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Scope 
This whitepaper describes considerations in developing libraries implementing atomic 
updates and transactions within the context of byte-addressable persistent memory 
(PM). PM is accessed (like volatile memory) using processor load and store 
instructions, but it retains its contents across power loss (like storage). The problem this 
paper addresses is the ability to store and access program data structures in persistent 
memory in a way which is robust against power or system failures. While there are 
several solutions to the problem, this paper focuses on transactions and atomic 
operations implemented in libraries.  
 
This paper builds on SNIA’s NVM Programming Model specification [see NPM], which 
defines behavior for PM aware file systems, but does not address atomic operations or 
transactions of arbitrary sizes. Such capabilities have been addressed to varying levels 
in published academic and research efforts and this paper describes how they apply to 
PM. Strategies for defining data structures supporting transactions in persistent memory 
are also considered.  
 
Processor Instruction Set Architectures define operations where multi-thread atomicity 
is guaranteed. For example, on x86 architectures, MOV instructions with naturally 
aligned operands of at most 64 bits qualify. Failure atomicity for persistent memory is 
accomplished using CPU flush and fence instructions.  
There are several ways the limited failure atomicity provided in hardware can be 
generalized by software, including: 

• Software may implement an abstraction of hardware failure atomicity that 
allows software to use hardware independent APIs.  These use architecture-
specific operations where appropriate or software alternatives. The software 
alternatives may utilize locking to assure multi-thread atomicity. 

• Software failure atomic operations provide failure atomicity for a specific type 
of data structure (for example, updating a linked list).  

• A transaction manager may provide failure atomicity for a list of updates to 
members of one or more types of data structures.  

This whitepaper does not prescribe a specific implementation but discusses 
considerations for developing PM-aware libraries implementing failure atomic data 
structure updates. The discussions apply to libraries implementing combinations of 
these three software generalizations. 

1 Introduction 
1.1 Assumptions 
This paper presents concepts that apply to different programming languages. Libraries 
that implement the behavior described here are often written in C, so C is used in 
examples. Similarly, file systems features (such as memory mapped files) are available 
in many operating systems, but the examples here use POSIX APIs. 
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The SNIA programming model (see 1.2 Relationship with the SNIA NVM Programming 
Model) uses files to name ranges of PM. The application maps these ranges to 
associate physical PM with process virtual memory. The assumption is that PM files 
hold a large amount of data, possibly all of an application’s data (or some set or related 
data structures). Typically there would not be a separate PM file for each variable. 
 
All discussions assume there are ways of sharing memory across different threads of 
execution with the ability to share address space and virtual to physical address space 
mapping. 
 
This paper does not address behavior across threads in different processes. 
 
System architectures may include other ways of accessing PM, including DMA. 

1.2 Relationship with the SNIA NVM Programming Model 
The SNIA NVM Programming Model [see NPM] defines the behavior user-space 
software uses to access PM. A typical pattern for applications using this model is: 
• open a file on a PM-aware file system 
• memory map the file into process virtual 

memory.  Unlike a legacy block-device 
oriented file system, a PM memory maped 
file enables direct access to PM without 
paging 

• use load/store operations to access PM 
• flush data from CPU caches to PM  
 
The libraries described in this paper act as a 
layer between applications and the file system 
and PM hardware. The libraries provide failure 
atomicity and transaction support, implemented 
similarly to existing transaction manager 
implementations, but optimized around unique characteristics of PM. Possible 
deployments are depicted in the above figure. The dashed lines depict load/store 
operations; the solid lines depict API calls. Application 1 links in a PM-aware library, but 
uses a compiler without PM support. Application 2 uses a PM-aware compiler and run-
time library. 
 
The behavior described here may apply to kernel code, but the focus of this paper is 
user space, non-kernel software.  
 
In general, PM-aware libraries may be accessed by an end-user application or a 
middleware component such as a transaction manager or data-base middleware. In this 
paper, PM library consumer may refer to any software that uses PM libraries’ APIs. 

1.3 PM and Crash Consistency 
Crash consistency is a common recovery model for persisting data in today’s storage 
devices such as disk drives. In disk drives, the order of completion of outstanding writes 
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is indeterminate. In addition, a write may not be completed if power fails. Since disk 
drives offer weak ordering guarantees, applications must be prepared to recover from 
any state of the writes that are in flight when a failure occurs. This brings us to the 
concept of crash consistency, in which the state of an application’s data after a failure 
need only match the indeterminate write order guarantee of a group of disk drives. 
 
