

S3 and CDMI™
A CDMI Guide for S3 Programmers

Version 1.0

Publication of this SNIA Technical Proposal has been approved by the SNIA. This
document represents a stable proposal for use as agreed upon by the Cloud Storage
TWG. The SNIA does not endorse this proposal for any other purpose than the use
described. This proposal may not represent the preferred mode, and the SNIA may update,
replace, or release competing proposal at any time. If the intended audience for this
release is a liaison standards body, the future support and revision of this proposal may be
outside the control of the SNIA or originating Cloud Storage TWG. Suggestion for revision
should be directed to http://www.snia.org/feedback/.

SNIA Technical Proposal
May 22, 2013

S3 and CDMI™ SNIA Technical Proposal 1
A CDMI Guide for S3 Programmers Version 1.0

The SNIA hereby grants permission for you to use this document for personal use only and for
corporations and other business entities to use this document for internal use only (including
internal copying, distribution, and display) provided that:

1. Any text, diagram, chart, table, or definition reproduced must be reproduced in its
entirety with no alteration, and,

2. Any document, printed or electronic, in which material from this document (or any portion
hereof) is reproduced must acknowledge the SNIA copyright on that material and must
credit the SNIA for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this
document, sell any or this entire document, or distribute this document to third parties. All rights
not explicitly granted are expressly reserved to SNIA. Permission to use this document for
purposes other than those enumerated above may be requested by emailing tcmd@snia.org.
Please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

Copyright © 2013 Storage Networking Industry Association.

S3 and CDMI™ SNIA Technical Proposal 2
A CDMI Guide for S3 Programmers Version 1.0

Revision History
Revision Date Sections Originator Comments

1.0 5/22/2013 All Alan G. Yoder, Ph.D
Futurewei Technologies, Inc.

Original draft

S3 and CDMI™ SNIA Technical Proposal 3
A CDMI Guide for S3 Programmers Version 1.0

Contents
1 Overview ... 6
2 Comparison Summary ... 7
3 Capabilities ... 12
4 Operational Details .. 16

4.1 Authentication ... 16
4.2 Return Codes ... 16
4.3 Operations on Containers ... 18

4.3.1 DELETE Bucket ... 18
4.3.2 DELETE Bucket lifecycle ... 19
4.3.3 DELETE Bucket policy ... 20
4.3.4 DELETE Bucket website .. 21
4.3.5 GET Bucket acl .. 21
4.3.6 GET Bucket lifecycle .. 24
4.3.7 GET Bucket policy ... 25
4.3.8 GET Bucket location .. 25
4.3.9 GET Bucket logging ... 26
4.3.10 GET Bucket notification ... 28
4.3.11 GET Bucket Object versions .. 28
4.3.12 GET Bucket requestPayment ... 28
4.3.13 GET Bucket versioning .. 28
4.3.14 GET Bucket website .. 28
4.3.15 HEAD Bucket ... 29
4.3.16 List Multipart Uploads .. 30
4.3.17 PUT Bucket ... 30
4.3.18 PUT Bucket ACL .. 31
4.3.19 PUT Bucket lifecycle .. 32
4.3.20 PUT Bucket policy ... 33
4.3.21 PUT Bucket logging ... 34
4.3.22 PUT Bucket notification .. 36
4.3.23 PUT Bucket requestPayment ... 36
4.3.24 PUT Bucket versioning .. 36
4.3.25 PUT Bucket website .. 36

4.4 Operations on Objects .. 37
4.4.1 DELETE Object ... 37
4.4.2 Delete Multiple Objects .. 38
4.4.3 GET Object .. 38
4.4.4 GET Object ACL .. 39
4.4.5 GET Object torrent ... 40
4.4.6 HEAD Object ... 40

S3 and CDMI™ SNIA Technical Proposal 4
A CDMI Guide for S3 Programmers Version 1.0

4.4.7 POST Object ... 41
4.4.8 PUT Object .. 42
4.4.9 PUT Object acl... 43
4.4.10 PUT Object - Copy ... 44
4.4.11 Initiate Multipart Upload ... 46
4.4.12 Upload Part .. 46
4.4.13 Upload Part - Copy .. 47
4.4.14 Complete Multipart Upload .. 47
4.4.15 Abort Multipart Upload ... 47
4.4.16 List Parts.. 47

5 Acknowledgements ... 48

S3 and CDMI™ SNIA Technical Proposal 5
A CDMI Guide for S3 Programmers Version 1.0

1 Overview

This whitepaper is intended for application developers who are using cloud storage. It
documents how to use CDMI to obtain functionality similar to Amazon’s S31 cloud
storage interface. It may also serve as a guide to implementors of systems that support
CDMI who wish to support S3-like functionality.

The S3 interface is part of Amazon Web Services (AWS). It provides the interface to
cloud storage. It is a proprietary interface, which limits the ability of some people to use
it. Developers who wish to write to a standards-based interface may want to use a CDMI
interface to accomplish the same ends. This paper discusses the similarities and
differences between the two interfaces and serves as an initial guide for implementation.
It is not, however, intended to be a detailed specification. In fact, it isn't a specification at
all, so we have avoided normative keywords like shall and required.

1 Trade and service marks used herein are the property of their respective owners

S3 and CDMI™ SNIA Technical Proposal 6
A CDMI Guide for S3 Programmers Version 1.0

2 Comparison Summary
Table 1 provides an overview of the similarities and differences between the S3 and
CDMI interfaces. Each function that S3 supports is discussed in further detail in following
sections. For functionality that S3 does not support, please see the CDMI specification
available at www.snia.org. The current version, as of early 2013, is 1.0.2.

Table 1. Operational Summary

Function S3 Support CDMI Support

List the objects in a container GET Bucket GET Container

Display simplified access
controls

GET Bucket acl GET Container metadata item
named cdmi_acl

Display Windows and NFS
compatible access controls

 GET Container metadata item
named cdmi_acl

Discover retention autodelete
interval for all objects in a
mutable container

GET Bucket lifecycle GET Container metadata item
named s3_lifecycle

Discover whether a container
shall be deleted at the end of its
retention period

 GET Container
cdmi_retention_autodelete
metadata item

Discover retention data on a
container

 GET Container
cdmi_retention_period and
cdmi_retention_start_time
metadata items

Find legal holds that have been
placed on a container

 GET Container cdmi_hold_id
metadata item

Discover the policy set on a
container

GET Bucket policy

Discover the geographic
location(s) in which a
container's data is stored

GET Bucket location

(US and EU only)

GET Container
cdmi_geographic_placement
_provided metadata item
(Full ISO 3166 support)

Get logging status GET Bucket logging GET logging queue metadata

Get status for full featured
logging

 GET logging queue metadata
(CDMI logging features much
richer functionality than S3)

Get status for lost data
notifications

GET Bucket notification

Get status for full featured
notifications

 GET notification queue metadata
(CDMI allows arbitrary
notifications based on "scopes",
which are similar to S3 bucket
policies.)

S3 and CDMI™ SNIA Technical Proposal 7
A CDMI Guide for S3 Programmers Version 1.0

Function S3 Support CDMI Support

Get information on versions of
all objects in a container

GET Bucket Object
versions

An extension for versioning is
available to working group
members.

Discover the entity with
fiduciary responsibility for a
container

GET Bucket
requestPayment

Get information on what a
bucket is doing vis-a-vis
versioning

GET Bucket versioning An extension for versioning is
available to working group
members.

Discover the URL of a website
that represents a container

GET Bucket website GET user metadata you have set
to indicate the address you have
put in place using DDNS or use
Apache-style virtual hosting.

Get container metadata HEAD Bucket GET Container metadata

Identify received multi-part
uploads

List Multipart Uploads

Create or update top-level
container

PUT Bucket PUT Container

Create or update child
containers

 PUT Container

Place simple access controls PUT Bucket acl PUT Container?
metadata:cdmi_acl

Place Windows and NFS-
compatible access controls

 PUT Container?
metadata:cdmi_acl

Set autodelete period on
writeable data

PUT Bucket lifecycle Set a container metadata item
s3_lifecycle. Emplace a
script to run a daily check on the
container.

