram, the OptimizedFlush action causes one or more RDMA Writes
to be transmitted from Peer A to the RNIC A. As represented near circled numeral 1,
Host A can get a completion notification to each RDMA write however this may not
indicate that the data has progressed beyond RNIC A. This is analogous to the
semantics of a local store within a CPU.

RNIC A then transmits the data to RNIC B which uses Peer B’s IO bus (i.e. PCIe) to
deliver data to PM on Peer B. It is up to RNIC A to determine how many RDMA Write
transmissions occur between itself and RNIC B. Since no acknowledgement is required
in that exchange this decision has miniscule effect on latency. As per section 6.3 at this
point there is no guarantee that data has actually reached PM. Figure 10 illustrates this
with the asynchronous write process in which writes reach the PM actor at unknown
times after they are received by RNIC B.

The RDMA protocol is required to insure that the signal indicting receipt of a send
cannot be generated by RNIC B until all of the writes that precede it have been
delivered by RNIC B. Therefore an upper layer can implement the flush operation using
a send at circled numeral 2 which is processed by the software in Peer B at circled
numeral 3. The flush is required to insure that all of the writes that preceded the flush
are in PM before RNIC B responds back to RNIC A indicating completion of the flush.
There are other ways of implementing flush that also reflect optimized flush semantics.
One variation might involve an RDMA protocol that supports the piggybacking of
additional flush semantics on the last RDMA write. Other variations might involve CPU
architecture specific optimizations of the flush interaction between RNIC B, Peer B and
PM.

By this means RDMA’s and flushes are orchestrated in such a way that the net effect of
the original OptimizedFlush is the same on Peer A and Peer B, namely that all of the
data referenced in the OptimizedFlush has reached PM before the completion of the
OptimizedFlush. Used correctly by applications this is sufficient to enable crash
consistency with RPO=0 (relative to OptimizedFlush actions) in backtracking recovery
scenarios as described in section 4.5.2.

NVM PM Remote Access for High Availability SNIA Technical White Paper 28
Version 1.0

When the application is finished modifying the memory mapped file it cleans up by
unregistering and closing the RDMA session.

Like local memory access, this scenario does not require that all RDMA’s reach the PM
in Peer B in the same order that they did in Peer A, as long as the memory state on
both peers adheres to the definition of Optimized Flush. For RPO=0, Optimized Flush
actions are executed in the same order on both Peer A and Peer B. Ordering
constraints for RPO > 0 are implementation dependent so long as reordering does not
corrupt a consistency point that may become visible to Peer A during recovery.

Remember that OptimizedFlush does not itself make atomicity guarantees. This means
that remote PM must account for the local atomicity that originates with the local CPU.

NVM PM Remote Access for High Availability SNIA Technical White Paper 29
Version 1.0

Figure 11 illustrates the use of redundancy on Peer B to recover from an unrecoverable
ECC error on Peer A.

Figure 11 - Uncorrectable Error Recovery

For graphic simplicity the PM thread of this figure has been removed. It participates in
OptimizedFlush as described in Figure 10. This scenario proceeds as before until the
error occurs, represented by the box labeled “load receives uncorrectable ECC error”.

[load receives uncorrectable ECC error]

NVM PM Remote Access for High Availability SNIA Technical White Paper 30
Version 1.0

At that point the application is shown encountering a “read error” which represents an
exception that is fielded by the file system. The resiliency function described in section 5
does an RDMA read to recover the lost data. Since the data is only as recent as the last
time it was referenced by an OptimizedFlush, backtracking (such as a transaction abort)
may be required on the application’s exception handling thread as described in section
4.5.2. Any aborts may require additional rdmaScatterWriteAndFlush actions prior to the
completion of the exception handling, after which the application resumes normal
operation. As in Figure 10 the application eventually ends the RDMA session (not
shown).

6.5 HA across multiple processor architectures
The use of RDMA, or similar methods of direct data transfer to PM in a remote node
does not address any potential architectural incompatibilities between local and remote
nodes. For example, with RDMA the application is responsible for addressing data
representation differences such as endian-ness or floating point number encoding. If
remote access for HA is attempted across divergent processor architectures then
portable data structures are required, especially in the event of failover from one
processor architecture to another.