More formally, an application’s data state is considered crash consistent if it could have 
resulted from power loss of a group of direct attached disks given the sequence of write 
commands and completions leading up to the failure. This means that there is a rolling 
window of outstanding write requests whose order is uncertain. Applications must be 
able to recover from any order of those requests and must account for storage system 
atomicity nuances in the process. For an application, recovery from a crash consistent 
image is the same as a cold restart after a system crash. 
 
Now consider the map-and-sync methodology described in the NVM.PM.FILE mode of 
the NVM Programming Model NPM. Sync has a very specific meaning. The only 
guarantee that sync makes is that all stores in the address range of the sync that 
occurred before the sync are in persistent memory when the sync completes. Sync 
does not otherwise restrict the order in which data reaches persistent memory. For 
example, if cache lines 1 through 5 were written in order by the application before a 
sync, cache line 5 might have reached persistent memory first, possibly before the sync 
even started. This flexibility enables CPUs to optimize write ordering for cache 
performance. 
 
This uncertainty gives rise to a lowest common denominator for NVM.PM.FILE recovery 
that is highly analogous to that which exists for disk drives. Specifically, the application 
is uncertain as to which of the store instructions between two sync actions will appear in 
persistent memory after a failure that occurs before completion of the second sync 
action. If the actions and attributes of the NVM Programming Model are all that is 
available, then the application must execute additional sync actions whenever the order 
of stores to persistent memory matters. 
 
More formally, a persistent memory range is crash consistent if its contents at the start 
of recovery could have resulted from the pattern of stores and syncs executed on the 
processor(s) with data in flight to the persistent memory prior to failure. In both disk 
drives and persistent memory, some aspect of failure atomicity is built into the crash 
consistency assertion. The NVM programming model describes atomicity for both disk 
drives and persistent memory. 
 
Crash consistency is a complex approach to recovery from an application standpoint. It 
also forces considerable overhead to precisely communicate every sync action to 
persistent memory. This further illustrates the motivation for some notion of consistency 
points such as persistent memory transactions. 

1.4 Requirements 
Databases and transaction processing systems have been providing atomic operations 
and transactions with persistent storage for decades. Such systems have provided 
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atomicity, consistency, isolation, and durability (ACID) properties through a transactional 
interface. Such an interface provides the programmer with a mechanism for the reliable 
transition of data from one consistent state to another. Implementations have utilized 
various logging techniques (e.g. write ahead logging) to provide such behavior with 
block devices, such as HDDs and SSDs, as the target for the atomicity and durability of 
transactions. This paper explores techniques for providing transactions and atomic 
operations on PM; some are unique to PM and some are closely related to techniques 
used with block devices. 
 
In developing extensions to the existing NVM programming model for atomics and 
transactions, the following goals for such capability were identified: 
1. Provide for atomic updates to PM that support durability in the event of system or 

power failures –The techniques described in this paper help software achieve 
consistency for data residing in PM. 

2. Provide for failure atomic updates on large address ranges or groups of ranges – 
The proposed techniques allow implementations to achieve atomic updates for 
multiple ranges larger than the granules supported by single hardware instructions.  

3. Work with existing compilers – This document does not elaborate on approaches 
that would require core language extensions or modifications. Standard language 
support for PM is a goal, but may take a long time to be defined, implemented and 
adopted by applications.  

4. Work with existing processors - Any approach to atomicity and transactions shall rely 
on existing or near term processor capabilities, but also consider emerging PM-
related hardware features. 

5. Ability to avoid unnecessary serialization or redundant instrumentation – An 
application developer may know that in certain cases, PM data can be safely 
accessed without locks.  Similarly there may be cases where durability goals can be 
achieved while selectively bypassing read/write fences that enforce ordering. 
Implementations that prevent developer control of instrumentation or serialization 
related to locks or fences may prevent optimal performance. 

 
To address these requirements, this paper proposes behavior for libraries supporting 
failure atomicity and transactions for families of PM-aware data structures. Library 
consumers control the way data is stored in PM: the consumer may opt for fixed-sized 
records, variable-length key/value strings, or any other layout. PM-aware refers to 
mechanisms that address unique characteristics of persistent memory such as 
avoidance of persistent memory leaks. The libraries may support transactions that 
include a mix of different types of data structures. 

