
Storage Networking Industry Association
Technical White Paper

Persistent Memory
Hardware Threat Model v1

July 26, 2018

ABSTRACT: This white paper discusses approaches for securing
persistent memory (PM); particularly considering unique characteristics of
PM. This work includes a threat model and potential responses to threats.

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 2
July 26, 2018

USAGE
The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no
alteration, and,

2. Any document, printed or electronic, in which material from this document (or any portion hereof) is

reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting
permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly
reserved to SNIA.
Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org. Please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the
following license:

BSD 3-Clause Software License

Copyright (c) 2018, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 3
July 26, 2018

DISCLAIMER

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of
any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2018 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their
respective owners.

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 4
July 26, 2018

Table of Contents
1 SCOPE AND RELATIONSHIP TO NVM PROGRAMMING MODEL 5

2 MULTI-TENANCY MODELS.. 5

2.1 PUBLIC CLOUD DATACENTER MULTI-TENANCY .. 5
2.2 SCALING MULTI-TENANCY IN STORAGE .. 7

3 USE CASES... 9

3.1 STORAGE PROTECTION ... 9
3.2 SECURITY AUDITS OF IMPLEMENTATIONS ... 11
3.3 ORIGIN AND DELIVERY PROTECTION ... 12
3.4 MEMORY PROTECTION .. 12

4 ROLE DEFINITIONS .. 12

5 THREAT MODEL ... 13

6 THREATS TO PRIVACY OR CONFIDENTIALITY .. 14

6.1 PHYSICAL MANIPULATION .. 14
6.2 SOFTWARE ACCESS ACROSS TENANT BOUNDARIES .. 15
6.2.1 Real time access protection of active data .. 15
6.2.2 Access protection of inactive data ... 16
6.3 THREATS AGAINST DELETED DATA .. 16
6.3.1 Meaning of deletion ... 16
6.3.2 Multiple Keys for secure erasure ... 17
6.3.3 Use of the Sanitize command in NVMe, SCSI and SATA 17
6.3.4 Privacy threats due to loss of re-initialization during reboot or reset 17
6.4 ADMINISTRATIVE THREATS ... 18
6.5 THREATS EXPOSED THROUGH RUNTIME H/W E.G. DMA ... 18
6.6 REMOTE ACCESS THREATS (E.G. RDMA) .. 19
6.7 MALWARE THREATS .. 19
6.7.1 File open vs. mmap ... 20
6.7.2 Signature detection in changing files ... 21
6.7.3 Single scanner view of both disk and PM based files .. 21
6.7.4 Ingest .. 21
6.7.5 Scan triggers during writes .. 22

7 THREATS TO AVAILABILITY OR DATA INTEGRITY 23

7.1 LEVERAGE OF PRIVACY THREAT INTO DATA INTEGRITY THREAT 23
7.2 SOFTWARE DEFECTS ... 24
7.2.1 Loss of separation ... 24
7.2.2 Loss of re-initialization ... 25
7.3 DENIAL OF SERVICE THREATS... 26

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 5
July 26, 2018

1 Scope and relationship to NVM Programming Model

This white paper discusses approaches for securing persistent memory (PM);
particularly considering unique characteristics of PM. This work includes a threat
model, potential responses to threats and recommended security requirements for PM.

Modern IT is generally segregated into private and public cloud infrastructure. For
simplicity in this document we will treat traditional private infrastructure and private
cloud together. PM can appear in both public and private cloud deployments. Hybrid
cloud is not treated separately here as it includes both public and private use cases
depending on the infrastructure in use by particular applications. While most threats to
PM security are common across public and private cloud, there are a few notable
distinctions.

Public cloud infrastructure is maintained and administered by cloud providers and
shared by many independent customers. Security measures that may not be necessary
in private cloud environments may be essential to protect each customer’s data from all
other customers, and from the operators of the cloud data center itself. Customers
depend on cloud datacenter security measures to make it easier for them to trust the
cloud. Unfortunately this dependency is difficult for a customer to validate and may not
always be fulfilled. Security concerns may drive customers towards private cloud
infrastructure even in cases where public cloud is more cost effective.

Private cloud infrastructure deployments generally support fewer consumers than public
clouds. This can enable private clouds to secure infrastructure in ways that are not as
feasible in larger scale public cloud use cases. Additional security can be valuable even
through private cloud consumers are generally different parts of the same corporation.

2 Multi-Tenancy models
The threat model and requirements developed within this document extend into the
context of a multi-tenant public cloud data center. In this section, public and private
cloud multi-tenancy are explored separately, although solutions to security requirements
may cross over between the two.

2.1 Public Cloud Datacenter Multi-Tenancy

There is always more than one party involved in cloud computing or storage. Multiple
customers are sharing infrastructure, which is itself managed by cloud providers.
Threats originate from all parties, including the provider and physical infrastructure itself.
Figure 1 shows one of many customers using a cloud datacenter.

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 6
July 26, 2018

Figure 1 – Cloud datacenter model

The security principal here is the cloud datacenter customer whose data is being stored
and manipulated within the cloud datacenter. A given customer can at best trust a
subset of the infrastructure (hardware and software) involved in this model. Trusted
environments are illustrated in green while untrusted environments are red. The
security infrastructure that enables the customer to trust part of the cloud datacenter is
illustrated in yellow. Customers always have some infrastructure of their own in order to
access the resources of the cloud. Customers must institute security practices such as
physical security as well as user and administrator authentication (e.g. passwords) and
authorization (e.g. permissions) within their own environment. Most importantly to this
model, customers operate or have access to a trusted secure key repository and
distribution infrastructure. Customer trusted key management is the basis for
maintaining trust outside of the customer’s own infrastructure.

In general, cloud datacenter infrastructure is not trusted by customers. To compensate,
cloud datacenters must provide isolated containers or virtual machines (VMs) that
enable customers to become tenants (temporary residents) of the cloud datacenter. To
the extent that customer data outlives the isolated container or VM, the cloud datacenter
must also provide durable storage capacity. The contents of both the isolated container
and the storage should only be accessed using keys that originate from the customer’s
secure key management facility.

