y
SNIA.

Advancing storage &
information technology

Key Value Storage API Specification

Version 1.0

ABSTRACT: This SNIA document defines an application programing interface for Key
Value Object drives.

This document has been released and approved by the SNIA. The SNIA believes that the
ideas, methodologies and technologies described in this document accurately represent

the SNIA goals and are appropriate for widespread distribution. Suggestions for revisions
should be directed to http://www.snia.org/feedback/.

SNIA Technical Position
April 20, 2019

USAGE

Copyright © 2019 SNIA. All rights reserved. All other trademarks or registered trademarks are the
property of their respective owners.

The SNIA hereby grants permission for individuals to use this document for personal use only, and for
corporations and other business entities to use this document for internal use only (including internal
copying, distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no
alteration, and,

2. Any document, printed or electronic, in which material from this document (or any portion hereof)
is reproduced, shall acknowledge the SNIA copyright on that material, and shall credit the SNIA
for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document or any
portion thereof, or distribute this document to third parties. All rights not explicitly granted are expressly
reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by
e-mailing temd@snia.org. Please include the identity of the requesting individual and/or company and a
brief description of the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available
under the following license:

BSD 3-Clause Software License
Copyright (c) 2019, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of The Storage Networking Industry Association (SNIA) nor the names of
its contributors may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS I1S" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Key Value Storage API Specification SNIA Technical Position 2
Version 1.0

DISCLAIMER

The information contained in this publication is subject to change without notice. The SNIA makes no
warranty of any kind with regard to this specification, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing, performance, or use

of this specification.

Key Value Storage API Specification SNIA Technical Position
Version 1.0

Table of Contents

T T 0] = PRSP 8
2 REFERENCES........ it sr s s s s e e nnnn e s e e s e e e e e nmnnnssnnnns 9
3 DEFINITIONS, ABBREVIATIONS, AND CONVENTIONS.......ccccieererrrrreeeeee, 10
3.1 DEFINITIONS ...cttttuieeeeeeeeeeettt e e e e e e e e e eeeaaa e e e e e eeeeeeessaaaaaeeaeeeeeesnssnnaeaeaeeeeeessnnnnnnn 10

N I B B (VA o Lo PN 10

BT 2 SSD et e e e e e e aaaaaaa 10
3.1.83 KEY VAIUC PAIN ...ttt e e ettt e e e e e e anaanans 10

3.2 KEYWORDS ...oitttuuiieeeeeeeeeeeeeta e e e e e e e e e e eeeaaa e e e e e e e eeeeessasa e e e e aeaeeeesnnnnnaeeeaeeeeeeernnnnnnn 10

G B B 1 1= 11 Lo = (o) o 10
3.2.2 INIAY ettt 11ttt ittt ittt nnnnnnnnnnnnnn 10
0BG B 1 1 -) VA 4 Lo) PPN 10

G B o T-T-To [o Lo SN 10

N I T o] o)1 (o) - T 10
B.2.6 SRQAII.......ccooooeeeeeeeeeee et e e 10

N B . 1 o TV Lo R 11

3.3 ABBREVIATIONS ...uuiitiiieeeeeettii e e e e e e e e e eeeaaaa e e e e e e e eeeeeasaaaaaeaeaeeeeeesnssnnaeeeaeeeeeessnnnnnnn 11

4 OVERVIEW OF KVS APL......... s rrrrtmms s s s e s s e s s s mmnss s s s e e e e e mmmn s 12
g T O 1Y = Y| S OSRR 12
4.2 KEY-VALUEENTITIES ...t 13
G I oS 1= o1 =SSR 13
4.4 KEY GROUPuiiiiitie e et e et e e e et e e e et e e e e e e e e e e e eaa e e e e eaa e e e e esaaaeeeananeeeennnas 14
4.5 KEY VALUE PAIR. ...ttt ettt e e e e e e et e e e e e e e e e e e e e e eeeas 14
5 CONSTANTS & DATA STRUCTURES. e rrrremms e 15
STt B 7 1 PSSR 15
SO0 N1 - N 5 T PP 15
5.2.1 KVS ALIGNMENT UNIT ...ttt 15
5.2.2 KVS MAX KEY GROUP _BYTES ...t 15

5.3 APIRETURN VALUE (KVS_RESULT) ..ccittttuuuuuieeeeeeeeeresnnnnaeeaeaeeseeessnsnnaaaseaeseesssnnnnnns 15
G T B (VI (- RV | 15

5.4 DATA STRUCTURES.....cciitiittttiieeeeeeeeeeeeata e s e e e e e eaeeeasaaaaaaaaaeeeeesssssnaaaaeaeeeeenssnnnnnns 16
R o B VR T o =T) (o) o 16
85.4.2 KVS _CONIEOXE ...t a e 17
5.4.3 KVS _KEY OFUEN ..ottt e e isa e e e 17
5.4.4 KVS_OPLION_KEY SPACE ... 18
5.4.5 KVS OPHON AEIETLE ...ttt 18

L I VST (=1 1 (o) g 4 o= 18
5.4.7 KVS _OPHON JEEIALONccccevveeeeeeeeee ettt eeee e eeiaaaaees 18
5.4.8 KVS_OPHION_FEUTQVE ..ot 19
5.4.9 KVS _SIOIC LYPE oottt ettt 19

Key Value Storage API Specification SNIA Technical Position 4

Version 1.0

5.4.10 KVS_aSSOCIAtION _LYPEccoeeeeeeeeee ettt 20
5.4.11 KVS_@SSOCHALIONcceeeeeeeeeeee e 20
5.4.12 KVS OPLION SIOIE ...ttt 20
5.4.13 kvs_device _handle..................ooo oo 20
5.4.14 kvs_key Space Randleccooueeemmuueieeeeeeeeeeeieee e 21
5.4.15 kvs_iterator RANAIEooee oo 21
5.4.16 KVS _KEY SPACE.......cccee e ettt e e ete e e e e e aaa e e e 21
5.4.17 KVS_KEY _SPACE _NAME ... 21
B5.4.18 KVS BVICE. ...ttt ettt e e ee e e e aiaaaaees 22
5.4.19 KVS_©XISE LISt ... 22
5.4.20 KVS_KEY QroUp Filtr.........covvveeeeeeeeeeeeeeeeeee et 22
5.4.21 KVS_JratOr _liStcooeeeeeeeeeeeee e 23
L A (-) S 24
5.4.23 KVS_POSIDIOCESS _CONIEXTeeeeeeeeeeeeeeee e 25
5.4.24 KvS _PpOSIProCcess fUNCHONcccuuueeeeeeeeeeieeieeeeeeee et 25
5.4.25 KVS VAIUE ...t 25
5.4.26 KVS KVP INTFO.c..ucceeeeeeeeeeeeeeeeeeeee ettt ettt 26

6 KEY VALUE STORAGE APIS.....coiiiiiiiiiirisissrarssss s sass s s ss s sasassssasassssasassssasassnsasass 27
T B O Y = o | 27
6.2 DEVICE LEVEL APIS ...t e e e e e 28
6.2.7 KVS_OPEN_UEVICE. ... e 28
6.2.2 KVS_get dEVICE INTO........ccceeeeeeeeeee ettt 29
6.2.3 KVS_CIOSE _UEVICE ... 30
6.2.4 Kvs_get deviCe _CaPACILY............uueeeeeeeeeeeeeee ettt 31
6.2.5 Kkvs_get _device ULIliIZAtioN.................cooeeeeeeeeeieeee e 32
6.2.6 kvs_get min_Key eNQLhcooueeeeeeeieeeeeeeeee e 33
6.2.7 Kkvs_get max_key 1ength.............ccoooe oo 34
6.2.8 kvs_get min_value 1enNgth..............ccccooveemeeeiieiiee e 35
6.2.9 kvs _get max_value Iength................ooommmmmmmeoiieeeeeeeeeeeee e 36
6.2.10 kvs_get optimal_value _1eNgthoveeeeeeieieeiiieeee e 37
6.2.11 KVS_Create _KEY SPACEoouuueeeeeeeeeeeeeeeee e 38
6.2.12 Kvs_delete _KEY SPACEouuueeeeeeeeeeeeeeee ettt 39
6.2.13 KVS_lISt_KEY SPACES.....ccceeeeeeeeeee et 40
6.3 KEY SPACE-LEVEL APIS ...t 41
6.3.7 KVS_OPEN_KEY SPACE......ccceeeeeeeeeee ettt 41
6.3.2 KVS_ClOSE _KEY SPACEcccoeeeeeeeeeeeee et 42
6.3.3 KvS_get KeY SPACE _INTO ..o 43
6.3.4 KVS_QEL KVP INFO.cconneneeeeeeeeeeeee ettt 44
6.3.5 KVS_FEUTEVE KV ..ot 45
6.3.6 KVS_retrieVe KV _@SYINCccouueeeeeeee ettt 46
6.3.7 KVS_SEOIE _KVP ..ot 47
6.3.8 KVS_SIOr€ _KVP _@SYNC ..ottt 48
6.3.9 KVS _AEICIE KV ... 49
6.3.10 KvsS_delete _KVP _@SYNC ..ccccooeeeeeeeeeeeeeeeeeee et 50
6.3.11 KvsS_delete_KEY QrOUP..........oeeeneeeeeeeeeeeeeeee e 51
6.3.12 Kkvs_delete_Key QroUup _@SYNCccoueeeeuureieeeeeeeeeeeeiieeeeeeeeeaeeiiaaaeeas 52
Key Value Storage API Specification SNIA Technical Position 5