1.5 Key concepts for PM programming 
1.5.1 Two senses of atomicity 
There are two aspects of atomicity related to the proposed libraries: failure atomicity  
and multi-thread atomicity. Both aspects guarantee that all or none of the updates are 
completed. For both aspects, techniques used in existing transaction managers apply. 
For PM, failure atomicity requires PM-aware libraries be sensitive to behavior related to 
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CPU caches. This paper includes extensive discussion of the relationship between CPU 
caches and failure atomicity.  
 
This paper does not address multi-thread atomicity. Implementations of PM libraries 
may choose to give guarantees of behavior across threads or allow consumers to 
control this behavior, but PM does not introduce new behavior.  Once again, techniques 
used in existing transaction managers apply.  
 
1.5.2 Unique concerns for PM 

Many practices that are used to implement atomicity with volatile memory and disk 
drives also apply to persistent memory atomicity. For example,  

• running recovery logic after a restart that rolls back incomplete atomic updates  
• use of a log to record pending persistent updates (used by recovery logic), 
• techniques that manage concurrent updates 

 
PM introduces some new considerations for implementations. In today’s systems when 
an application restarts, its allocated memory is implicitly freed and made available to 
other applications. Allocation of PM, on the other hand, survives application restarts.  An 
allocation of persistent memory is typically followed by steps to reference the allocation 
from a data structure such as a list or tree. A failure may cause newly allocated 
persistent memory to remain unreferenced, potentially creating a persistent memory 
leak. One way that PM-aware software can protect from leaks is to use recovery logic, 
possibly assisted by a log, to keep track of allocation as well as updates. 
 
PM-aware software may also wish to consider memory-related granularities (cache-line, 
atomic write, hardware, and kernel copy sizes) to minimize inefficiencies due to 
read/modify/write sequences. 

1.6 Related Work 
Related academic and research efforts were investigated, which will be discussed 
below.  This investigation was used to identify common characteristics, generalize, and 
form a transaction approach for PM. Some approaches were avoided because they rely 
on processor and/or language extensions that are not aligned with the requirements 
stated in section 1.4. For example BPFS [see Condit] provides for fine-grained atomic 
updates to persistent memory as a part of their file system. However it relies on core 
processor changes (e.g. cache controller, memory controller). NV Heaps [see Coburn] 
was also investigated for its flexible ACID transactions but it has the same processor 
enhancement requirements as BPFS. Additionally Kiln [see Zhao] was considered for 
its ability to perform in-place updates without copy-on-write (COW) or logging however it 
requires cache controller and ISA extensions. Transactional Memory [see Herlihy] 
defines behavior similar to the goals of this paper, but requires extensions to processor 
or cache hardware. Mnemosyne [see Volos] provides persistence primitives and a 
durable memory transaction mechanism that enables consistent updates of arbitrary 
data structures. However the model is supported through language extensions.  
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Software Transactional Memory (STM) [see Shavit] adapts Transactional Memory to 
use software rather than hardware extensions. The goal for transactional memory is 
minimizing the need for programmers to explicitly manage locks. But existing STM 
implementations have a few drawbacks. The first is that STM proposals typically define 
programming language extensions. The second is that proposed STM implementations 
add instrumentation code to monitor memory or lock usage which usually prevents 
linking with existing binaries. Further, the injected instrumentation often creates 
redundant read or write barriers, causing STM implementations to perform significantly 
slower than implementations with manually managed locks [see Cascaval and Yoo]. 
 
In Atlas [see Chakrabarti] all ACID properties are supported by ensuring that critical 
sections, which are already used to demarcate regions in which data structures are 
inconsistent, are committed atomically to PM. Isolation is provided using existing lock 
structures and consistency is supported using existing application techniques. They key 
component added in Atlas is failure atomicity (durability) for memory areas that are 
defined as persistent (e.g. persistent regions). 
 
The C11 and C++11 standard [see C11] does not address persistent memory or failure 
atomicity. 
 
In summary, many of the techniques used by transaction manager implementations 
targeting block devices also apply to PM. PM-specific considerations relate to recovery. 
For example, rolling back a transaction may require un-allocating PM. Research 
discusses benefits (by reducing coder errors) of language extensions and software 
transactional memory, but in practice, the associated performance costs have been high 
[see Cascaval]. 

