-
SNIA

Advancing storage &
information technology

eXtensible Access Method (XAM™) —
SDK Developer’s Guide

Version 1.01

“Publication of this Working Draft for review and comment has been approved
by the SDK TWG. This draft represents a “best effort” attempt by the SDK
TWG to reach preliminary consensus, and it may be updated, replaced, or
made obsolete at any time. This document should not be used as reference
material or cited as other than a “work in progress.” Suggestion for revision
should be directed to the SNIA Technical Council Managing Director at
tcmd@snia.org.”

WORKING DRAFT

August 31, 2009

Revision History

© SNIA

Version

Date

Originator

Sections

Comments

0.8

4-9-09

M. McMinn

All

Added new section placeholders; reorganized doc and
moved existing information.

4-21-09

M. McMinn

Ch3&4

Added text to “Installing Compilers and Dependent
Libraries.”

4-28-09

M. McMinn

All

Added info from updated readme’s (Java XAM Library and

Java Reference VIM) and converted each chapter to MS
Word for SME edits. Posted to Subversion.

0.9

7-16-09

M. McMinn | All Incorporated SME edits and information from updated

readme files. Added Error Codes and XAM Configuration
chapters; added Appendix A - Reference VIM Architecture.

1.01

8-31-09

M. McMinn | All - Recreated all graphics in Visio

- Updated Ch 4,56, & 7
- Added Appendix B - HTTP VIM Architecture & Protocol
- Added trademark to XAM

The SNIA hereby grants permission for individuals to use this document for
personal use only, and for corporations and other business entities to use this
document for internal use only (including internal copying, distribution, and
display) provided that:

* Any text, diagram, chart, table or definition reproduced shall be
reproduced in its entirety with no alteration, and,

* Any document, printed or electronic, in which material from this
document (or any portion hereof) is reproduced shall acknowledge
the SNIA copyright on that material, and shall credit the SNIA for
granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial
use of this document, sell any excerpt or this entire document, or distribute
this document to third parties. All rights not explicitly granted are expressly
reserved to SNIA.

Permission to use this document for purposes other than those enumerated
above may be requested by

e-mailing tcmd@snia.org please include the identity of the requesting
individual and/or company and a brief description of the purpose, nature, and
scope of the requested use.

Copyright © 2009 Storage Networking Industry Association.
XAM is a trademark of the Storage Networking Industry Association.

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Contents
1 About this GuUide.........cooeiiiiiiiicrrrrrrrrr e ———— 1
Purpose and AUdIENCEoouvvuiieiiiiiieie e s 1
O] 01 (=] o | =SSR 1
REFEIENCES ... e e e e e e e e e s 2
Additional INformationcooi i 3
L070] 01V =Y o1 1T o1 SRR 3
SNIA Welcomes Your COmMMENTES........cccueviiiiiiiiiieeee e eeceiiieieeeee e e 3
2 Introduction to the SDK Developer’'s Guide.......ccccccccevvrrrrrrnnnnn. 4
SDK TermMS Of USE..coiiiiiiiiiieiiiiie ettt 4
SDK COMPONENES .ot e e e e e 4
Supported Operating SYStEMS........ccuviiiiiiiiiee e 5
Software ReqQUIrEMENTSeuiiiiiiiieiii e 5
SDK Installation INStructions............oooii i 5
3 XAM™ Library Configurationccccccceeeiiiiiiiiice e, 6
T 1o [o i o o PRSP 6
Configuration File FOrmatcooviiiiiiiiiiieeee e 7
Configuration File DiSCOVEIYoocuuiiiiiiiiiiiie e 7
XAM™ | ibrary Configuration Behavior...........ccccooiiiiiiiiiiieee e, 8
Stackable VIM SUPPOIt ... 8
XAM™ |ibrary Configuration Namespacesccccceevriiieieiiniieee e, 8
Configuration File EXample...........occueiiiiiiiiiie e 9
Aliasing VIM Implementations............coooviiiiiiiiiiccicieeeeee e, 10
Leveraging Lookup Order for VIM DiSCOVETYcevvvvereeeeiiiiiiiinnnnns 11
Preloading VIM Librari€scccccoee e e 11
Defining VIM StacksSccceeeiiiiiiiiiieeee e 11
Using Application-Defined Configurations...........cccccceeeeeiiiiiiinninnneee. 12
Configuring VIM-Specific CONtrolsccoeeeeeiiiiiiiiiiiiieeeeeeeeeeeeee 12
Specifying XAM™ Library Logging Controlsccccevveveereeennneen. 12
4 Java Library........ir e 13
Understanding What Is Provided ..o, 13
Unpacking Your ZIP filecoooiiii e 14
Installing Compilers and Dependent Libraries...........ccccccccveieiiinniinns 15
Installing JUNIt........ooooi e 15
WINAOWS ..o e e e 15
L0 1) (o=]) SRR 15
Installing liDCUL........cooo e 16
Building the Code for Your Platformcccooiiiiiiiiiee e, 16
Supported Platformscceeeiiiiiiiiiiie e 16
Installing the Binaries for Your Platformccccooiiiee 17
INStalliNg @ VIM ..o 17
RUNNING TESS . 17
Using the Java Librarycooooiiiiiiie e 17
Obtaining an Instance of the XAM™ Library.........cccccceiiiinnennnnn. 17
Configuring the Library Initializationccccccovveeiiiniiiceeeeee, 18

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT iii

5

6

© SNIA

Logging Parameters ... 19

Java Logging USEcoiiiiiiiiiii e 19

Using Classes from XAMLib.jar and XAMToolkit.jarcc..... 20

C Library ... s 21
Understanding What Is Provided ..., 21
Unpacking Your ZIP fil€oooviiiiiiii e 22
Installing Compilers and Dependent Libraries...........cccccccceeiiiiiniiinnns 23
Installing JUNIt........oooii e 23
WINAOWS ..o a e 23

L0 1) { o=]) SRR 23
Installing libcurl..... ... 24
Choosing a C ComMPIler........oooiiiiiiiiee e 24
Building the Code for Your Platformcccveeeiiiieiieeeeeee, 24
Building the XAM™ SDK with Visual Studio on Windows 25
Building the XAM™ SDK Using ant.........ccccceovviieeeeiiiiieee e, 25
Installing the Binaries for Your Platformccccooiiiee 25
Configuring the XAM™ LiDraryc..coeeiiiiieeie i 25
Configuration OptioNScccoiiiiiiie i 26
Supported Configuration Namespacesccccceeevcviereeeeiiieeeeeenne, 26
Configuration File Syntaxcccccceeiiiiiiii i 27
Example Configuration Fileccccoociiiiiiie e 28
INStalliNg @ VIM ..ot 28
Configuring the HTTP VIM.......cooiiiii e 29
HTTP VIM Parameters ..o 29
HTTP VIM Configuration Fileccccoooiiiiiiiiiiiiieeeeeeeeeeeeee, 29
Supported Configuration Namespacesccccceeevciieveeeeiiieeeeeenee 29
Configuration File Syntaxcccccceeiiiiiiii i 29
Example Configuration File:ccccuviviiiiiieeiiieeeee e, 30
Java Reference VIM............coo i 31
L0 YT 11 SO 31
Summary of FEAtUrES......euviiiiiii i 32
XAM™ AP FEALUIES ...ttt 32
API Methods SUPPOrtedeeeeiiieieie i 33
Unpacking Your ZIP fil€..........uiiiiiiiiie et 34
Installing Compilers and Dependent Libraries..........cccccoceveeeeeeeeiiiicnnes 34
INStalling JURNIt.....oooeeee e 34
WINAOWS ..o 34

UNIX (DASN) ettt 35
Building the Code for Your Platformcccooiiiiiiiiiiie e, 35
Supported Platforms ... 35
Software Requirements. ... 35