Set autodelete on retention
data

 Set
cdmi_retention_autodelete
metadata item to "true"

Manage compliance retention
intervals

 Manage
cdmi_retention_period and
cdmi_retention_start_time

Place legal holds on a container PUT Container?cdmi_hold_id

Manage policies on containers PUT Bucket policy

Manage simple logging
parameters

PUT Bucket logging PUT to a logging queue

Specify scope of full-featured
logging operations

 PUT to a logging queue

Turn on notifications for lost
data

PUT Bucket notification

S3 and CDMI™ SNIA Technical Proposal 8
A CDMI Guide for S3 Programmers Version 1.0

Function S3 Support CDMI Support

Specify scope of full-featured
notification queues

 PUT to a notification queue

Specify the fiduciary authority
for a container

PUT Bucket
requestPayment

Manage object versioning PUT Bucket versioning An extension for versioning is
available to working group
members.

Manage the web address of a
container

PUT Bucket website Use DDNS and set user metadata
to record the address.

Delete an empty container DELETE Bucket DELETE Container

Delete a container and all its
contents

 DELETE Container

Discontinue setting an
autodelete interval on objects in
a container

DELETE Bucket
lifecycle

DELETE the Container metadata
item called s3_lifecycle

Discontinue using a bucket
policy

DELETE Bucket policy

Remove web address that
contains a referral to a
container

DELETE Bucket
website

DELETE the reference

Delete an object DELETE Object DELETE Object

Delete multiple objects Delete objects given in
an XML list up to 1000
objects long

Deleting a container deletes all
objects in the container. A jobs
extension allows bulk deletes as
well.

Get an object's contents GET Object GET Object (non-CDMI) or
GET Object's value field (CDMI)

Get an object's user-defined
metadata

 GET Object's metadata

Get an object's ACL GET Object ACL GET Object ACL

Get object's ACL inheritance
settings

 GET Object ACL

Get object permissions
regarding metadata

 GET Object ACL

Download a file using BitTorrent GET Object torrent

Get object metadata HEAD Object GET Object metadata

Upload an object using a web
form

POST Object

Create or modify an object PUT Object PUT Object

Create an object, getting back a
unique identifier in a flat
namespace

 POST Object

S3 and CDMI™ SNIA Technical Proposal 9
A CDMI Guide for S3 Programmers Version 1.0

Function S3 Support CDMI Support

Set an object's ACL PUT Object acl PUT Object metadata:acl
(includes full set of permissions,
principals, and flags as used in
NTFS and NFSv4)

Copy an object already in the
cloud to a new location

PUT Object - Copy PUT Object setting "copy" in
message body JSON

Move an object already in the
cloud to a new location

 PUT Object setting "move" in
message body JSON

Begin uploading an object in
multiple pieces

POST Object,
specifying an upload ID

PUT Object with X-CDMI-Partial
header = "true"

Upload part of an object PUT Object with
partnumber and upload
ID

PUT Object with Content-Range
header set and X-CDMI-Partial
header = "true"

Copy part of one object to
another object

PUT Object with XML
describing source

Specified in a future extension to
CDMI (“Copy Range”)

Complete updating an object by
parts

POST Object with XML
containing number of
parts

PUT Object with X-CDMI-Partial
header = "false"

Abort a Multipart Upload DELETE Object with
upload id

DELETE Object

List parts of an object received
so far by the server

GET Object with upload
id and additional
metadata

Client is responsible for tracking
successful returns.

Create a FIFO queue that can
contain arbitrary types of
objects

 PUT Queue

Dequeue an object from a
queue

 GET Queue or
DELETE Queue values:<n>

Create an identity management
namespace

 PUT Domain

Add users and groups to a
management namespace

 PUT to the domain
cdmi_domain_members field

Query a management
namespace for user and group
info

 GET to the domain
cdmi_domain_members field

Export a container via NFS Add an "exports" data
structure to the container
metadata

Export a container via
CIFS/SMB

 Add an "exports" data
structure to the container
metadata

Export a container via OCCI,
iSCSI or WebDAV

 Add an "exports" data
structure to the container
metadata

S3 and CDMI™ SNIA Technical Proposal 10
A CDMI Guide for S3 Programmers Version 1.0

Function S3 Support CDMI Support

Create a snapshot of a
container

 PUT Container, with
"snapshot" request metadata
set to the name of the target
snapshot

Export a container in serialized
format

 Convert an object into JSON
format with all binary data
encoded with escaped JSON and
base64 encodings and place
children arrays last

Import a serialized container Reverse the process mentioned
above

Log security events PUT to a logging queue with a
"cdmi_logging_class" of
"cdmi_security_logging"

Log metadata change events PUT to a logging queue with a
"cdmi_logging_class" of
"cdmi_datasystem_logging"

Log object accesses and
changes

 PUT to a logging queue with a
"cdmi_logging_class" of
"cdmi_object_logging"

Query a container for objects
matching a specified set of
conditions

 PUT to a query queue with a
scope specification

S3 and CDMI™ SNIA Technical Proposal 11
A CDMI Guide for S3 Programmers Version 1.0

3 Capabilities

CDMI uses the notion of capabilities objects to encapsulate the various behaviors and
capabilities of a given class of storage. For example, a Platinum storage class might
offer retention and autodeletion, while a Bronze one does not. A ReadOnly storage class
will probably not support any sort of object or container deletion or modification, and so
on.

A CDMI implementation that is capable of S3-like behavior must implement the following
CDMI capabilities for the objects and containers in question (see Table 2). It may, of
course, implement other functionality; however, discussion in this paper is limited to the
functionality necessary to support S3-like activities.

In general, clients should check the relevant capabilities object to make sure that the
capability for a given operation is both existent and "true" before performing an
operation. As this adds a round trip to an operation if done every time a new location is
accessed, an alternative, especially for container and object capabilities, may involve
waiting to inspect a capability until an operational error is encountered.

N.B. "Support" for an operation, such as deleting an object, should not be confused with
"permission" to perform the operation. Support is indicated by capabilities that are
present and set to "true", while permission is controlled by Access Control Lists
(ACLs).

Table 2. System-Wide Capabilities (see CDMI 12.1.1)

Capability Description

cdmi_dataobjects Indicates support for the CDMI data path

cdmi_security_access_control Indicates support for ACLs

cdmi_serialization_json Indicates support for JSON as a serialization format.
This is the only supported serialization.

cdmi_query Indicates support for query queues

cdmi_query_regex Indicates support for query with regular expressions

cdmi_query_contains Indicates support for query with “contains”
expressions

cdmi_query_tags Indicates support for query with tag-matching
expressions

cdmi_query_value Indicates support for query of value fields

cdmi_notification Indicates support for notification queues

cdmi_logging Indicates support for logging queues

cdmi_object_move_from_local (Not required for S3) Indicates support for moving CDMI
objects from URIs within the same storage system

cdmi_object_copy_from_local Indicates support for copying CDMI objects from URIs
within the same storage system

S3 and CDMI™ SNIA Technical Proposal 12
A CDMI Guide for S3 Programmers Version 1.0

Capability Description

cdmi_object_copy_from_remote (Not required for S3) Indicates support for copying CDMI
objects from URIs within other CDMI storage systems

cdmi_security_access_control Indicates support for ACLs for the purpose of access
control

cdmi_references Indicates support for references that return 302 Found
(HTTP redirects)

Storage system metadata capabilities are found in the capabilities objects for domains,
data objects, containers, and queues, as described in Table 3.

Table 3. Storage System Metadata (see CDMI 12.1.2)

Capability Description

cdmi_acl Indicates support for ACLs

cdmi_size Indicates that the cloud storage system generates a
"cdmi_size" metadata entry for each stored object

cdmi_ctime Indicates that the cloud storage system generates a
"cdmi_ctime" metadata entry for each stored object

cdmi_atime Indicates that the cloud storage system generates a
"cdmi_atime" metadata entry for each stored object

cdmi_mtime Indicates that the cloud storage system generates a
"cdmi_mtime" metadata entry for each stored object

cdmi_acount Indicates that the cloud storage system generates a
"cdmi_acount" metadata entry for each stored object

cdmi_mcount Indicates that the cloud storage system generates a
"cdmi_mcount" metadata entry for each stored object

Capabilities for data system metadata are found in the capabilities objects for data
objects, domains, containers, and queues, i.e., in the same places as storage system
metadata (see Table 4). The distinction between storage system metadata and data
system metadata is therefore largely abstract.