2 Considerations for Developing PM-aware Libraries 
2.1 Hardware Considerations 
The term “aligned operations on fundamental data types” refers to the set of operations 
that enable optimal CPU/memory performance. Aligned operations on fundamental data 
types are usually the same operations that under normal operation become visible to 
other threads/data producers atomically.  In other words, aligned operations on 
fundamental data types can be made atomic without a lock. For a library to update a 
larger range atomically, it needs to lock out other threads, invoke a set of store 
operations no larger than fundamental data sizes, invoke a fence operation, then 
unlock.  
 
As an example, consider a store of nine-bytes of data  
  char data[16] = "xxxxxxxxx"; // allocate 16 bytes  
  memcpy(data, "123456789", 9); // change 9 
On an architecture with a 64-bit fundamental data type size, the 9 byte memcpy 
operation may cause the compiler to generate two 8 byte atomic store instructions, not 
a single atomic operation. Because this straddles the fundamental data type size, cache 
pressure may cause the two stores to be flushed to persistence in an arbitrary order or 
not at all. A failure during the flush may cause undefined contents after a restart.  There 
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are multiple scenarios where a failure while the memcpy is being executed may cause a 
torn write. The recipe described in the previous paragraph (lock, multiple stores of 
fundamental data type sizes, flush, fence, unlock) will provide multi-thread atomicity, but 
not failure atomicity for PM. 
   
A PM-aware library may wish to provide an abstraction of hardware failure atomicity. 
The library could provide a method to flush CPU cache to PM that would use the most 
optimal CPU instructions available.  For example on Intel products this may involve 
CLFLUSHOPT and CLWB on newer platforms, falling back to CLFLUSH on older 
platforms. 
 
Not all CPU instructions are optimized for PM. For example, Intel CMPXCHG (Compare 
and Exchange) provides an atomic compare and memory update, but does not flush to 
PM. Adapting lockless algorithms using CMPXCHG may require introducing a lock to 
provide atomicity across the CMPXCHG and CLFLUSH. 

2.2 Intrinsically atomic PM data structures 
In some cases simple PM data structures can be implemented using a single store to a 
fundamental data type to provide failure atomicity.  This approach is limited to situations 
that meet all of the following requirements. 

• Only one location containing valid data in the data structure is updated in place.   
• Space allocation and management is self-contained within the PM data structure 

implementation. 
• The application does not require failure atomicity from multiple data structures at 

the same time. 
 
Several examples of intrinsically atomic data structures are described in section 3.  Any 
use case that does not meet all of the above requirements requires a transaction.   

2.3 Identifying code locations with failure atomic considerations 
The places where locks protect data structures for multi-thread safety are often the 
places where you need to consider failure atomicity.  
 

2.4 Visibility and Isolation 
Transaction managers allow applications to specify a list of updates to multiple nodes in 
multiple data structures, and assure the entire list of updates is performed atomically. A 
common technique used in transaction managers is a transaction log (or journal) where 
information about transactional updates is stored. After a failure, the transaction 
manager “reviews the database logs for uncommitted transactions and rolls back the 
changes made by these transactions” (from Wikipedia “Transaction log”). There are 
numerous approaches to transaction logs. One of the differentiating characteristics is 
whether the implementation stores copies of pre-transaction or intended values in the 
log. Before image (undo) logging copies the pre-transaction data to the log, then 
updates the PM data in place. Recovery code removes the effect of any partially 
committed transactions. After image (redo) logging writes intended updates to data in 
the Log, then updates the PM data  in place after the transaction commits. Recovery 

https://en.wikipedia.org/wiki/Transaction_log
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consists of replaying all committed transactions in the intent log. Free Transactions with 
Rio Vista (see Lowell) describes a transaction manager using a before image log. The 
ARIES paper (see C. Mohan) describes a transaction manager using an after image log. 
 
The choice of before or after image logging influences the visibility of data in partially 
completed transactions. Consider software accessing data in a before image logging 
implementation. A load instruction of that data address exposes updates made 
previously in the transaction. But a load instruction in a redo logging implementation will 
access the pre-transaction version. PM libraries with transaction logs should document 
how their implementation affects visibility.  Locks with memory barriers may be required 
to achieve the desired behavior. 
 