A similar issue arises with respect to atomicity of fundamental data-types (NVM
Programming Model Version 1 Revision 1 section 10.1.1 – “Applications and PM
Consistency”). It is common for PM optimized data structures to depend on atomic
updates to fundamental data types such as integers and pointers. Such dependencies
may not be conveyed across RDMA operations due to processor architecture
differences or packetization of data within or below the RDMA transport layer of the
network protocol stack.

Since there are no common specifications of failure atomicity related to either RDMA or
processor architectures there is no way to guarantee correct handling of atomicity short
of detailed end to end review of the component implementations involved in a given
deployment. Some existing protocols include atomic operations however these do not
address persistence. In the absense of a failure atomic store as a primitive for remote
fundamental data type operations forces applications to fall back to checksum based
atomicity.

At a minimum these considerations create a requirement that the architectural similarity
of two nodes in an HA relationship be ascertainable by management software. This
should provide a warning in conditions where access to data structures after failover
may be in doubt. In addition, any applicable atomicity granularity attributes should
account for remote atomicity. Finally, restrictions on component replacements or VM
relocations that cross processor architecture boundaries may also apply.

Additional exploration of potential failure atomicity considerations appears in Appendix
C.

7 RDMA Security
This section provides an overview of security concepts and their application to RDMA-
based transports. It includes a summary of the RDMA security model prescribed by

NVM PM Remote Access for High Availability SNIA Technical White Paper 31
Version 1.0

RFC 5042, lists various threat models, and describes the various RDMA transports and
relevant security mechanisms.

This section does not address security of data at rest (e.g., encryption of user data), as
that is independent of the RDMA transports and is provided by mechanisms specific to
each storage device type.

7.1 Security Concepts
Data security has the objective of preventing the improper disclosure or alteration of
data in storage devices. Many of the concepts are defined in the SNIA Dictionary. For
purposes of this white paper, several areas of interest are described informally here:
data at rest
Data in a storage volume may be subject to disclosure if the volume can be stolen. This
is often mitigated by encrypting the data before or during storage.
data in flight
Data being written to or read from a storage device may be subject to disclosure if the
connection can be snooped. This is often mitigated by encrypting the connection. This
usually requires hardware resources in the device and the host to perform the
encryption/decryption without sacrificing transmission speed.
authentication
Authentication is the process by which a storage device determines the identity of a
host attempting to access it. If a host is not authenticated, then it will not be allowed to
access any data in the device.
authorization
Once a host is authenticated, then the storage device may determine whether the host
is authorized to perform the particular operation it is requesting. For example, some
hosts may be permitted to read data from a volume, but not to write data to the volume.
provisioning
Provisioning is the process of configuring a storage device for operation in a particular
system. With respect to security, provisioning includes installing credentials which the
device can use to authenticate remote hosts and specifying the operations which each
host is authorized to perform.
channel binding
Channel binding (see RFC 5056) is the binding of a pair of end points mutually
authenticated at a higher-level protocol to a secure channel in a lower-level protocol.
This permits delegation of session protection to the transport layer, which can provide
better performance than performing encryption at the application layer.

7.2 RDMA Security Model
7.2.1 Overview
RFC 5042, Direct Data Placement Protocol (DDP) / Remote Direct Memory Access
Protocol (RDMAP) Security, analyzes security issues for DDP and RDMAP and
presents countermeasures to protect systems. Figure 12 is reproduced from the RFC
and shows the RDMA reference model and is used to analyze security threats and
solutions. Detailed explanations of the concepts described in section 7.2 can be found
in RFC 5042 and associated RDMA standards.

http://tools.ietf.org/html/rfc5042
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5042

NVM PM Remote Access for High Availability SNIA Technical White Paper 32
Version 1.0

Privileged
Resource
Manager

Privileged
ULP

Non-Privileged
ULP

RNIC Engine

RNIC Interface

ULP Control Interface

Privileged Control Interface

Privileged Data Interface Non-Privileged Data Interface

Fabric

Admin

Figure 12 – RDMA Security Model

The elements shown in Figure 12 are:

a) The RDMA network interface controller (RNIC) implements the RDMA protocol to
access the fabric (which implements a lower layer protocol, or LLP).

b) The privileged resource manager manages RNIC resources.
c) A privileged upper layer protocol (ULP; e.g., an application or middleware library)

is trusted by the local system not to attack the operating environment.
d) A non-privileged ULP is not trusted, and its requests must be verified.