Table 4. Capabilities for Data System Metadata (see CDMI 12.1.3)

Capability Description

cdmi_data_autodelete
cdmi_retention_autodelete

Indicates that the cloud storage system implements auto
deletion after the retention period expires. (Note: Some
versions of the spec erroneously call out both names in
separate places. Check both names, and if either one
exists and is set to "true", the capability is available.)

cdmi_data_retention Required to support cdmi_data_autodelete

cdmi_data_dispersion Required to support geographic separation of data
copies

S3 and CDMI™ SNIA Technical Proposal 13
A CDMI Guide for S3 Programmers Version 1.0

Capability Description

cdmi_geographic_placement Required to support regional boundaries on data
placement

Container capabilities are found in the capabilties objects on containers, as described in
Table 5.

Table 5. Container Capabilities (see CDMI 12.1.5)

Capability Description

cdmi_create_container
(required on the top-level container
only).

Indicates that the cloud storage system supports
creating containers in this container

cdmi_delete_container Indicates that the container can be deleted

cdmi_create_queue Indicates that creating queues in the container is
supported

cdmi_copy_queue (Not required for S3) Indicates that a queue may be
created in the container that is a copy of another queue

cdmi_move_queue (Not required for S3) Indicates that a queue may be
moved from another location into this container

cdmi_read_metadata Indicates support for reading container metadata

cdmi_modify_metadata Indicates support for creating and modifying container
metadata

cdmi_list_children Indicates support for listing children of an existing
container

cdmi_list_children_range (Not required for S3) Indicates support for partial listing
of children of an existing container, as specified by a
range description

cdmi_create_dataobject Indicates that objects may be created in this container.
One could reasonably ask how useful a container
without this capability could be. Rather than checking for
it up front, we recommend checking after an error is
returned on PUT.

cdmi_post_dataobject Indicates that ordinary HTTP POST requests are
supported. In CDMI implementations based on FOSS
web servers such as Apache, this should work as
expected.

cdmi_create_container (Not required for S3) Indicates support for nested
containers

cdmi_delete_container Indicates the container may be deleted

cdmi_create_reference Indicates that references can be created in this
container

cdmi_copy_dataobject Indicates that the container supports creation of new
objects by copying them from elsewhere in the system

S3 and CDMI™ SNIA Technical Proposal 14
A CDMI Guide for S3 Programmers Version 1.0

Capability Description

cdmi_move_dataobject (Not required for S3) Indicates that the container
supports moving objects from elsewhere into the
container

Table 6 describes capabilities for data objects.

Table 6. Data Object Capabilities (see CDMI 12.1.5)

Capability Description

cdmi_read_metadata Indicates support for reading the object's metadata

cdmi_read_value Indicates support for reading the object's value

cdmi_read_value_range Indicates support for reading value ranges, e.g.,
myobject?value:256-511 reads bytes 256 to 511

cdmi_modify_metadata Indicates support for modifying the object's metadata

cdmi_modify_value Indicates support for modifying the object's value

cdmi_delete_dataobject Indicates support for deleting the data object

Table 7 describes capabilities for queue objects.

Table 7. Queue Object Capabilities (see CDMI 12.1.5)

Capability Description

cdmi_read_metadata Indicates support for reading the queue’s metadata

cdmi_read_value Indicates support for reading the queue’s value

cdmi_modify_metadata Indicates support for writing to the queue’s metadata

cdmi_delete_queue Indicates support for deleting the queue

cdmi_modify_value Indicates support for enqueuing objects to the queue

S3 and CDMI™ SNIA Technical Proposal 15
A CDMI Guide for S3 Programmers Version 1.0

4 Operational Details
This section provides details on using CDMI to implement functionality similar to each of
the S3 operations listed in section 3 Capabilities.

4.1 Authentication
CDMI 1.0.2 does not require any authentication beyond basic HTTP authentication. A
”curl” command like this will work on servers that support it. (Alternatively,
”jdoe:password” may be passed in using an Authorization header field (see RFC 2616
section 14.8).

% curl http://jdoe:password@10.100.3.5 GET /cs/classes/cs101/temp/ ...

But sending passwords in the clear is quite unsafe and should be avoided. CDMI servers
are required to support TLS 1.0 at a minimum, and may support TLS 1.1 and 1.2.
Therefore, the following is much preferable:

% curl https://jdoe:password@10.100.3.5 GET /cs/classes/cs101/temp/ ...

At present, the CDMI spec does not specify support for Kerberos, PKI, or other third-
party or single signon technologies. Individual implementations may offer one or more of
them; consult the documentation for the CDMI server you are using to determine
whether these security features are available. You may, for example, be able to use an
Authentication header field to pass in credentials that apply to these systems.

4.2 Return Codes
CDMI uses the return codes in Table 8 in one or more of the operations used in this
paper. Subsequent listings of return codes from operations will omit the details shown
here.

Table 8. Return Codes from HTTP Operations

HTTP return codes Response headers and body Meaning

202 Accepted <none> The object is being created.
Monitor the percentComplete
and completionStatus fields to
find out when to requery.

X-CDMI-Specification-Version The highest version supported
by both client and server

Content-Type application/cdmi-<type>

S3 and CDMI™ SNIA Technical Proposal 16
A CDMI Guide for S3 Programmers Version 1.0

HTTP return codes Response headers and body Meaning

204 No Content <none> The container or object was
successfully created, updated, or
deleted.

X-CDMI-Specification-Version The highest version supported
by both client and server

Content-Type application/cdmi-<type>

302 Found Possibly a note containing a URL.
A "Location" header may also be
present, and if so, it contains the
URL to redirect to without caching
the new location.

The URI given in the request is a
reference to another object, but
there is no guarantee that the
object will stay there.

400 Bad Request <none, or an error string for
display>

The request contains invalid
parameters or field names.

401 Unauthorized <none, or an error string for
display>
A WWW-Authenticate header
field (RFC 2616 section 14.47)
containing a challenge applicable
to the requested container will be
present.

The authentication credentials
are missing or invalid.

403 Forbidden <none, or an error string for
display>
RFC 2616 says the server
SHOULD indicate why the
request failed. It also says that
clients (meaning you) SHOULD
NOT repeat the request.

The client lacks the proper
authorization to perform this
request.

404 Not Found <none, or an error string for
display>

The resource was not found at
the specified URI.

406 Not Acceptable <none, or an error string for
display>

The server is unable to provide
the object in the content type
specified in the Accept header.

S3 and CDMI™ SNIA Technical Proposal 17
A CDMI Guide for S3 Programmers Version 1.0

HTTP return codes Response headers and body Meaning

409 Conflict <none, or an error string for
display>
From RFC 2616: The request
could not be completed due to a
conflict with the current state of
the resource. This code is only
allowed in situations where it is
expected that the user might be
able to resolve the conflict and
resubmit the request. The
response body SHOULD include
enough information for the user to
recognize the source of the
conflict. Ideally, the response ...
would include enough information
for the user or user agent to fix
the problem; however, that might
not be possible and is not
required.

The container or object may not
be deleted.

410 Gone <none, or an error string for
display>
This status code is recommended
by RFC 2616 if the server knows
that a resource that once existed
has been permanently deleted or
relocated. CDMI does not specify
a mechanism for determining this,
so this return code is HTTP
specific.

The container has been deleted
or moved without a forwarding
address.

All operations may return a Location header if an object path is a CDMI reference (i.e., a
soft link). Clients should use the URI in the Location header or message body as the real
and cacheable address of the object (unless that is also a reference; caution must be
exercised with references to detect cyclical references).

In the following detail tables, text in grey indicates content or fields that are outside the
scope of CDMI but may be applicable based on HTTP semantics.

4.3 Operations on Containers
In CDMI, buckets are called containers. Unlike S3, most CDMI implementations allow
containers to be nested, much as directories are in modern filesystems.

4.3.1 DELETE Bucket

Deleting a CDMI container deletes it, all of its metadata, and all of its contained objects.
In S3, a DELETE operation on a bucket will fail if everything in it hasn’t been deleted
first, but in CDMI it should succeed, saving you the work of first deleting everything in the
container. The appropriate headers and expectations for request and response bodies
are shown below.

