
 
So, in this talk, I'm going to be talking about emula4ng CXL with QEMU. And, if you don't know me, my 
name is Adam Manzanares, and I work at Samsung. And, I'm very focused on open-source communi4es. 
And, this is a work with many collaborators across many different companies, and I'll be more explicit 
about that at the end of the slides, but it's all about emula4ng CXL. 
 
So the first thing I'd like to get people to know about, if you haven't heard about it, is QEMU. So what is 
QEMU? It's a generic and open-source machine emulator and virtualizer. So we got to unpack this, right? 
So you got to kind of take a step back and realize what this means, right? This is soMware that you can 
run on say Linux machines, and I believe it runs on Windows as well. There's, there's mul4ple plaOorms 
it runs on, but what it can do is it can actually emulate another architecture. Say you have an x86 laptop 
and you want to run an ARM-based system on there. One of the things that it can do is actually emulate 
the actual ARM CPUs, and then you can run ARM code on top of this QEMU emulator. In addi4on to 
emula4ng CPUs, also many peripherals are emulated as well, and this becomes very valuable when we 
talk about CXL, and I'll talk about some use cases that came before CXL to give people a sense of how 
valuable this has been. And you know, this is a storage developers conference, so I want to relate it to 
some concepts that might be more familiar with people from this community, and then we can kind of 
talk about some differences with CXL as we go.So yeah, like the first box what we see is the full system 
emula4on. The second box that's preUy interes4ng too as well is you can have user mode emula4on, so 
inside of Linux, you don't want to emulate the en4re system, but you just want to emulate a program 
wriUen to a separate instruc4on set architecture. You can run that from the command line and just 
execute a program for a different architecture. And then the last one is that there's a virtualiza4on piece 
so it also you can leverage KVM or Xen, and so you can use hardware-assisted virtualiza4on of a 
hardware plaOorm, and then you can get these really fast VMs. And this is quite interes4ng because you 
can get this high-performance virtualizer coupled with emulated hardware, right? So some of the 
hardware might be slower, say for your peripherals, but the actual CPU is quite fast. And you know, I'll 
go, and I'm going to try to give a live demo at the end of this so people see what can take place. Yeah, 
and then you know, go check out the website QEMU.org and become familiar with this tool. It's very 
useful, and I'll also go into why it's valuable at a company like Samsung. 
 
So this allows me to take a step back, and before we talk about CXL, right? So I am here at the Storage 
Developers Conference, and many people have been familiar with NVMe. And for NVMe, QEMU has 
been extremely valuable. And the way that I see this value is in: we can rapidly prototype hardware 
features inside a QEMU, and then we can write the system soMware on top of it, right? So QEMU is a 
very fast emula4on plaOorm, so you can run inside a QEMU and run your user space applica4ons like 
near-na4ve performance, right? There's some small deltas, but you know, it's for a developer 
perspec4ve, it's extremely fast, and you can cut down your sort of like turnaround 4me. And developing 
your hardware and your soMware, so you know, you can really prototype end-to-end soMware for new 
features, and I call this working on the plumbing—this is the plumbing between the hardware and the 
applica4ons. You can really have valuable prototypes, and I really want to encourage people to do this, 
especially if you're working in standards. Right? If you can go back to standards organiza4ons and point 
out issues with say standards, and you know, we brought this up earlier, I was asking about what is the 
feedback loop for soMware people? I believe it's very valuable to have soMware developers work along 
with the standards people, and to end as well as hardware developers, and so you have these 4ght loops 
of feedback, giving informa4on to each other, to come out with you know, hardware and soMware that's 
going to solve the problem at hand. So some of these examples, right? If you knew about data 
placement, so there's been a couple of different ways of approaching this, there's been the zone 
namespaces, there's been FTP beyond that, there's a technique to move data internally on the devices 