These are concepts that apply to all RDMA implementations, although individual
implementation will differ.

7.2.2 Protection Domains

A protection domain (PD) is a collection of RDMA resources for purposes of isolation
and security. It is a local construct and is never visible on the connection between
nodes. When mutual authentication is successfully performed, a PD is created in the
host and a PD is created in the storage device. The resources which may be assigned
to a PD are:

• Connection endpoint (a queue pair consisting of a request queue and a send
queue)

• Steering tag (STag – a scalar identifying the destination buffer for a tagged
message, e.g., data to be transmitted)

The RNIC is responsible for ensuring that resources in one PD are not accessible by
resources belonging to another PD. A node is required to check that the endpoint and
the STag are in the same PD before permitting the operation to access the resource.

NVM PM Remote Access for High Availability SNIA Technical White Paper 33
Version 1.0

The use of these objects in the context of PM devices is explored by this document.

7.2.3 Partial Trust

Partial trust is a concept for defining which threats are addressed by specific security
techniques; in other words, one party assumes that another will not use a particular set
of attacks. There are three characteristics which may or may not be present in a
particular trust model (i.e., sharing of local resources, local partial trust, and remote
partial trust). These are used to define five trust models:

• NS-NT – Non-Shared Local Resources, no Local Trust, no Remote Trust
• NS-RT – Non-Shared Local Resources, no Local Trust, Remote Partial Trust
• S-NT – Shared Local Resources, no Local Trust, no Remote Trust
• S-LT – Shared Local Resources, Local Partial Trust, no Remote Trust
• S-T – Shared Local Resources, Local Partial Trust, Remote Partial Trust

7.2.4 Remote Partial Trust

Partial mutual trust among a set of RDMA streams (see RFC 5040) implies that one
authentication can apply to all streams in the set. All may be in the same protection
domain. Conversely, one protection domain must never contain streams among which
partial mutual trust does not exist.

For example, not all ULPs using a host’s file system may be trusted. The PM device
may not be able to trust the file system on a host, and all streams from the file system
cannot be assumed to be in the same protection domain.

7.3 Threat Models
The need for particular protection mechanisms depends upon the security threats:

• If the data center is physically secure to the extent that pilfering of storage
devices is very unlikely, then encryption of data at rest may not be necessary.

• If the storage area network is secure against snooping, then encryption of data in
flight may not be necessary.

• If the storage area network is secure against introduction of a rogue host, then
authentication may not be necessary.

• If there is a rogue process on a host (i.e., a non-privileged ULP in Figure 12), it
may be possible to limit its access.

Many networks of interest provide better security than general purpose nodes on a
general purpose network. Examples include:

• Distributed storage devices which are networked have special-purpose
functionality and may lack commonly-attacked functions found in general
purpose nodes. Moreover, these arrays often use dedicated private networks.

• Software defined storage (SDS) virtual machines usually utilize a private
network.

• Virtual appliances implemented as SDS virtual machines that have prescribed
functionality implemented on the VM may provide fewer points of attack.

NVM PM Remote Access for High Availability SNIA Technical White Paper 34
Version 1.0

A PM device can perform a number of actions to protect itself from unauthorized
access:

• Authenticate each protection domain (see 7.2.2). Require that each protection
domain is associated with a single fabric client node. Each node may have
multiple protection domains.

• Use fabric-specific encrypted connections to client nodes (e.g., IPsec for IP-
based fabrics, FC-SP for FC based fabrics) to prevent snooping. Enforce channel
binding to ensure that authentication performed in-band is associated with the
right connection.

• The privileged resource manager (see 7.2.1) can reduce the impact of denial of
service (DoS) attacks by controlling all scarce resources (e.g., by reaping the
resources of idle streams and not sharing RQs, CQs, STags across streams).

• Prevent buffer overflows to protect data of different streams.

7.4 Transport Security
This document addresses four of the fabric transports (i.e., LLPs) for which RDMA
mappings are defined: iWARP, RoCE, RoCEv2, and InfiniBand.

7.4.1 iWARP

iWARP (RFC 5040) provides mappings of RDMA to TCP and to SCTP. Because these
rest upon IP, IPsec could be used for authentication and encryption of data in flight.