Y | PSSR 35

DEIDY e 35

JUNIL e 35

JAVA e 36
JAVACC ..o 36
JavaMail........ooooiii s 36
JavaBeans Activation Framework (JAF)........ccccoiiiiiiiiiinnnne 36

LUCENE ... ettt e e e e e e e e e 36

PATH ReqUIremMENtSeeiiiiiiiiii e 36

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Building the XAM SDK using ant..........cccceeviiiieieiiiiiieee e 36
Running the anttest ... 37
Installing the Binaries for Your Platformccccooiiieee 37
Configuring and Operating the XAM™ Reference VIM and Library 37
Basic Configurationcoooioiiiiiiniiee e 38
User Configurationcoveiiiiiiie e 38
Access Control POlICIEScoveiiiiiiii e 38
Autodelete Configuration............cccovviiiiiii i 39
Autodelete and Shred PoliCIEScuuvvviiiiiiiiisiiie e, 40
Retention POIICIESooiiiiiiiiii e 40
IMPOrt ProCeSSING ..coeeiiiiieeeeee e 41
Asynchronous Methods.............ueiiiiiiiiiiiiie e 41
Reference VIM LOGQiNgceeeiiiiiiieiiiiiee et 42
Summary of Configuration Propertiesccccceeiiciiieiiiieee e 43
SCAlADIIIY .oveeeeeiieeeee e 43
Building and Running the Client Examplecccooiiiiiiiiiiee, 43
Building and Running the Example Using ant...........ccccccceeviiiennnen. 43
Building and Running the Example From the Command Line 44
Viewing Build Example Output - ant.............ccccoiiieiiiii 44
Using Reference VIM Example Programs..........cccoccvveveiiiiiieeeviciieenn, 45
Building and Running Tests and Examplescccocveiiiiiiiiiienniineen, 45
Configuring Unit TeSES...ccevviiieiiii i, 45
Building and Running Tests Using ant............cocoiiiiiiiiiininieeeeeeee, 46
Running Your Application with XAM™ . e 46
Default Repository Locationooccuveeiiiiiiiiiiiiii e 46
Directories and Files Created..........cccoiviiiiiiiiiiiiieee e 47
Files Created for a Persisted XSet ... 47
Temp Files Created ... 47
Database For Query SUPPOrt.........ccoiiiieeiiiiiiiieiiee e e 47
Specification of a Different Reference VIM Repository Location......48
Repository Maintenance ... 48
7 HTTP Protocol VIM ... 50
[T o1 o] 1T o 50
FUNCHONAIILY ..o e 51
Server Configuration, Installation, Building, and Testing...........cc.ccc....... 51
Configuring the HTTP VIM Implementation Target of the HTTP VIM
L0311 o | PO UUPRURR 52
Installing Required Runtime Librariesccoovvvviiiiiiiiiiinieieeeeee, 52
BUIldING the SEIVETcoiiiieei e 53
RUNNING ANt TASKSueieeie i 53
Verifying the Server..........ooo e 53
Starting the SErVeruviiiiieiie e 54
ProtoCOl VIM USE.......ueeiiieeee ettt 54
Java VIM ReqUIr€mMENtsccuuuiiiiiiiiiee e 55
S = o] 0o T [56
XAMEXCEPHION .ttt e e e e e e e e e e e e e e eeeeeeeeeee 56
FieldContainerEXCeption...........coovviiiiiiiiiiiiicc e 57
o] o] =5 Ce7=T o] 1 o] o PRSP 57
D 1= 1= (ot =Y o] 1 o] o PR RPRURRPN 58
XStreamEXCEPtON ...cooeii i 58

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT \

© SNIA

XSYStEMEXCEPLION....ccciiiiiiiiee e 59
Non-Categorized C ErrOrs ... 59
Appendix A:Reference VIM Architectureccccomememmmeeeeenennees 60
Class STTUCTUEcooiiiiiiie e 60
D171 (=1 SRR 61
DT SRR 62

D 1Y o o RO SROPPRRI 63
Persistence Manageroooiiiiiiiiiiiee e 64
Default Repository Location...........cccceevviieieeiiiiiiee e, 64
Directories and Files Createdcoooiiiiiiiiiiiie e 65

Files Created for a Persisted XSetcccccveviviiiiieeiicieee e, 65

Temp Files Created ..., 65
Specification of a VIM Repository Locationcccccoecvveeeenns 65

POLICY ..o 66
ACCESS POlICIES ... 67
Disposition PolIiCIEScoevviiiiiiccccce e 67
Retention PoliCIES ... 67

JODS e 68

()] 2] 1V = T =T T U PPUPPPRR 68
Operational FIOW........oooii e 71
Initializing an XSystemc..uviiiiiiiiiei e 71
IMpPorting an XStcooiiiie e 73
Processing @ QUETYuuiiii i 75
FULUIE TA@AS....eeeeeiiiiee e 81
Appendix B:HTTP VIM Architecturecccereeeecceiiiieeree e 83
Terms and SCOPE ...ceeeeiieieiee it 83
T OIS et 83

S Too] o= TSP 84
Overview of HTTP VIM DESIgNcuuviiieiiiiiieeeeiiea e eeiee e 85
Java HTTP VIM ClENtooieiiiiiee et 88
CoNNECt ProCESSING ...vvviiiiieiieii ettt a e 89
XAsyncCallback Managementcccccvvieeiiieeee e 89
JaVva HTTP VIM SEIVETcciiiiiiiie ettt 90
VIM Class and Library Load Operations.............ccccveeiiiiiieeeniieeee e 92
VIM Wire ProtOCOol.........uuiiiiiiiiiiiiie e 92
OrganizZationcoocviiie et 93
MeEthOd ACCESS 93
RetUrN ValUESoueiiiiiiiiee e 93
Value ENCOAING ...cooviiiiiiieceee e 93
Example EXChangeccoooiiiiiiiii e 93
OPEIALIONS ...ceeiiieeeee e 94
XAMCreateFieldlterator..........ccocuveiveiiiiiie e, 94
XASYNCCIOSE ...ttt 94
XAsyncGetBytesReadcoooiviiiiiiiiiiiieie e 95
XAsyNcGetByteSWIIENcocoviiiiiiieiiiee e 95
XASYNCGELSEAtUS......uuviiiiiiiiiec e 96
XASYNCGEIXOPID......ouiiiiiiieiiiieieecceeeeee e 97
XASYNCGEIXSEL ...ttt 97
XASYNCGEIXSIrEaM .. .eeviiiiiiicii i 98
XASYNCGEIXUIDouiiiiiiiiiiiiee e 98
XASYNCHaAI ... 99

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

XAM™ SDK 1.01 (August 31, 2009)