called simple copy, there's ways of virtualizing the devices, and all of these hardware features exist in 
QEMU. We've had them in QEMU, in order for us to build the whole system soMware, and we can get a 
sense of how is soMware going to take advantage of the features? You know, we can't know the exact 
performance, like this is not the goal here, right? The goal is to be able to emulate all the hardware to 
get the soMware right, and then, yeah, you have like this really interes4ng complete picture of how an 
applica4on is going to use it, and you can use this to inform your decision where you're going, and now I 
want to make it more specific to Samsung. So the larger team that I work on is called the Global Open 
Ecosystem team, and this team has people working in the Linux kernel, works in QEMU, works in user 
space soMware, and our core mission is to enable Samsung hardware, right? And it is preUy clear, at least 
in my mind, you know, looking at the space for the past 10 years, there has been more and more 
hardware soMware co-design happening, right? So we look at what is the end applica4on? You know, are 
they going to how are they going to connect their applica4on? What are the interfaces to it? There's 
many choices of how to do this, and which layers of plumbing need to get involved, and we've seen that 
it's important for us to understand these layers and poten4ally contribute right, in the end, we want to 
demonstrate the technology and work with partners, so that that's another big thing is that we work 
with partners, and being in open standards and in these open ecosystems and soMware allows us to do 
that. So you know, I like to talk about some of the successes that Samsung has had, and this is previous 
to when I when I've joined, but for the NVMe support, an individual who contributed quite a lot, his 
name is Klaus, and through his work, you know, he's done a lot of these features as well inside of QEMU, 
and we've also got a newer member who helps to review work in QEMU, so you know, the summary is 
that we s4ll believe that this QEMU knowledge of how QEMU emulates NVMe drives is very useful, and 
we love it as system soMware developers, right? It is great. To have hardware, but to me, grabbing the 
hardware is kind of towards the final stages. If I can emulate this quickly and prototype it, I can move 
very fast and be ready for the hardware once it lands on my desk, and that is the true value, right? We're 
trying to get ahead of the hardware as much as possible and build our system soMware, improve it out, 
and then be ready for the hardware as soon as it lands on our desk. And what, what is this? What is the 
value here? Right? So, so we are a hardware manufacturer. We need to test these devices. We need to 
understand how customers may be using them, and all of this can move much faster before the 
hardware is available, right? That's the advantage that we're trying to come up with, and it's very 
tangible, and CXL in my opinion, and I'll get into more details into that, and another huge benefit that I 
see is that you just bring more people in right. The earlier you can share this code and talk about it and 
demonstrate end-to-end frameworks, you may catch somebody who's working on a similar problem and 
can leverage what you're doing. So that's another huge benefit that I see about this right? It brings 
people into the ecosystem, and again, you know, let me take a step back right? This was kind of secng 
the stage for why we would want to do this in CXL right? We we did this for NVMe, we saw tangible 
results, we con4nue to see valuable results from this, and so it seems to make sense to try to do this for 
CXL. CXL is very different, but QEMU NVMe emula4on is kind of a good blueprint for what we wanted at 
Samsung. 
 
So that leads me to my next slide, right? So again, I want to reproduce these success cases. There are 
clear advantages that I've seen when you understand the system soMware and you understand your 
hardware; you understand both sides of the equa4on, and you can build that end-to-end soMware. 
Without the hardware dependence, and then as soon as the hardware is in your hands, run your 
experiments, get the results, and have the know-how what to do with it. And as has been discussed 
earlier, so there are a couple of points I want to talk about from the earlier discussions, right? There is 
limited hardware availability. You know, to be completely honest, right, that's not something I face in the 
posi4on that I'm at, right? Well, I'm I'm fortunate enough to be close to the hardware and do this for 
hardware. But soMware moves very fast. And you know, CXL is a new technology, so the hardware that is 