Version 1.0

6.3.13 KVS XISt KV PAIIS ..ottt 53

6.3.14 KVS_eXiSt_KV_PaAIIS _ASYNC........uceeeeeeeeeeeeeeeee e 54

6.4 ITERATOR FUNCTION CALLS ...uuiiiiitieeeeeiiiie e e e et e e e e eae e e e eeaae e e e e eaa e e e e eeaneeeeennnnaaeees 55
6.4.1 KVS_Create leralor............cooeeeeeeeeeeee e 55

6.4.2 KvS _delete EratoOr..............eeeeeeeeeeeeeeeeeee ettt 57

6.4.3 KVS _JErat@ NEXLceeeeeeeeeeeeeee e 58

6.4.4 KvS_iterate _NeXt ASYNC..........ceeeeeeuueeeeeeeie ettt 59

Key Value Storage API Specification SNIA Technical Position 6

Version 1.0

TABLE OF FIGURES

Figure 1 Key-value Hierarchical ArChitECIUE...............uuuiiiiiiiiiiii e be et beeeeseeesenssenesenensnennnees 13

FIgure 2 KeY-ValU@ ENTHIESuuuiiiiiiiiiiiiiiiiiiiii ettt et e et ts s s ts et s st s s ss s ss st s s ss s snsssnsnsnsnsnnnnnnn 13

Figure 3 Fixed Key Length: KVS_Iterator K@Yuuuuuuuuuiiiiiiiiiiiiiiiiiiiiieieieitieieieaeeeatebeeeeeeete s batsesessnessnsssnsnsnsnsnsnnnnns 24

Figure 4 Fixed Key Length: KVS_Iterator_KVP.......o..eii i 24

Figure 5 Variable Key Length: Kvs_iterator_KeY ... 24

Figure 6 Variable Key Length: Kvs_iterator KV ... 24
Key Value Storage API Specification SNIA Technical Position 7

Version 1.0

1 Scope

This specification defines the Application Programing Interface (API) for Key Value
storage devices implementing the SNIA Object Drive protocol.

Key Value Storage API Specification SNIA Technical Position
Version 1.0

2 References

The following referenced documents are indispensable for the application of this
document.

For references available from ANSI, contact ANSI Customer Service Department at
(212) 642-49004980 (phone), (212) 302-1286 (fax) or via the World Wide Web at
http://www.ansi.org.

NVMe
PCle
SNIA IP Based Drive Management Specification

Key Value Storage API Specification SNIA Technical Position
Version 1.0

http://www.ansi.org/

3 Definitions, abbreviations, and conventions
For the purposes of this document, the following definitions and abbreviations apply.

3.1 Definitions

3.1.1 Key Space

A collection of Key Value Pairs identified by a name and it is a unit of management in
Key Value Storage see 4.3 (e.g., in NVMe a Namespace of type KeyValue)

3.1.2 SSD
Solid State Drive

3.1.3 key value pair

Object defined by a pair of key and value
3.2 Keywords

In the remainder of the specification, the following keywords are used to indicate text
related to compliance:

3.2.1 mandatory

a keyword indicating an item that is required to conform to the behavior defined in this
standard

3.2.2 may

a keyword that indicates flexibility of choice with no implied preference; “may” is
equivalent to “may or may not”

3.2.3 may not
keywords that indicate flexibility of choice with no implied preference; “may not” is

equivalent to “may or may not”
3.2.4 need not

keywords indicating a feature that is not required to be implemented; “need not” is
equivalent to “is not required to”

3.2.5 optional

a keyword that describes features that are not required to be implemented by this
standard; however, if any optional feature defined in this standard is implemented, then
it shall be implemented as defined in this standard

3.2.6 shall

Key Value Storage API Specification SNIA Technical Position 10
Version 1.0

a keyword indicating a mandatory requirement; designers are required to implement all
such mandatory requirements to ensure interoperability with other products that
conform to this standard

3.2.7 should

a keyword indicating flexibility of choice with a strongly preferred alternative

3.3 Abbreviations

APl Application Programming Interface

KVS Key Value Storage

NVMe NVM Express (Non-Volatile Memory Express)

PCle PCI Express (Peripheral Component Interconnect Express)
SSD Solid State Disk

Key Value Storage API Specification SNIA Technical Position 11
Version 1.0

4 Overview of KVS API

4.1 Overview

This document describes the Key Value Storage (KVS) Application Program Interface
(API) specification for SSD storage devices with Object Drive based Key Value Storage.
It provides a set of APIs that are portable across multiple vendor SSD products.

The KVS API provides management of the characteristics of the KVS instances to
provide a common set of KVS instances. Once configured, all available KVS instances
report the same characteristics.

Characteristics to provide to the host

1) Optimal STORE size (per key space)

2) Maximum number of keys/value size/key size/capacity (matrix) (aggregate —
changes every time a Key Space is created/deleted)

3) Value granularity (per key space)

4) Minimum Key Length

5) Maximum Key Length

6) Minimum value Length

7) Maximum value Length

8) Total capacity (bytes) (aggregate and per key space)

9) Remaining capacity (bytes) (aggregate — changes every time a Key Space is
created/deleted; and per key space)

10)Device Utilization

Characteristics of a device that is capable of Key Value storage are determined through
a redfish implementation and allocation of a device to keyspaces is done through a KV
management API. For an NVMe implementation there is at most one Keyspace per
NVMe Namespace. For a SCSI implementation there is at most one Keyspace per
SCSI LUN.

The library routines this document defines allow applications to create and use objects
in SSDs while permitting portability. The library:

. Extends the C++ language with host and device APIs
. Provides support for Key Space, atomic operation, asynchronous operation, and
callback

Library routines and environment variables provide the functionality to control the
behavior of KVS. Figure 1 shows the hierarchical KVS architecture.

Key Value Storage API Specification SNIA Technical Position 12
Version 1.0

Application(s)

KV API e.g. SNIA KV API

e.g. C Library, Java, etc.

KV Library Written by vendors, open

KV Protocol Client Interface

source, etc.

KV Wire Protocol NVMe KV command set

KV Protocol Provider Interface

KV Device e.g. KV Controller

Figure 1 Key-value Hierarchical Architecture

4.2 KEY-VALUE ENTITIES

Device

Key Space Key Space

Key Group

.

i I
| I
! L‘_l Key | Value

: L
I| Lu I(eyl| Valuel| “

B
S

Figure 2 Key-value Entities

A Key-value device is a physical or logical storage device such as a HDD, SSD, or an
NVM Set which has a native storage command protocol of a key-value interface. A Key
Space is created from a portion or all of a Key Value device. Form factors (e.g., 2.25”,
2.5”, M.2, M.3, and HHHL) or command protocols (e.g., SATA, SCSI, NVMe, and
NVMoF) are beyond the scope of this specification.

4.3 Key Space

A Key Space defines the uniqueness of keys (i.e., Keys shall be unique within a Key
Space). A Key Space is associated with the specific configuration (e.g., key size, value
size, capacity) with which it was created. Different Key Spaces in a device may be

Key Value Storage API Specification

Version 1.0

SNIA Technical Position 13

created with different configurations. A Key Space contains a collection of Key Value
Entities (i.e., Key Value Pairs, or Key Groups) that are managed as a single entity (e.g.,
NVMe namespace, SCSI LUN, or disk partition). A device is able to simultaneously
have multiple Key Spaces. A Key-value device shall support at least one Key Space. A
Key Space is associated with a specified amount of capacity.

4.4 Key Group

A Key Group is a logical set of Key Value Pairs within a Key Space which applications
are able to dynamically create. Key Groups are optional. This is able to be used to
represent a shard, a document collection, an iterator, etc. A Key Group is specified by
specific bits set to a given value in the key. The Key Group may be accessed using a
call that specifies a mask of the bits in the key which defines the key group field, and a
key group identifier identifying which Key Group is being accessed. A Key Space is able
to simultaneously have multiple Key Groups. The Key Group field starts at the MSB and
the size of the key group field is of byte granularity.

4.5 Key Value Pair

A Key Value Pair is an entity consisting of a key and a value. It is a unit of access. A key
is application-defined and unique within a Key Space. The key length is able to be fixed
or variable and its maximum is limited. A value length is variable and its maximum is
limited.

Key Value Storage API Specification SNIA Technical Position 14
Version 1.0

5 Constants & Data Structures

This section defines Key-value SSD core constants, data structures, and functions.

5.1 Types

5.2 Constants

5.2.1 KVS ALIGNMENT UNIT
This is an alignment unit. An offset of value is required to be a multiple of this value.

5.2.2 KVS MAX KEY GROUP BYTES

The maximum number of bytes used for Key Group_bytes. This is set when a device is
opened (e.g., if KVS_MAX KEY_GROUP_BYTES is 3, any 3 bytes out of a key are
able to be used to define a Key Group) and is the same for all Key Spaces in the
device.

5.3 API return value (kvs_result)

5.3.1 kvs result

An API returns a return value after finishing its operation. Two types of return value are
returned. One is returned after the command is sent and the other after the command
completes.

Return value details are discussed in each command section.