7.4.2 InfiniBand™

InfiniBand (InfiniBand Trade Association specification) defines RDMA over the
InfiniBand fabric.

7.4.3 RDMA over Converged Ethernet (RoCE)

RoCE (Annex A16 of volume 1 of the InfiniBand specification) is defined over L2
framing and does not address authentication, authorization, or encryption of data in
flight.

7.4.4 RDMA over Converged Ethernet version 2 (RoCEv2)

RoCEv2 (Annex A17 of volume 1 of the InfiniBand specification) is defined over UDP
(which utilizes IP), and thus can utilize IPsec for authentication and encryption of data in
flight.

8 Error Handling
There are numerous sources of errors in the processes described in section 6. Rather
than attempting an exhaustive enumeration of these, this section describes a systematic
approach to error detection, recovery and reporting in the context of Figure 7. Error
handling processes can generally be described in several parts:

• Detection – some piece of hardware or software gets the first indication that an
error has occurred.

http://tools.ietf.org/html/rfc5040

NVM PM Remote Access for High Availability SNIA Technical White Paper 35
Version 1.0

• Local Recovery – the portions of the system affected by the error take action that
allows them to continue operation, if possible, in spite of the error.

• Global Recovery – software at some level in the system insures that the entire
system has responded to the error in a comprehensive manner. This may
involve parts of the system that were not initially involved in error detection or
local recovery.

• Reporting – software logs the error, possibly at multiple levels.

In the software layering of Figure 7, most of these actions are performed at one of three
layers in the system:

• Hardware and low level software such as drivers – NICs, PM devices or
processors detect and possibly locally recover from errors. For soft errors,
hardware may take all of the necessary action to globally recover from the error
without involving software beyond the associated drivers. Network fault
tolerance techniques such as multi-pathing are grouped with this category. Note
that local persistent memory error handing is not addressed here as it is covered
in the Error Handling content of the NVM Programming Model specification.

• Storage Resiliency – Resiliency is implemented as replication layer using
techniques such as RAID or erasure coding. The replication layer is seldom the
first to detect errors but it is often the locus of global recovery. In this case the
replication layer is a user mode library as shown in Figure 7.

• Application – In some cases the application must respond to errors, especially if
backtracking is involved. For this purpose, transaction functionality is considered
to be part the application.

These layers are listed above from lowest to highest levels in an escalation hierarchy.
Each layer performs best effort recovery within its scope. If that recovery completely
resolves the error and no other recovery action is needed then that layer has achieved
global recovery and higher layers are not involved. Otherwise the layer that detected
the error performs whatever local recovery it can, and escalates the failure to the next
layer up, where the process repeats. The application layer is the last resort for global
recovery. Failure of global recovery at the application layer renders the system at least
partially inoperable pending manual intervention.

8.1 Hardware
Networking hardware, drivers and/or protocol stack are expected to detect, report and
locally recover from the following types of errors:

• Loss of network access
• Loss of remote server power
• Transient network errors – network is expected to achieve global recovery
• Unrecoverable transmission errors – For global recovery at the replication or

application levels this is expected to be converted into a data loss or a loss of
network access depending on the pervasiveness and type of errors.

NVM PM Remote Access for High Availability SNIA Technical White Paper 36
Version 1.0

8.2 Replication
The replication layer is expected to report and locally recover from the following types of
errors. Additional expectations are listed case by case. Local recovery without
detection is triggered by error reporting from hardware layers:

• Loss of network access – The application may proceed without redundancy.
The replication layer may need to do local recovery. The replication layer is
expected to report the failure and achieve global recovery by resynchronization
local and remote data after network access is re-established so that both
represent the same consistency point(s) as defined in section 4.

• Loss of remote server power – The replication layer is expected to detect and
locally recover. The replication layer may also detect the error. In addition, the
file system layer is expected to report the error and achieve global recovery as
with loss of network access.

• Remote server or file service reset – The replication layer responsibilities are the
same as with loss of remote server power, assuming no lapse in network
accessibility.

• Loss of local data – The replication layer reports and locally recovers from this
type of error. If global recovery can be achieved without backtracking then it may
be accomplished by the file system layer. Otherwise the application layer must
participate.

• Loss of local data with additional error such as loss of remote data or remote
server access – Since this case involves multiple failures the replication layer
may be unable to achieve global recovery. This can only be achieved at the
application layer.