Customers become tenants of a cloud datacenter through creation of a contract and
establishment of identity. Customers authenticate to the cloud datacenter, which
provides for their use of keys to access datacenter resources. The tenant identity
allows the cloud datacenter to manage additional permissions granted to the customer.
Keys are never communicated in the clear outside of a trusted environment. They are
themselves encrypted using key encryption keys. The basis for key based
authentication in servers and storage devices is generally secured using embedded
components such as Trusted Platform Modules. Secure key communication and

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 7
July 26, 2018

storage using Key Encryption Keys and Trusted Compute Modules are standard
practice.

Interaction between customers and cloud datacenters should be encrypted using keys
that, once again, originate in customer key management infrastructure.

The cloud datacenter operator is responsible for ensuring isolation of the execution
contexts and stored data within the cloud datacenter, secured by customer provided
keys, including scenarios where storage capacity is reused by a series of tenants. In
addition the cloud datacenter operator must insure that no data can be accessed after
hardware leaves the datacenter for reuse, recycling or repair.

In many cases the customer shown in Figure 1 is an intermediary running software
services in turn for their own customers. The customer to the left might, for example,
consume software services from the customer in the middle which are in turn hosted on
cloud datacenter infrastructure. The customer of the service remains responsible for
managing keys for its own security which propagate through a chain of trust through the
service provider to the cloud infrastructure. Although this pattern may be common it is
layered atop fundamental storage protection principle so it is not considered any further
in this paper.

2.2 Scaling Multi-Tenancy in Storage

Public Cloud datacenters have many tenants that may consume storage capacity. The
number of tenants may range from hundreds to millions. This is magnified by the
multiple storage containers (volume, file or object sets) which each customer requires,
keyed to these individual customers. At this scale, software infrastructure is required to
create, delete and secure the containers. Storage solutions have provisions for multi-
tenancy they do not come close to the scaling to the number of tenants required by
public cloud data centers. For this reason, the multi-tenancy features of storage
hardware are more applicable to smaller scale deployments such as private cloud.
Figure 2 depicts high level implementation examples of two multi-tenant storage
approaches reflecting this dichotomy of scale.

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 8
July 26, 2018

Figure 2 – Scalable Multi-Tenancy

Both of the approaches shown here assume that storage and/or PM devices have a
multi-tenant protection capability, for example secure access and secure erase that can
handle a limited number of tenants. Cloud datacenters use the upper approach in
which large groups of tenants (shown in the per-tenant data column) get secure access
to storage using software such as a file system that manages permissions that are
keyed to individual customers. These tenants obtain storage space dynamically
through the normal operation of the file system (or similar) which causes each partition
of storage to contain data from many tenants (the brown boxes in the Storage Partitions
column). Storage or PM multi-tenancy features can still be used but they applies to
many tenants at once, subject to the layout imposed by the file system (or similar).

The lower part of Figure 2 is more applicable to smaller scale deployments such as
private clouds that may still need to protect data consumers from each other. In this
approach, constraints must be applied to the mapping of tenant data to partitions in
order to assure that no partition contains more than one tenant’s data. The number of
tenants that can be accommodated by a group of disk or PM devices may be limited by
either capacity, or by the number of tenants supported by each device.

If statistics for a private cloud datacenter include tenant data size and physical device
capacity then the maximum number of tenants that will fit on a device can be
determined. The actual number of tenants the device might encounter must also
account for the layout of tenants across devices. As a generalization, many layouts
spread a tenant’s data across some number of devices. Whenever that occurs there
must, at a minimum, be a separate key for the part of a tenant’s data that exists on a
given device. That way if that tenant is removed, all of its data can be removed from all
devices without affecting any other tenant.

To derive a rule of thumb, let DataDevicesPerGroup be the maximum number of
devices that can store any part of a given tenant’s data given the layout of the data

Tenants who
use provider supported
secure erase features in

storage HW

Partitioned
Tenant

Mapping

Dynamic
Tenant

Mapping

Tenants who rely
on provider data

security

Per-tenant data Storage Partitions

Shared

Not
Shared

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 9
July 26, 2018

across devices. Based on that layout characteristic, if the intent is to always have
capacity, and not supported device tenant count, be the limiting factor, then the
following must be true.

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷𝑎𝑎𝑎𝑎 > 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗ �
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷

𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷𝑎𝑎𝐷𝐷𝑎𝑎𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷
�

This rule of thumb does not account for redundancy, which is layout specific. For many
common layouts the additional devices added to provide capacity for redundancy must
accommodate the same number of tenants as would have been the case for the
devices in a similar non-redundant layout. Therefore DataDevicesPerGroup can often
be calculated as the number of devices needed to provide the usable capacity of a
group rather than total physical capacity of the group.

If the average tenant capacity is too large to fit across DataDevicesPerGroup, i.e.

𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷𝑎𝑎𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷 > 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷

then the DeviceTenants calculation above can still serve as an upper bound on the
number of device tenants required. Tighter upper bounds may exist depending again
on the layout. Also under this condition, additional tenants per device above the upper
bound may reduce capacity lost to fragmentation.

In some cases only a subset of the keys are active at a given time, so they can be
cached so as to avoid consuming premium hardware resources all the time.

3 Use Cases

Since the purpose of this document is to highlight gaps in security implementations
related to PM, it is important to start with the tried and true practices that will continue to
be needed. All of these are still required in some form. Many do not need to be
modified for use with PM.

3.1 Storage Protection

In general, security enforcement involves authentication and authorization of a principal
(data consumer such as a cloud data center customer) to access data. There are two
common practices for these.

• Establish identity through an authentication challenge, then succeed with a permission check
that indicates whether an access request (e.g. read, write) for specific data or groups of data is
allowed. The authentication challenge may involve a password and/or additional functionality
such as smart key hardware or secure conveyance of credentials from a prior authentication.
Permissions are managed by administrators and users who have security management rights for
specific data.