Key Value Storage API Specification SNIA Technical Position 15
Version 1.0

typedef enum {

Version 1.0

KVS_SUCCESS 0 // Successful
KVS_ERR_BUFFER_SMALL 0x001 // buffer space is not enough
KVS_ERR_DEV_CAPAPCITY 0x002 // device does not have enough space. Key Space size is too
big
KVS_ERR_DEV_NOT_EXIST 0x003 // no device with the dev_hd exists
KVS_ERR_KS_CAPACITY 0x004 // key space does not have enough space
KVS_ERR_KS_EXIST 0x005 // key space is already created with the same name
KVS_ERR_KS_INDEX 0x006 // index is not valid
KVS_ERR_KS_NAME 0x007 // key space name is not valid
KVS_ERR_KS_NOT_EXIST 0x008 // key space does not exist
KVS_ERR_KS_NOT_OPEN 0x009 // key space does not open
KVS_ERR_KS_OPEN 0x00A // key space is already opened
KVS_ERR_ITERATOR_FILTER_INVALID 0x00B // iterator filter(match bitmask and pattern) is not valid
KVS_ERR_ITERATOR_MAX 0x00C // the maximum number of iterators that a device supports
is opened
KVS_ERR_ITERATOR_NOT_EXIST 0x00D // the iterator Key Group does not exist
KVS_ERR_ITERATOR_OPEN O0x00E // iterator is already opened
KVS_ERR_KEY LENGTH_INVALID Ox00F // key is not valid (e.g., key length is not supported)
KVS_ERR_KEY_NOT_EXIST 0x010 // key does not exist
KVS_ERR_OPTION_INVALID 0x011 // an option is not supported in this implementation
KVS_ERR_PARAM_INVALID 0x012 // null input parameter
KVS_ERR_SYS_I0 0x013 // 1/O error occurs
KVS_ERR_VALUE LENGTH_INVALID 0x014 // value length is out of range
KVS_ERR_VALUE_OFFSET_INVALID 0x015 // value offset is out of range
KVS_ERR_VALUE_OFFSET_MISALIGN 0x016 //offset of value is required to be aligned to
ED KVS_ALIGNMENT_UNIT
KVS_ERR_VALUE_UPDATE_NOT_ALL 0x017 // key exists but value update is not allowed
OWED
} kvs_result;
5.4 Data Structures
5.4.1 kvs_api_version
typedef struct {
uint8_t major; // APl library major version number
uint8_t minor; // APl library minor version number
uint8_t micro; // APl library micro version number
Key Value Storage API Specification SNIA Technical Position 16

|} kvs_api_version;

The kvs_api_version structure defines the API library version. For example the
kvs_api_version for KV-API version 0.17 would be 0x001100.

5.4.2 kvs context

typedef enum {
KVS_CMD_DELETE =0x01,
KVS_CMD_DELETE GROUP =0x02,
KVS_CMD_EXIST =0x03,
KVS_CMD_ITER_CREATE =0x04,
KVS_CMD_ITER DELETE =0x05,
KVS_CMD_ITER_NEXT =0x06,
KVS_CMD_RETRIEVE =0x07,
KVS_CMD_STORE =0x08,

} kvs_context;

kvs_context sets up opcode in API level for key value operation.

5.4.3 kvs key order

typedef enum {
KVS_KEY_ORDER_NONE =0, //[DEFAULT] key ordering is not defined in

_, aKey Space
KVS_KEY_ORDER_ASCEND, =1, // kvp are sorted in ascending key order in

KVS_KEY _ORDER_DESCEND =2, a Key Space
} kvs_key_order; // kvp are sorted in descending key order in
a Key Space

This enumeration specifies the ordering of keys returned .

Key Value Storage API Specification SNIA Technical Position 17
Version 1.0

o KVS_KEY_ORDER_NONE, no key order is defined in a key space.

e KVS_KEY_ORDER_ASCEND, key value pairs are sorted in ascending key order
in a Key Space

e KVS _KEY_ORDER_DESCEND, key value pairs are sorted in descending key

order in a Key Space

5.4.4 kvs option key space

typedef struct {
kvs_key order ordering; // key ordering option in Key Space

} kvs_option_key space;

A user is able to define the ordering of keys returned.

5.4.5 kvs option delete

typedef struct {
bool kvs delete error; //[OPTION] return error when the key
does not exist

} kvs_option_delete;

The application is able to specify a delete operation option.
= kvs_delete_error set to TRUE specifies that an operation deletes the key-value
pair or if the key does not exist, the device return KVS_ERR_KEY_NOT_EXIST
error code. kvs_delete_error set to FALSE specifies that an operation deletes the
key if it exists and always returns success even if the key does not exist.

5.4.6 kvs iterator type

typedef enum {

KVS_ITERATOR_KEY =0, //[DEFAULT] iterator command retrieves only
key entries without values
KVS ITERAOR_KEY VALUE =1, // iterator command retrieves key and value

pairs
} kvs_iterator_type;
5.4.7 kvs option iterator
typedef struct {
Key Value Storage API Specification SNIA Technical Position 18

Version 1.0

kvs_iterator_type iter_type; // iterator type

} kvs_option_iterator;

5.4.8 kvs option retrieve

typedef struct {
bool kvs_retrieve delete; // [OPTION] retrieve the value of the
key value pair and delete the key
value pair

} kvs_option_retrieve;

The application is able to specify a retrieve operation option.

= kvs_retrieve_delete set to TRUE specifies that an operation retreives the key-
value pair and the key value pair is atomically deleted after completing the
retreive. kvs_retrieve delete set to FALSE specifies that an operation retreives
the key-value pair and no deletion is atomically performed.

5.4.9 kvs store type

typedef enum {

KVS_STORE POST =0, //[DEFAULT]
KVS STORE UPDATE ONLY =1,
KVS_STORE _NOOVERWRITE =2,
KVS STORE_APPEND =3,
} kvs_store_type;;

The application is able to specify a store operation option.

= KVS_STORE_POST: if the key exist, the operation overwrites the value. if the
key does not exist, it creates the key value pair.

= KVS_STORE_UPDATE_ONLY: If the key exist, the operation overwrites the
value. If the key does not exist, it returns KVS_KEY_NOT_EXIST error.

= KVS_STORE_NOOVERWIRTE: if the key exist, the operation returns
KVS_ERR_VALUE_UPDATE_NOT_ALLOWED. If the key does not exist, it
creates the key value pair.

= KVS_STORE_APPEND: if the key exist, the operation appends the value to the
existing value. if the key does not exist, it creates the key value pair.

Key Value Storage API Specification SNIA Technical Position 19
Version 1.0

5.4.10 kvs association type

typedef enum {

KVS NOASSOCIATION =0, // no association
KVS_ASSOCIATION_STREAM =1, // stream association
} kvs_association_type;;

The application is able to specify an association option.
= KVS_NOASSOCIATION: no association defined
= KVS_ASSOCIATION_STREAM: key value pair associated with stream

5.4.11 kvs associtation

typedef struct {
kvs_association_type assoc_type; // association type for a group of
associated key value pairs.
uint16_t assoc_hint; // association hint(e.g., stream id)
} kvs_association;

The application is able to specify an association type and hint.

5.4.12 kvs option store

typedef struct {
kvs_store_type st_type; // store operation type (refer to 5.4.10)
kvs_association *assoc; // association (refer to 5.4.12)

} kvs_option_store ;

The application is able to define store operation options.

5.4.13 kvs device handle

| typedef void* kvs_device_handle; // type definition of kvs_device handle |

A kvs_device handle is a vendor-specific opaque data structure pointer. API
programmers may define a private vendor-specific data structure, which may contain
the device id and other device-related information, and use this pointer type as a device
handle.

Key Value Storage API Specification SNIA Technical Position 20
Version 1.0

5.4.14 kvs key space handle

typedef void* kvs_key_space_handle; // type definition of
kvs key space handle

A kvs_key space_handle is a vendor-specific opaque data structure pointer. API
programmers may define a private vendor-specific data structure, which may contain
the key space id and other key space related information, and use this pointer type as a
key space handle.

5.4.15 kvs iterator handle

\ typedef void* kvs_iterator_handle; // type definition of kvs_iterator handle |

A kvs_iterator_handle is a vendor-specific opaque data structure pointer. API
programmers may define a private vendor-specific data structure, which contains the
iterator id and other iterator related information, and use this pointer type as an iterator
handle.

5.4.16 kvs key space

typedef struct {
bool t opened; // is this Key Space opened
uint64 t capacity; // Key Space capacity in bytes
uint64 t free_size; // available space of Key Space in bytes
uint64_t count; // # of Key Value Pairs that exist in this Key
Space
kvs key space name *name; // Key Space name
} kvs_key_space;

A Key Space is a unit of management and represents a collection of Key Value Pairs or
Key Groups.

5.4.17 kvs key space name

typedef struct {
uint32 t name_len; // Key Space name length
kvs_key space_name*name; //Key Space name specified by the
application
} kvs_key space_name;
Key Value Storage API Specification SNIA Technical Position 21

Version 1.0

This structure contains Key Space name information for return value of

kvs_list_key space() API. The name is of length name_len and if it is null terminated
the null is part of the length. A device is not required to check the uniqueness of Key
Space name.

5.4.18 kvs device

typedef struct {
Uint64 t capacity; // device capacity in bytes
Uint64 t unalloc_capacity; // device capacity in bytes that has not been

allocated to any key space

uint32_t max_value_len; // max length of value in bytes that device is able to
support

uint32_t max_key len; // max length of key in bytes that device is able to
support

uint32_t optimal _value len; // optimal value size

uint32_t optimal _value _ // optimal value granularity

granularity;
void “*extended_info; // vendor specific extended device information.