S3 and CDMI™ SNIA Technical Proposal 18
A CDMI Guide for S3 Programmers Version 1.0

HTTP command Example

DELETE URI DELETE /cs/classes/cs101/temp HTTP/1.1

Header Description

X-CDMI-Specification-Version A comma-separated list of CDMI versions supported by
the client, e.g., “1.0.1, 1.0.2”

Authorization Authorization credentials supported by the server (see
RFC 2616 section 14.8)

Request body

<none>

HTTP status codes Response headers and body Meaning

204 No Content
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 See Table 8

4.3.2 DELETE Bucket lifecycle

S3 has a lifecycle control mechanism. One places a "lifecycle" on a bucket that specifies
by which pattern to match objects and a time period that is equivalent to a retention
period. Unlike enterprise retention systems, however, S3 allows one to update and
delete buckets and objects in them that are under lifecycle control.

By contrast, CDMI uses a XAM-like2 retention and compliance mechanism that is
intended to be compliant with Sarbanes/Oxley and other compliance legislation.3 CDMI
servers will not permit a retention period to be deleted or reset to a shorter interval than
the one that already exists on an object. This constraint is the same one that is used by
enterprise retention systems.

There is, therefore, no direct equivalent to a lifecycle in CDMI 1.0.2. If you use retention
to emulate it, CDMI will not allow you to delete the retention interval. Therefore, this
operation is not supported directly by CDMI.

2 XAM (the eXtensible Access Method) is a specification developed in SNIA, the Storage Networking Industry
Organization. The spec has been retired, but its rich metadata schema has been incorporated, in large part, into
CDMI.
3 Due to the peculiarities of the law, it is not possible to affirm compliance. Instead, companies submit detailed
compliance program plans incorporating various products and apply to have the program approved.

S3 and CDMI™ SNIA Technical Proposal 19
A CDMI Guide for S3 Programmers Version 1.0

However, since CDMI supports nested containers, an alternative method can
accomplish the same aims. Lifecycles are normally used to delete log files and other
data that has a limited scope in time. By simply placing each day's files in a new
container, it is possible to delete the files at the end of the lifecycle period by simply
deleting the container.

Alternatively, if you use the method in section 4.3.19 PUT Bucket lifecycle, deleting the
user metadata item “s3_lifecycle” from a container will have the desired effect, as
the container will no longer match the daily query that you set up.

HTTP command Example

PUT URI ?metadata:item PUT /cs/classes/cs101/?metadata HTTP/1.1

Header Description

X-CDMI-Specification-Version A comma-separated list of CDMI versions supported by
the client, e.g., "1.0.1, 1.0.2"

Content-Type "application/cdmi-object"

Authorization Authorization credentials supported by the server (see
RFC 2616 section 14.8)

Request body

{
 "s3_lifecycle": {}
}

HTTP status codes Response headers and body Meaning

204 No Content
302 Found
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 See Table 8

4.3.3 DELETE Bucket policy

There is no support in CDMI 1.0.2 for bucket policies. CDMI uses capabilities and an
access control mechanism modeled on NFSv4's access control. See section 4.3.5 on
Bucket acls.

S3 and CDMI™ SNIA Technical Proposal 20
A CDMI Guide for S3 Programmers Version 1.0

An extension to CDMI allowing use of the "scope" mechanism (section 19 of the spec)
as an access policy mechanism may be a possibility for future work.

4.3.4 DELETE Bucket website

Adding a new DNS entry is outside of the scope of CDMI. However, a CDMI PUT can be
used to create a CDMI reference. See Object References in section 7.2 of CDMI.
Deleting the reference is then equivalent to deleting a bucket website.

HTTP commands Example

DELETE URI DELETE /cs101 HTTP/1.1

Header Description

Authorization Authorization credentials supported by the server (see
RFC 2616 section 14.8).

Request body

<none>

HTTP status codes Response headers and body Meaning

204 No Content
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 See Table 8

4.3.5 GET Bucket acl

CDMI ACLs are a superset of S3 ACLs. In S3, only READ, WRITE, READACF,
WRITEACF, and FULLCONTROL permissions are available. Furthermore, you can only
set ACLs on buckets.

CDMI, on the other hand, supports a rich set of permissions on both objects and
containers, following the design of NFSv4. An ACL (which means "Access Control List")
is composed of ACEs ("Access Control Entries"). Each ACE carries the information
described in Table 9.

S3 and CDMI™ SNIA Technical Proposal 21
A CDMI Guide for S3 Programmers Version 1.0

Table 9. ACE Entry Definitions

Name of Property Meaning

acetype ALLOW, DENY or AUDIT

identifier A user id, group id, or one of the following special identifiers: OWNER@,
GROUP@, EVERYONE@, ANONYMOUS@, AUTHENTICATED@,
ADMINISTRATOR@, ADMINUSERS@

aceflags Any combination of NO_FLAGS, OBJECT_INHERIT,
CONTAINER_INHERIT, NO_PROPAGATE, INHERIT_ONLY,
IDENTIFIER_GROUP, INHERITED

acemask Any combination of READ_OBJECT, LIST_CONTAINER,
WRITE_OBJECT, ADD_OBJECT, APPEND_DATA,
ADD_SUBCONTAINER, READ_METADATA, WRITE_METADATA,
EXECUTE, DELETE_OBJECT, DELETE_SUBCONTAINER,
READ_ATTRIBUTES, WRITE_ATTRIBUTES, WRITE_RETENTION,
WRITE_RETENTION_HOLD, DELETE, READ_ACL, WRITE_ACL,
WRITE_OWNER, SYNCHRONIZE

Table 10 displays the mapping between S3 and CDMI permissions.

Table 10. Mapping Between S3 and CDMI Permissions

S3 permission CDMI permission flags and mask bits

READ OBJECT_INHERIT, READ_OBJECT (object only), LIST_CONTAINER
(bucket only), READ_METADATA, EXECUTE, READ_ATTRIBUTES

WRITE OBJECT_INHERIT, WRITE_OBJECT (object only), ADD_OBJECT
(bucket only), WRITE_METADATA, DELETE_OBJECT,
WRITE_ATTRIBUTES

READACF READ_ACL

WRITEACF WRITE_ACL

FULLCONTROL READ_OBJECT, LIST_CONTAINER, WRITE_OBJECT,
ADD_OBJECT, APPEND_DATA, ADD_SUBCONTAINER,
READ_METADATA, WRITE_METADATA, EXECUTE,
DELETE_OBJECT, DELETE_SUBCONTAINER, READ_ATTRIBUTES,
WRITE_ATTRIBUTES, WRITE_RETENTION,
WRITE_RETENTION_HOLD, DELETE, READ_ACL, WRITE_ACL,
WRITE_OWNER

Refer to section 16.1 of the 1.0.2 spec for more information.

ACLs can be "inherited" in CDMI. When a CDMI object is accessed, CDMI traverses up
the container hierarchy to the root, collecting all ACLs that apply to the object and
building a virtual ACL that represents the mathematical union of all the applicable ACLs
in the hierarchy. In this case, the union is all of the ACEs in which the identifier is the
user making the request or a group that contains the user or one of the groups. Because
containers may be nested and ACLs set on both child objects and child containers,
various flags can be set to control whether a child inherits a specific ACE from the parent
(see the aceflags above).

S3 and CDMI™ SNIA Technical Proposal 22
A CDMI Guide for S3 Programmers Version 1.0

ACLs are admittedly complex, but as CDMI largely copies the NFSv4 ACL mechanism
and NFSv4 ACLs were patterned after Windows ACLs, a rich body of literature is
available online regarding their use.

The following example GETs the ACL (which in this case happens to be the default ACL
mandated by the spec) on a top-level container (the equivalent of a bucket). You must
have READ_ACL permission on the container.

HTTP commands Example

GET URI ?metadata:cdmi_acl GET /cs/?metadata:cdmi_acl HTTP/1.1

Header Description

X-CDMI-Specification-Version A comma-separated list of CDMI versions supported by
the client, e.g., “1.0.1, 1.0.2”.

Accept "application/cdmi-object"

Authorization Authorization credentials supported by the server (see
RFC 2616 section 14.8).