• Data corruption – The replication layer may need to participate in local recovery.

8.3 Application
The hardware and replication layers make every effort to detect and recover from errors
without application assistance, however in backtracking and/or data loss scenarios the
application layer must participate as follows. The application layer reports its
involvement in any of these scenarios:

• Loss of remote server access – This represents a group of error conditions in
which the replication layer orchestrates global recovery using backtracking to a
prior consistency point. The application may need to participate in backtracking
by, for example, aborting and/or retrying transactions.

• Loss of local data – The application or local PMFS detects this error, reports it,
and may participate in global recovery.

• Loss of local data with additional error or loss of both local and remote data – the
application must orchestrate global recovery by restoring data from backup
(outside of the replication layer) and restarting.

• Data corruption – the application must detect this error and orchestrate global
recovery. This may involve rolling back through backups until one is discovered
that does not have the corruption.

NVM PM Remote Access for High Availability SNIA Technical White Paper 37
Version 1.0

9 Requirements Summary
As is often the case it is difficult to isolate requirements from implementation examples.
While this document frames HA for NVMP in terms of RDMA, RDMA per se is not the
only way to address these requirements. In addition the description in section 6 includes
some implementation specific details in order to concisely communicate a desired
outcome.

This requirements summary adds to the behaviors common to RDMA transports. In the
interest of clarity each of the following items is framed as a general requirement with
implementation specific examples to further illustrate the nature of the requirement:

• Assurance of durability
This requirement motivates some protocol to force data into PM at the
RDMA data sink (i.e. the remote peer in Figure 8) including confirmation of
same back to the application. This could involve additional flow between
client and server or it could be built into the transport as a latency
reduction.

• Efficient small byte range transfers
This requirement represents a strong desire to reduce the latency of HA
for Load/Store workloads to a much larger degree than can be achieved
with today’s RDMA implementations. One could envision this as a set of
small byte ranges that are packaged in one RDMA and piggybacked with
remote flushing to persistent memory. This requirement also motivates a
kind of scatter gather RDMA that operates at both the application and the
remote access server as shown in Figure 9.

• Efficient large transfers
Byte range transfer optimization cannot come at the expense of large
transfer optimization. It should be reasonable to assume that the transport
can self optimize based on the expression of byte ranges in the
application’s call to optimized flush.

• Discoverability of architectural incompatibilities
Gaps in the ability to fail over to another node and recover data on that
node should be discoverable. One known type of gap has to do with data
representation. This is described in more detail in section 6.5. As
described there, the architectural similarity of two nodes in an HA
relationship should be ascertainable by management software. This
should provide a warning in conditions where access to data structures
after failover may be in doubt.

• Atomicity of fundamental data types
It is not clear that this requirement is met by any current implementations
without the use of CRC. Section 6.5 outlines the issues and alternatives
related to remote failure atomicity. Some option validation,
experimentation and most likely new implementation is needed. In any

NVM PM Remote Access for High Availability SNIA Technical White Paper 38
Version 1.0

case, the NVM Programming Model Specification should include atomicity
granularity and/or other attributes that account for remote atomicity.

• Resource recovery after failure
Consideration must be given to the ease of recovering RDMA resources
dedicated to failed components. This must be addressed in order to limit
the scope of resets during failure recovery.

• Isolation/HW fencing after failure
Correct failure recovery generally assumes fail stop behavior of failing
nodes before remaining nodes resume activity. This must include
scenarios that involve concurrent power loss and hardware failure. Failing
components are required to be isolated from the rest of the system even in
those scenarios.

One outstanding area of requirement investigation has to do with the security, RDMA
resource management and flow control necessary to assure safe and correct operation
with as much latency reduction as possible. There is a general notion that these areas
can be simplified relative to the use of RDMA in today’s non-PM file systems. In PM
systems, RDMA flows directly to and from persistent memory that is permanently
allocated (or semi-permanently allocated for the duration of a memory mapping) for the
purpose of mirroring specific client data. This is expected to eliminate buffer resource
management considerations, thus potentially enabling the elimination of a network
round trip in HA solutions for PM.