available may be in limited amounts or you know, may not have all the right features at the right 4me, 
right? It is an emerging technology. Right, if anyone tells you otherwise, I don't really believe what 
they're saying, right? There it's it's coming. I see the hardware; it's there, and you can see it at demos 
and places like this, but it is s4ll limited availability. And the two remarks that I wanted to make right, so 
previously there were two comments about what you need in your slides. One of them was you need 
some story around AI. I don't have that today, right? And then the second one is that if you you're talking 
about CXL, you also need the 4meline, and I don't have a 4meline in here, and I'll speak to that too, why 
I don't really see the need for the 4meline for this work, even though it does influence our work, you 
know, I don't want to tell you that it's not a part of what I think about, but when I talk about the 
simula4on, what's nice about this is we don't have to think about those 4melines so strictly and give a 
concrete example. We can add CXL 3.X features as soon as the standards are available to our emulated 
systems and start tes4ng out these features at least how the soMware would look. Right, we're not 
wai4ng for the CPUs to get the the the CXL standard version out at the 4me or the hardware to be there, 
and even though we know these things are coming right, we don't have to wait for them. And lastly, one 
thing that I'll point out, and I'll talk about this more as I go through this, talk it's two ecosystems right 
there's two ecosystems that can really benefit from this work that I've seen. One is the opera4ng 
systems, right, that's what we normally talk about like we talk about the opera4ng system and 
applica4ons that are going to use it. We've talked a lot about this previously, but one of the ones that 
I've seen that has been super beneficial to as well, and we didn't ini4ally start, you know, we knew this 
was coming, but didn't realize how fast it would hit us was management, like looking at BMCs and having 
sideband interfaces to talk to the devices right, is that this can all be done using QEMU and open source 
tooling right, so all everything's there for what you need to go and write your soMware right and improve 
out your soMware and be ready for once the hardware is available to you and mass produc4on. 
 
So now I'll get more into the details, right? So I was very confident when we first started doing this that it 
would be valuable because of the successes of NVMe. And I have seen the benefits already, and now 
let's get a liUle bit into which components are emulated. Before I get into that, I do want to remind 
people that I currently do not see the performance of like the QEMU emulated CXL memory to be useful 
for understanding your applica4on behavior. Right, this is not something for you to go run and say, 'Hey, 
CXL will work well for me.' What it is is saying, 'Hey, will my soMware be ready to op4mize for CXL 
soMware?' Right? So they talked about like placement using numactl with QEMU, you can see these 
NUMA nodes and place data on there, but we're not, we're not claiming that the performance will be 
measurable. And it's due to the implementa4on of how it's done so far that it happens to be slow 
because soMware is involved in memory accesses from the QEMU side. You know, there's been talk of 
alterna4ves, but largely to us working in this community that are developing this QEMU code going aMer 
the performance does not get the real benefit what we're looking for, right? It's it's just being able to get 
all the system soMware right. So now we'll get into a couple of CXL system components. And this is 
where I think we really need to think about what's different than NVMe, right? Because you need to 
start thinking more about all of these components that are involved. And it has implica4ons like 
specifically I'll talk about one that has come up in the past couple months about virtualiza4on of passing 
the hardware to virtual machines. Right, in NVMe it's preUy clean how to do this, right? But with CXL 
there's components along the way that it makes it much harder. And so the first component that gets 
emulated in QEMU is called a fixed memory window. So these are called CXL fixed memory windows. 
And what this does is from your physical memory space, it maps some of those addresses into a CXL host 
bridge, right? And so at this level, you have interleave and quality of service for throUling handled here. 
This is a great 4me to make the point that CXL memory access, .mem accesses has no soMware involved, 
right? You program these fixed memory windows, and when you read and write to these memory 
addresses, it's all through the hardware that's sending it to the devices, which is very different than 