Request body

<none>

HTTP status codes Response headers and body Meaning

200 Okay X-CDMI-Specification-Version 1.0.2 Highest version supported
by both client and server

Content-Type
"application/cdmi-object"

S3 and CDMI™ SNIA Technical Proposal 23
A CDMI Guide for S3 Programmers Version 1.0

HTTP status codes Response headers and body Meaning

200 Okay {
 "cdmi_acl":
 [
 {
 "acetype": "ALLOW",
 "identifier": "OWNER@",
 "aceflags": "OBJECT_INHERIT,
 CONTAINER_INHERIT",
 "acemask": "ALL_PERMS"
 },
 {
 "acetype": "ALLOW",
 "identifier": "AUTHENTICATED@",
 "aceflags": "OBJECT_INHERIT,
 CONTAINER_INHERIT",
 "acemask": "READ"
 }
]
}

302 Found
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
406 Not Acceptable
410 Gone

See Table 8 See Table 8

4.3.6 GET Bucket lifecycle

There is no direct equivalent to a lifecycle in CDMI 1.0.2 (see section 4.3.2 DELETE
Bucket lifecycle for more discussion).

If you use the method in section 4.3.19 PUT Bucket lifecycle, fetching the user metadata
item “s3_lifecycle” from a container will show the lifecycle that has been placed on the
container. Remember that the server does not automatically delete anything marked with
this method. You are responsible for setting up a daily batch job to do that.

The following request will fetch the lifecycle.

HTTP command Example

GET URI
?metadata:item

GET /cs/classes/cs101/?metadata:s3_lifecycle
HTTP/1.1

Header Description

X-CDMI-Specification-
Version

A comma-separated list of CDMI versions supported by the client,
e.g., "1.0.1, 1.0.2".

Content-Type "application/cdmi-object"

S3 and CDMI™ SNIA Technical Proposal 24
A CDMI Guide for S3 Programmers Version 1.0

Header Description

Authorization Authorization credentials supported by the server (see RFC 2616
section 14.8).

Request body

<none>

HTTP status codes Response headers and body Meaning

302 Found
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 See Table 8

200 Okay

X-CDMI-Specification-Version
1.0.2

Highest version supported by
both client and server

Content-Type
"application/cdmi-object"

{

 "metadata" : {

 "s3_lifecycle" : "30"

 }

}

4.3.7 GET Bucket policy

There is no support in CDMI 1.0.2 for bucket policies. CDMI uses capabilities and an
access control mechanism modeled on NFSv4's access control. See section 4.3.5 on
GET Bucket acls.

An extension to CDMI allowing use of the "scope" mechanism (section 19 of the spec)
as an access policy mechanism may be a possibility for future work.

4.3.8 GET Bucket location

If the server supports geographic placement, as indicated by the
cdmi_geographic_placement capability, the following request will return the geographic
placements previously requested. This is not quite the same as an indication of where
the data actually is sitting—cloud systems need to be able to manage that to meet
shifting load and other constraints. Instead, indicates which locations are acceptable and
which are not. See Table 118 in the spec.

S3 and CDMI™ SNIA Technical Proposal 25
A CDMI Guide for S3 Programmers Version 1.0

Note that CDMI has the ability to specify geographic regions in which data should not be
stored.

HTTP command Example

GET URI
?metadata:item

GET
/cs/classes/cs101/?metadata:cdmi_geographic_placem
ent HTTP/1.1

Header Description

X-CDMI-Specification-
Version

A comma-separated list of CDMI versions supported by the client,
e.g., "1.0.1, 1.0.2".

Content-Type "application/cdmi-object"

Authorization Authorization credentials supported by the server (see RFC 2616
section 14.8).

Request body

<none>

HTTP status codes Response headers and body Meaning

302 Found
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 See Table 8

200 Okay X-CDMI-Specification-Version
1.0.2

Highest version supported
by both client and server

Content-Type
"application/cdmi-object"

{

 "metadata" : {

 "cdmi_geographic_placement" : ["CA",
"US"]

 }

}

4.3.9 GET Bucket logging

CDMI supports logging in some depth, using logging queues, and a full discussion of it
would be a whitepaper in its own right. To summarize, logging queues can be

S3 and CDMI™ SNIA Technical Proposal 26
A CDMI Guide for S3 Programmers Version 1.0

instantiated on object operations, security events, and data management events. The
entries in logging queues contain more information than the entries in notification
queues. Please refer to chapter 20 of the CDMI spec.

HTTP command Example

GET URI
?metadata:item

GET /cs/classes/cs101/log?metadata HTTP/1.1

Header Description

X-CDMI-Specification-
Version

A comma-separated list of CDMI versions supported by the client,
e.g., "1.0.1, 1.0.2".

Content-Type "application/cdmi-queue"

Authorization Authorization credentials supported by the server (see RFC 2616
section 14.8).

Request body

<none>

HTTP status codes Response headers and body Meaning

302 Found
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 See Table 8

200 Okay X-CDMI-Specification-Version
1.0.2

Highest version supported by
both client and server

Content-Type
"application/cdmi-object"

S3 and CDMI™ SNIA Technical Proposal 27
A CDMI Guide for S3 Programmers Version 1.0

HTTP status codes Response headers and body Meaning

{

 "metadata" : {

 "cdmi_queue_type" : "cdmi_logging_queue",

 "cdmi_logging_class" : [

 "cdmi_object_logging",

 "cdmi_security_logging"

],

 "cdmi_scope_specification" : [

 {

 "domainURI" : "==
/cdmi_domains/cs101/"

 }

]

 }

}

4.3.10 GET Bucket notification

CDMI supports notification queues, which are similar to logging queues but do not
contain as much information. They are intended for management clients that need to
know when objects in the system change. People familiar with CIM or SMI-S would call
them lifecycle indications. See chapter 21 in the spec.

S3, however, only supports one notification, which is that data loss has occurred. There
is no support in CDMI for this idea.

4.3.11 GET Bucket Object versions

CDMI 1.02 does not support versioning. There is a versioning extension under
consideration in the working group.

4.3.12 GET Bucket requestPayment

CDMI does not support the concept of a third party responsible for payment of fees. This
is determined out of band with the CDMI service provider.

4.3.13 GET Bucket versioning

CDMI 1.02 does not support versioning. There is a versioning extension under
consideration in the working group.

4.3.14 GET Bucket website

Manipulating DNS entries is outside of the scope of CDMI. However, a CDMI PUT can
be used to create a CDMI Reference. See Object References in section 7.2 of the CDMI
spec. Accessing the reference provides a similar kind of redirection to a bucket website.

S3 and CDMI™ SNIA Technical Proposal 28
A CDMI Guide for S3 Programmers Version 1.0

HTTP commands Example

GET URI GET /cs101/ HTTP/1.1

Header Description

Authorization Authorization credentials supported by the server (see RFC 2616
section 14.8).

Request body

<none>

HTTP status codes Response headers and body Meaning

200 Okay X-CDMI-Specification-Version
1.0.2

Highest version supported by
both client and server

Content-Type
"application/cdmi-object"

{ "reference" :
"cs/classes/cs101/" }

400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 See Table 8

4.3.15 HEAD Bucket

CDMI does not support the HEAD operation, but it can be easily emulated by simply
fetching a container's metadata.

HTTP commands Example

GET URI?metadata GET /cs/classes/cs101/?metadata HTTP/1.1

Header Description

Authorization Authorization credentials supported by the server (see RFC 2616
section 14.8).

S3 and CDMI™ SNIA Technical Proposal 29
A CDMI Guide for S3 Programmers Version 1.0

Request body

<none>

HTTP status codes Response headers and body Meaning

204 No Content
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 See Table 8

200 Okay X-CDMI-Specification-Version
1.0.2

Highest version supported
by both client and server

Content-Type
"application/cdmi-object"

{

 "metadata" : {

 <normally a long list>

 }

}

All metadata the user has
permission to access. If, for
example, the user does
have permission to read
metadata, but doesn't have
permission to read the ACL,
a partial list not containing
the ACL will be returned.

4.3.16 List Multipart Uploads

CDMI supports multipart uploads via the X-CDMI-Partial header and the RFC 2616
Range and other headers. There is, at present, no support for upload identifiers such as
those that S3 returns. The client is responsible for tracking which partial uploads have
been acknowledged as successful by the server.

4.3.17 PUT Bucket

In S3, an ACL can be specified at the time a bucket is created.

When a container is created in CDMI, it inherits the ACL of the parent container. To
modify the ACL, follow the directions in the next section.

The create operation is a simple PUT with no request body. The container name MUST
end with a forward slash ("/").

HTTP commands Example

PUT URI PUT /cs/classes/cs101/lesson1/ HTTP/1.1

S3 and CDMI™ SNIA Technical Proposal 30
A CDMI Guide for S3 Programmers Version 1.0

Header Description

Authorization Authorization credentials supported by the server (see RFC 2616
section 14.8).