XASYNCISCOMPIELEooviiiiiiiiieece s 99
XASYNC — POLL ..ot 100
XREratorClOSEcocueveieeeiiiiie et 101
XlteratorHasNextoeeiiiiii e 101
XIteratorNexXt.o 102
XSEtADANAON....cciiiiiiiie e 102
XSetApplyAcCeSSPOIICYccooiiiiiieeeeeeeeee e 103
XSetApplyAutoDeletePoliCy..........c..ceveviiiiiieiiiiiee e 103
XSetApplyBaseRetention ... 104
XSetApplyManagementPoliCycccccveeiiiiiieee e 104
XSetApplyRetentionDurationPolicycccceecviveeeiiiieeeeeee, 105
XSetApplyRetentionEnabledPolicy...........cccoociiieiiiiieneeee, 105
XSetApplyShredPoliCyccoiiiiiiiiieiiiee e 106
XSetApplyStoragePoliCyocuvviveiiiiiiie e 106
XSEtASYNCCOMMIL.....coiiiiiiiiiee e 107
XSetAsyncOpenXStreamccceveieiiiiiee e 107
D 1= (0 [L] SRR 108
XSEICOMMIL....eiiiieiiiiie e 108
XSetContainsFieldccuviiiiiiiie e 109
XSetCreateProperty........c.uuvii it 109
XSetCreateRetention...........ccooiviiiieiiie e 110
XSetCreateXSreamcc.evvviiiiiiiie e 111
XSetDeleteField. ... 111
XSetGetActualAutoDeleteeeveeiiiiiiieiiiiiie e 112
XSetGetActualRetentionDurationccceeecvieeiiiiciieee e, 112
XSetGetActualRetentionEnabled...........ccccooecvieiiiiiiiieee e, 113
XSetGetActualShred........c..ueviiiiiie e 113
XSetGetFieldBindingcooooiiiiiiiiiiiiiieeeeeee e 114
XSetGetlengthuvvviiiiiii e 114
XSetGetFieldReadOnly ..o 115
XSEetGEtProperty..........uueeeeiieeiiiiiiececceee e 115
XSetGetProperty TYPE...coooviie e 116
XSetHAIJOD ... 117
XSetOpenEXportStreamcoooeeeeiiiiiiiieeeieeeeeeeeeeee 117
XSetOpenlimportStreamcccccviiiiiieiiieeeeceeeccee 118
XSetOpenXStreamccoviiiiiiiiiii e 118
XSetResetAccessFieldsccccveeiiiiiiiiiiiiieee e 119
XSetResetManagementFieldscccccccooeeiiiiiiiiiiiiiiiieeeee. 119
XSetSetAutoDelete...........veiiiiiiiiiie e 120
XSetSetBaseRetentioncccooeuviiieiiiiiie e 120
XSetSetFieldAsBinding...........ccoooeiiiiiiiiieieee 121
XSetSetFieldAsNonbindingcccocvvviiiiiiiiiee, 121
XSEtSEtPIrOPErtYuvvveiiiieiiee e 122
XSetSetRetentionDuration............ccooeeiiiieiiiciin e, 123
XSetSetRetentionEnabledFlag ..., 123
XSetSetRetentionStarttimecooovviiiiieiii e, 124
XSetSEtShredo 124
XSetSUbMItJOD ... 124
XStreamADaNdONoooiiiiiiie e 125
XStreamASYNCCIOSEuveeiiiiieeeeei e 125
XStreamASYNCREAdcoooiiiiiiiiiiieeeeee e 126
XStreamASYNCWIILE....ccveeiiieii e 126
XSHreamMCIOSE....ccoieiiiiee ettt 127
XStreamReadc.evvviiiiiiiie e 127
XSHrEAMSEEK. ...ciiiiiiiiiie ettt 128

WORKING DRAFT vii

viii

© SNIA

XSIrEAMTEIl ... e 128
XSIrEaMWIILEeeeiiiiiiiie e 129
XSystemADaNdONc.coiiiiiiei e 129
XSYStEMACCESSXSEL ..o 130
XSystemMASYNCCOPYXSEL ...oooviiiiiiieeieiiiee e 131
XSystemASYNCOPENXSELocoiiiiiiieiciiie e 131
SystemAsSyNcOpPenXStreamcoccvveveiiiiiiiee e 132
XSystemAuthenticateooovviiiieiii e 133
XSYSIEMUCIOSE ..coeeiiiiiiie et 133
XSysteMCONNECE........oviiiiiiiieei e 134
XSystemContainsFieldccoccoviiiiir e 136
XSySteMCOPYXSEL ...oeiiiiiiiiiiee et 136
XSystemCreatePropertyccccueeeeieiiiiee e 137
XSystemCreateXSet.......occuviiiiiiiiiiee e 137
XSystemCreateXStream..........occcvvevreiiiiiire e 138
XSystemDeleteXSetcuveiviiiiiiiiee e 139
XSystemGetFieldBinding.........cccvvvieiiiiiiee e 139
XSystemGetFieldLength.........ccccviiiiiiiiie e 140
XSystemGetPropertyc..coveiviiiiieieece e 140
XSystemGetProperty TYPEcoocuvveiieeiiiiee e 141
XSystemGetXSetAcCeSSTIMEoevveiiiiiiiee e 141
XSystemMHOIAXSELooiiiiiiiiee e 142
XSystemIsXSetRetainedcccccvveiiiiiiiiii e 142
XSystemMOPENXSEL.....ccoiiiiiiee e 143
XSystemOpenXStream.........cccovccveiiieiiiiiire e 143
XSystemReleaseXSetccccovviiiiiiii 144
XSystemSetFieldAsBiNdingccoevviiiieeiiiine e 145
XSystemSetFieldAsNonbinding...........cccceeeeiiiiiiiiee, 145
XSystemSetProperty ... 146
KNOWN ISSUES ...ttt 147

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Tables

Table 1 — Typographic Conventionsccccccoeiiiiiiiiiiiiiieceee e 3
Table 2 — Logging Parameters ... 19
Table 3 — Access Policy EXampleoeuviieiiiiiiiiieeeeeeeeeeeeeee 39
Table 4 — Autodelete and Shred Policies ..o, 40
Table 5 — Retention PoliCIESuuviiiiiiiiiiiii e 40
Table 6 — XAM™ and Java Logging Levelscccooiiiiiiiiiiiiiiiieee e 42
Table 7 — Summary of Configuration Propertiescccccccccoeviiiiiiiiiiiienne.n. 43
Table 8 — XAMEXxception Mappingcccooeeeeriiiiiiieeie e 56
Table 9 — FieldContainerException Mappingcccccvviiiieeeiieeeee i, 57
Table 10 — JobException Mappingcccoeiieeioiiiiiiieeee e 57
Table 11 — XSetException Mappingcccceeeeeiiiiiiiiiieeeeee e 58
Table 12 — XStreamException Mappingooooioiieeee e 58
Table 13 — XSystemException Mappingccccovviiiieiiiieeee e 59
Table 14 — Mapping for Non-Categorized C Errorscccccovieeiiiiiiiiiinneeen. 59
Table 15 — Manager ClasSEscccuueeiiiiiieeeiiiiieeieeee e 61
Table 16 — Disposition POlICIESeeiiiiiiiiiiieii e 67
Table 17 — Retention POlICIESc..euviiiiiiiiiiii e 67
Table 18 — Table Columns and Value Property Namesccccccoeeeeninnn. 79
Table 19 — Terms - HTTP VIM DeSigncvvuvuiiiiiiiieieie e 83
Table 20 — CRC for XAM_APIooiiiiieieee ettt 86
Table 21 — CRC for VIM_AP ...t 86
Table 22 — CRC for XAM_LiIbrary ..o 86
Table 23 — CRC for HTTP_VIM_CIlientcccoiiieiiiiiieeeeee e 87
Table 24 — CRC for HTTP_VIM_Server ... 88

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT ix

Figures

© SNIA

Figure 1 — Manager CIaSSEScccccuviiiiiiiiiee et 55
Figure 2 — Reference XSetoooiiiiiiii e 56
Figure 3 — Reference XStreamcccveeiiiiiiiiiiiiiiieeeeeee e 57
Figure 4 — Policy SYStEM ..o 60
Figure 5 — JOb Managercoiiiiiiiii e 62
Figure 6 — DBManagErcccueiiiiiiiiiee it 63
Figure 7 — XFieldValues Databaseooouvviiiiiiiiiiiiiiie e 64
Figure 8 — XSystem Initializationcccoooiiiiiii e 65
Figure 9 — Importing XSetSccccvviiiiiiiiiiiie e 66
Figure 10 — Processing @ QUETYccooiiiiiiiiiiiiiiee et 68
Figure 11 — QUEry RESUIESooiiiiiiiiiiii e 69
Figure 12 — Optimized QUETYocuiiiiiiiiiiiee e 70

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Chapter 1: About this Guide

Chapter 1: About this Guide

Purpose and The eXtensible Access Method (XAM™) — SDK Developer’s Guide is written

Audience for programmers and application developers who develop custom
applications for XAM Storage Systems. This document, along with the
following three documents, provides the information that you need to develop
custom applications for a XAM Storage System. The three documents include
the following:

Information Management — Extensible Access Method (XAM™) —
Part 1: Architecture

Information Management — Extensible Access Method (XAM™) —
Part 2: C API

Information Management - Extensible Access Method (XAM™) —
Part 3: Java API

Contents The contents of this document are described as follows:

XAM™ SDK 1.01 (August 31, 2009)

Chapter 1, “About this Guide” describes the audience and purpose,
contents of this guide, additional references and web sites, and
typographical conventions.