2.5 Persistent Memory Allocator 
Legacy applications typically use data structures such as lists or trees to allocate 
memory dynamically. Allocations of volatile memory come from a single anonymous 
heap. On the other hand, the SNIA NVM Programming Model allows PM to be assigned 
to files, which can be viewed as PM heaps. In order to enable the use of data structures 
in PM, a library may wish to provide a PM allocator. An application would use this 
allocator similarly to malloc() to allocate PM for list or tree nodes. If a library implements 
an allocator for PM, it should provide a mechanism to enable detection of allocations 
that are not being used to account for scenarios such as the following.  
 
A library implementing a transaction manager is probably using some sort of transaction 
log (e.g., undo log, redo log), or some other mechanism that tracks updates relative to 
each transaction. Recovery logic runs at application startup to find incomplete 
transactions and perform tasks needed to regain consistency.  This same log and 
recovery logic can be enhanced to track allocations. One approach is to track the state 
of an allocated range, differentiating between reserved and allocated states. If the range 
has a state indicating it’s reserved, but not allocated; then the recovery logic frees that 
range. 

2.6 Persistent Memory Transaction Manager 
When failure atomicity must span multiple data structures such as records in a database 
or key value store, a PM transaction manager is required. In this paper, the following 
commands represent APIs commonly included in Transactional APIs: 

• begin_transaction: start a transaction  
• end_transaction: end a transaction and commit updates since its corresponding 

begin_transaction 
• set_range: informs the library which ranges of PM must be updated 

transactionally 
 
A transaction manager may provide the capability to atomically update data in multiple 
data structures (for example, add an item to a shopping cart data structure, while 
removing it from an inventory data structure). 
 
Psuedo-code for a use case involving a PM transaction manager appears in section 3.3. 
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2.7 Recovery 
Recovery refers to logic run at application startup, or when an error is detected, to 
return data to a consistent state. Recovery logic looks at data that has recently 
changed, often prior to a restart, to detect cases where atomic updates failed or were 
incomplete. Consistency is defined by the application and varies with the type of 
atomicity provided and implementation choices.  For example, recovery of an atomic log 
append may be restricted to truncating the log to exclude partial operations.  Recovery 
for a transaction manager with a redo log may be able to complete in-flight transactions 
after a restart. 

3 Use Cases 
This section presents a few use cases where an application uses capabilities of PM-
aware libraries. The use cases show applicability of ideas introduced in section 2 
Considerations for Developing PM-aware Libraries.  The simpler use cases include both 
pseudo-code and C language code examples. As the use cases get more complex, 
example code gets lengthier and is omitted from more advanced use cases. 

3.1 Add a node to a linked list (atomic operation) 
In this use case, an application allocates memory for a list node, populates the data, 
and then inserts the node in the list. To achieve failure atomicity, partially completed 
effects need to be reverted after a failure. Three variations are included, showing how a 
basic implementation is expanded to provide multi-thread and failure atomicity support. 
 
Assumptions: 
Each of the three variations share the following data structures. 

/* the node struct represents a list element */ 
struct node { 
    struct node *nextp; 
    int data; 
}; 
/* a single root struct that points to the list head */ 
struct root { 
    struct node *headp; 
    /* the second and third variations include a list lock */ 
}; 
 

The addnode() function takes two arguments: a pointer to the list’s root node and the 
value to be set in the new node. 

 
The linked list API is assumed to support one specific node type. In practice, a general-
purpose linked list API is desirable. Existing techniques for implementing APIs 
supporting application-defined types can be used with PM; but for simplicity, this use 
case assumes the application and library share the definition of the node struct.  
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Basic version of addnode() 

The first version of addnode() uses 
volatile memory and does not consider 
multi-threading. 
 
1. allocate a new node struct 
2. assign the call’s data value to 

newnode->data 
3. assign newnode’s next pointer to 

the previous list head (root’s headp) 
4. assign root’s head pointer to the 

new node 
 

Add Multi-thread Safety 
The second version adds locking to 
support multi-threading. This is 
accomplished with a single 
pthread_mutex which protects the 
entire list. Three changes are made to 
the basic example: 
1. listlock is added to the definition of 

node 
2. the list is locked before  updating 

the root and node objects 
3. the list is unlocked after updating 

the root and node objects 
 
 
 
 
Persistent Memory Version 
This version of addnode() uses persistent memory in a way that provides intrinsic failure 
atomicity. Two simple PM operations are used in the example:  
• The library implements a PM allocator. For the purpose of this use case, this 

allocator provides an alternative (pm_calloc) to standard calloc() to allocate and zero 
a range of memory from a PM file. 