Request body

<none>

HTTP status codes Response headers and body Meaning

204 No Content
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 See Table 8

4.3.18 PUT Bucket ACL

To put an ACL on a bucket you must have knowledge of user and group names. You
can get these by querying the domain in which you are working. You may need to
contact a cloud administrator if you don't know this.

To place an ACL on a container, construct a JSON object containing an array of ACEs
per section 16.1 of the spec. In this example, "OWNER@" and "AUTHENTICATED@"
are special wildcards, meaning the owner of the object and any authenticated user,
respectively.

The order of ACEs in an ACL is important. Normally DENY ACEs are placed first, and
ALLOW ACEs after. There is one exception: suppose jdoe is a member of the group
birthday and you want to allow her access to a secret birthday party planning
document and prevent others in the group from seeing it. In that case, an ALLOW ACE
for jdoe should come before a DENY ACE for the group birthdays.

In general, good practice is to place any DENY ACEs you wish to add at the head of the
ACL list and any ALLOW ACEs at the end of the list, preserving the existing order of
entries intact.

HTTP commands Example

PUT URI?metadata:cdmi_acl PUT
/cs/classes/cs101/lesson1/?metadata:cdmi_acl
HTTP/1.1

S3 and CDMI™ SNIA Technical Proposal 31
A CDMI Guide for S3 Programmers Version 1.0

Header Description

Authorization Authorization credentials supported by the server (see RFC
2616 section 14.8).

Request body

{

 "cdmi_acl":

 [

 {

 "acetype": "ALLOW",

 "identifier": "OWNER@",

 "aceflags": "OBJECT_INHERIT,
 CONTAINER_INHERIT",

 "acemask": "ALL_PERMS"

 },

 {

 "acetype": "ALLOW",

 "identifier": "AUTHENTICATED@",

 "aceflags": "OBJECT_INHERIT,

 CONTAINER_INHERIT",

 "acemask": "READ"

 }

]

}

HTTP status codes
Response headers and

body Meaning

204 No Content
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 See Table 8

4.3.19 PUT Bucket lifecycle

There is no direct equivalent to a lifecycle in CDMI 1.0.2 (see section 4.3.2). To do the
equivalent, first determine whether the objects you wish to place under lifecycle control
will ever need to be updated. If they are video surveillance files or some other kind of
log, it may actually be advantageous to use CDMI retention, as that will actively prevent
changes to them—a desirable feature in a log store.

S3 and CDMI™ SNIA Technical Proposal 32
A CDMI Guide for S3 Programmers Version 1.0

Alternatively, for logs and other things that can be deleted after a fixed period of time, it
may be convenient to simply rename their container each day and create a new one.
CDMI deletes all the objects in a container when it is deleted, so a single operation at
expiration time deletes many log files.

If you need more than that, you can put a user-defined metadata item on the files on
which you want to place a lifecycle. You’ll need to create a query queue that has a scope
that matches the objects on which you want to put a lifecycle and then dequeue and
perform the following operation on each object in the queue. In addition, you'll need to
set up a cron job or the equivalent to run once a day, recreate the query queue, and
examine the s3_lifecycle metadata item and delete the object if it is time (see sections
11.2 of the spec and 4.4.6 and 4.4.1 in this document).

HTTP commands Example

PUT
URI?metadata:s3_lifecycle

PUT
/cs/classes/cs101/lesson1/?metadata:s3_lifecycle
HTTP/1.1

Header Description

Authorization Authorization credentials supported by the server (see RFC 2616
section 14.8).

Request body

{
 "s3_lifecycle" : 30
}

HTTP status codes Response headers and body Meaning

204 No Content
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 See Table 8

4.3.20 PUT Bucket policy

There is no support in CDMI 1.0.2 for bucket policies. CDMI uses capabilities and an
access control mechanism modeled on NFSv4's access control. See section 4.3.5 on
Bucket acls.

An extension to CDMI allowing use of the "scope" mechanism (section 19 of the spec)
as an access policy mechanism may be a possibility for future work.

S3 and CDMI™ SNIA Technical Proposal 33
A CDMI Guide for S3 Programmers Version 1.0

4.3.21 PUT Bucket logging

CDMI supports a richer set of logging and notification operations than S3; it does not,
however, document the concept of a data loss notification (possibly because its
architects are from the enterprise storage space where data loss is not an option). The
possibilities are encapsulated in the queue object type.

HTTP commands Example of creating a notification queue

PUT URI/queuename PUT /cs/classes/cs101/lesson1/questions HTTP/1.1

Header Description

Accept "application/cdmi-queue"

Content-Type "application/cdmi-queue"

X-CDMI-Specification-
Version

"1.0.1, 1.0.2"

Authorization Authorization credentials supported by the server (see RFC 2616
section 14.8).

Request body

{
 "metadata" : { <metadata> },
 "domainURI" : <URI>,
 "copy" : <URI>,
 "move" : <URI>,

 "cdmi_queue_type" :
"cdmi_logging_queue",
 "cdmi_logging_class" : [
 "cdmi_object_logging",
 "cdmi_security_logging"
],
 "cdmi_scope_specification" : [
 {
 "parentURI" : "==
/cs/classes/cs101/"]
 }
]
}

Optional – see spec Table 121
Optional – see spec
Optional – copy from URI
Optional – move from URI
Optional – specify type of queue

See spec section 18.
This example asks for notifications
for all object and security events in
the cs101 container

S3 and CDMI™ SNIA Technical Proposal 34
A CDMI Guide for S3 Programmers Version 1.0

HTTP status codes Response headers and body Meaning

201 Created Content-Type
"application/cdmi-queue"
X-CDMI-Specification-Version
"1.0.2"

{
 "objectType": "application/cdmi-
queue",
 "objectID":
"00007E7F00104BE66AB53A9572F9F51E",
 "objectName" : "questions",
 "parentURI " :
"/cs/classes/cs101/lesson1/",
 "parentID" :
"0000706D0010B84FAD185C425D8B537E",
 "domainURI" : "/",
 "capabilitiesURI" :
"/cdmi_capabilities/queue/",
 "completionStatus" : "Complete",
 "queueValues" : "",
 "metadata" : { <metadata> }
}

202 Accepted Content-Type
"application/cdmi-queue"
X-CDMI-Specification-Version
"1.0.2"

Location
/cs/classes/cs101/lesson1/questions
{
 "objectType": "application/cdmi-
queue",
 "objectID":
"00007E7F00104BE66AB53A9572F9F51E",
 "objectName" : "questions",
 "parentURI " :
"/cs/classes/cs101/lesson1/",
 "parentID" :
"0000706D0010B84FAD185C425D8B537E",
 "domainURI" : "/",
 "capabilitiesURI" :
"/cdmi_capabilities/queue/",
 "completionStatus" : "Processing",
 "percentComplete" : "21",
 "queueValues" : "",
}

The operation
has been
authorized and
is in process.
There may be
access delays.
Delays typically
occur when a
"create" is a
copy or a move
and the queue
has many
entries.

204 No Content
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 See Table 8

S3 and CDMI™ SNIA Technical Proposal 35
A CDMI Guide for S3 Programmers Version 1.0

This has only been one example of creating a logging queue. For more discussion, see
sections 18 and 20 of the CDMI spec.

4.3.22 PUT Bucket notification

CDMI supports notification queues, which are similar to logging queues but do not
contain as much information. They are intended for management clients that need to
know when objects in the system change. People familiar with CIM or SMI-S would call
them lifecycle indications. See chapter 21 in the spec.

S3, however, only supports one notification, which is that data loss has occurred. There
is no support in CDMI for this idea.

However, CDMI supports a rich set of notification functionality. Notifications are mainly
different from logging in that you are able to specify exactly what information gets sent in
the notification. Please see sections 18 and 21 of the spec for more information.

4.3.23 PUT Bucket requestPayment

CDMI does not support the concept of a third party that is responsible for payment of
fees. This is determined out of band with the CDMI service provider.

4.3.24 PUT Bucket versioning

CDMI 1.02 does not support versioning in the version 1 spec. There is a versioning
extension under consideration in the working group.

4.3.25 PUT Bucket website

Adding a new DNS entry is outside of the scope of CDMI and should be done using
Dynamic DNS (DDNS). However, a CDMI PUT to an available address on the server,
ending in "?", will create a CDMI Reference.