Chapter 2, “Introduction to the SDK Developer’s Guide” provides an
introduction to the eXtensible Access Method (XAM™) — Software
Development Kit (SDK) and its components.

Chapter 3, “XAM™ Library Configuration” explains the conventions
and syntax for setting generic properties for the XAM Libraries and
the Reference VIM.

Chapter 4, “Java Library” describes the Java library components for
the XAM SDK.

Chapter 5, “C Library” describes the C library components for the
XAM SDK.

WORKING DRAFT 1

Chapter 1: About this Guide

References

© SNIA

Chapter 6, “Java Reference VIM” provides the deliverables, directory
structure, and build and test instructions for the Java Reference VIM.

Chapter 7, “HTTP Protocol VIM” provides the HTTP vendor interface
modules for the Java and C language bindings.

Chapter 8, “Error Codes” provides common error codes for the XAM
SDK.

Appendix A: “Reference VIM Architecture” documents the
architecture of the SNIA XAM Reference VIM, which is written in and
leverages the object-oriented capabilities of the Java language.

Appendix B: “HTTP VIM Architecture” documents the architecture of
the HTTP VIM and the wire protocol used between the “halves” of the
HTTP VIM.

The following referenced documents are indispensable for the application of
this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including
any amendments) applies.

Note:

[XAM-ARCH] “XAM™ Architecture Specification” — Available from the
SNIA Fixed Content Aware Storage TWG, Version 1.0.1

[XAM-SDK-REQS] “XAM™ SDK Requirements” - Available from the
XAM SDK TWG site, SNIA Working Draft

[XAM-C-API] “XAM™ C API Specification” - Available from SNIA
Fixed Content Aware Storage TWG, Version 1.0.1

[XAM-Java-API] “XAM™ Java API| Specification” - Available from
SNIA Fixed Content Aware Storage TWG, Version 1.0.1

[REST] “Representational State Transfer” - http://www.ics.uci.edu/
~fielding/pubs/dissertation/rest_arch_style.htm

[HTTP-RESPONSE] Hypertext Transfer Protocol — HTTP/1.1,
Chapter 10 Status Code Definitions - http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html

[URL-Encoding] URL Safe character encoding http://www.w3.org/TR/
html40/appendix/notes.html#non-ascii-chars. This mechanism is
available for Java in the classes URLEncoder and URLDecoder.

Related third-party web site references. This document references
third-party URLs that provide additional, related information.

SNIA is not responsible for the availability of third-party web sites
mentioned in this document. SNIA does not endorse and is not
responsible or liable for any content, advertising, products, or other
materials that are available on or through such sites or resources.
SNIA will not be responsible or liable for any actual or alleged
damage or loss caused or alleged to be caused by or in connection
with use of or reliance on any such content, goods, or services that
are available on or through such sites or resources.

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 1: About this Guide

Additional The SNIA web site provides additional information about the SNIA XAM™

Information initiative at http://www.snia.org/xam.

Conventions Table 1 describes the typographic conventions that are used in this
document.

Table 1 — Typographic Conventions

Convention Description

Fixed-width text The names of commands, files and
directories, and on-screen computer output

Bold, fixed-width text What you type, contrasted with on-screen
computer output

Italicized text Variables, field names, and book titles

Note: Additional or useful informative text.

Indicates that you should pay careful
WARNING: attention to the probable action, so that you
may avoid system failure or harm.

is interested in improving its documentation and welcomes your

SNIA Welcomes SNIA is interested in i ing its d tati d wel y

Your Comments comments and suggestions. You can submit your comments by sending an
e-mail to temd@snia.org.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 3

Chapter 2: Introduction to the SDK Developer’s Guide © SNIA

SDK Terms of Use

SDK Components

Chapter 2: Introduction to the SDK

Developer’s Guide

This chapter provides an introduction to the SNIA XAM™ Software
Development Kit (SDK) and its components.

The following topics are discussed:

SDK Terms of Use

SDK Components

Supported Operating Systems
Software Requirements

SDK Installation Instructions

The SDK Developer’s Guide is released to you under the following copyright

notice:

“Copyright © 2009 Storage Networking Industry Association. Use is subject to
license terms.”

The XAM™ SDK distribution includes the following:

HTTP VIM
Java Reference VIM
Java Library

C++ Library

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Supported
Operating
Systems

Software
Requirements

SDK Installation
Instructions

Chapter 2: Introduction to the SDK Developer’s Guide

This release supports the following operating systems:
+ AIX 5.2 and above
+ HP-UXB.11.11
+ HP-UXB.11.23
e Linux-GCC 3.3
* Linux-GCC4.0
+ Solaris 8.0 and above
* Win32 Dev 8

* Win64 Dev 8

For software requirements, refer to the following chapters:
+ Chapter 4, “Java Library”
* Chapter 5, “C Library”
* Chapter 6, “Java Reference VIM”

* Chapter 7, “HTTP Protocol VIM”

The working draft VIM SDK is provided as a ZIP file of the SDK source code.
Please unzip this file in the desired directory and follow the instructions
included with each component. Or, check your distribution to see if packaging
is available for your operating systems, i.e. Linux, OpenSolaris.

Requirements include the following:

* Java Library and Java Reference VIM: JDK 5 or later from Sun and
JRE Java 5 or later

* HTTP C VIM - In addition to the standard C run-time libraries provided
by Visual Studio, the HTTP C VIM also uses the free, open source
libcurl (http://curl.haxx.se/libcurl/) and Boost (http://www.boost.org)
libraries. See their respective web sites for licensing information. To
compile the code:

— Download required boost libraries from http://www.boost.org
downloads page (http://www.boost.org/users/download/).

— Extract the libraries to HTTP_C_VIM directory of the trunk.

— Rename the extracted boot library directory from boost_version
to "boost". For Example, If you download boost version 1.37,
rename the extracted directory from boost_1_37_0 to boost.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 5

Chapter 3: XAM™ Library Configuration © SNIA

Introduction

Chapter 3: XAM™ Library Configuration

This chapter provides a standard set of options and the formatting
requirements for configuring a XAM™ Library. Topics include:

* Introduction

+ Configuration File Format

» Configuration File Discovery

+ XAM™ Library Configuration Behavior

+ Stackable VIM Support

+ XAM™ Library Configuration Namespaces

» Configuration File Example

The configuration options and formatting help to further define the
responsibilities of the XAM Library (especially with respect to awareness of
stackable VIMs and how to pass information among them). Moreover, the
standard configuration format enables the XAM Library to migrate more easily
between implementations. The standard formatting required also helps the
systems administrators more easily manage the storage systems.

The configuration file should provide enough information for the XAM Library
(or a VIM that contains aspects of VIM Management) to:

« Determine a list of libraries that can be loaded to resolve an
xsystemname

* Allow a system administrator to configure a stack of VIMs

» Allow a system administrator to configure VIM-specific options for
multiple VIMs (without requiring application modifications)

+ Use a contextual name that is abstracted from the implementation
language's loading semantics. For example, rather than using
com. sun.xxxx that uses Java language semantics, use an

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Configuration File
Format

Configuration File
Discovery

Chapter 3: XAM™ Library Configuration

HTTP-like context parameter that uniquely identifies the VIM, such as
StorageTek5800.

+ Define a VIM discovery path if an XRI does not contain a VIM name
or alias

* Preload a specific list of VIMs on initialization, such that the
.xam.vim.list.* field namespace is populated for applications
immediately (as opposed to “on-demand”).