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 10
July 26, 2018

• Establish identity through an authentication challenge in order to obtain a key or keys that
enable encryption, decryption or other actions on specific data or groups of data. If encryption
and decryption keys do not match then any data accessed is unintelligible. Keys may also be
used provide a basis for validation of permissions. For public cloud storage API’s it is common to
use a certificate (i.e. X.509) for web based authentication and authorization

Authorization may be role based, meaning that principals may be associated with roles
they are allowed to take on such as data owner, administrator, etc. Roles imply sets of
actions that the principal is enabled to perform. As a result permissions may be granted
based in part on role as a way of simplifying security management. See section 4 for
an enumeration of the roles that are considered in this document.

In many cases an authentication challenge establishes a root of trust (identity and/or
key possession) that confers permissions over a protracted period of interaction such as
a login session. In such cases additional measures are taken to insure that the root of
trust is still valid after any event that may cause uncertainty as to whether the principal
may have changed. Typically events such as resets or session timeouts terminate roots
of trust and trigger re-authentication.

If customer controlled physical security is assured and software is trusted to correctly
enforce permissions at all times, encryption is not necessary. Under these conditions,
correct enforcement of permissions is sufficient. Unfortunately these conditions are
never upheld in public cloud environments. In public cloud and other less controlled
environments, data travels through domains where physical security is not assured, or if
software is not trusted to correctly enforce permissions. In such environments,
encryption is the preferred way to maintain data security.

Depending on availability of processing power and time, encryption can be broken
through guesswork and/or reverse engineering of keys. This motivates key rotation
based on time intervals that place acceptable bounds on the time available to break
encryption and on the duration of security violations that may result. Key rotation is a
very common IT practice.

Key rotation for encrypted data storage would be very expensive as all data would need
to be re-written with every key rotation. Self-encrypting HDD’s and SSD’s avoid this by
encrypting data using one or more device keys that never leave the storage device.
The device controller maintains a second key (or set of keys) that is used to ascertain a
given principal’s right to access part or all of the data in the device. Once a root of trust
is established the controller allows access to the associated data using the secret
key(s). The second set of keys can then be rotated without changing the secret keys.
This method is used in the Trusted Computing Group Self Encrypting Drive (TCG SED)
standard which is generally viewed as sufficient for protecting storage devices when
physical security is not assured.

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 11
July 26, 2018

These storage security practices are essentially the same whether encryption occurs
within a self-encrypting device or in hardware or software on the way to the device.
Several caveats should be noted.

• Secure key management techniques must be applied including the use of Key Encryption Keys as
described in 3.2.

• Any retention of unencrypted data that is in the process of being encrypted or scheduled for
same must guaranteed to be unrecoverable after any event that could compromise security
such as power loss, reset or component removal.

Several additional software practices interact with storage security although they are not
strictly part of it.

• Applications may encrypt data before it enters storage hardware or software. Depending on key
ownership and strength, additional storage encryption may or may not be warranted. Although
it is not in the scope of this document it should be noted that early encryption may interfere
with value added storage functions such as compression and deduplication.

• Copy on write functionality may be used to create storage or memory images based on a single
original. These must be secured in the same manner as complete images based on the identity
of the principal consuming the (partial) copy. Such images may also be rendered immutable to
provide further protection against tampering.

Some processor architectures now have encryption features built in (e.g. AMD SEV
extensions and Intel SGX). This enables memory encryption without self-encrypting
NVDIMMs. These processor specific features apply to PM in the same way that they
apply to DRAM.Key management – key storage and distribution

Industrial strength security is generally based on a secure key store accessed using
protocols such as KMIP. The secure key store must be trusted by the customer of a
cloud data center as described in section 2.1. The secure key store is generally
managed by the customer’s security officer to minimize opportunity for insider attacks
from other administrators. Any transmission of keys must be encrypted using a key
encryption key which is known only to software or hardware that is also trusted by the
customer. All of these practices are already common.

3.2 Security audits of implementations

Certain pieces of software must be designed and implemented using well-known
techniques to insure that security is enforced. These include the secure key manager,
storage device software that manages encryption, software involved in the use and
management of key encryption keys, and software tasked with the isolation of tenants.
Generally such software is inspected during and after development by experts in secure
software practices using checklists of pitfalls and exposures that must be addressed.
For the most critical components, certification such as FIPS may be required.

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 12
July 26, 2018

3.3 Origin and Delivery Protection

For software to be trusted, some assurance that it has not been tampered with is
required. This is typically achieved using digital cryptographic signing which provides for
authenticated integrity. The same applies to broadly published data. In addition, as
software and data elements are packaged together for distribution and installation, there
must be some guarantee that the package contains only the digital cryptographically
signed components that were intended by a trusted originator.

A related common practice, the use of a Message Authentication Code (MAC), is often
applied to any code or data that is broadly shared among readers but can only be
updated with special permission. The MAC can be validated by software in the reader’s
path without special permission, however a writer must use a secret to generate a new
valid MAC. This provides additional protection against unauthorized writing with
minimal burden on readers.

These common practices also apply to PM security.

3.4 Memory Protection

Current memory protection practices apply to PM. In particular, Memory Management
Units (MMU’s) enforce memory protection using both virtual address space mapping
and physical memory access protection. Details of both of these levels are MMU
Implementation specific, and are applied on OS specific ways.

4 Role Definitions

The threat model in this document acknowledges several roles of actors who might
pose threats.

• Customer – The data owner whose security and privacy are being protected.
• Tenant – An inhabitant of shared infrastructure. Customers become tenants by establishing

accounts with cloud data centers, thus establishing an identity and access to certain
resources/services within the cloud.

• Administrator – A person tasked to maintain software and hardware infrastructure. Cloud data
centers have administrators who are trusted to keep the data center provisioned, operating and
accessible to tenants. Customers may have administrators who are trusted to configure and
maintain applications and data running in a cloud datacenter. Neither of these administrators
trust each other, and neither is generally allowed access to any data.