HTTP commands Example

PUT URI PUT /cs101? HTTP/1.1

Header Description

Authorization Authorization credentials supported by the server (see RFC 2616
section 14.8).

Request body

{ "reference" : "cs/classes/cs101/" }

S3 and CDMI™ SNIA Technical Proposal 36
A CDMI Guide for S3 Programmers Version 1.0

HTTP status codes Response headers and body Meaning

204 No Content
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 See Table 8

4.4 Operations on Objects

4.4.1 DELETE Object

Deleting an object requires DELETE_OBJECT privilege on its parent container and
WRITE_METADATA privilege on the object (see Table 116 – ACE Bit Masks – in the
1.0.2 spec).

HTTP command Example

DELETE URI DELETE /cs/classes/cs101/temp HTTP/1.1

Header Description

X-CDMI-Specification-
Version

A comma-separated list of CDMI versions supported by the client,
e.g., “1.0.1, 1.0.2”.

Authorization Authorization credentials supported by the server (see RFC 2616
section 14.8).

Request body

<none>

HTTP status codes Response headers and body Meaning

204 No Content
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 See Table 8

S3 and CDMI™ SNIA Technical Proposal 37
A CDMI Guide for S3 Programmers Version 1.0

4.4.2 Delete Multiple Objects

Deletion of multiple objects must be done one by one in CDMI unless they are grouped
in a container. In that case, successfully deleting the container will delete the objects in
the container as well.

This fact may encourage you to create containers for grouping data that you know will be
deleted at some point. You can still access objects via object id.

A jobs extension under consideration in the Working Group provides another method for
managing bulk deletion.

4.4.3 GET Object

GETting and object via CDMI returns the object and all the metadata that the principal
making the query has privilege to access. To receive just the object's "body," query the
"value" component of the object.

HTTP commands Example

GET URI GET /cs/cs101/lesson1/dates?value HTTP/1.1

Header Description

X-CDMI-
Specification-
Version

A comma-separated list of CDMI versions supported by the client, e.g.,
“1.0.1, 1.0.2”.

Accept "application/cdmi-object"

Authorization Authorization credentials supported by the server (see RFC 2616
section 14.8).

Request body

<none>

HTTP status codes Response headers and body Meaning

200 Okay X-CDMI-Specification-Version 1.0.2 Highest version
supported by
both client and
server

Content-Type "application/cdmi-object"

{
 "value" :
 "This assignment is due Sep 15"
}

S3 and CDMI™ SNIA Technical Proposal 38
A CDMI Guide for S3 Programmers Version 1.0

HTTP status codes Response headers and body Meaning

202 Accepted
302 Found
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
406 Not Acceptable
410 Gone

See Table 8 and section 4.3.21. See Table 8

GETting an object without request headers is equivalent to a non-CDMI GET and returns
the "value" component of the object.

You can get portions of an object. See spec section 8.4.8 for examples.

4.4.4 GET Object ACL

To read an ACL, simply specify the "metadata:cdmi_acl" location in the query

HTTP commands Example

GET URI GET /cs/cs101/lesson1/dates?metadata:cdmi_acl
HTTP/1.1

Header Description

X-CDMI-
Specification-Version

A comma-separated list of CDMI versions supported by the client, e.g.,
“1.0.1, 1.0.2”.

Accept "application/cdmi-object"

Authorization Authorization credentials supported by the server (see RFC 2616
section 14.8).

Request body

<none>

HTTP status codes Response headers and body Meaning

200 Okay X-CDMI-Specification-Version 1.0.2 Highest version
supported by both
client and server

Content-Type "application/cdmi-object"

S3 and CDMI™ SNIA Technical Proposal 39
A CDMI Guide for S3 Programmers Version 1.0

HTTP status codes Response headers and body Meaning

{

 "cdmi_acl":

 [

 {

 "acetype": "ALLOW",

 "identifier": "OWNER@",

 "acemask": "ALL_PERMS"

 },

 {

 "acetype": "ALLOW",

 "identifier":
"AUTHENTICATED@",

 "acemask": "READ"

 }

]

}

202 Accepted
302 Found
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
406 Not Acceptable
410 Gone

See Table 8 and section 4.3.21. See Table 8

4.4.5 GET Object torrent

CDMI does not support BitTorrent downloads. A vendor wishing to support them would
very likely store the URI of the associated torrent in a field in the object's
metadata:torrentURI field. In this case, a GET to <objectpath>?metadata:torrentURI
would return the URI to use for the download.

4.4.6 HEAD Object

CDMI does not directly support the HEAD operation, but the equivalent can be done by
just GETting the object's metadata.

HTTP commands Example

GET URI?metadata GET /cs/classes/cs101/dates?metadata HTTP/1.1

Header Description

X-CDMI-
Specification-Version

A comma-separated list of CDMI versions supported by the client, e.g.,
“1.0.1, 1.0.2”.

S3 and CDMI™ SNIA Technical Proposal 40
A CDMI Guide for S3 Programmers Version 1.0

Header Description

Accept "application/cdmi-object"

Authorization Authorization credentials supported by the server (see RFC 2616
section 14.8)

Request body

<none>

HTTP status codes Response headers and body Meaning

200 Okay
202 Accepted

X-CDMI-Specification-Version 1.0.2 Highest version
supported by both
client and server

Content-Type "application/cdmi-object"

202 Accepted
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 and section 4.3.21 See Table 8

200 Okay {

 "metadata" : {

 <normally a long list>

 }

}

All metadata the
user has
permission to
access. If, for
example, the user
does have
permission to read
metadata, but
doesn't have
permission to read
the ACL, a partial
list not containing
the ACL will be
returned. An empty
JSON object
normally means
that the user
doesn't have
privilege to read
any metadata.

4.4.7 POST Object

CDMI uses the POST operation differently from S3. In CDMI, it is used to create objects
that do not have paths (just object IDs in a flat namespace). S3 uses POST in the more
traditional sense, allowing HTTP headers to be passed as form fields from browser-

S3 and CDMI™ SNIA Technical Proposal 41
A CDMI Guide for S3 Programmers Version 1.0

based applications. There is no support for this as a CDMI operation, but a non-CDMI
POST should work as expected, providing the cdmi_post_dataobject capability is
present.

4.4.8 PUT Object

CDMI offers support for object updates (by specifying a byte range, e.g.,
myObject?value:1048576-1081344). S3 does not have this capability. So, when you
PUT an object to S3, it is effectively always a new copy unless you are using versioning.

Other than that, the two systems operate similarly.

HTTP commands Example

PUT URI PUT /cs/classes/cs101/lesson1/lesson1.html HTTP/1.1

Header Description

X-CDMI-Specification-
Version

A comma-separated list of CDMI versions supported by the client,
e.g., “1.0.1, 1.0.2”.

Accept "application/cdmi-object"

Content-Type "application/cdmi-object"

Authorization Authorization credentials supported by the server (see RFC 2616
section 14.8).

Request body (optional fields are in grey)

{
 "mimetype" : "text/html",

 "metadata" : { <user metadata> },

 "domainURI" : "/cs/",

 "copy" : "/cs/prof/mrc/cs101/1.htm",
 "move" : "/cs/prof/mrc/cs101/tmp.htm",
 "value" : "<escaped utf-8 string>",

 "valuetransferencoding" : ["utf-8"]
}

Notes: mimetype is set to
"text/plain" if not supplied.
The domain of the parent
container is used by default. Only
one of copy, move, or value can be
specified.
The order of the fields does not
matter.

HTTP status codes Response headers and body Meaning

201 Created
202 Accepted

X-CDMI-Specification-Version 1.0.2 Highest version
supported by
both client and
server

Content-Type "application/cdmi-object"

S3 and CDMI™ SNIA Technical Proposal 42
A CDMI Guide for S3 Programmers Version 1.0

HTTP status codes Response headers and body Meaning

202 Accepted
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 See Table 8

201 Created {

 "objectType" : "application/cdmi-
object",

 "objectID" :

"000706D0010B84FAD185C425D8B537E",

 "objectName" : "lesson1.html",

 "parentURI" :
"/cs/classes/cs101/lesson1/",

 "parentID" :

"00007E7F00102E230ED82694DAA975D2",

 "domainURI" : "/cs/",

 "capabilitiesURI" :

"cdmi_capabilities/dataobject/",

 "completionStatus" : "Complete",

 "mimetype" : "text/html",

 "metadata" : { <long list> }
}

204 No Content When an object is updated by overwriting it, as S3 requires one to
do, CDMI returns No Content on writes subsequent to the initial
create.