NVMe where you have to set up commands and send the device, right? This is all happening from the 
hardware as memory accesses, right? But you do need to set up these fixed memory windows ahead of 
4me, and this responsibility could lie on the firmware or it could be the OS, and it depends on CXL 
versions, and there's detail in here but I don't want to cover that in here. So then below the this fixed 
memory window, you map towards host bridges, and it's very similar to PCI host bridges. And this is 
what has made working on this more tangible is that the fact that hey, there was a lot of this already 
emulated inside of QEMU so there were just some changes that had to be made here. And then from 
this fixed memory window, there's also an HDM decoder, which is a host-defined memory decoder. And 
this acts similar to the fixed memory window, but at a layer below, and then this maps from the root port 
down to the maps to the root ports under the host bridge, so you have a host bridge, and then a number 
of root ports. And then lastly, you know we've talked about CXL switches, and QEMU has had support for 
some simple CXL switches which is a single upstream port. It has an internal PCI bus and mul4ple 
downstream ports. This has all been emulated inside QEMU, and the thing to take away from here is this 
is configurable. You can set the amount of devices, amount of host bridges, right? You can set the fixed 
memory windows, you have a lot of control over this physical topology that you wouldn't normally have. 
And the last thing is for the memory devices, right? So we're emula4ng in QEMU, it's now emula4ng 
memory devices, which is a CXL Type 3 device.These are Type 3 memory devices. And it supports 
whether it's vola4le or persistent. So this was baked into QEMU. Ini4ally, I believe they were probably 
just persistent. But then we cleaned it up and made sure that vola4le was added and that it was reusable 
in a reasonable way from the soMware perspec4ve. So that's the components that you have inside of 
QEMU at the moment. 
 
So now I want to kind of walk through this. So don't worry about looking at this text directly. AMerwards, 
if you go dig through here, you can grab the same informa4on from QEMU's website, the CXL 
documenta4on. But I want to talk about what is here. So on the first figure, you have three fixed memory 
windows. And this was the top layer of what can be emulated in QEMU. And so there's just three 
examples here: either you go to the host bridge 0, or you go interleave between host bridge 0 and host 
bridge 1, or just host bridge 1. And this is at the top of this hierarchy on figure 1. And there's only one 
ac4ve at a 4me, so it's going to the first host bridge. The thing to take away from this slide, too, though, 
is that this is directly manipula4ng the physical address map. And this is set for you from the plaOorm. 
This is the plaOorm form where there could be only a set of op4ons that are given to you, that you may 
not be able to change this. But in QEMU, you can play around with this. This is something that you can 
change if you want. And then the next level down, you're in the host bridge. Let's see if I can go here. So 
the first top layer was the fixed memory windows with three op4ons. Then in the host bridge, you can 
see that it's just rou4ng down to one of these root ports. And from this root port, there's a device 
aUached here. And... So now this HDM decoder can route when the emulated CPU accesses one of these 
memory addresses, it gets routed properly all the way down to the CXL type device. And so that's one 
example. And then here, this one's a liUle bit different. And so you go to a single host bridge, and then 
there's a switch involved. So the only big difference here is that there would actually be a switch 
involved. And so the switch also has an HDM decoder on the upstream switch, which routes traffic to the 
downstream port. So it's very similar to the one on the leM, except for the fact that you have a switch 
involved. And then the switch is going to have to have a HDM decoder mapping upstream ports to the 
downstream ports. But what is the takeaway, right? There's quite a bit of flexibility in looking at what 
topologies could be emulated here. And I want to kind of give the caveat too, right, is that this is not an 
effort that's done alone. It's done across mul4ple companies. And some companies have more interest in 
other parts of it. But we're all part of this greater ecosystem, and we need the devices, the switches, the 
host CPUs. All of this needs to work together. And so it has been preUy healthy, in my opinion, that we 
have buy-in from many of these different sources to work on QEMU. 