• Security Officer – A person trusted by a customer to configure and maintain users, roles and
permissions related to data access.

• Developer – A creator or maintainer of hardware or software.
• Deliverer/Repairer – A person who handles components moving into or out of a data-center.

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 13
July 26, 2018

5 Threat Model

The following table enumerates threats to privacy or confidentality and threats to
integrity or availability.

Attack Type Means of

Attack
Attacker Applicable

existing
approach

New issues
with PM

Privacy/
Confidentiality

Physical
manipulation

Administrator,
Repair

Encryption at
rest.

New NVDIMM
Authentication
behavior
(JEDEC)

Software
access across
tenant
boundary

Tenant,
Administrator

Traditional
authorization,
authentication.
Separation of
roles.
Memory
protection.

NVDIMM does
not know
principal
identity during
Ld/St/Mov

Access to
deleted data

Tenant,
Administrator

Secure erasure
(physical or
cryptographic)
during deletion.

More rapid free
space
recycling in
memory than
disk.

Access by
admin/support

Administrator Role
separation,
Authentication/
Authorization

Local HW
attacks (e.g.
DMA)

Tenant,
Administrator,
Developer

Memory
Protection

Remote
access threats
(e.g. RDMA)

Tenant,
Administrator,
Developer

RDMA security,
memory region
access
protection
enforcement

Malware Developer,
Delivery,
Repair,
Administrator

Digital signing,
Virus protection
to exclude or
expunge
malware

Data integrity
or accessibility
to owner

Data modified/
Destroyed
through privacy
exposure

All of the above privacy attacks have variations
that involve modification, destruction and/or
removal of data.

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 14
July 26, 2018

Software
Defects

Developer,
Tenant,
Administrator

Traditional
authorization,
authentication.
Separation of
roles.
Memory
protection.

Increased
scope of
damage due to
mismanaged
pointers,
memory
resources.

Availability –
denial of
service

Tenant,
Developer

Per-tenant QoS

Potential for
rapid disruption
with limited
detection
window?

Table 1 – Threat Model

The following sections contain analysis of each of the threats in Table 1.

6 Threats to privacy or confidentiality
6.1 Physical Manipulation

This is the top priority threat to address for PM given the pre-existing security measures
that are already in place for other PM related threats. One solution is a self-encrypting
NVDIMM, which is precisely analogous to self-encrypting disks. There is one notable
difference that stems from the fact that today’s NVDIMMs are attached to DDR4.
During reads or writes to memory NVDIMMs have no way of identifying the principal
initiating the request. Disk drives, on the other hand, receive notification of an initiator
with every read or write. Therefore NVDIMMs cannot check per-tenant access
permissions during read or write. Self-encrypting NVDIMMs can still be used to ensure
that data is unreadable after physical removal, and for cryptographic erasure of all of a
tenant’s data.

As of the release of this document JEDEC is working on the control path to establish a
root of trust prior to making data contained within a self-encrypting NVDIMM component
accessible to applications. Self-encrypting NVDIMMs are required to provide some
means of securely establishing a root of trust. Existing techniques such as this
described in section 3.1 should apply. Since this is a strong analog to disk encryption
use case, existing TCG or NIST standards could be applied.

In addition, an NVDIMM communication channel that is logically isolated from data
access may be needed. Examples include additional IO control actions through an
existing NVDIMM control plane, or an un-encrypted volatile memory region used only
for root of trust establishment. Additional system specific firmware and software
requirements are also likely in order to enable access to NVDIMM contents early
enough in system bootstrap to fulfill all purposes of RAM.

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 15
July 26, 2018

There are various situations wherein the root of trust must be re-established in order to
avoid man in the middle or principal substitution attacks. Example situations include
power on, reset, hot plug and loss of heartbeat events. Systems containing self-
encrypting NVDIMMs are required to ensure that data access is withdrawn and re-
authentication required whenever such an event has occurred. In some cases this may
be the responsibility of the NVDIMM itself.

Self-encrypting NVDIMMs are required to ensure that no unencrypted data is accessible
under any circumstances unless a valid authorization is in place. This includes
scenarios where unencrypted data is retained in volatile memory and the NVDIMM is
removed from its socket even if the NVDIMM remains operational under auxiliary power.

While encryption of data at rest is a priority, self-encrypting NVDIMMs are not
necessarily a requirement if only encrypted data (encrypted by something outside the
DIMM) is stored. Encryption deployment use cases generally fall into three groups.

• Self-encrypting NVDIMMs – This is the deployment use case described above.
Encryption of data at rest requirements can be met using single or multiple keys
within NVDIMMs provided that all data is encrypted. A single key is sufficient to
address threats that involve physical removal.

• Encryption in the storage stack or CPU data path – This deployment use case
has similar characteristics to self-encrypting NVDIMMs with the additional
requirement that data cannot bypass the encrypting component on the way to
NVDIMM.

• Encryption by a tenant or application – In this deployment use case, data is
encrypted before it reaches any PM specific component (storage stack software,
memory controller or NVDIMM). To the extent that all data on the NVDIMM is
encrypted by upper level software, encryption of data at rest requirements can be
met.

6.2 Software access across tenant boundaries

This section addresses scenarios where different tenants or customers represent
threats to each other.

6.2.1 Real time access protection of active data

The DDR4 interface and its predecessors do not enable NVDIMMs to sufficiently protect
against cross-tenant access because no form of principal (tenant) identity is
communicated to the NVDIMM. Memory address ranges can be encrypted with
different keys within NVDIMMs, however once a tenant has established a root of trust
with the NVDIMM there is nothing within the NVDIMM to keep other tenants from
accessing the protected memory address range.

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 16
July 26, 2018

Therefore all protection against prohibited real time access to PM is based on CPU data
paths or software. The type of protection in the CPU data path available today
comprises authorization enforcement based on virtual memory systems, not encryption.
Virtual memory is already in use pervasively with DRAM and is naturally extended to
PM. Virtual memory implementations ensure that a tenant executing outside of the
kernel (e.g. in a thread, process, container or virtual machine) can only access memory
regions that have been authorized by the kernel. Authorization comprises the creation
of page table entries that map tenant accessible virtual memory addresses to physical
memory accesses. Only memory regions thus authorized by the kernel can be
accessed by a given tenant.