4.4.9 PUT Object acl

S3 allows you to set ACLs using request headers. CDMI does not support this, but it
does support a complete NFSv4- and Windows-compatible ACL structure. See section
4.4.9 for more detail.

HTTP commands Example

PUT
URI?metadata:cdmi_acl

PUT /cs/classes/cs101/lesson2/sample1?metadata:cdmi_acl
HTTP/1.1

Header Description

Authorization Authorization credentials supported by the server (see RFC 2616
section 14.8).

S3 and CDMI™ SNIA Technical Proposal 43
A CDMI Guide for S3 Programmers Version 1.0

Request body

{

 "cdmi_acl":

 [

 {

 "acetype": "ALLOW",

 "identifier": "OWNER@",
 "acemask": "ALL_PERMS"

 },

 {

 "acetype": "ALLOW",

 "identifier": "cs101",

 "acemask": "READ"

 }

]

}

HTTP status codes Response headers and body Meaning

204 No Content
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 See Table 8

4.4.10 PUT Object - Copy

To copy an object from one address to another in CDMI, use the "copy" field in the
request body, as implied in section 4.4.8.

HTTP commands Example

PUT URI PUT /cs/classes/cs101/lesson1/lesson1.html HTTP/1.1

Header Description

X-CDMI-Specification-
Version

A comma-separated list of CDMI versions supported by the client,
e.g., “1.0.1, 1.0.2”.

Accept "application/cdmi-object"

Content-Type "application/cdmi-object"

S3 and CDMI™ SNIA Technical Proposal 44
A CDMI Guide for S3 Programmers Version 1.0

Header Description

Authorization Authorization credentials supported by the server (see RFC 2616
section 14.8).

Request body (optional fields are in grey)

{
 "mimetype" : "text/html",

 "metadata" : { <user metadata> },

 "domainURI" : "/cs/",

 "copy" : "/cs/prof/mrc/cs101/1.htm",

 "valuetransferencoding" : ["utf-8"]
}

Notes: mimetype is set to
"text/plain" if not supplied. The
domain of the parent container is
used by default.
The order of the fields does not
matter.

HTTP status codes Response headers and body Meaning

201 Created
202 Accepted

X-CDMI-Specification-Version 1.0.2 Highest version
supported by
both client and
server

Content-Type "application/cdmi-object"

202 Accepted
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
409 Conflict
410 Gone

See Table 8 See Table 8

201 Created {

 "objectType" : "application/cdmi-
object",

 "objectID" :
 "000706D0010B84FAD185C425D8B537E",

 "objectName" : "lesson1.html",

 "parentURI" :
"/cs/classes/cs101/lesson1/",

 "parentID" :
 "00007E7F00102E230ED82694DAA975D2",

 "domainURI" : "/cs/",

 "capabilitiesURI" :
 "cdmi_capabilities/dataobject/",

 "completionStatus" : "Complete",

 "mimetype" : "text/html",

 "metadata" : { <long list> }
}

S3 and CDMI™ SNIA Technical Proposal 45
A CDMI Guide for S3 Programmers Version 1.0

HTTP status codes Response headers and body Meaning

204 No Content When an object is updated by overwriting it, as S3 requires one to do,
CDMI returns No Content on writes subsequent to the initial create.

4.4.11 Initiate Multipart Upload

CDMI supports multipart upload using the standard mechanisms of HTTP for doing so,
with an additional header ("X-CDMI-Partial") indicating to CDMI whether the upload is
complete.

Suppose we need to upload a file in three parts, with byte ranges 0-99, 100-199 and
200-299. (These are small byte ranges in the example; real ranges would likely be much
larger). The following three queries accomplish this:

PUT /cs/cs101/lesson1/mpfile.txt HTTP/1.1
X-CDMI-Specification-Version "1.0.1, 1.0.2"
Accept "application/cdmi-object"
Content-Type "application/cdmi-object"
X-CDMI-Partial "false"
Range 0-99
{
 "value" : "<100 bytes of data"
}

PUT /cs/cs101/lesson1/mpfile.txt HTTP/1.1
X-CDMI-Specification-Version "1.0.1, 1.0.2"
Accept "application/cdmi-object"
Content-Type "application/cdmi-object"
X-CDMI-Partial "false"
Range 100-199
{
 "value" : "<100 bytes of data"
}

PUT /cs/cs101/lesson1/mpfile.txt HTTP/1.1
X-CDMI-Specification-Version "1.0.1, 1.0.2"
Accept "application/cdmi-object"
Content-Type "application/cdmi-object"
X-CDMI-Partial "true"
Range 200-299
{
 "value" : "<100 bytes of data"
}

The response codes, headers, and body are identical to those of an ordinary PUT as
documented in section 4.4.8.

4.4.12 Upload Part

To upload any part except the last one, specify the location of the part in the object using
the HTTP Range header and an X-CDMI-Partial header set to "false". The example in
section 4.4.11 shows this. Note that the ranges are not required to be sent or received in
byte range order.

S3 and CDMI™ SNIA Technical Proposal 46
A CDMI Guide for S3 Programmers Version 1.0

4.4.13 Upload Part - Copy

CDMI v1.0.2 does not support partial object copy. The ”Copy Range” extension provides
this functionality.

4.4.14 Complete Multipart Upload

During a multipart upload, the object's existence and metadata are visible, but the value
is not. To tell the server that the upload is complete and expose the value, set the
X-CDMI-Partial header to "true". This can be seen in the example in section 4.4.11.

4.4.15 Abort Multipart Upload

To abort a multipart upload in CDMI, DELETE the object. There is no "rollback"
mechanism for "undoing" the uploads made so far. The versioning mechanism, if offered
by the CDMI vendor, could be used to provide a rollback.

4.4.16 List Parts

CDMI 1.0.2 does not support listing of partial uploads. The client is responsible for
tracking them and ensuring that normal responses are received for all parts.

S3 and CDMI™ SNIA Technical Proposal 47
A CDMI Guide for S3 Programmers Version 1.0

5 Acknowledgements
Thanks go to many members of the SNIA Green Technical Working Group and to the
following individuals and companies in particular:

• David Slik – NetApp
• Mark Carlson – Oracle
• Doug Davis – IBM
• Tong Li – IBM

S3 and CDMI™ SNIA Technical Proposal 48
A CDMI Guide for S3 Programmers Version 1.0

	1 Overview
	2 Comparison Summary
	3 Capabilities
	4 Operational Details
	4.1 Authentication
	4.2 Return Codes
	4.3 Operations on Containers
	4.3.1 DELETE Bucket
	4.3.2 DELETE Bucket lifecycle
	4.3.3 DELETE Bucket policy
	4.3.4 DELETE Bucket website
	4.3.5 GET Bucket acl
	4.3.6 GET Bucket lifecycle
	4.3.7 GET Bucket policy
	4.3.8 GET Bucket location
	4.3.9 GET Bucket logging
	4.3.10 GET Bucket notification
	4.3.11 GET Bucket Object versions
	4.3.12 GET Bucket requestPayment
	4.3.13 GET Bucket versioning
	4.3.14 GET Bucket website
	4.3.15 HEAD Bucket
	4.3.16 List Multipart Uploads
	4.3.17 PUT Bucket
	4.3.18 PUT Bucket ACL
	4.3.19 PUT Bucket lifecycle
	4.3.20 PUT Bucket policy
	4.3.21 PUT Bucket logging
	4.3.22 PUT Bucket notification
	4.3.23 PUT Bucket requestPayment
	4.3.24 PUT Bucket versioning
	4.3.25 PUT Bucket website

	4.4 Operations on Objects
	4.4.1 DELETE Object
	4.4.2 Delete Multiple Objects
	4.4.3 GET Object
	4.4.4 GET Object ACL
	4.4.5 GET Object torrent
	4.4.6 HEAD Object
	4.4.7 POST Object
	4.4.8 PUT Object
	4.4.9 PUT Object acl
	4.4.10 PUT Object - Copy
	4.4.11 Initiate Multipart Upload
	4.4.12 Upload Part
	4.4.13 Upload Part - Copy
	4.4.14 Complete Multipart Upload
	4.4.15 Abort Multipart Upload
	4.4.16 List Parts

	5 Acknowledgements