 
So I want to show some high-level pictures here, and then I'll try to show a live demo and see how that 
goes. But this par4cular demo here, what it's doing is that one of our team members created a tool, and 
this is available. But what it basically does is it uses the open source ecosystem already now. And yeah, 
there's a lot of commands. There's lots of these different op4ons. But it's wrapped around into a simple 
tool that allows you to, say, test CXL features. And so this one, it runs a QEMU system. And I'll show this 
in the demo. I think it's worth showing. Some of the run lines for QEMU can be quite large. There's many 
op4ons for QEMU, and that can be confusing. And this is all hidden behind in this tool. And there's many 
ways of doing this, but I think for some people just wan4ng to try it, it might not be useful. And so then 
this tool loads all the drivers, all the kernel support. So the system is run. Then you actually connect to 
the system and put in the drivers. And then you can list the different devices. And one thing that has 
been done here, and I can talk about how bleeding edge this is, is that there's a feature in CXL called 
dynamic capacity regions, DC regions. And the intent is that a host would be able to release and free 
por4ons of CXL memory. And then this could poten4ally move to different hosts. But there's a 
framework for using dynamic capacity. And we saw this as an important feature. And we worked on the 
QEMU emula4on and there were early kernel versions of the support. And then, you know, we kind of 
honed in on our QEMU, got that upstream. And then eventually the kernel community kind of seUled on 
how they would do it. And we give input on this too as well, because we work hand in hand with the 
kernel side. And then you have like this complete end to end where this new set of features comes out 
and it's being tested directly on the QEMU support. And these are dynamic capacity devices. And so to 
me, this is a success story for the whole ecosystem as a whole, right? Is that we can work together and 
be ready to test when those patches are there. 
 
And so, one thing that I wanted to point out that I didn't do in the last talk is that that tool was created 
by some developers on our team. Just to kind of hide some of these details, right, and you don't want to 
repeat the commands over and over again. And I think you can benefit from that. But to make it clear of 
how this all works, many of these tools come from Intel, it's called the ndctl. But at the core of what this 
tool is doing is it's talking to kernel interfaces, right? The sysfs interface, like it's secng proper4es of CXL, 
like you can see here. It's probably too small of the font, but it's /sys/bus/cxl. And then you have a way of 
communica4ng. It's communica4ng to these kernel drivers, and everyone has levels of abstrac4on, right? 
There's this ndctl framework, and then we have a framework on top of that, right? But our view is to 
leverage what works already out there, right? We don't want to write any soMware just because we can, 
right? We actually want to use the soMware that's available because we don't want to reuse. Our job is 
not to just write soMware for the sake of soMware. 
 
So this goes back into the features. You can emulate. And you can probably get a hint as to why this is so 
valuable, right? And so you can emulate events. So CXL has events where it will say, you know, like a DC 
region has been created or some memory is now poisoned, right? There's a lot of commands that go on 
through what's called the .io channel. There's different protocols. Someone men4oned that in the 
presenta4ons below. But you could think of the .io as sort of a .io as for management of like how to set 
up these HDM decoders, how to get events out, right? And QEMU has support for all of this. You can do 
firmware updates, right? And recently we just had like abor4ng background commands, you know, that 
we put that in QEMU. And then that's valuable for like some of these commands can last a long 4me and 
you may want to abort one. You know, like gecng 4me steps, any of the logs that you iden4fy, you know, 
sani4ze, poison. Poison management, you know, you can look at more complex device types or 
something called mul4-headed devices, dynamic capacity devices. And then there's switch. And then the 
switch has its own set of capabili4es of what it has currently right now. And I'll tell you some things that I 
find very valuable, right? Is that we also have like sideband connec4on to that, right? Through QEMU you 



can use MCTP-based sideband in QEMU. And then you can kind of look at management soMware as well. 
Yeah. And what I always like to point to people, right? Is that, so this QEMU work was ini4ated by Intel 
and the developer has moved to another company at the moment, but then it was really picked off, 
picked up by his name's Jonathan Cameron from Huawei. And, you know, he has run with this and he is, 
you know, kind of the gatekeeper of what goes into QEMU, right? He's the maintainer of this. And so 
bleeding edge support, you can always find inside of his branch. So if you're curious about what's 
happening and where the soMware is going, you don't go look at the upstream QEMU. You actually go 
look at Jonathan Cameron's and you can see where we're headed and what's going on and he queues up 
the patches that eventually go into the main, mainline QEMU. And so that's the place to go and always 
look for his latest branch minutes based upon dates. 
 