• This version introduces a flush operation (pm_flush). When software gets a 
response from a flush operation, it knows that the specified range of addresses have 
been flushed to persistent memory.  A systematic approach to storing and flushing 
data allows software to determine which data was stored successfully prior to a 
failure.  

 
In the pseudo code below, the critical section includes flushing the newnode instance 
and exploiting the machine architecture’s atomicity when doing aligned stores to 8-byte 
fundamental data types. 

void 
addnode(struct root *rootp, int data) 
{ 
    struct node *newnodep; 
  
    if ((newnodep = calloc(1,   
        sizeof(struct node))) == NULL) 
      fatal("out of memory"); 
  
    newnodep->data = data; 
    newnodep->nextp = rootp->headp; 
    rootp->headp = newnodep; 
} 

void 
addnode(struct root *rootp, int data) 
{ 
    struct node *newnodep; 
  
    if ((newnodep = calloc(1,  
        sizeof(struct node))) == NULL) 
      fatal("out of memory"); 
  
    newnodep->data = data; 
  
    /* lock the critical section */ 
    pthread_mutex_lock( 
       &rootp->listlock); 
    newnode->nextp = rootp->headp; 
    rootp->headp = newnodep; 
    pthread_mutex_unlock ( 
       &rootp->listlock); 
} 
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The steps for the persistent version: 
1. allocate a node from PM, and save 

its address  
2. lock out other threads from 

updating the linked list 
3. assign the new node’s next pointer 

to the root pointer’s next (i.e., the 
head of the list) 

4. assign the value (passed in by the 
caller) to the new node’s value 

5. flush the new node’s memory 
range from CPU cache 

6. assign the root pointer’s head to 
the new node, implemented as an 
aligned operation on a fundamental 
data type – treated as a failure -
atomic store  

7. flush the root pointer’s head from 
CPU cache 

8. unlock the list 
 
Recovery code - Step 6 uses an atomic store capability provided by the machine 
architecture to store and flush a pointer. This enables a simple start-up recovery 
implementation with assistance from the pm_calloc implementation.  The linked list 
recovery code must examine the saved address of allocated node structures recorded 
by pm_calloc, and free any that are not part of the list.  These occur as partial effects 
due to failures while nodes were being added. 

3.2 Append to a file atomically (atomic operation) 
Append logging is used when an application appends data to a log file to allow recovery 
to a consistent state after a failure. This log file could be used to allow restoring a 
database to a consistent state when in-place data updates are interrupted. This 
example does not use transactions; it’s a restricted use case where intrinsic failure 
atomicity can be provided without transactions. 
 
Ignoring details of the API, the steps are 
1. The application calls an API to append referenced data to the log 
2. The library implementing the API  

a. locks other threads from updating the data being logged and from updating the 
append log file 

b. appends the data to the log file 
c. updates and flushes the file’s end pointer 
d. unlocks the lock from step a 

 
3. When the application restarts, it calls the library’s recovery logic which uses the log 

to determine whether interrupted append operations can be completed. The library 

void 
addnode(struct root *rootp, int data) 
{ 
    struct node *newnodep; 
  
    if ((newnodep = pm_calloc(1,  
        sizeof(struct node))) == NULL) 
      fatal("out of memory"); 
  
    newnodep->data = data; 
  
    /* lock the critical section */ 
    pthread_mutex_lock( 
       &rootp->listlock); 
    newnodep->nextp = rootp->headp; 
    pm_flush(newnode,  
        sizeof(struct node)); 
    rootp->headp = newnodep; 
    pm_flush(&(rootp->headp),  
        sizeof(rootp->headp)); 
    pthread_mutex_unlock ( 
       &rootp->listlock); 
} 
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undoes any partial effects related to append operations that can’t be completed. For 
example, allocated blocks that are not in any file may need to be recovered.  Since 
this is a common practice to avoid loss of free space in file systems, the append 
logging library may not need any recovery logic of its own.  

 
There are several reasons why this use case is simpler than the insert-a-node use case. 

• Appends don’t involve in-place updates 
• The library uses a single write/store command to update the file. 

3.3 Transactional Multi-record update 
This use case illustrates the swapping of data values in 2 records such as might reside 
in a database or key value store.  Consumers of a transaction manager may need to 
consider the library's approach to visibility (see 2.4 Visibility and Isolation). This is 
shown in pseudo-code for before and after image transaction managers. 
 