} kvs_device;

kvs_device structure represents a device and has device-wide information.

5.4.19 kvs exist list

typedef struct {

uint32_t num_keys; // the number of key entries in the list

kvs_keys *keys; // keys checked for existence

uint32_t length; // input buffer size(result_buffer) and returned buffer size
uint8_t *result_buffer; // exist status info

} kvs_exist list;

A kvs_exist_list structure is used to check whether keys exist in the KV device. The
result_buffer field presents the existence of the keys. Each bit in the result buffer is set
to one if the key exists and set to zero if the key does not exist.

5.4.20 kvs key qgroup filter

typedef struct {

uint8 // bit mask for bit pattern to use
bitmask[KVS_MAX_KEY_ GROUP_BYTES];

uint8 // bit pattern for filter
bit_pattern[KVS_MAX_KEY _GROUP_BYTES];

} kvs_key_group_filter;

Key Value Storage API Specification SNIA Technical Position 22
Version 1.0

This structure defines Key Group information for kvs_create_iterator() that sets up a
Key Group of keys matched with a given bit_pattern within a range of bits defined by the
bitmask and for kvs_delete_key group() such that it is able to delete a group of key-
value pairs. Bitmask is to be set in multiple of 8 bits starting from the MSB of the 32 bit
value. For more details, see kvs_create_iterator() (section 6.4.1) and
kvs_delete_key_group() (section 6.3.10).

5.4.21 kvs iterator list

typedef struct {
uint32_t num_entries; // the number of iterator entries in the list
bool t end; // represent if there are more keys to iterate (end =0)
or not (end = 1)
uint32_t size; // the it_list buffer size as an input and returned data

size in the buffer in bytes

uint8_t *it_list; // iterator list.

} kvs_iterator_list;

kvs_iterator_list represents entries within an iterator Key Group. It is used for retrieved
iterator entries as a return value for kvs_interator_next() operation. num_entries
specifies how many entries in the returned iterator list(it_list). size specifies buffer size
of it_list as an input and specifies the total amount of data that is returned in bytes as an
output. end indicates that no more iterator items exist. When end is zero, host would re-
run kvs_iterator_next() to retrieve more data. it_list has num_entries of iterator elements
as follows;

o When key length is fixed, num_entries entries of <key> when iterator is set with
KVS ITERATOR_KEY (Figure 3) and num_entries entries of <key, value_length,
value> when iterator is set with KVS_ITERATOR_KEY _VALUE (Figure 4)

o When keys have variable length, num_entries entries of <key_length, key> when
iterator is set with KVS_ITERATOR_KEY (Figure 5) and num_entries entries of
<key length, key, value length, value> when iterator is set with
KVS_ITERATOR_KEY_VALUE (Figure 6).

Key Value Storage API Specification SNIA Technical Position 23
Version 1.0

kvs_iterator_list.size allocated by caller >

A

key key | key | key | key | key | key | key

A

kvs_iterator_list.size in return buffer

h 4

Figure 3 Fixed Key Length: kvs_iterator_key

A

kvs_iterator_list.size allocated hy caller

A 4

key | val_len | value key | val_len | value key | val_len | value

I Y

kvs_iterator_list.size in return buffer

A 4

Figure 4 Fixed Key Length: kvs_iterator_kvp

Y

kvs_iterator_list.size allocated by caller

A 4

key_len key | key_len | key | key_len | key | key_len | key

Y

kvs_iterator_list.size in return buffer *

Figure 5 Variable Key Length: kvs_iterator_key

kvs_iterator_list.size allocated by caller

F Y

h 4

key_len key | val_len | value | key_len | key | val_len | value

A

kvs_iterator_list.size in return buffer >

Figure 6 Variable Key Length: kvs_iterator_kvp

5.4.22 kvs_key

typedef struct {

void *key; // a void pointer refers to a key byte string
uint16_t length; // key length in bytes
} kvs_key;

A key consists of a void pointer and its length. For a Key Space with variable keys (i.e.,
character string or byte string), the void key pointer holds a byte string without a null
termination, and the integer variable of length holds the string byte count. The void key
pointer is required not to be a null pointer.

Key Value Storage API Specification SNIA Technical Position 24
Version 1.0

5.4.23 kvs postprocess context

typedef struct {
kvs_context context;

kvs_key space_handle *ks_hd;

kvs_key *key;

kvs_value *value;

void *option;

void *private1;

void *private2

kvs_result result;
kvs_iterator_handle*iter_hd;

// operation type

// key space handle

// key data structure

// value data structure

// operation option

// a pointer passed from a user
// a pointer passed from a user
// 10 result

// iterator handle

} kvs_postprocess_context;

kvs_postprocess_context is |0 context that carries 10 information including key and
value pairs and operation return value. It is mainly used for post process function.
Note: Async is for performance benefit. Multi-thread may cover it but we could

reduce system resource utilizations with higher performance. Also more scalable.
E.g. SPDK.

5.4.24 kvs postprocess function

typedef / asynchronous
\:;/z(kvs_postprocess_function)(kvs_postprocess_context notification callback (valid
only for async 1/O)

kvs_postprocess_function is able to be called and specifies the tasks needing execution
once an 10 operation completes. Typical post-processing tasks send a signal to a
thread to wake it up to implement synchronous 10 semantics and/or call an application-
defined notification function to implement asynchronous 10 semantics.

5.4.25 kvs value

typdef struct {

void *value; // start address of buffer for value byte stream

uint32 t length; // the length of buffer in bytes for value byte stream

uint32_t // actual value size in bytes that is stored in a device
actual value size;

uint32_t offset; // [OPTION] offset to indicate the offset of value stored in

device

} kvs_value;

A value consists of a void pointer and a length. The value pointer refers to a byte string
without null termination, and the length variable holds the byte count. The value pointer
variable shall not be a null pointer. Offset specifies the offset within a value stored in the

Key Value Storage API Specification SNIA Technical Position 25

Version 1.0

device. The offset is required to be aligned to KVS_ALIGNMENT_UNIT. If not, a
KVS ERR_VALUE_OFFSET_ MISALIGNED error is returned.

5.4.26 kvs_kvp_info

typedef struct {
uint16 _t key len; // key length in bytes
uint8_t “key; // key
uint32 t value len; // value length in bytes
} kvs_kvp_info;

This data structure contains key value pair properties associated with a key.

Key Value Storage API Specification SNIA Technical Position
Version 1.0

6 Key Value Storage APIs

6.1 Overview

This clause defines the core data structures for key-value device. A Key Space may be allocated
from a single storage device, a storage array, an entry point into a cloud storage device or any
other device that implements the KVS API. A Key Space is created using the
kvs_create_keyspace API call. The Key Space is then opened using the kvs_open_keyspace API
call.

Key Value Storage API Specification SNIA Technical Position 27
Version 1.0

6.2 Device level APIs

6.2.1 kvs open device

kvs_result kvs_open_device (char *URI, kvs_device_handle *dev_hd)

This API opens a KVS device. This API internally checks device availability and
initializes it. It returns zero if successful. Otherwise, it returns an error code.

PARAMETERS
IN URI Universal Resource Identifier of a device
OUT dev_hd device handle

RETURNS
KVS_ SUCCESS to indicate that device open is successful or an error code for error
ERROR CODE
KVS _ERR_DEV_NOT_EXIST the device does not exist
KVS ERR _SYS 10 communication with device failed
KVS _ERR_PARAM_INVALID URI is NULL
Key Value Storage API Specification SNIA Technical Position

Version 1.0

6.2.2 kvs qget device info

kvs_result kvs_get_device_info(kvs_device_handle dev_hd, kvs_device
*dev_info)

This function call retrieves the device information (e.g., kvs_device data structure).

PARAMETERS

IN dev_hd device handle

OUT dev_info kvs_device data structure (device information)

RETURNS

KVS_ SUCCESS for successful completion or an error code for error

ERROR CODE

KVS_ERR_DEV_NOT_EXIST no device exists for the device handle

KVS ERR _SYS 10 communication with device failed
Key Value Storage API Specification SNIA Technical Position

Version 1.0

6.2.3 kvs close device

kvs_result kvs_close_device (kvs_device_handle dev_hd)

This API closes a KVS device. dev_hd is associated with an open device.

PARAMETERS
IN dev_hd device handle
ERROR CODE
KVS_ERR_DEV_NOT_EXIST no device with the dev_hd exists
KVS_ERR_SYS 10 communication with device failed
Key Value Storage API Specification SNIA Technical Position 30

Version 1.0

6.2.4 kvs get device capacity

kvs_result kvs_get_device_capacity(kvs_device_handle dev_hd, uint64_t
*dev_capacity)

This function call returns device capacity in bytes referenced by the given device
handle.

PARAMETERS

IN dev_hd device handle

OUT dev_capacity device capacity

RETURNS

KVS_SUCCESS for successful completion or an error code for error

ERROR CODE

KVS ERR _DEV_NOT _EXIST no device exists for the device handle

KVS_ERR_SYS 10 communication with device failed
Key Value Storage API Specification SNIA Technical Position

Version 1.0

6.2.5 kvs qget device utilization

kvs_result kvs_get_device_utilization (kvs_device_handle dev_hd, uint32_t
*dev_utilization)

This function call returns the device utilization (i.e, used ratio of the device) by the given
device handle. The utilization is from 0(0.00% utilized) to 10000(100%).