So one thing that I like to show that, that has been there, right, is that, you know, with the flexibility of 
QEMU, it allows people to look at, you know, the dual mode, like you could have an NVMe device that 
exposes the LBA space over an HDM range and so has this load store accesses. And you know, it's been 
there, this has been there for a while. This was developed on 5.18, so it gives you kind of a sense of 
when it was worked on. But what is the key point of this slide, right? It's that the flexibility of QEMU 
allows people to look at ideas that they're, you know, kind of throwing around right now, right? And 
allows you to prove some value for it too, right? Like, there's a lot of stuff where that would actually 
leverage this, right? And there's much more beyond what you need to do to like really truly make this 
successful. But you know, there's a start here. There's a blueprint that you can see how people change 
QEMU to look at, you know, poten4ally making some hardware on the long term. 
 
And you know, here's a couple of pointers that I have, right? And so this CXL test tool, I found it preUy 
well, and I'll try to use it for my demo, right? And... some of my friends use it to, and he wrote a blog 
post about how to test CXL emula4on in QEMU. And so what does this guide meant for? It's meant for 
someone that has not used CXL at all to go and fire up one of these VMs and then poke around and see 
what it looks like, what are the, all the components involved. And if anyone is interested in these 
dynamic capacity devices, which in my opinion seem like the method moving forward of how to move 
memory around between devices, like within a CXL fabric, to me it looks like DCD is kind of the best way 
forward for many people. And so if you want to look at this feature and take a look at it, there's a test for 
these dynamic capacity devices. At Samsung, we do have a Discord server and we talk about open source 
emula4on or if you have ques4ons of anything here, you can join there and chat with us. But more 
importantly, Intel also, and I should have updated the slides on this, they have the Discord server where 
they have discussions about Linux kernel development on CXL and they share a lot of informa4on there, 
and there's a nice history too as well. And so there are, how would I say this? I mean, there are mul4ple 
places where informa4on is shared publicly, but I don't think everyone has all of this informa4on. So feel 
free to ping me aMerwards and I'll try to get you in the right place, and in contact with the right people. 
 
So, a couple of acknowledgements. So I men4oned this work for QEMU was started by Ben Wadowski, 
and he was at Intel at the 4me, and now he's at Google. Jonathan Cameron has done a lot of the work 
on Huawei. Ira from Intel is heavily involved on the kernel side and on the QEMU side. Gregory Price, 
who's at Meta, but he did this work previously at another company where he did a lot of QEMU work 
and kernel work, and con4nues to work. So he's doing a lot of work on it. Fan works with us on this, and 
Samsung, and David Lower as well at Samsung. And then there's Tong at Samsung. And there are many 
others, right? I can't add the names of everybody that's worked on QEMU, but I'm very thankful that 
people are star4ng, are looking at it, working on it, and helping us move this ecosystem forward 
rela4vely quickly in my opinion, right? We're preUy good shape for where the hardware's at. 
 