Appendix A – Workload Generation and Measurement
While there are some benchmarking tools for memory mapping available (e.g. IOZONE)
these tools offer little control over parameters such as the ratio of sync calls to stores in
mmapped workloads. It would be useful for controlled testing and measurement
purposes to have a new benchmark that offered fine grain control over syncs.

As always, it would be even more valuable to ascertain what benchmark settings best
represent specific applications. Since the timescales involved make memory workloads
harder to measure than IO workloads, memory workload characterization may require
hardware instrumentation making it even more elusive than IO workload
characterization.

Workload parameters
The following traditional IO benchmarking parameters should be included:

• Number of threads
• File size (or memory mapped region size)

There may be an option to determine whether each thread opens and mmaps the same
file/region or a different one. When used in the file context, whole files should be
mmapped.

NVM PM Remote Access for High Availability SNIA Technical White Paper 39
Version 1.0

Once a file is opened and memory mapped, the workload is not described in terms of
IO’s but rather syncs interspersed with loads and stores. The following new parameters
should be included:

• Load record size (bytes)
• Store record size (bytes)
• Load/Store ratio
• Number of Store’s before corresponding sync
• Number of syncs per sync group
• Total number of records to visit in a trial

Based on this set of parameters a given thread does a sequential series of Load or
Store instructions until reaching the designated record size. It then uses the Load/Store
ratio to decide whether to switch from Load’s to Store’s (or vice versa). Regardless of
whether the access type is switched the thread chooses a new random address within
the memory mapped region at which a new sequence of sequential Load’s or Store’s
begins.

After some number of Store cycles in the above pattern, a sync is generated for the first
Store record as indicated by the “Number of Store’s before corresponding sync”. At that
point sync’s are generated for a group of Store records as indicated by “Number of
syncs per sync group”. The pattern continues by triggering a sync group each time a
Store record gets old enough.

This pattern of activity continues until the total number of records to visit is reached, at
which point the remaining Store records are synced and region is unmapped.

With this starting point in mind, a number of variations can be created including the
following:

• Use optimized sync for each sync group
• Apply statistical or patterned distributions to various parameters
• Vary the size of an individual Load or Store instruction within a record
• Repeated Store’s to the same address before a sync
• Add a background workload that is never synced
• Augment or replace the sync with begin/end transactions

Measurements
It would be desirable to ascertain the following statistics from each trial

• Record access rate
• Sync response time

Since response times are difficult to measure in software we will probably have to settle
for a timed run of a specific number of record accesses. This leaves the question of how
to measure sync times, which may require the use of a sampled profiling approach that
determines what percentage of the total run time elapsed during sync.

NVM PM Remote Access for High Availability SNIA Technical White Paper 40
Version 1.0

Appendix B – HA Protocol Flow Alternatives
As shown in Figure 10, since the PCIe bus doesn't have a persistence barrier
transaction, and the memory systems on modern systems use multiple distributed
memory controllers, the ordering of writes to the persistence domain is indeterminate if
the writes end up on more than one memory controller (also assuming DDIO is
disabled). It is not clear that systems will be able to implement this optimization any time
soon so a CPU will have to be involved with the flush.

This leaves an open question that is subject to experimentation and analysis. Given that
a CPU has to be involved for the flush, would it be just as well for it to parse the packet
and place the data too? If so then perhaps a straight message-based protocol would be
as good as, or better than an RDMA-based protocol. By expressing requirements in
terms of an abstract networking protocol this document enables RDMA and bus
protocols to evolve.

Appendix C – Remote Atomicity Considerations
Additional effort is needed to evaluate approaches to remote failure atomicity. This
appendix contains some information that could form a framework for such investigation.

Since the desired atomicity property occurs when data is written to PM it must involve
the implementation of the sink RNIC (i.e. RNIC B in Figure 10) and the way data is
flushed. Given implementation of a failure atomic flush between an RNIC and PM, the
RNIC can apply this primitive in several ways. The following table suggests a ranking of
several options relative to each other (i.e. lower numbers are better) based on the
following criteria:

• Overhead – how much additional latency occurs when failure atomicity is applied
• Selectiveness – to what degree can the overhead be applied only when needed
• Compatibility – how intrusive is the potential protocol impact of the option

Option Over-
head

Selective-
ness

RDMA
Compat-
ibility

NVMP
Compat-
ibility

A - Apply to atomic actions surfaced by
existing protocols

1 1 1 3

B - Apply to all RDMA writes 2 3 1 1
C - Apply to all RDMA writes in a given
session based on a registration option