PARAMETERS
IN dev_hd device handle
OUT dev_utilization device utilization
RETURNS
KVS_SUCCESS for successful completion or an error code for error
ERROR CODE
KVS ERR _DEV_NOT _EXIST no device exists for the device handle
KVS_ERR_SYS_I0 communication with device failed
Key Value Storage API Specification SNIA Technical Position 32

Version 1.0

6.2.6 kvs get min key length

kvs_result kvs_get_min_key_length (kvs_device_handle dev_hd, uint32_t
*min_key_length)

This function call returns the minimum length of key that the device supports.

PARAMETERS

IN dev_hd device handle

OUT min_key_length minimum key length that the device supports

RETURNS

KVS_ SUCCESS for successful completion or an error code for error

ERROR CODE

KVS_ERR_DEV_NOT_EXIST no device exists for the device handle

KVS ERR_SYS 10 communication with device failed
Key Value Storage API Specification SNIA Technical Position

Version 1.0

6.2.7 kvs get max key length

kvs_result kvs_get_max_key length (kvs_device_handle dev_hd, uint32_t
*max_key_length)

This function call returns the maximum length of key that the device supports.

PARAMETERS

IN dev_hd device handle

OUT max_key length maximum key length that the device support

RETURNS

KVS_ SUCCESS for successful completion or an error code for error

ERROR CODE

KVS_ERR_DEV_NOT_EXIST no device exists for the device handle

KVS ERR_SYS 10 communication with device failed
Key Value Storage API Specification SNIA Technical Position

Version 1.0

6.2.8 kvs get min value length

kvs_result kvs_get_min_value_length (kvs_device_handle dev_hd, uint32_t
*min_value_length)

This function call returns the minimum length of value that the device supports.

PARAMETERS

IN dev_hd device handle

OUT min_value_length minimum value length that the device supports

RETURNS

KVS_ SUCCESS for successful completion or an error code for error

ERROR CODE

KVS_ERR_DEV_NOT_EXIST no device exists for the device handle

KVS ERR_SYS 10 communication with device failed
Key Value Storage API Specification SNIA Technical Position

Version 1.0

6.2.9 kvs get max value length

kvs_result kvs_get_max_value_length (kvs_device_handle dev_hd, uint32_t
*max_value_length)

This function call returns the maximum length of value that the device supports.

PARAMETERS

IN dev_hd device handle

OUT max_value_length maximum value length that the device supports

RETURNS

KVS_ SUCCESS for successful completion or an error code for error

ERROR CODE

KVS_ERR_DEV_NOT_EXIST no device exists for the device handle

KVS ERR_SYS 10 communication with device failed
Key Value Storage API Specification SNIA Technical Position

Version 1.0

6.2.10 kvs qget optimal value length

kvs_result kvs_get_optimal_value_length (kvs_device_handle dev_hd, uint32_t
*opt_value_length)

This function call returns the optimal length of value that the device supports. The
device will perform best when the value size is the same as the optimal value size.

PARAMETERS

IN dev_hd device handle

OUT opt_value length optimal value length that the device supports

RETURNS

KVS_SUCCESS for successful completion or an error code for error

ERROR CODE

KVS ERR _DEV_NOT _EXIST no device exists for the device handle

KVS_ERR_SYS_I0 communication with device failed
Key Value Storage API Specification SNIA Technical Position

Version 1.0

6.2.11 kvs create key space

kvs_result kvs_create_key_space (kvs_device_handle dev_hd,
kvs_key_space_name *key_space_name, uint64_t size, kvs_option_key_space
opt)

This API creates a new Key Space in a device. An application needs to specify a unique
Key Space name, and its capacity. The capacity is defined in bytes. A 0 (numeric zero)
capacity means no limitation where device capacity limits actual Key Space capacity.
The device assigns a unique id while an application assigns a unique name.

PARAMETERS

IN dev_hd device handle

IN key_space_name name of Key Space

IN size capacity of a Key Space with respect to key value pair size (key size +
value size) in bytes

IN opt Key Space option

RETURNS

KVS_SUCCESS if a Key Space is created successfully or an error code for error.
ERROR CODE

KVS ERR_DEV_CAPACITY the Key Space size is too big

KVS ERR_KS EXIST Key Space with the same name already exists
KVS_ERR_KS_NAME Key Space name does not meet the

requirement (e.g., too long (see 5.2.2))

KVS ERR_DEV_NOT_EXIST no device with the dev_hd exists

KVS ERR_SYS 10 communication with device failed
KVS ERR_PARAM_INVALID name or opt is NULL
KVS_ERR_OPTION_INVALID Key Space option is not supported

Key Value Storage API Specification SNIA Technical Position 38
Version 1.0

6.2.12 kvs delete key space

kvs_result kvs_delete_key space (kvs_device_handle dev_hd,
kvs_key_space_name *key_space_name)

This API deletes a Key Space identified by the given Key Space name. It deletes all Key
Value Pairs within the Key Space as well as the Key Space itself. As a side effect of the
delete operation, the Key Space is closed for all applications as the Key Space is no
longer present in the device. It is recommended that all applications accessing a Key
Space close the Key Space prior to deleting the Key Space.

PARAMETERS

IN dev_hd device handle

IN key_space_name Key Space name
RETURNS

KVS_SUCCESS if a Key Space is deleted successfully or an error code for error

ERROR CODE

KVS ERR_KS NOT EXIST Key Space with a given key space _name does not
exist

KVS ERR _DEV_NOT_EXIST no device with the dev_hd exists

KVS ERR _SYS 10 communication with device failed

Key Value Storage API Specification SNIA Technical Position 39
Version 1.0

6.2.13 kvs list key spaces

kvs_result kvs_list_key_spaces (kvs_device_handle dev_hd, uint32_t index,
uint32_t buffer_size, kvs_key_space_name *names, uint32_t *ks_cnt)

For a KVS device, this API returns the names of Key Spaces up to the number that fit in
the buffer specified in buffer_size. A device may define a unique order of Key Space
names and index is defined relative to that order. The value of index may change if a
Key Space is created or deleted. The index specifies a start list entry offset, buffer_size
specifies the size of the kvs_key space_name array, and names is a buffer to store
name information. The ks_cnt specifies the number of Key Space names to return.

PARAMETERS
IN dev_hd device handle
IN index start index of Key Space as an input
IN buffer_size buffer size of Key Space names
OUT names buffer to store Key Space names. This buffer is required to be
preallocated before calling this routine.
OUT ks_cnt the number of names stored in the buffer
RETURNS
KVS_SUCCESS if the operation is successful or an error code for error.
ERROR CODE
KVS ERR_KS NOT EXIST no Key Space exists
KVS ERR _DEV_NOT_EXIST no device with the dev_hd exists
KVS ERR_SYS 10 communication with device failed
KVS_ERR_KS_ INDEX index is not valid
KVS_ERR_PARAM_INVALID names or ks_cnt is NULL
Key Value Storage API Specification SNIA Technical Position 40

Version 1.0

6.3 Key Space-level APIs

6.3.1 kvs open key space

kvs_result kvs_open_key_space (kvs_device_handle dev_hd, char *name,
kvs_key_space_handle *ks_hd)

This APl opens a Key Space with a given name. This APl communicates with a device
to initialize the corresponding Key Space. The device is capable of recognizing and
initializing the Key Space. If the Key Space is already open, this API returns
KVS_ERR_KS_OPEN.

PARAMETERS
IN dev_hd Device handle
IN name Key Space name

OUT ks_hd Key Space handle

RETURNS

KVS_ SUCCESS to indicate that device open is successful or an error code for error

ERROR CODE

KVS ERR_KS NOT EXIST Key Space with the given name does not exist,

KVS _ERR_DEV_NOT _EXIST No device with dev_hd exists

KVS_ERR_SYS 10 Communication with device failed

KVS ERR_KS OPEN Key Space has been opened already
Key Value Storage API Specification SNIA Technical Position 41

Version 1.0

6.3.2 kvs close key space

kvs_result kvs_close_key_space (kvs_key_space_handle ks_hd)

This API closes a Key Space with a given Key Space handle. This APl communicates
with the device to close the corresponding Key Space. This API may clean up any
internal Key Space states in the device. If the given Key Space was not open, this
returns a KVS_ERR_KS _NOT_OPEN error.

PARAMETERS
IN ks_hd Key Space handle

RETURNS
KVS_SUCCESS to indicate that closing a Key Space is successful or an error code for
an error

ERROR CODE
KVS_ERR_KS_NOT_OPEN Key space is not open
KVS_ERR_KS _NOT_EXIST Key Space with a given ks_hd does not exist
KVS _ERR_DEV_NOT_EXIST No device with dev_hd exists
KVS ERR_SYS 10 Communication with device failed
Key Value Storage API Specification SNIA Technical Position 42

Version 1.0

6.3.3 kvs qget key space info

kvs_result kvs_get_key space_info (kvs_key_space_handle ks_hd,
kvs_key_space *ks)

This API retrieves Key Space information.

PARAMETERS
IN ks_hd Key Space handle
OUT ks Key Space information

RETURNS
KVS_SUCCESS to indicate that getting Key Space info is successful or an error code
for error.