So let me try to do a demo here. And then I'll open it up for ques4ons. All right, so what I'm going to do, 
right, and so I think this is fun right here, right? One thing that I'll kind of point out now. If anyone's been 
using Windows lately and you've tried this Windows subsystem for Linux, it's quite interes4ng, right? You 
can run full-blown Linux on Windows machines and it also has support for nested versions and 
virtualiza4on. So what does that mean? So this Windows subsystem for Linux is running as a virtual 
machine, but it supports hardware accelera4on. So if you launch a virtual machine inside of this 
Windows subsystem for Linux, it runs at preUy much the same speed as if you were running on the 
hardware. So it's quite interes4ng. So I'll start one of these machines. All right. And so I'll kind of walk 
through. Maybe I can make it a liUle bit bigger for people. So this points out a liUle bit of debug 
informa4on. So what is this tool doing, right? So it looks to see where I have a kernel. It looks to see 
where I have QEMU, right? This is like where the source code lies. And this tool is nice because it will 
build a kernel for you. It will build QEMU for you that you can use. And then it also helps you build an 
image because you need some like disk image that you pass to QEMU such that it runs. And so it just 
gives you some of these different op4ons like an KVM is the hardware accelera4on that I can use. And so 
this thing has started running. And yeah, there's some problem here. I don't know why it's been giving 
me this problem about it's missing some file it's looking for. But the most important thing is that you can 
access this machine. And so I'll send a command to it to look at the memory. So this is what's interes4ng, 
right? So now in this virtual machine there's eight gigs of memory. And it's split up into these two 
separate ranges. And then if I look at the CXL topology it's very simple, right? There's nothing really 
showing up in there because I haven't online the devices and set things up, right? But what I can do is 
pass --cxl to this and then I'll walk through what it does. So first it's going to install these modules. So CXL 
requires the module support. And I'll go back and go through it. And then it's slowing down now because 
it's trying to ini4alize this region. And as I previously alluded the performance of the CXL memory is not 
what anyone's chasing, right? And it's just the way it was implemented it's more similar to like PCIe, 
MMIO, right? And it's just a legacy ar4fact because that's good enough for what we need. And so I'll go 
back through this once this finishes. So I can actually go through it now. So what is this tool doing? So 
one thing that it's trying to do and I men4oned this before this tool relies heavily on ndctl. And there's a 
legacy there of that CXL memory even though it's vola4le because it poten4ally can be added aMer the 
OS runs and poten4ally removed which is a much more controversial topic is that the tool for dealing 
with persistent memory is very useful in that regard, right? It's because persistent memory could kind of 
be isolated and memory that comes and goes from an OS perspec4ve probably makes a lot of sense to 
isolate. So we check to see the ndctl is installed you skip installing it but then we go and we mod probe 
all of these modules that are related to CXL memory and then now if you look here that we do CXL list 
inside of this virtual machine you can see two of these mem devs there's mem 0 and mem 1 so they're 
both 512 megabytes but we have two but then you create a region over one of these mem devs so 
you're going to route some traffic down there and this is with the HDM decoders you end up doing this 
and the key thing here is soMware is involved in this and one thing that can be confusing for people 
especially when I go back and talk with people is that in early hardware there is some plaOorm firmware 
that deals with these devices as well. So, some of the responsibility could be the OS—could not be, but 
be careful with this as you're moving forward. And so, this emula4on is like CXL 2.0 where it assumes 
that the OS is going to be doing much of this, even though that it's aUached while the system is booted, 
the QEMU is not gecng involved in that, so the OS has to do this. So, then you create another region, 
you create a namespace over it, and then one thing that we can do is configure this DAX device, make it 
into system RAM, and then if you see here, there's a new memory block added, and it's small; it's only 
384 MB, and some of the capacity got used for metadata. I think there are 128 MB memory blocks as 
you see down here, so some of it is done for the struct page, and it's just because we did 512 MB of 
memory. If you had a larger device, the 128 MB, whatever you need for your metadata. But as you can 
see, this same system now has some extra memory available for people to use. Generally, with these 



tools, and so the key takeaway is all of this works now. There's lots of different tooling for people to go 
try out. Not all of it is documented well. I can be completely honest about that, but I think the people 
involved are preUy willing to try to help bring others along, and so reach out to us and work with us. I 
think that's how I'll end it on there, but it's here, it works, and we're willing to work with others who may 
be interested in this space. Thank you. 
 
Any ques4ons? Grant? I'll go, Grant. 
 
Why won't QEMU emulate Type 2 devices? 
 