2 2 2 1

D - Apply to individual RDMA writes
based on a flag in each RDMA write

1 1 2 3

E - Use checksum when atomicity is
required

3 2 1 2

At this point there is no quantitative data on relative overheads of these options so it is
difficult to draw conclusions from such a ranking. Any of these options other than CRC
requires a failure atomic sink RNIC write implementation (i.e. at RNIC B in Figure 10).
Options A and D may have “convoy” alternatives in which multiple atomic writes are
communicated at once. Various consistency and alignment considerations may come
into play within each of these options.

NVM PM Remote Access for High Availability SNIA Technical White Paper 41
Version 1.0

Appendix D – References

“Memory consistency and event ordering in scalable shared-memory multiprocessors,”
Gharachorloo et al, ISCA, 1990, pp. 15–26

“NVM Programming Model” created by the SNIA NVMP TWG -
http://www.snia.org/sites/default/files/NVMProgrammingModel_v1.pdf

“NVM Atomics” Paul Van Beheren et. Al – as of this writing this companion white paper
is still under development.

iWARP (RFC 5040) - http://tools.ietf.org/html/rfc5040

InfiniBand (InfiniBand Trade Association specification) including annexes A16 and A17
regarding ROCE and ROCE2 -
http://www.infinibandta.org/content/pages.php?pg=technology_public_specification

IOZONE - http://iozone.org/

Appendix E – Glossary

NVM – Non-Volatile Memory – In the context of the SNIA NVM Programming TWG,
NVM refers to all types of storage including storage class memory, persistent memory,
SSD’s and rotating media disk drives.

PM – Persistent Memory – In the context of the SNIA NVM Programming TWG, PM
refers to durable media that operates at memory speed and enables byte or cache line
access.

RDMA – Remote Direct Memory Access – A means of directly accessing memory in a
remote location over a network. RDMA is a key feature of InfiniBand interface, among
others.

RNIC – RDMA NIC – A Network Interface Card that supports Remote Direct Memory
Access

RPO – Recovery Point Objective – A metric specifying the amount of work that might be
lost in the event of a failure.

http://www.snia.org/sites/default/files/NVMProgrammingModel_v1.pdf
http://tools.ietf.org/html/rfc5040

	Feb 22, 2016
	V1.0
	1 Purpose
	2 Scope
	3 Memory Access Hardware Taxonomy
	3.1 Persistent Memory (PM) latency landscape
	3.2 Local Persistent Memory
	3.3 Disaggregated Persistent Memory
	3.4 Networked Persistent Memory
	3.5 Virtual Shared Memory

	4 Recoverability Definitions
	4.1 Data Durability vs. Data Availability
	4.2 Consistency Points
	4.3 Crash Consistency in Disk Based Systems
	4.4 Crash Consistency in PM Systems
	4.5 Recovery Point Objective
	4.6 Recovery Scenarios
	4.6.1 In line recovery
	4.6.2 Backtracking recovery
	4.6.3 Local Application Restart
	4.6.4 Application Failover

	5 HA Extensions to NVM.PM.FILE
	6 RDMA for HA
	6.1 Peer to Peer Deployment Model
	6.2 Address Spaces
	6.3 Assurance of Remote Durability
	6.4 Client initiated RDMA Protocol Flow
	6.5 HA across multiple processor architectures

	7 RDMA Security
	7.1 Security Concepts
	7.2 RDMA Security Model
	7.2.1 Overview
	7.2.2 Protection Domains
	7.2.3 Partial Trust
	7.2.4 Remote Partial Trust

	7.3 Threat Models
	7.4 Transport Security
	7.4.1 iWARP
	7.4.2 InfiniBand™
	7.4.3 RDMA over Converged Ethernet (RoCE)
	7.4.4 RDMA over Converged Ethernet version 2 (RoCEv2)

	8 Error Handling
	8.1 Hardware
	8.2 Replication
	8.3 Application

	9 Requirements Summary
	Appendix A – Workload Generation and Measurement
	Appendix B – HA Protocol Flow Alternatives
	Appendix C – Remote Atomicity Considerations
	Appendix D – References
	Appendix E – Glossary