ERROR CODE
KVS_ERR_KS_NOT_EXIST Key Space with a given ks_hd does not exist
KVS_ERR_SYS 10 Communication with device failed

KVS_ERR_PARAM_INVALID ks is NULL

Key Value Storage API Specification SNIA Technical Position
Version 1.0

43

6.3.4 kvs get kvp info

kvs_result kvs_get_kvp_info (kvs_key_space_handle ks_hd, kvs_key *key,
kvs_kvp_info *info)

This API retrieves key value pair properties. Key value pair properties includes a key
length, a key byte stream, and a value length. Please refer to section 5.4.22
kvs_kvp_info for details. This API is intended to be used when a buffer length for a
value is not known. The caller should create kvs_kvp_info object before calling this API.

PARAMETERS
IN ks_hd Key Space handle
IN key Key to find for key value properties

OUT info Key value pair properties

RETURNS
KVS_SUCCESS to indicate that retrieving key value pair properties is successful or an
error code for error.

ERROR CODE
KVS_ERR_KS_NOT_EXIST Key Space with a given ks_hd does not exist
KVS_ERR_SYS_I0 Communication with device failed

KVS_ERR_KEY_LENGTH_INVALID given key is not supported (e.g., length)
KVS_ERR_PARAM_INVALID key or info is NULL
KVS_ERR_KEY_NOT_EXIST key does not exist

Key Value Storage API Specification SNIA Technical Position 44
Version 1.0

6.3.5 Kkvs retrieve kvp

kvs_result kvs_retrieve_kvp (kvs_key_space_handle ks_hd, kvs_key *key,
kvs_option_retrieve *opt, kvs_value *value)

This API retrieves a key value pair value with the given key. The value parameter
contains output buffer information for the value. As an input, value.value contains the
buffer to store the key value pair value and value.length contains the buffer size. The
key value pair value is copied to value.value buffer and value.length is set to the
retrieved value size. If the offset of value is not zero, the value of key value pair is
copied into the buffer, skipping the first offset bytes of the value of key value pair. The
offset is required to align to KVS_ALIGNMENT_UNIT. If the offset is not aligned, a
KVS ERR_VALUE_OFFSET_ MISALIGNED error is returned and no data is
transferred. If an allocated value buffer is not big enough to hold the value, the device
will set actual_value_size to the size of the value, return KVS_ERR_BUFFER_SMALL
and data is returned to the buffer up to the size specified in value.length.

The retrieve option is defined in 5.4.8 kvs_option_retreive.

PARAMETERS

IN ks_hd Key Space handle

IN key Key of the key value pair to get value

IN opt retrieval option. It may be NULL. In that case, the default retrieval option is
used.

OUT value value to receive the key value pair's value from device

RETURNS
KVS_ SUCCESS to indicate that retreive is successful or an error code for error.

ERROR CODE

KVS_ERR_VALUE_OFFSET_MISALIGNED kvs_value.offset is not aligned to
KVS_ALIGNMENT_UNIT

KVS ERR_KS NOT EXIST Key Space with a given ks_hd does not exist

KVS ERR_SYS 10 Communication with device failed
KVS_ERR_KEY_LENGTH_INVALID given key is not supported (e.g., length)
KVS_ERR_BUFFER_SMALL Buffer space of value is not allocated or not
enough

KVS_ERR_PARAM_INVALID key or value is NULL
KVS_ERR_OFFSET_INVALID kvs_value.offset is invalid

KVS _ERR_OPTION_INVALID the option is not supported
KVS_ERR_KEY_NOT_EXIST Key does not exist

Key Value Storage API Specification SNIA Technical Position 45
Version 1.0

6.3.6 Kkvs retrieve kvp async

kvs_result kvs_retrieve_kvp_async (kvs_key _space_handle ks_hd, kvs_key *key,
kvs_option_retrieve *opt, kvs_value *value, kvs_postprocess_function post_fn)

This APl asynchronously retrieves a key value pair value with the given key and returns
immediately regardless of whether the pair is actually retrieved from a device or not.
The final execution results are returned to post process function through

kvs postprocess_context. The value parameter contains output buffer information for
the value. As an input value.value contains the buffer to store the key value pair value
and value.length contains the buffer size. The key value pair value is copied to
value.value buffer and value.length is set to the retrieved value size. If the offset of
value is not zero, the value of key value pair is copied into the buffer, skipping the first
offset bytes of the value of key value pair. That is, value.length is equal to the total size
of (actual_value_size — offset). The offset is required to align to
KVS_ALIGNMENT_UNIT. If the offset is not aligned, a

KVS ERR_VALUE_OFFSET_ MISALIGNED error is returned. If an allocated value
buffer is not big enough to hold the value, it will set value.actual_value_size to the
actual value length and return KVS_ERR_BUFFER_SMALL.

The retrieve option of the retrieve operation is defined in 5.4.8kvs_option_retreive.

PARAMETERS

IN ks_hd Key Space handle

IN key Key of the key value pair to get value

IN opt retrieval option. It may be NULL. In that case, the default retrieval option is
used.

OUT value value to receive the key value pair's value from device
IN post_fn post process function pointer

RETURNS
KVS_ SUCCESS to indicate that retrieve is successful or an error code for error.

ERROR CODE
KVS_ERR_VALUE_OFFSET_MISALIGNED kvs_value.offset is not aligned to
KVS_ALIGNMENT_UNIT
KVS ERR_KS NOT EXIST Key Space with a given ks_hd does not exist
KVS ERR _SYS 10 Communication with device failed
KVS_ERR_KEY_LENGTH_INVALID given key is not supported (e.g., length)
KVS_ERR_BUFFER_SMALL Buffer space of value is not allocated or not enough
KVS_ERR_PARAM_INVALID key or value is NULL
KVS_ERR_OFFSET_INVALID kvs_value.offset is invalid
KVS_ERR_OPTION_INVALID the option is not supported
KVS_ERR_KEY_NOT_EXIST Key does not exist

Key Value Storage API Specification SNIA Technical Position 46
Version 1.0

6.3.7 kvs store kvp

kvs_result kvs_store_kvp (kvs_key space_handle ks_hd, kvs_key *key,
kvs_value *value, kvs_option_store *opt)

This API writes a Key-value key value pair into a Key Space. This API supports the
modes defined in section 5.4.9 as specified in opt.

Store operations execute based on the existence of the key and the kvs_option_store
specified. If the Key Space does not have enough space to store a key value pair, a
KVS_ERR_KS_CAPACITY error message is returned.

PARAMETERS

IN ks_hd Key Space handle

IN key Key of the key value pair to store into Key Space

IN value Value of the key value pair to store into Key Space

IN opt Store option. It may be NULL. In that case, the kvs_store_type of

KVS_STORE_POST (see 5.4.9) is used.

RETURNS
KVS_SUCCESS to indicate that store is successful or an error code for error.

ERROR CODE
KVS_ERR_VALUE_OFFSET MISALIGNED kvs_value.offset is not aligned to
KVS_ALIGNMENT_UNIT

KVS_ERR_KS_NOT_EXIST Key Space with a given ks_hd does not exist
KVS_ERR_SYS 10 Communication with device failed
KVS_ERR_KEY_LENGTH_INVALID given key is not supported (e.g., length)
KVS_ERR_PARAM_INVALID a key or a value is NULL
KVS_ERR_OFFSET_INVALID kvs_value.offset is invalid
KVS_ERR_OPTION_INVALID unsupported option

KVS ERR_KS CAPACITY Key Space does not have enough space to store this

key value pair
KVS_ERR_VALUE_UPDATE_NOT_ALLOWED a key exists but overwrite is not

permitted
KVS ERR VALUE LENGTH_INVALID given value is not supported
(e.g., length)
Key Value Storage API Specification SNIA Technical Position 47

Version 1.0

6.3.8 kvs store kvp async

kvs_result kvs_store_kvp_async (kvs_key_space_handle ks_hd, kvs_key *key,
kvs_value *value, kvs_option_store *opt, kvs_postprocess_function post_fn)

This APl asynchronously writes a Key-value key value pair into a Key Space and
returns immediately regardless of whether the pair is actually written to a device or not.
The final execution results are returned to post process function through

kvs postprocess_context. This API supports the modes defined in section 5.4.9 .

Store operations execute based on the existence of the key and the kvs_option_store
specified. If the Key Space does not have enough space to store a key value pair, a
KVS_ERR_KS_CAPACITY error message is returned.

PARAMETERS

IN ks_hd Key Space handle

IN key Key of the key value pair to store into Key Space

IN value Value of the key value pair to store into Key Space

IN opt Store option. It may be NULL. In that case, the kvs_store_type of

KVS_STORE_POST (see 5.4.9)is used.
IN post_fn post process function pointer

RETURNS
KVS SUCCESS toindicate that store is successful or an error code for error.

ERROR CODE
KVS_ERR_VALUE_OFFSET_MISALIGNED kvs_value.offset is not aligned to
KVS_ALIGNMENT_UNIT

KVS ERR_KS NOT EXIST Key Space with a given ks_hd does not exist
KVS ERR _SYS 10 Communication with device failed
KVS_ERR_KEY_LENGTH_INVALID given key is not supported (e.g., length)
KVS_ERR_PARAM_INVALID a key or a value is NULL
KVS_ERR_OFFSET_INVALID kvs_value.offset is invalid

KVS ERR_OPTION _INVALID unsupported option

KVS_ERR_KS_CAPACITY Key Space or device does not have enough space to

store this key value pair
KVS_ERR_VALUE_UPDATE_NOT_ALLOWED a key exists but overwrite is not
permitted

KVS _ERR _VALUE_LENGTH_INVALID given value is not supported
(e.g., length)
Key Value Storage API Specification SNIA Technical Position 48

Version 1.0

6.3.9 kvs delete kvp

kvs_result kvs_delete_kvp (kvs_key _space_handle ks_hd, kvs_key* key,
kvs_option_delete *opt)

This API deletes key value pair(s) with a given key.