Properly administered, this protection is sufficient to inhibit real time cross-tenant
access to active PM, however code running in kernel space must be trusted. There is
no protection against rogue kernel code using any physical address to violate privacy.

6.2.2 Access protection of inactive data

Since virtual memory is the primary means of protecting active data, removal of the
virtual address space of a tenant can be viewed as the point where data transitions from
active to inactive. It is crucial that this transition occur when a tenant program
completes or otherwise terminates. While this existing requirement is already met by
secure operating systems, it is important that other software such as PM file systems
also meet this requirement.

Permission enforcement or encryption of data in storage stacks can also protect against
prohibited access to inactive data. For example, storage stack components such as file
systems can recognize large numbers of tenants as described in section 2.2, and use
authorization or cryptographic methods of enforcement that do not depend on virtual
memory.

As with active data, the kernel must be trusted.

6.3 Threats against deleted data

In most systems deletion of data is part of a process that occurs in several stages. In
general the process achieves the following results:

• Remove the owner’s logical path to the data
• Render the data inaccessible to all software
• Make the storage space occupied by the data available for reuse

6.3.1 Meaning of deletion

Deletion is the removal of a data owner’s logical path to the data. This is generally
accomplished by removing the data from a namespace such as a file system, at which
point the data does not exist by that name any more. Any other paths to the data must
be secured before and after deletion. Deletion does not, in itself, imply that the data no

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 17
July 26, 2018

longer exists somewhere in a storage device, nor does it imply that the space previously
occupied by the data is immediately free.

6.3.2 Multiple Keys for secure erasure

In order to prevent all threats the data must be erased before the space becomes free.
This ensures that deleted data from one principal’s point of view is never inadvertently
or improperly made visible to another. One approach to this is to over-write the data.
The time taken to over-write that data increases with the amount of data and the
number of copies. It further assumes that all of the copies can be located.

Another approach is secure erasure through invalidation or destruction of the keys to
encrypted data. This is quicker and more secure than over-writing. Still, all copies of
the key must be invalidated however this is arguably easier than over-writing all copies
of data. Key invalidation is a well understood problem in the secure key management
field. While it is not without issues (e.g. copies of keys) customers who require high
security must have policies in place to address them to a satisfactory level. Secure
erasure of storage can leverage these policies directly.

One approach to secure erasure is the use of multiple keys to isolate tenants from each
other. There may be limitations on the number of keys supported in self-encrypting
NVDIMMs that lead to special considerations described in section 2.2. In some cases
only a subset of the keys are active at a given time, so they can be cached in the
hardware and do not need to be there all the time.

When multiple keys are involved, trusted key management is a likely requirement such
as that shown in Figure 1. Such solutions also require secure communication of keys
using Key Encryption Keys.

6.3.3 Use of the Sanitize command in NVMe, SCSI and SATA

Most disk command sets now have a Sanitize command the removes data from a range
of blocks in the drive. Sanitize can also be used as an indication that the consumer of
the range has freed the space in the upper layer which allows storage devices or
systems capable of thin provisioning to deallocate space. For storage stacks and upper
level access methods (i.e. file systems) that can use media aligned sanitization, these
functions correspond to the last two steps described above. Additional information on
sanitization is available here.

6.3.4 Privacy threats due to loss of re-initialization during reboot or reset

Another privacy threat can arise of volatile data is allowed to survive a reboot or restart
and appear within un-initialized data structures thereafter. This can happen with DRAM
if power is not removed from the system, or if volatile data is being stored in PM. In
either case elimination of this threat requires explicit re-initialization of all memory
holding data that is intended to be volatile. This must occur between the event that

http://www.snia.org/sites/default/files/technical_work/SecurityTWG/SNIA-Sanitization-TechWhitepaper.R2.pdf

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 18
July 26, 2018

triggered the reboot or reset and the first opportunity for any unauthorized software to
access the memory. It is the responsibility of system firmware and kernel software to
avoid this threat by insuring that volatile data is not accessible after reboot or restart.

6.4 Administrative threats
Referring back to the administrator role definition in section 4, administrators maintain
software and hardware infrastructure. Administrative threats through physical
manipulation are covered in section 6.1. Cloud data centers have administrators who
are trusted to keep the data center provisioned, operating and accessible to tenants.
Customers may have administrators who are trusted to configure and maintain
applications and data running in a cloud datacenter. Neither of these administrators
trust each other, and neither is generally allowed access to any data.

The main requirement related to administration is not new or specific to PM, namely that
cloud datacenter and customer administrators must be segregated. They must
authenticate separately and have different authorization specific to their roles.
Administrative roles may be further refined to separate application management from
security management but this practice is once again not specific to PM.

In addition, methods of protecting PM access such as those described in section 6.2
must be securely tied into the administrative chain of trust that establishes access
permissions. While there are many ways to model this, the memory mapped file
paradigm provides a straightforward model in which access permissions are built into
the file system and applied to PM when files are memory mapped. This requires that
the granularity of memory protection supports the granularity of permissions.

6.5 Threats exposed through runtime H/W e.g. DMA
In today’s systems private user data is virtually always stored in RAM for processing.
Runtime hardware such as DMA and other data transformation engines such as
encryption or compression already manipulate private user data as it moves in and out
of storage or between memory regions. In today’s systems physical addresses are
often used in DMA control blocks so the protection from the virtual memory address
space described in section 6.2 is missing. As a result the avoidance of these threats
relies on a trusted kernel being the only code that can generate DMA or other
accelerator control blocks. The trusted kernel must ensure that permissions at source
and destination are aligned, specifically with respect to the authorized principal.