Before image log approach 
The application code 

1. begin_transaction 
a. the library starts a transaction, initializes a transaction log record 

2. Lock out other threads 
3. set_range record1 

a. the library keeps track of this range; copies this range into the transaction 
log at appropriate time 

4. set_range record2 
a. the library keeps track of this range; copies this range into the transaction 

log at appropriate time 
5. Copy record1 to a temp buffer 
6. Copy record 2 to record1  
7. Copy temp buffer to record2 
8. Release lock 
9. end_transaction 

The library commits the updates or reverts to pre- begin_transaction state on failures 
 
The open source NVML (http://pmem.io/nvml/ ) libpmemobj library provides a before 
image PM transaction manager that maps closely to the pseudo-code above. 
 
After image log approach 

1. begin_transaction 
a. the library starts a transaction, initializes a transaction log record 

2. Lock out other threads from writing and reading records 1 and 2 
3. Copy record1 into the log as the intended value of record 2 
4. Copy record 2 into the log as the intended value of record 1 
5. Release lock 
6. end_transaction 

 

http://pmem.io/nvml/
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4 Conclusions 
The aspects of atomicity that are specific to PM are those related to failure atomicity.  
The proposed approach to PM atomicity and transactions in this whitepaper was 
developed by leveraging related academic and research publications. Many of these 
publications rely on hardware capabilities that don’t appear to be planned for production 
systems, programming language extensions that are not part of compiler 
implementations, or fail to address failure atomicity. This led to defining requirements 
(see 1.4 Requirements) that allowed implementations using the first generations of 
hardware and kernel support for PM.  
 
PM introduces the opportunity to achieve very high performance failure atomicity using 
intrinsically atomic PM data structures.  When used in isolation these data structures do 
not require transactions, however they are only applicable under certain conditions.  
Situations involving multiple PM data structures or complex space management require 
transactions.  Ideally these transactions comprise groups of the same intrinsically 
atomic PM data structures that can otherwise be used in isolation. 
 
Because many of the considerations for PM atomics and transactions also apply to 
volatile memory, existing transaction manager APIs provide a good starting point for 
developing PM libraries. Many of the PM-specific considerations can be implemented in 
the library. 

5 Future Work 
This paper discusses implementing PM libraries using standard C and existing 
compilers.  Forward looking work continues on complier extensions for PM atomicity. 

5.1 Atlas 
Atlas builds on the relationship between locks and failure-atomicity (see 2.3 Identifying 
code locations with failure atomic considerations). Atlas identifies failure- atomic 
sections of code based on existing critical sections and provides a log-based 
implementation that can be used to recover a consistent state after a failure.  This is 
accomplished by implementing a compilation pass that instruments synchronization 
operations and store operations that appear to be directed to persistent memory. This 
results in calls to the Atlas runtime library, where synchronization operations and stores 
to persistent memory are tracked in a persistent log. This log is used when the 
application restarts and while the application is running. 
 
An application known to be free of data races, implemented using a PM-aware file 
system (as described in the SNIA NVM Programming Model NVM.PM.File mode – see 
NPM), can easily be adapted to achieve failure atomicity with Atlas.  
 
Atlas has been released under the GNU Lesser Public License Version 3.  It is available 
at https://github.com/HewlettPackard/Atlas. 
 

https://github.com/HewlettPackard/Atlas
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5.2 Oracle NVM Direct 
NVM Direct defines language extensions for PM and includes a library that provides 
entry points called by the extensions as well as functions that applications call directly. It 
is possible to use the library without the C extensions. 
 
The API provides facilities for an application to map PM into its virtual address space 
and access it with loads and stores. This requires an OS file system that implements the 
NVM Programming Model NVM.PM.File mode (see NPM). 

• The API manages region files that are formatted for use by the library. 
• The API provides transactions to atomically update complex data structures in 

PM 
• The API provides PM mutexes that can be used to coordinate access to PM data 

by a multi-threaded application 
• The API supports multiple PM heaps for allocating application defined structs in 

PM 
NVM Direct defines language extensions that can be implemented using a pre-compiler.  
These language extensions simplify writing NVM code, automate some coding to 
reduce bugs, and add runtime checks to catch corruption early. 
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7 Appendix A – Open Source NVM Library 
 
Many of the examples and behaviors described in this white paper have been 
implemented in the open source NVM Library “NVML”, available at http://pmem.io/nvml/. 
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