» Dynamically control logging facilities

For simplicity, we will use a properties file format that can be loaded from
either C or Java (though Java has direct support for the format via the c
class). Within the property file, we will use namespaces to help organize the
file.

XAM configuration files will have the following attributes:

* Property fields should be specified as a name/value pair delimited by
'='on a single line, e.g.,

“org.company.my_field_name=my field value”
* Property names may not exceed XAM_MAX_STRING characters.

* White space and commented lines (prefixed with the '# character) are
to be ignored.

» All defined fields are of type xam_string, unless otherwise specified,
and use a simple type prefix (i.e,. <stype>.name=value), where stype
may be either xam_string, xam_int, xam_double, or xam_datetime.

Note: xam_xuid types may only be supported if the XAM Library
implementation provides string-to-XUID conversion services.

By default, the XAM Library will check for and load a configuration file named
xam.properties in the working directory. Optionally, an environment
variable named XAM_CONFIG_PATH may be used to specify an alternate
path to the configuration file.

In either case, a string property field named .xam.config.path will be
synthesized by the XAM Library object, and the value will contain the
specified path to the configuration file.

This field may also be set directly by applications. If an application creates or
modifies this field, the properties defined will be loaded from any newly
specified configuration file, which allows applications to refresh the
configuration contents on demand. If an error occurs reading the specified
configuration file, the field will not be synthesized and a non-fatal error will be
returned.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 7

Chapter 3: XAM™ Library Configuration © SNIA

XAM™ Library
Configuration
Behavior

Stackable VIM
Support

XAM™ [jbrary
Configuration
Namespaces

Note that the configuration file is extensible. If a property is found in the
configuration file, a corresponding property field with the same name/value
will be synthesized on the XAM Library object. Because all XSystem
instances inherit all XAM Library fields on construction, this allows for VIM-
specific XSystem configuration options to be automatically supported by the
XAM Library configuration file.

A stackable VIM is defined to be a VIM that can be inserted between the XAM
Library and other VIMs or between two VIMs (with the VIM above the
stackable VIM also being a stackable VIM). The bottom-most VIM in a stack
of VIMs must represent a storage system. The stackable VIM receives XAM
API requests and forwards those requests to other VIMs via the VIM API to
the VIM on top of which it is stacked.

An application should be unaware of stackable VIMs and the chain of
responsibility that the VIM stack represents. When an application uses an XRI
to specify an xsystemname, the xsystemname should be recognized and
appropriately handled by the stackable VIM that the XAM Library loaded
directly.

A request by an application to the XAM Library and objects that make up the
[XAM-ARCH] must be processed according to the specification, regardless of
whether one or more stackable VIMs is in the chain of responsibility for
processing the request. On the other hand, once a request to an object that is
represented through a stackable VIM is made, that request may change in
one or more ways en route to the VIMs that represent a storage system at the
other end of the chain of responsibility.

XAM Library implementations are required to support the configuration of
stackable VIMs. A stackable VIM maintains the relationships of the XAM
Library that states that each XSystem instance has a relationship to one VIM.

The following property namespaces will be recognized by the XAM Library:
* .xam.config.vim.alias.{aliasvalue}={vim path or aliasvalue}

An alias for a VIM. Each aliasvalue must be unique within the
.xam.config.vim.alias namespace. In a property file, the value of this
property name is the name of (or full path to) the library or class that
must be loaded for the VIM. Aliases may reference other aliases.

Example: .xam.config.vim.alias.centera=C:\VIMS\centera_vim.dll
* .xam.config.vim.alias.stack.{aliasvalue}={alias1}:{alias2}....

Defines an alias for a chain of VIMs. The aliasvalue must be unique
within the .xam.config.vim.alias namespace. The property value is a
chain of aliases (stackable or not) which are “.” delimited. All of the
values in the chain of responsibility must be identified with alias
values, or the chain of responsibility is invalid.

Example: .xam.config.vim.alias.stack=http:encrypter:centera

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 3: XAM™ Library Configuration

* .xam.config.vim.alias.{aliasvalue}.param.{name}={value}

Refers to a name/value pair that should be added (or appended) to
the XRI name/value pair list by the XAM Library if a particular
aliasvalue is used in the XRI during connect. May be used for any
aliasvalue defined in the vim.alias or vim.alias.stack namespaces.

« .xam.config.vim.lookuporder.{n}={aliasvalue}

Refers to the order of the VIMs for locating one that can leverage a
particular XRI if multiple VIMs could be used (in the absence of a
specified VIM name). The value n must be a positive integer value
that is unique to the entire lookup order namespace and indicates the
ordinal position of the VIM to use for the lookup (starting with either
index 0 or 1).

» .xam.config.vim.preload.{n}={aliasvalue}

Preloads a VIM library during XAM Library initialization (instead of on
first use), where n is a positive integer (starting with either index 0 or
1) that is unique to the entire namespace. The preload order should
define the lookup order in the absence of both vim.lookuporder
properties and a specified VIM name in the XRI (as the first
component of VIM discovery should be to attempt to connect with
existing loaded VIMs).

» .xam.log.{option}={value}

Supports all defined logging field controls defined by the XAM Library
implementation, including:

— xam_int..xam.log.level
— xam_int..xam.log.verbosity
— xam_string..xam.log.path

Note: These fields should be recognized by the XAM Library whether they
were synthesized by reading the configuration file, or if the
corresponding fields were created by applications directly.

Configuration File An example of this property file format in action is as follows:

Example # C VIM Aliases

xam.config.vim.alias.emc=C:\VIMS\centera vim.dll
.xam.config.vim.alias.http=C:\VIMS\http vim.dll
.xam.config.vim.alias.encrypter=C:\VIMS\encryption vim.dll

Java VIM Aliases
.xam.config.vim.alias.hp=com.hp.xam.VIMImpl
.xam.config.vim.alias.sun=com.sun.honeycomb.xam.XAMImpl

VIM Stacks
.xam.config.vim.alias.stack.isolated centera=http:emc
.xam.config.vim.alias.stack.isolated encrypt hp=http:e
ncrypter:hp

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 9

Chapter 3: XAM™ Library Configuration

10

.xam.config.vim.alias.

VIM Stack name/value
the XRI)
.xam.config.vim.alias.
0.241.44.10
.xam.config.vim.alias.
lated centera
.xam.config.vim.alias.
m=10.241.44.20
.xam.config.vim.alias.
isolated encrypt hp
.xam.config.vim.alias.
68.1.1
.xam.config.vim.alias.
d sun

© SNIA

stack.isolated sun=http:sun

pairs (passed to the http VIM in
isolated centera.param.xsystem=1
isolated centera.param.alias=iso
isolated encrypt hp.param.xsyste
isolated encrypt hp.param.alias=
isolated sun.param.xsystem=192.1

isolated sun.param.alias=isolate

VIM Lookup order (used in the absence of a specified

VIM name in the XRI)

.xam.config.vim.lookuporder.l=isolated centera
.xam.config.vim.lookuporder.2=isolated encrypt hp
.xam.config.vim.lookuporder.3=isolated sun

Centera VIM XSystem

specific properties

xam_int.com.emc.centera.maxconnections=99

Logging

xam_int..xam.log.level=5
xam_int..xam.log.verbosity=5
xam.log.path=C:\xam.log

There are a variety of ways this configuration information can be used. Some
standard use cases are discussed in the following sections:

+ Aliasing VIM Implementations

* Leveraging Lookup Order for VIM Discovery

* Preloading VIM Libraries

* Defining VIM Stacks

* Using Application-Defined Configurations

» Configuring VIM-Specific Controls

+ Specifying XAM™ Library Logging Controls

Aliasing VIM Implementations

The following XRI refers unequivocally to the aliased entry in the property file,
but the VIM class com.sun.honeycomb.xam.XAMImpl is devoid of the
additional context that the XAM Library can obtain from the property file:

snia-xam//sun!192.168.