An alternative to strictly physical access is emerging in interconnects such as open
CAPI which enables PCIe attached peripherals (GPU’s and possibly HBA’s or NICs) to
use virtual addresses. This allows virtual address enabled security to be applied
provided that the control path that communicated those virtual addresses to the
peripheral is also secure. Once again, security of the control path must be established
by a trusted kernel even if memory access is self-policing. Still, PM itself does not drive
any new privacy related requirements into runtime hardware other than those described
in section 6.2.

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 19
July 26, 2018

6.6 Remote access threats (e.g. RDMA)
This is the first use case where PM meets networking. For that reason we need to
separate the following concerns.

• Security of data traversing networks
• Security within the endpoints

Both of these are addressed by current practices that are applicable to PM. Encryption
is the only effective approach to security of data traversing networks if trust and physical
security is not assured throughout the physical network. Since private user data already
traverses networks including those with RDMA the need for encryption is not new or
specific to PM.

Security within endpoints is addressed in full featured RDMA implementations because
virtual address space windows in each endpoint are mapped to a corresponding RDMA
address space and securely associated through the use of RDMA Steering Tag
properties. Assuming, as always, that the source and communication of RDMA
connection information is trusted this allows the virtual memory protection techniques of
section 6.2 to be applied to RDMA access. The result is more robust than local DMA
using physical addressing.

6.7 Malware threats

Up to this point we have been dealing with eliminating threats as they occur in real time.
With malware threats we are trying to detect nascent threats before they become real
time threats. This is generally done by scanning files or memory for signatures known to
indicate malware. Let’s explore PM impact on Malware detection case by case.

2 virus scanner modes: scanning in background or intercepting in the storage stack.

Use Case Current Approach Issues if scanner

uses file open, read
with PM

Issues if scanner
uses mmapped PM

Background scan of
closed files

Open and read files None None

Background scan of
open files

Skip or Open file
and read shared.
Must tolerate
modification

Compatibility with
active mmapped
files
Consistency of
scanner view during
modification

Consistency of
scanner view during
modification

Scan files during
“Open”

Scan data on disk
or in memory before
open completes.

None None

Scan files during
ingest/download

Open file and read
from disk after

None assuming
download involves

None assuming
download involves

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 20
July 26, 2018

download but before
file can be re-
opened

file api activity
(close, re-open,
unmap) after ingest

file api activity
(close, re-open,
unmap) after ingest
– issue is with
ingest access
method and scan
trigger not scan
access method

Scan memory Scan physical RAM
specifically including
non-running
applications

Memory not
accessible via file
protocol

NA – current
memory scan must
already gain direct
access to memory

Quarantine non-
mmapped file

Remove from visible
namespace, refuse
to open, mmap

NA NA

Quarantine
mmapped file

Stop process if
needed, unmap in
addition to above,
use memory scan
quarantine
approach

NA NA

Table 2 – Virus Protection

Now let’s look for potential new requirements that surfaced above.

6.7.1 File open vs. mmap

The distinction between open and closed files is thought to be important to virus
scanning because closed files are not changing and can be scanned using normal file
system access. With PM there is an additional question as to whether data regions to
be scanned are mmapped by an application. As described in section 6.2 there are
several situations where regions of closed files may be mmapped.

• Applications and storage stacks sometimes close files after mmapping regions in
them. The memory mapped regions survive until unmap is called or the process
termination.

• Some file system implementations keep large regions of PM memory mapped as
long as the file system is mounted. This practice, and others that allow mmap to
survive process termination, are not recommended for security reasons and will
not be considered further herein.

The first new requirement that arises from the above is that virus scanners must be able
to determine which files contain mmapped regions and treat them as open for the
purpose of scan processing. If this requirement is met then closed and non-mmapped
files can be scanned use either read/write or ld/st access.

For opened files the question arises as to whether the file is mmapped by an application
or not. This leads to the requirements described in sections 6.7.2 and 6.7.3.

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 21
July 26, 2018

6.7.2 Signature detection in changing files

Reliable detection of malware signatures without escapes and misdetections requires
some degree of data consistency. For files that are closed or guaranteed not to change
this is trivial, but for changing files additional measures may be required. Virus scans of
open files may use point in time copies for consistency. The granularity and means of
establishing the point in time of the copy depends on virus scan software
implementation.

With today’s storage technologies the minimum granularity is a storage device block. If
virus scanner implementation can be aligned with single storage blocks then the built in
atomicity of the storage device may provide the necessary stability. If larger
granularities are required by the virus scanner then a heavier weight point in time copy
such as a snapshot may be required. Although today’s in memory virus scans may
have different consistency requirements from storage scans, in memory point in time
copies such as those that generally take place during a Linux process fork may be
useful. In memory scans of code may benefit from the need for stability during code
execution, unless the code is self-modifying which may be more common in viruses.

The above leads to a requirement that files in PM meet the consistency requirements of
virus scan implementations. The status quo is sufficient for files that are not memory
mapped provided that file system reads and writes to PM use atomic block access
through a driver such as BTT. For files that have been memory mapped by
applications, in-memory snapshots may be required in order to maintain a consistent
view of files being scanned.

Existing memory scans should not be impacted by memory mapping in applications.
Some techniques currently used for memory scans may be applicable to mmapped file
scans.

6.7.3 Single scanner view of both disk and PM based files

Virus scan providers are not likely to want to provide implementations for PM file
systems that are significantly different from those backed of SSD’s or HDD’s. Barriers
to adoption could be most quickly minimalized if file reads and writes can be performed
on files that are memory mapped at the time. At least this way the file system API acts
as an intercept point on the virus scanner path even if there is no equivalent on the
application path.

It remains to be seen whether memory mapping on the virus scan access path is
beneficial. It may turn out that the main benefit is copy avoidance or mitigation.

6.7.4 Ingest

Ingest is any scenario wherein data or code moves into trusted storage or memory
content from a potentially untrusted or unknown origin. One subtlety occurs if data or
code is generated (rather than ingested from outside) by other supposedly trusted code.

http://pmem.io/2014/09/23/btt.html

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 22
July 26, 2018

In this case the virus generating code is itself malware which should have been
detected earlier.