PARAMETERS

IN ks_hd Key Space handle

IN key Key of the key value pair(s) to delete
IN opt delete option

RETURNS
KVS_SUCCESS Indicate that delete is successful or an error code for error.

ERROR CODE

KVS_ERR_KS_NOT_EXIST Key Space with a given ks_hd does not exist
KVS_ERR_PARAM_INVALID keyis NULL.

KVS ERR_SYS 10 Communication with device failed
KVS_ERR_KEY_LENGTH_INVALID given key is not supported (e.g., length)
KVS_ERR_KEY_NOT_EXIST key does not exist

Key Value Storage API Specification SNIA Technical Position
Version 1.0

49

6.3.10 kvs delete kvp async

kvs_result kvs_delete_kvp_async (kvs_key _space_handle ks_hd, kvs_key* key,
kvs_option_delete *opt, kvs_postprocess_function *post_fn)

This API asynchronously deletes key value pair(s) with a given key and returns
immediately regardless of whether the pair is actually deleted from a device or not. The
final execution results are returned to post process function through
kvs_postprocess_context.

PARAMETERS

IN ks_hd Key Space handle

IN key Key of the key value pair(s) to delete
IN opt delete option

IN post_fn post process function pointer

RETURNS
KVS_SUCCESS Indicate that delete is successful or an error code for error.

ERROR CODE

KVS ERR_KS NOT EXIST Key Space with a given ks_hd does not exist
KVS_ERR_PARAM_INVALID keyis NULL.

KVS_ERR_SYS_I0 Communication with device failed
KVS_ERR_KEY_LENGTH_INVALID given key is not supported (e.g., length)
KVS_ERR_KEY_NOT_EXIST key does not exist

Key Value Storage API Specification SNIA Technical Position 50
Version 1.0

6.3.11 kvs delete key qroup

kvs_result kvs_delete_key group(kvs_key space_handle ks_hd,
kvs_key_group_filter *grp_fltr);

This function call deletes the key-value pairs in a Key Space that matches with grp_fitr.

PARAMETERS

IN ks_hd Key Space handle

IN grp_fltr Key group filter to delete
RETURNS

KV_SUCCESS to indicate that delete key group is successful or an error code for error.

ERROR CODE

KVS ERR_KS NOT EXIST Key Space with a given ks_hd does not exist
KVS_ERR_PARAM _INVALID grp fltr is NULL.

KVS_ERR_SYS_I10 Communication with device failed

Key Value Storage API Specification SNIA Technical Position 51
Version 1.0

6.3.12 kvs delete key qroup async

kvs_result kvs_delete_key group_async(kvs_key_space_handle ks_hd,
kvs_key_group_filter *grp_fltr, kvs_postprocess_function post_fn);

This function call deletes the key-value pairs in a Key Space that matches with grp_fitr
and returns immediately regardless of whether a key group is actually deleted from a
device or not. The final execution results are returned to post process function through
kvs_postprocess_context.

PARAMETERS

IN ks_hd Key Space handle

IN grp_fltr ~ key group filter to delete

IN post_fn post process function pointer

RETURNS
KV_SUCCESS to indicate that delete key group is successful or an error code for error.

ERROR CODE

KVS_ERR_KS_NOT_EXIST Key Space with a given ks_hd does not exist
KVS _ERR_PARAM _INVALID grp fitr is NULL.

KVS ERR_SYS 10 Communication with device failed

Key Value Storage API Specification SNIA Technical Position 52
Version 1.0

6.3.13 kvs exist kv pairs

kvs_result kvs_exist_kv_pairs (kvs_key_space_handle ks_hd, uint32_t key cnt,
kvs_key *keys, uint32_t buffer_size, kvs_exist_list *list)

This API checks if a set of one or more keys exists and returns a bool type status. The
existence of a key value pair is determined during an implementation-dependent time
window while this API executes. Therefore, repeated routine calls may return different
outputs in multi-threaded environments. One bit is used for each key. Therefore when
32 keys are intended to be checked, a caller should allocate 32 bits (i.e., 4 bytes) of
memory buffer and the existence information is filled. The LSB (Least Significant Bit) of
the list->result_buffer indicates if the first key exist or not.

PARAMETERS

IN ks_hd Key Space handle

IN key_cnt the number of keys to check

IN keys a set of keys to check

IN buffer_size list buffer size in bytes

OUT list a kvs_exist_list indicates whether corresponding key(s) exists or
not

RETURNS

KVS_SUCCESS to indicate success or an error code for error.

ERROR CODE
KVS_ERR_KS_NOT_EXIST Key Space with a given ks_hd does not exist
KVS ERR BUFFER _SMALL the buffer space of list->result_buffer is not big

enough
KVS ERR_PARAM_INVALID keys or list parameter is NULL
KVS ERR _SYS 10 Communication with device failed
Key Value Storage API Specification SNIA Technical Position 53

Version 1.0

6.3.14 kvs exist kv pairs async

kvs_result kvs_exist_kv_pairs_async(kvs_key_space_handle ks_hd, uint32_t
key_cnt, kvs_key *keys, uint32_t buffer_size, kvs_exist_list *list,
kvs_postprocess_function post_fn)

This API asynchronously checks if a set of keys exists and returns a bool type status. It
returns immediately regardless of whether keys are checked from a device or not. The
final execution results are returned to the post process function through
kvs_postprocess_context. The existence of a key value pair is determined during an
implementation-dependent time window while this API executes. Therefore, repeated
routine calls is able to return different outputs in multi-threaded environments. One bit is
used for each key. Therefore when 32 keys are intended to be checked, a caller shall
allocate 32 bits (i.e., 4 bytes) of memory buffer and the existence information is filled.
The LSB (Least Significant Bit) of the list->result_buffer indicates if the first key exist or
not.

PARAMETERS

IN ks_hd Key Space handle

IN key_cnt the number of keys

IN keys a set of keys to check

IN buffer_size list buffer size in bytes

OUT list a list indicates whether a corresponding key exists or not
IN post_fn post process function pointer

RETURNS

KVS_ SUCCESS to indicate success or an error code for error.

ERROR CODE
KVS ERR_KS NOT EXIST Key Space with a given ks_hd does not exist
KVS ERR BUFFER_SMALL the buffer space of list->result_buffer is not big

enough
KVS_ERR_PARAM_INVALID keys or list parameter is NULL
KVS_ERR_SYS_I0 Communication with device failed
Key Value Storage API Specification SNIA Technical Position 54

Version 1.0

6.4 lterator Function calls

6.4.1 kvs create iterator

kvs_result kvs_create_iterator(kvs_key_space_handle ks_hd,
kvs_option_iterator *iter_op, kvs_key _group_filter *iter_fltr, kvs_iterator_handle
*iter_hd)

This function call enables applications to set up a Key Group such that the keys in that
Key Group may be iterated within a Key Space (i.e., kvs_crearte_iterator() enables a
device to prepare a Key Group of keys for iteration by matching a given bit pattern
(it_fltr.bit_pattern) to all keys in the Key Space considering bits indicated by
it_fltr.bitmask and the device sets up a Key Group of keys matching that “(bitmask &
key) == bit_pattern”.) (e.q., if the bitmask and bit_pattern are 0xF0000000 and
0x30000000 respectively, then kvs_create_iterator will prepare a subset of keys which
has Ox3XXXXXXX in keys.

Below are some examples of Key Groups.

1) If applications want to get all the existing keys within the device with the first bit
of a key set to 1, kvs create iterator() should be called with bitmask
0x80000000 (1000 0000 0000 0000 0000 OOOO 0000 0000) and bit_pattern
0x80000000 (1000 0000 0000 0000 0000 0000 0000 0000).

2) If applications want to get all the existing keys within the device with the first bit
of key set to 0, bitmask should be 0x80000000 (1000 0000 0000 0000 0000
0000 0000 0000) and bit_pattern should be 0x0 (0000 0000 0000 0000 0000
0000 0000 0000).

3) If applications want to get all the existing keys with the second and third bytes
(bit 8 ~ bit15) equal to 0x04, bitmask should be 0xOOFF0000 (0000 0000 1111
1111 0000 0000 0000 0000) and bit_pattern should be 0x00040000 (0000 0000
0000 0100 0000 0000 0000 0000).

4) If application wants to get all the existing keys with bit 1 ~ bit 4 equal to (0101),
bitmask should be 0x78000000 (0111 1000 0000 0000 0000 0000 0000 0000)
and bit_pattern should be 0x28000000 (0010 1000 0000 0000 0000 0000 0000
0000).

It also sets up the iterator option; kvs_iterator_next() will only retrieve keys when the
kvs_option_iterator is KVS_ITERATOR_OPT_KEY while kvs_iterator_next() will retrieve
key and value pairs when the kvs_option_iterator is KVS_ITERATOR_OPT_KV.

An iterator handle is provided as an output of this function call..

PARAMETERS

IN ks _hd Key Space handle

IN iter_ op iterator option

IN iter_fltr iterator filter that includes bitmask and bit pattern
OUT iter_hd iterator handle

Key Value Storage API Specification SNIA Technical Position 55
Version 1.0

RETURNS
KVS_ SUCCESS to indicate that device open is successful or an error code for error.