WORKING DRAFT

1.1

XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Chapter 3: XAM™ Library Configuration

The XAM Library is tasked with converting these aliases appropriately before
the connect:

snia-xam//com.sun.honeycomb.xam.XAMImpl!192.168.1.1

Leveraging Lookup Order for VIM Discovery

A XAM Library’s VIM Manager can leverage the lookup order in cases where
an XRl is supplied that does not use the optional vimname parameter. (Recall
that the VIM Name is actually an optional field on an XRI and is ambiguous
without the use of aliases.)

Preloading VIM Libraries

The XAM Library’s .xam.vim.list.* namespace is populated with VIM names as
they are discovered or specified by the application. Some applications may
benefit by having some or all VIM libraries preloaded when the singleton XAM
Library object is initialized, rather than on demand. The application may then
identify the list of available VIMs directly from the XAM Library object’s VIM
list.

Defining VIM Stacks

This format is also useful for stacking VIM libraries. Aliases may be used to
denote a chain of stackable VIMs with a target VIM as the final item. This
target VIM may be a stackable VIM with its own VIM Manager.

The application can use the following XRI to refer to the Sun VIM-managed
xsystemname 192.168.1.1 (serviced via the VIM library
C:\VIMS\http vim.dl1l atlocation 192.168.1.100):

snia-xam://isolated sun!192.168.1.100

Information configured by the system administrator is used by the XAM
Library to construct the internal XRI:

snia-xam://
C:\VIMS\http vim.dl11!192.168.1.100?xsystem=192.168.1.1
&alias=isolated sun

Within this XRI, a few important conversions and contextual information
passes have taken place:

* The local VIM Manager has a location to resolve the location of the
HTTP VIM server: 192.168.1.100

* When connecting to the HTTP VIM, the XRI contains enough
information to resolve the target VIM that lies beyond the HTTP VIM.
The HTTP VIM will connect to the VIM underneath it using: snia-
xam://com.sun.honeycomb.xam.XAMImpl!192.168.1.1

* The expansion is repeatable for additional stackable VIMs.

The following XRI defines a VIM stack with automatic encryption of written
XStreams and decryption of read XStreams, serviced by a stackable
encryption VIM via an HTTP VIM server:

snia-xam://isolated encrypted hp!192.168.1.110

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 1

Chapter 3: XAM™ Library Configuration © SNIA

12

The XAM Library would construct the following XRI for the HTTP VIM:

snia-xam://
C:\VIMS\http vim.d11!192.168.1.110?xsystem=10.241.4
4.20&alias=isolated _encrypted hp

The HTTP VIM, in turn, could service the request to the encryption VIM, which
would service the request to the final hp VIM. All the information required to
traverse the topology would pass through each VIM in the stack.

Note the all underlying VIMs will receive a copy of all XAM Library
configuration options during XSystem.connect. Having the configuration
options allows stackable VIM libraries to appropriately convert one XRI into
another, based on all the information provided by the administrator.

The aspect of parameterization within the configuration file and on the XRI
syntax is extremely important with the stackable VIMs but can also be used by
storage system VIMs, similar to the Java Servlet context parameters.
Parameterization should be used to hide from the application programmer the
storage ecosystem details that may change. System administrators must be
able to add environmentally relevant information to XRlIs without impacting
application XRls.

Using Application-Defined Configurations

Applications may use the predefined field names to configure these values
directly on the XAM Library object without using a configuration file. The
application may allow users or system administrators to manage the
configuration from within the application, either via the GUI or other means.

Configuring VIM-Specific Controls

Because all XAM Library fields are copied onto all XSystem instances, the
application or system administrator may configure a number of VIM-specific
options via the properties file. VIMs that do not understand these options may
simply ignore them.

Example: # Set the maximum number of open connections for all
Centera VIM-managed XSystem instances

xam_int.com.emc.centera.maxconnections=99

Specifying XAM™ Library Logging Controls

SNIA has defined a set of XAM Library logging controls, which may be
specified by the configuration file in the absence of any application level
logging control facilities.

Example: # Enable XAM Library Logging

xam_int..xam.log.level=5
xam_int..xam.log.verbosity=5
xam_string..xam.log.path=C:\Logs\xam.log

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 4: Java Library

Chapter 4: Java Library

This chapter provides information about the Java Library that is provided with
the XAM™ Storage System SDK.

This chapter discusses the following topics:
* Understanding What Is Provided
* Unpacking Your ZIP file
* Installing Compilers and Dependent Libraries
* Building the Code for Your Platform
» Installing the Binaries for Your Platform
* Installing a VIM

* Using the Java Library

Understanding Version 1.0 (in progress) is an implementation of the XAM Library and
What Is Provided optional Toolkit.

The Java Library provides the following:
* Animplementation of the XAM Library
* The Java XAM Interfaces as part of the distribution

* XAM Library and Interface implementations are distributed in
xamlib.jar.

* Required Java Toolkit functions (org.snia.xam.util) are distributed in
xamtoolkit.jar.

* An internal implementation of an AbstractFieldContainer, which may
be used by Java-based VIM authors, which is neither standardized
nor required at this time

» Support for the SNIA XAM SDK configuration standard.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 13

Java Library

© SNIA

Note: This version does not provide support for using C (.d11/

.s0) VIMs.

» Default logging using the standardized logging control properties. The
current implementation uses Java 5 logging.

* Unit tests that test the XAM Library implementation.

Note: These tests do not provide VIM validation tools. VIM vendors/
implementers must do their own validation and testing.

Unpacking Your The working draft VIM SDK is provided as a ZIP file of the SDK source code.
ZIP file Please unzip this file in the desired directory and follow the instructions

included with each component.

The directory contents for the Java XAM Library are listed as follows:

/Java_XAM Library

/bin Temporary directory created and used
during building

/deliverables Output directory for the final build
components that are created during the
build

/doc Output directory of the Java Doc process

/src Java source for the library code

/org/snia/xam/base

Required source for the Java XAM Library

/org/snia/xam/util

Optional source for the Java Toolkit
functions

/test

Source for the Java XAM Library Unit Tests

/org/snia/xam/

/org/snia/xam/base

/org/snia/xam/testvim

/org/snia/xam/util

build.xml

The Ant build script

XAMImplementation.config

The XAM Library configuration file used for
unit tests

xam.test.props

A Java properties file to configure the unit
test program

14 WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Installing
Compilers and
Dependent
Libraries

Windows

Unix (bash)

Chapter 4: Java Library

The directory contents for the Java Interfaces are listed as follows:

/Java_Interfaces

/bin Temporary directory created and used during building

/deliverables Output directory for the final build components that
are created during the build

/doc Output directory of the Java Doc process
/src
/org/snia/xam/ Source for the Java XAM Interfaces

Installing JUnit
JUnit is a simple framework for writing and running automated tests.

To install JUnit:

1 Download the latest version of JUnit (junit.zip)from http://
download.sourceforge.net/junit/.

2 Install JUnit on your platform of choice.

To install JUnit on Windows, follow these steps:

1 Unzip the junit. zip distribution file to a directory referred to as
%$JUNIT HOME%.

2 Add JUnit to the class path:

set CLASSPATH=%CLASSPATHS$;$JUNIT HOME%$\junit.jar

To install JUnit on Unix, follow these steps:

1 Unzip the junit. zip distribution file to a directory referred to as
$JUNIT HOME.

2 Add JUnit to the class path:

export CLASSPATH=$CLASSPATH:$JUNIT HOME/junit.jar

3 (Optional) Unzip the $JUNIT HOME/src.jar file.

4 Testthe installation by using either the textual or graphical test runner
to run the sample tests distributed with JUnit.

Note: The sample tests are not contained in the junit.jar, butin
the installation directory directly. Therefore, make sure that
the JUnit installation directory is in the class path.

— For the textual TestRunner, type:

java junit. textui.TestRunner
junit.samples.AllTests

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 15

Java Library

Building the Code
for Your Platform

16

© SNIA

— For the graphical TestRunner, type:

java junit.swingui.TestRunner
junit.samples.AllTests

All the tests should pass with an "0ok" (textual) or a green bar
(graphical). If the tests don't pass, verify that junit.jar isinthe
the class path.