While memory mapping may remove some ability to intercept viruses generated by this
type of malware, that is only true if the viruses are stored today using file system (or
block or object storage) writes. Existing virus generating malware in today’s system
may operate as self modifying code meaning that PM did not actually introduce any
attack paths that are less detectable than existing threats.

The recommended approach to resisting this type of attack is to carefully govern and
monitor the point where the contents of RAM or PM become executable. If that point is
explicit such as a permission change or exec call, then there is an opportunity for virus
checking of malware generated code. Self modifying code may not have such a
transition making it perennially suspect as a virus vehicle with or without PM.

The fundamental ingest requirement is not changed by PM. Ingested data or code must
be scanned for viruses before it is used. If the ingesting application is using file access
then existing techniques apply including file close after ingest and open before use.
Virus scanning can occur during open or close. Explicit virus scanning triggered by
ingesting applications such as a download manager are also applicable. Digital
signature checking of code is recommended before it becomes executable. These
techniques work with block, file or object access to PM regardless of whether files are
memory mapped by applications after the virus scan.

If the ingesting application is using memory mapped storage then the recommendation
is that the ingested regions be unmapped and containing files closed before use. An
explicit virus scan trigger and digital signature check of stable mmapped data is also
applicable. An application that ingests data or code and allows it to be used without a
virus scan is inherently insecure. Allowing groups of applications to do this by
prematurely exposing ingested code or data through shared memory is just as bad.
These types of error create vulnerabilities that should be eliminated from the ingesting
application implementation regardless of whether the medium is today’s RAM or
tomorrow’s PM.

6.7.5 Scan triggers during writes

In today’s systems it is possible to check for viruses or trigger virus scans as a result of
writes to SSD’s or HDD’s. This is more difficult to do when applications are writing
directly to memory mapped files since there is no software intervention in that path other
than the application itself. If the purpose of these writes is data ingest then the
requirements from section 6.7.4 apply. For ingest it is less critical to have a virus
intercept in the write access path as long as the application forces a virus scan after
ingest and before use as is the norm for applications such as download managers.

The return on investment for triggering virus scanning during memory mapped writes is
hampered by a number of factors.

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 23
July 26, 2018

• Applications that create viruses by writing to memory can be viewed as malware
themselves, and should ultimately be detected as such.

• Writes to memory at cache line resolution are so fragmented that it may be
impossible to detect a virus signature in any one write.

• Intervention during writes, if required, would almost certainly involve page faults.
Even if hardware is added to detect viruses, it would be expensive to complete
detection during a memory access.

• If the purpose of intervention during writes is to trigger a subsequent virus scan
then there is always a window of vulnerability between the write and the scan,
during which additional writes may repeatedly create the same trigger. This
creates a tradeoff between scan frequency and exposure to nascent viruses.
The likely resolution of this tradeoff is to set a minimum time between virus scans
of modified files or mmapped regions.

Because of these factors, very few if any customers are likely to demand virus checking
during memory mapped writes. More likely, dirty pages should be tracked so that a
periodic check can quickly detect pages and files to be scanned at an acceptable rate.
This can still be problematic if dirty page bits can be turned off by the processor without
notifying software when the processor decides on its own to flush a page to memory.

In a sense this sends us back to square one with the exception that dirty page tracking
hardware for PM (as opposed to processor cache) is much less expensive than virus
checking during memory access. In fact many processors have support for dirty page
tracking in RAM to support caching between RAM and SSD’s or HDD’s (e.g. the Linux
page cache). Even though PM allows pages to be viewed as persistent without writing
them to SSD or HDD, processor page cache infrastructure for dirty page tracking in
RAM, if available, could remain enabled in PM for the purpose of tracking pages that
need virus checking.

7 Threats to availability or data integrity
This section elaborates on the lower part of Table 1.

7.1 Leverage of privacy threat into data integrity threat
Any of the privacy threats in the first part of Table 1 could also result in threats to data
availability or integrity. In most cases the defenses described in section 6 also protect
against unauthorized writing of data which could lead to data integrity or availability
issues.

• Physical manipulation – This attack is resisted using authentication and/or
encryption that cannot be completed if the drive is not connected to a system that
has the necessary permission. This protection extends to writes because
inability to authenticate disables writes. An unauthorized host that is unable to
authenticate but cannot correctly decrypt data could still compromise data
integrity by writing invalid (unencrypted) data on the drive. For this reason, a
challenge protocol to establish access authorization is required to avoid integrity
issues involving physical manipulation.

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 24
July 26, 2018

• Software access – the methods described in section 6.2 must be applied to both
read and write permission.

• Deleted Data – writing deleted data does not cause any integrity issues once the
first step of the deletion process described in section 6.3 is completed. Up to that
point the data has not yet been deleted so it must be protected from all other
threats.

• Administrative threats – the methods described in section 6.4 must be applied to
both read and write permission.

• DMA, RDMA – Access rights must be enforced on both the source and the
destination of the data.

Data integrity threats due to malware deserve special attention. In the case of malware,
a principal that appears to have access authorization contains malicious code. If the
code has not been detected as malware (see section 6.7), the only possible protection
is to constrain authorization to the smallest possible granularity. For example if certain
structures within larger storage or memory regions should never be written, then writes
to those structures should be inhibited regardless of write authorization for the larger
region. This requires detailed application specific authorization assertions which may
not match the granularity of enforcement supported by the system. Even with such
assertions in place, data that is normally writable by the application is at risk due to
undetected malware.

7.2 Software defects
Concern has been expressed over the possibility that software defects such as rogue
pointers could cause more disruption by writing PM than with volatile RAM. In the end
the credible new threats posed by software defects have several categorical root
causes.

• Data integrity threats due to the loss of separation between application data
structures and permanent storage.

• Denial of service threats due to the loss of complete RAM state re-initialization
during reset that can lead to perpetual reboot.