ERROR CODE

KVS_ERR_KS_NOT_EXIST Key Space with a given ks_hd does not exist
KVS_ERR_PARAM_INVALID it_fitr is NULL.

KVS ERR_SYS 10 Communication with device failed

KVS ERR ITERATOR_MAX the maximum number of iterators that a device
supports is already open. No more iterator are able to be opened.

KVS ERR _ITERATOR_OPEN iterator is already opened

KVS ERR_OPTION_INVALID the device does not support the specified iterator
options

KVS ERR _ITERATOR_FILTER INVALID iterator filter(match bitmask and

pattern) is not valid

Key Value Storage API Specification SNIA Technical Position
Version 1.0

6.4.2 kvs delete iterator

kvs_result kvs_delete_iterator(kvs_key_space_handle ks_hd, kvs_iterator_handle
iter_hd)

This function call releases the resources for the iterator Key Group specified by iter_hd
in the specified Key Space.

PARAMETERS

IN ks _hd Key Space handle

IN iter_hd iterator handle

ERROR CODE

KVS_ERR_KS_NOT_EXIST Key Space with a given ks_hd does not exist
KVS_ERR_SYS 10 Communication with device failed

KVS_ERR_ITERATOR_NOT_EXIST the iterator Key Group does not exist

Key Value Storage API Specification SNIA Technical Position 57
Version 1.0

6.4.3 kvs iterate next

kvs_result kvs_iterate_next(kvs_key _space_handle ks_hd, kvs_iterator_handle
iter_hd, uint32_t buffer_size, kvs_iterator_list *iter_list);

This function call obtains a subset of key or key-value pairs from an Key Group of
iter_hd within a Key Space (i.e., kvs_iterator_next() retrieves the next Key Group of
keys or key-value pairs in the iterator Key Group (iter_hd) that is created with
kvs_create_iterator() command). buffer_size is the iterator buffer (iter_list) size in bytes.
The retrieved values (iter_list) are either keys or key-value pairs based on the iterator
option which is specified by kvs_create_iterator().

After kvs_create_iterator for a Key Group completes successfully, if a kvs_store() or
kvs_delete() command with a key that matches that Key Group is received, then the
keys associated with that command may or may not be included in that iterator.

In the output of this operation, iter_list.num_entries provides number of iterator
elements in jter_list.it_list and iter_list.end indicates if there are more elements in the
iterator Key Group after this operation. If iter_list.end is zero, there are more iterator Key
Group elements and the host may run kvs_iterator_next() again to retrieve those
elements. If iter_list.end is one, there are no more iterator Key Group elements and that
iterator has reached the last element in the Key Group.

Output values (iter_list.it_list) are determined by the iterator option specified by an
application.
e KV_ITERATOR_OPT_KEY [MANDATORY]: a subset of keys are returned in
iter_list.it_list data structure
e KV_ITERATOR_OPT_KEY_VALUE; a subset of key-value pairs are returned in
iter_list.it_list data structure

PARAMETERS

IN ks_hd Key Space handle

IN iter_hd iterator handle

IN buffer_size iterator buffer (iter_list) size in bytes

OUT iter_list output buffer for a set of keys or key-value pairs

ERROR CODE

KVS_ERR_KS_NOT_EXIST Key Space with a given ks_hd does not exist
KVS ERR_PARAM_INVALID iter_list parameter is NULL

KVS ERR _SYS 10 Communication with device failed

KVS_ERR_ITERATOR_NOT EXIST the iterator Key Group does not exist

Key Value Storage API Specification SNIA Technical Position 58
Version 1.0

6.4.4 Kkvs iterate next async

kvs_result kvs_iterate_next_async(kvs_key _space_handle ks_hd,
kvs_iterator_handle iter_hd , uint32_t buffer_size, kvs_iterator_list *iter_list,
kvs_postprocess_function post_fn);

This function call obtains a subset of key or key-value pairs from an iterator Key Group
of iter_hd within a Key Space (i.e., kvs_iterator_next() retrieves a next Key Group of
keys or key-value pairs in the iterator key group (iter_hd) that is set with
kvs_create_iterator() command). buffer_size is the iterator buffer (iter_list) size in bytes.
The retrieved values (iter_list) are either keys or key-value pairs based on the iterator
option which is set by kvs_create_iterator().It returns immediately regardless of whether
the iterator list is ready from a device or not. The final execution results are returned to
the post process function through kvs_postprocess_context.

When kvs_store() or kvs_delete() command whose key matches with an existing iterator
Key Group is received, the keys may or may not be included in the iterator and the
inclusion of the updated keys is unspecified.

In the output of this operation, iter_list.num_entries provides number of iterator
elements in iter_list.it_list and iter_list.end indicates if there are more elements in the
iterator Key Group after this operation. If iter_list.end is zero, there are more iterator Key
Group elements and host may run kvs_iterator_next() again to retrieve those elements.
If iter_list.end is one, there are no more iterator Key Group elements and the iterator
reached the end.

Output values (iter_list.it_list) are determined by the iterator option set by an application.

e KV_ITERATOR_OPT_KEY [MANDATORY]: a subset of keys are returned in
iter_list.it_list data structure

e KV_ITERATOR_OPT_KEY_VALUE; a subset of key-value pairs are returned in
iter_list.it_list data structure

PARAMETERS

IN ks_hd Key Space handle

IN iter_hd iterator handle

IN buffer_size iterator buffer (iter_list) size in bytes

OUT iter_list output buffer for a set of keys or key-value pairs
IN post_fn post process function pointer

ERROR CODE

KVS_ERR_KS _NOT_EXIST Key Space with a given ks_hd does not exist
KVS ERR_PARAM_INVALID iter_list parameter is NULL
KVS ERR_SYS 10 Communication with device failed

Key Value Storage API Specification SNIA Technical Position 59
Version 1.0

KVS_ERR_ITERATOR_NOT_EXIST

the iterator Key Group does not exist

Key Value Storage API Specification SNIA Technical Position

Version 1.0

60

	1 Scope
	2 References
	3 Definitions, abbreviations, and conventions
	3.1 Definitions
	3.1.1 Key Space
	3.1.2 SSD
	3.1.3 key value pair

	3.2 Keywords
	3.2.1 mandatory
	3.2.2 may
	3.2.3 may not
	3.2.4 need not
	3.2.5 optional
	3.2.6 shall
	3.2.7 should

	3.3 Abbreviations

	4 Overview of KVS API
	4.1 Overview
	4.2 KEY-VALUE ENTITIES
	4.3 Key Space
	4.4 Key Group
	4.5 Key Value Pair

	5 Constants & Data Structures
	5.1 Types
	5.2 Constants
	5.2.1 KVS_ALIGNMENT_UNIT
	5.2.2 KVS_MAX_KEY_GROUP_BYTES

	5.3 API return value (kvs_result)
	5.3.1 kvs_result

	5.4 Data Structures
	5.4.1 kvs_api_version
	5.4.2 kvs_context
	5.4.3 kvs_key_order
	5.4.4 kvs_option_key_space
	5.4.5 kvs_option_delete
	5.4.6 kvs_iterator_type
	5.4.7 kvs_option_iterator
	5.4.8 kvs_option_retrieve
	5.4.9 kvs_store_type
	5.4.10 kvs_association_type
	5.4.11 kvs_associtation
	5.4.12 kvs_option_store
	5.4.13 kvs_device_handle
	5.4.14 kvs_key_space_handle
	5.4.15 kvs_iterator_handle
	5.4.16 kvs_key_space
	5.4.17 kvs_key_space_name
	5.4.18 kvs_device
	5.4.19 kvs_exist_list
	5.4.20 kvs_key_group_filter
	5.4.21 kvs_iterator_list
	5.4.22 kvs_key
	5.4.23 kvs_postprocess_context
	5.4.24 kvs_postprocess_function
	5.4.25 kvs_value
	5.4.26 kvs_kvp_info

	6 Key Value Storage APIs
	6.1 Overview
	6.2 Device level APIs
	6.2.1 kvs_open_device
	6.2.2 kvs_get_device_info
	6.2.3 kvs_close_device
	6.2.4 kvs_get_device_capacity
	6.2.5 kvs_get_device_utilization
	6.2.6 kvs_get_min_key_length
	6.2.7 kvs_get_max_key_length
	6.2.8 kvs_get_min_value_length
	6.2.9 kvs_get_max_value_length
	6.2.10 kvs_get_optimal_value_length
	6.2.11 kvs_create_key_space
	6.2.12 kvs_delete_key_space
	6.2.13 kvs_list_key_spaces

	6.3 Key Space-level APIs
	6.3.1 kvs_open_key_space
	6.3.2 kvs_close_key_space
	6.3.3 kvs_get_key_space_info
	6.3.4 kvs_get_kvp_info
	6.3.5 kvs_retrieve_kvp
	6.3.6 kvs_retrieve_kvp_async
	6.3.7 kvs_store_kvp
	6.3.8 kvs_store_kvp_async
	6.3.9 kvs_delete_kvp
	6.3.10 kvs_delete_kvp_async
	6.3.11 kvs_delete_key_group
	6.3.12 kvs_delete_key_group_async
	6.3.13 kvs_exist_kv_pairs
	6.3.14 kvs_exist_kv_pairs_async

	6.4 Iterator Function calls
	6.4.1 kvs_create_iterator
	6.4.2 kvs_delete_iterator
	6.4.3 kvs_iterate_next
	6.4.4 kvs_iterate_next_async