Installing libcurl
libcurl is the free, multiprotocol file transfer library.

To install libcurl:

1 For general information, go to http://curl.haxx.se/libcurl/.

2 Download the software from http://curl.haxx.se/
download.html.

Supported Platforms

Currently supported platforms are Solaris 10 (tested on X86 and SPARC),
Windows (WIN32), Fedora 10, Open SUSE 10, Ubuntu 9, and Apple OS X
Windows.

The Java Library has been tested with Sun Java 5 and Java 6 on the following
platforms:

* Windows XP and Vista (32 bit)

* Linux (32 bit, Fedora 10, Open Suse 10, Ubuntu 9)
* Open Solaris (x86)

* Apple Macintosh OS X (10.5)

The SNIA XAM SDK Technical Working Group would like to hear about
incompatibilities or success stories on platforms other than those listed here.

To build the code for your platform:

1 Make sure you have the required software:

— Ant: http://ant.apache.org (tested with 1.7.0)

— Java: http://java.sun.com (or the platform JVM provider) (Version 1.5
required; tested with 1.5.0_07)

— JUnit - http://junit.org (developed with JUnit version 3.8.1)

2 Setthe JAVA _HOME environment variable to point to the root java
installation directory of the compiler, for each platform must exist in the
PATH.

3 Make sure the JAVA_HOME and the java directories containing the
java compiler (javac) and java are in the PATH.

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 4: Java Library
To build the XAM Library using ant:
1 Enterthe Java Interfaces directory.
2 Run ant deliverables.
3 Enterthe Java XAM Library directory.
4 Run ant deliverables.
The following files are generated at the following locations:
— Java XAM Library/deliverables/xamlib.jar
— Java_ XAM Library/deliverables/testvim.Jjar
Note: testvim.jar is part of the unit test process and is not
usable by applications; therefore, it must not be distributed.
— Java_ XAM Library/deliverables/api/<JavaDocs>
— Java_XAM Library/deliverables/xamtoolkit.jar
Note: You do not need to include the Java Interfaces jar file in your class
path; they are merged into the XAM Library jar (xamlib.jar).
Installing the Make sure that you put xamlib.jar and xamtoolkit.jar into your class
Binaries for Your path.
Platform
Installing a VIM See “Configuration File Example” in Chapter 3, “XAM™ Library
Configuration”.
Running Tests
Note: The tests do NOT require a working VIM.
To run tests:
1 Enterthe Java XAM Library directory.
2 Runant test
All of the unit tests will run; there should be no errors.
Using the Java Obtaining an Instance of the XAM™ Library
Library To use this Java library, the application must locate and include the

xamlib. jar file in the application's class path. If the application uses any of
the classes from the org.snia.xam.util package, it must also locate and
include xamtoolkit.jar.

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT 17

Java Library © SNIA

To obtain an instance of the XAM Library, do one of the following:

» Use the XAMLibraryFactory class, which is included in the jar files
(recommended). This factory will instantiate the library and isolate
your application from a XAM Library implementation. This
instantiation will let you reconfigure your application to use the C XAM
Library (via the Java Native Interface (JNI)) without needing to
recompile. To use the XAMLibraryFactory to obtain a XAM Library
instance, enter the following:

XAMLibrary lib = XAMLibraryFactory.newXAMLibrary() ;

This causes the XAM Library to be created without reading a
configuration file, which makes it difficult to configure the library to
specify VIMs, etc. To allow specifying a configuration file, the
application should call:

XAMLibraryFactory.newXAMLibrary (
XAMLibraryFactory.DEFAULT XAM LIBRARY,
configFilePath);

» If the application chooses not to use the XAMLibraryFactory, use the
following to obtain an instance:

XAMLibrary xam = new XAMImplementation (
"XAM.config")

If the library is created without a configuration argument (no argument
constructor or the XAMLibraryFactory.getLibrary() method), the Java XAM
Library will read the value of the environment variable XAM_CONFIG_PATH.
If this points to a file, this file will be used as the XAM Config. If there is no
argument and the XAM_CONFIG_PATH environment variable does not exist,
the default value xam.properties will be used.

Configuring the Library Initialization

Each XAM Library instance will load configuration parameters from a
configuration file. The file must contain information to allow the library to find
the referenced VIM. Additionally, the file may contain parameters to control

logging.
Make sure the configuration file contains a line similar to:

.xam.config.vim.alias.TestVIM=org.snia.xam.testvim.Tes
tVim

This line tells the library that a VIM named "TestVIM" is available by creating
an instance of the class "org.snia.xam.testvim.TestVim".

Note: Make sure the class for the VIM is in the application's class path.

18 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 4: Java Library

Logging Parameters Table 2 describes the parameters that control logging:

Table 2 — Logging Parameters

Parameter Description

.xam.log.path The file path indicating where to place the log file.

Note: Make sure the application has write permission
to this path location.

.xam.log.verbosity An integer value 0-5 indicating the logging verbosity.
These values are specified in the XAM Architecture
Specification (see [XAM-ARCH)]).

.xam.log.debug An integer value 0 to MAX_LONG (2**32-1) indicating
the amount of debug logging to be used. Debug
logging in the Java XAM Library is minimal, and this
value is most useful with a particular VIM.

.xam.log.max.size The maximum size of a log file, in kilobytes, before it is
rolled over to a new file. To cap the log file to 100KB,
the value of this property is set to 100.

.xam.log.max.rollovers | The maximum number of log files to keep after they
rolled over.

.xam.log.append A value, if TRUE, will append to the latest log file;
otherwise, the library will create a new file when the
library is created.

Java Logging Use The following information is provided for application and VIM authors wishing
to integrate with Java XAM Library use of Java Logging.

The Java XAM Library uses Java native logging (java.util.logging).
Java logging is very versatile but doesn't completely match the functionality of
XAM logging. The Java XAM Library simplifies its use of Java logging by
creating a single instance of a logger for each log file specified via the logging
properties. To accomplish this, a toolkit class
(org.snia.xam.util.LogManager) is provided to encapsulate all the
functionality:

public static Logger GetLogger(String path,
int logSize,
int rolloverCount,
boolean append)
throws XAMException

The LogManager will create a logger and FileHandler to service the log file.
Whenever log settings have changed (via a XAMLibrary.setProperty() or
XSystem.setProperty() method call), the GetLogger method is called to
update the FileHandler on the logger. It is important to realize that because a
specific log file is global, all settings are shared by the logger. If a VIM is
running in the same JVM as the Java XAM Library, the VIM is encouraged to
use the org.snia.xam.util.LogManager class.

The LogManager uses Java logging in the following ways:

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 19

Java Library

20

© SNIA

* One logger per uniquely named log file (based on the path property).
This is different than using the classname to identify loggers.

* Asingle FileHandler attached to the logger.

* Loggers do NOT inherit handlers from the parent logger (in this case,
the root logger).

If the application or VIM is running in another JVM instance or on different
hosts, the log files may not be integrated. It is beyond the scope of this
document to describe lodfile unification across multiple processes or hosts.

Using Classes from XAMLib. jar and XAMToolkit. jar

The two jar files contain the entirety of the Java XAM Library. The jar file
XAMLib. jar contains all the classes required to implement the Java XAM
Library, while the jar file XAMToolkit.jar contains the required tool kit
functions specified by the [XAM-JAVA-API]. The toolkit functions include:

+ ExtendedFieldContainer (XAM required)

+ ISO8601Date

* LogManager

* QueryFactory (XAM required)

+ SASLUtils

+ XAMIOException (needed for the streams)
* XAMLibraryFactory (XAM SDK Required)
+ XStreamlInputStream (XAM required)

* XStreamOutputStream (XAM required)

+ XUIDlterator (XAM required)

The toolkit functions are programmed using only the publicly defined XAM
interfaces. Thus, the toolkit is usable with either the Java XAM Library or the
C XAM Library (using the JNI bindings).