7.2.1 Loss of separation

A software defect may cause an errant write to any PM that is memory mapped to the
process performing the write. This has always been the case for volatile RAM. To the
extent that data historically written to disk is derived from variables and stored volatile
RAM buffers before writing, this is not a new exposure. The difference is that
historically the errant write is not made permanent until a disk IO completes. If the error
is detected before the write is made permanent, the previously written data is still
available for recovery.

With PM the time window of separation between the errant write to memory and the
commit to permanent media is much smaller, if not non-existent. One notable activity
that frequently occurs in the window of separation is the calculation of a CRC or other
digest to protect data integrity. The loss of separation implies that the data and CRC
may be inconsistent between the time when the data reaches the PM and the time

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 25
July 26, 2018

when the CRC reaches the PM. Since processors only provide failure atomicity of
fundamental data types a transaction like construct is required to manage data and
CRC together.

Consider the following timeline as a model of data integrity threats when CRC is in use.

T0 – Data and CRC are consistent. CRC check will succeed.
T1 – Data modified in memory mapped data structure or buffer
T2 – CRC modified in memory mapped data structure or buffer
T3 (HDD/SSD only) – Disk write IO complete
T3 (PM) – data and CRC flush complete to PM (possibly out of order)

Time window specific exposure consequences of corruption. (applies to both disk and
PM)

• T0-T1 – new data over-writes corruption unless corruption is in a part of a buffer
or data structure that will not be modified at T1. Corruption of data in bytes that
were unintentionally modified will propagate to the media with good CRC. With
PM there is a chance that the write size more closely matches the new data size
so exposure may be smaller.

• T1-T2 – CRC may or may not detect corruption depending on the instantaneous
relative position of corruption relative to CRC calculation progress.

• T2-T3 – CRC will detect corruption even with indeterminate PM flush order.

Resisting PM integrity loss due to software defects may involve the following steps
listed in increasing order of cost and complexity.

• Implement protection from integrity threats described in section 7.1. This will
catch many grossly errant accesses.

• Use CRC to protect data end to end.
• Use transactional constructs and CRC to enable recovery if corruption is

detected.
• Constrain authorization to the smallest possible granularity with respect to

memory regions within a file or process. This was also mentioned in section 7.1
as a means of early malware detection.

• Constrain authorization to the smallest possible time granularity. This requires
dynamic enablement and disablement of writes to memory surrounding the
execution of application code that expects to modify PM. This will inhibit writes
during time periods when none should occur.

7.2.2 Loss of re-initialization

The concern with this type of threat is that a reset or reboot that, were it not for PM
would enable recovery from an error, does not because the error is permanently in PM.
This can be factored into several scenarios.

• A software defect has corrupted a file in a way that inhibits reboot. This avenue
is covered in section 7.2.1 based on the assumption that the file was intended to
be persistent all along. Once integrity has been compromised in either PM or

Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 26
July 26, 2018

(historically) storage there is no recourse other than rolling back to earlier
versions of files.

• A software defect has corrupted contents of memory that would, without PM,
have been discarded during reboot. The way to avoid this threat is to discard the
contents of memory that is intended to be volatile even if it is stored in PM.

The root cause of the first exposure above is actually the loss of separation between
memory and storage. The fact that such an exposure could compromise reboot
increases the importance of the defenses described in section 7.2.1.

The root cause of the second exposure is failure to re-initialize memory containing
volatile data during reboot, hence the section title. Dependency on blanket re-
initialization during reboot or reset can be viewed as a software defect in and of itself in
addition to software defects that may have created the problematic volatile memory
state. Loss of re-initialization also causes a privacy threat described in section 6.3.4.

7.3 Denial of service threats

There is some concern that PM might enable new types of attacks in which lower PM
latency compared to storage might enable new types of denial of service like attacks.
There are two types of scenarios to consider.

• Software is constantly accessing PM and not allowing other software to run. This
scenario can already occur in today’s systems with DRAM which is lower latency
than PM. This may be aggravated by the use of flush and fence instructions to
force data to PM. These instructions may take a long time (e.g. up to Seconds)
and may affect multiple cores, creating new processor scheduling challenges.

• IO intensive software can now use lower latency PM, eliminating periods of
waiting for storage. This scenario is not new either because compute bound
software already avoids waiting for IO in today’s systems. All that could happen
is an IO bound workload could be converted into a compute bound workload.

Both of these scenarios are dealt with today in OS schedulers which are designed to
ensure that no process gets more than its intended share of processor or memory
resources. Although PM may shift the number of workloads that require scheduler
driven pre-emption it does not create any entirely new denial of service threats.

	1 Scope and relationship to NVM Programming Model
	2 Multi-Tenancy models
	2.1 Public Cloud Datacenter Multi-Tenancy
	2.2 Scaling Multi-Tenancy in Storage

	3 Use Cases
	3.1 Storage Protection
	3.2 Security audits of implementations
	3.3 Origin and Delivery Protection
	3.4 Memory Protection

	4 Role Definitions
	5 Threat Model
	6 Threats to privacy or confidentiality
	6.1 Physical Manipulation
	6.2 Software access across tenant boundaries
	6.2.1 Real time access protection of active data
	6.2.2 Access protection of inactive data

	6.3 Threats against deleted data
	6.3.1 Meaning of deletion
	6.3.2 Multiple Keys for secure erasure
	6.3.3 Use of the Sanitize command in NVMe, SCSI and SATA
	6.3.4 Privacy threats due to loss of re-initialization during reboot or reset

	6.4 Administrative threats
	6.5 Threats exposed through runtime H/W e.g. DMA
	6.6 Remote access threats (e.g. RDMA)
	6.7 Malware threats
	6.7.1 File open vs. mmap
	6.7.2 Signature detection in changing files
	6.7.3 Single scanner view of both disk and PM based files
	6.7.4 Ingest
	6.7.5 Scan triggers during writes

	7 Threats to availability or data integrity
	7.1 Leverage of privacy threat into data integrity threat
	7.2 Software defects
	7.2.1 Loss of separation
	7.2.2 Loss of re-initialization

	7.3 Denial of service threats