Yeah, so, can I repeat the ques4on? So the ques4on is: Why is QEMU not emula4ng Type 2 devices? So 
let me make that clear on the background: Type 3 devices are seen as memory expanders, and Type 2 
devices have the addi4onal condi4on of having the dot cache protocol and can be seen as poten4ally 
having some accelerator func4on. It's kind of like a high-level overview of what you'd say of Type 2 
devices, but if I take a step back, I'm biased—flat out, I'm biased. Why do I do this open ecosystem work? 
It's to support hardware that I see in the pipeline. Where I'm at, the most tangible thing I see right now is 
a Type 3 device. I know of other companies working on Type 2 devices through public mailing lists, so I 
think AMD has been very clear that they have some smart nick that has Type 2 support. I would 
encourage them to kind of look at this. In my opinion, those who have the hardware stand to benefit by 
emula4ng—not every exact feature, but it can help the ecosystem—and so I don't see that strong need 
from my standpoint, but I definitely think that would benefit the overall ecosystem. So go aMer those 
people that are publicly talking about their Type 2 devices, right? They're there, it's all public, okay, Andy. 
 
The ques4on is: If we look at DCD as a way of moving memory, how does that compare to the SDXI 
ini4a4ve, which tries to make a standardized interface for moving memory between loca4ons? 
 
Okay, for me, DCD is about the memory being allocated on a larger granularity, like I would say, gigabytes 
level, for a given host. So, say host A needs 16 gigabytes of memory now because they're trying to pack 
more VMs, and this happened at the scheduling process. So, to me, the granularity is very different in 
the 4ming of when you would want to move memory from, like, an appliance into a host system. But it's 
at that granularity, like huge, much larger chunks of memory would be moved through DCD. And the 
reason I say this is that DCD is a bit involved; you have to create this region; you may have to tear one 
down; you have to look for any memory that might be using it, so it's a complex process. Whereas, what 
I understand about SDXI, it's trying to standardize more of like DMA, like data movement. The memory is 
already allocated to this host, but the host is aware of mul4ple types of memory, and you just want to 
move small amounts of memory, or poten4ally large—I don't think that maUers as much—but it's to 
support some func4on. Whereas DCD is fundamentally about just allowing a host to have more memory, 
like if you wanted to give more DIMMs magically, some way of thinking that way, which I think is very 
different than the goal of SDXI. 
 
I have another ques4on. Just a correc4on: SDXI can move large amounts of memory, but you're 
absolutely correct; it needs to have the memory allocated to it. 
 
Yeah, yeah, I'll repeat the correc4on: it's that SDXI can move lots of memory around, but the memory 
has to be aUached to the system for it to move around. The system has to be aware of it somehow, and 
DCD is a mechanism that gives systems memory... 
 



Can you men4on the idea of passing CXL memory to a VM? If you talk about VMware VMs, you can 
already assign par4cular NUMA nodes to a VM. 
 
Okay, let me repeat the ques4on, and this is an important point, so the comment was that if you're 
looking at VMware today with CXL memory, that it can be aware that certain NUMA nodes can be passed 
to a guest. So, here's the comment, which is the tricky part: this all works for us now, so people have 
talked about for type 3 as long as the host system sees it, and the guest is comfortable not caring that it's 
a CXL device, this all works because you can pass memory ranges, no problem. The problem happens 
what happens when something goes wrong through these .io interfaces, and there's poison, and you 
have to say the hypervisor is the only one who has that knowledge and has to use that knowledge, or do 
we say, 'I can pass the en4re device up to a guest who's CXL aware?' That's undetermined, and the hard 
part would be passing the en4re device because, as I talked about, decoders along the way, right, in the 
CXL fixed memory window, then the guest needs to be aware of all these things as well, right? So, that's 
the very tricky part about this. 
 
And my third ques4on is, you said you have no... 
 
So, the third ques4on was: I don't have a shortage of CXL hardware, and Andy would like for me to share, 
so I can speak to that. There are ini4a4ves at Samsung—one is the Samsung Memory Research Center—
and the plan is to put CXL hardware in there. The high-level plan is, and they've shown some of their 
results with this related for partners. So, I know someone here who's involved in this, and I'll introduce 
you so you can follow up with them. 
 
Are there any other ques4ons? Alright, thank you everyone. 