The core of the Java XAM Library (xAMLib. jar, containing packages
org.snia.xam.base) has all of the classes required to implement the Java
XAM Library. Applications should not use classes from this package. VIM
authors may find the implementation class from org.snia.xam.base to be
of use when implementing a Java base VIM, but be aware that you are tying
your implementation to the Java XAM Library code base. This, in itself, is not
a problem, but VIM authors are strongly encouraged to consider the long-term
consequences of this dependency.

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Chapter 5: C Library

Chapter 5: C Library

This chapter provides information about the C++ Library that is provided with
the XAM™ Storage System SDK.

The following topics are discussed:

Understanding What Is Provided

Unpacking Your ZIP file

Installing Compilers and Dependent Libraries
Choosing a C compiler

Installing the Binaries for Your Platform
Installing a VIM

Configuring the HTTP VIM

Understanding The following deliverables are provided with the C++ Library:

What Is Provided

XAM™ SDK 1.01 (August 31, 2009)

XAM C API Public Headers - Defines the XAM C API, which may be
used by application developers to interact with multiple Vendor
Implementation Module (VIM) libraries.

XAM C Library - Implements the XAM C API, to which applications
may link in order to interact with multiple VIM libraries.

VIM C API Header - Defines the VIM C API, which may be used by
vendors for developing VIM libraries (i.e., VIMs).

XAM Java APl Wrapper for C Library - Implements the XAM Java
API interfaces, which may be used by application developers in order
to interact with multiple VIM libraries. The Java interfaces are
implemented in XxAMLibrary.jar, which uses the XAM C Library
via Java Native Interface (JNI).

XAM Toolkits - Includes simple XAM toolkit examples for both C and
Java, which include standard XAM-defined utility methods.

WORKING DRAFT 21

C Library © SNIA

« HTTP VIM - A VIM which proxies all XAM operations to a HTTP
server using GET and POST. This can be useful in conjunction with
the HTTP Protocol VIM, as it allows the C versions of the API to use
the Reference VIM, which is written in Java.

Unpacking Your The working draft VIM SDK is provided as a ZIP file of the SDK source code.
ZIP file Please unzip this file in the desired directory and follow the instructions
included with each component.

The directory contents are listed as follows::

/C_XAM Library

/build script Contains ant build.xml and miscellaneous
project files

/<platform> Platform-specific build and project files

/1lib Place to put any needed libraries that are not
installed in the native OS. The cURL libraries
should be manually placed here if they are not
otherwise installed.

/objects Generated as part of the build process
/<platform> Contains platform-specific object files
/src Source code tree
/c C API source code
/api Implementation of the XAM interfaces in xam.h
/classlib Class definitions for all XAM objects
/doc Contains doxygen documentation on the source

code (generated as part of the build)

/http vim HTTP proxy VIM

/include Public header files

/3jni Java Native Interface (supports java api)
/logger Logging framework and components
/posix POSIX compatibility interface

/toolkit XAM toolkit library implementation

/utils Various XAM utilities

/vim Representation of a VIM library (includes the

vim.h interface for VIM development)

/java Java API source code

22 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Installing
Compilers and
Dependent
Libraries

Windows

Unix (bash)

Chapter 5: C Library

/deliverables Generated as part of the build process
/<platform> Deliverables for a specific platform

/include Public headers

/1ib Binary deliverables

/doc Doxygen documentation for public header files

/Java_Interfaces Contains the Java interfaces required to build the

XAM Java API wrapper jar for interfacing with the
C XAM Library

Installing JUnit
JUnit is a simple framework for writing and running automated tests.

To install JUnit:

1 Download the latest version of JUnit (junit.zip) fromhttp://
download.sourceforge.net/junit/.

2 Install JUnit on your platform of choice.

To install JUnit on Windows, follow these steps:

1 Unzip the junit. zip distribution file to a directory referred to as
%$JUNIT HOMES%.

2 Add JUnit to the class path:

set CLASSPATH=%CLASSPATHS%;$JUNIT HOME%\junit.jar

To install JUnit on Unix, follow these steps:

1 Unzip the junit.zip distribution file to a directory referred to as
$JUNIT HOME.

2 Add JUnit to the class path:

export CLASSPATH=$CLASSPATH:$JUNIT HOME/junit.jar

3 (Optional) Unzip the $JUNIT HOME/src.jar file.

4 Testthe installation by using either the textual or graphical test runner
to run the sample tests distributed with JUnit.

Note: The sample tests are not contained in the junit.jar, butin
the installation directory directly. Therefore, make sure that
the JUnit installation directory is in the class path.

— For the textual TestRunner, type:

java junit.textui.TestRunner
junit.samples.AllTests

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 23

C Library

Building the Code
for Your Platform

24

© SNIA

— For the graphical TestRunner, type:

java junit.swingui.TestRunner
junit.samples.AllTests

All the tests should pass with an Ok (textual) or a green bar
(graphical). If the tests don't pass, verify that junit.jar isinthe
class path.

Installing libcurl
libcurl is the free, multiprotocol file transfer library.

To install libcurl:

1 For general information, go to http://curl.haxx.se/libcurl/.

2 Download the software from http://curl.haxx.se/
download.html.

Choosing a C compiler

Currently supported platforms are (32- and 64-bit where applicable):
AIX 5.1
+ HP-UX-B.11.11
+ HP-UX-B.11.23
* Linux-GCC3.3

* Linux-GCC4
+ Sun0S-5.8

*+ Win32Dev 8
* Win64Dev 8

Note: Seethebuild script directory for the current list of platforms.

To build the code for your platform:

1 Make sure you have the required software:

— Ant - hitp://ant.apache.org (tested with 1.6.5)
— Doxygen - http://www.doxygen.org (required for doc generation)
— Java - http://java.sun.com (or the platform JVM provider)

2 Make sure the compiler for each platform exists in the PATH.

3 Setthe JAVA_HOME environment variable to point to the root java
installation directory (e.g. C:\j2sdkl1.4.2 12).

4 For doc generation, make sure that doxygen.exe is in the PATH.

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Building the XAM™ 1
SDK with Visual Studio
on Windows

Building the XAM™ 1
SDK Using ant

Chapter 5: C Library

For Windows, make sure that devenv.exe is in the PATH so that the
ant builds to work correctly.

Note: For Visual Studio Express Edition on Windows, you must
perform the build from the 1DE directly (i.e., you may not use
ant).

Load the C_XAM Library/build script/Win32Dev8/
XAM SDK.sln project file.

Select either the Win32 or x64 build configuration. (The 64-bit build
will produce a Win64Dev8 deliverable.)

Select Build > Build solution.

Binaries, public headers, and documentation are delivered to:
— C_XAM Library/deliverables/Win32Dev8/1lib
— C_XAM Library/deliverables/Win32Dev8/include

— C_XAM Library/deliverables/Win32Dev8/doc

Enter the C_XAM Library/build script directory.
Enter the following:

ant -v -f build.xml -Dplatform=<platform>

where <platform> is one of the directory names under the
build script directory. For example:

ant -v -f build.xml -Dplatform=Linux-GCC3.3

Files are generated at the following locations:

— C_XAM Library/deliverables/<platform>/1lib

— C_XAM Library/deliverables/<platform>/include

— C_XAM Library/deliverables/<platform>/doc

Installing the Depending on your platform, you may install the binaries in a central location
Binaries for Your or a location for your own development.

Platform

Configuring the To configure the XAM Library:

XAM™ Library 1

XAM™ SDK 1.01 (August 31, 2009)

Decide which options you want to configure. See “Configuration
Options.”

Locate the xam.properties file in the working directory.
Use the supported namespaces and configuration file syntax to edit

the xam.properties file. See “Supported Configuration
Namespaces” and “Configuration File Syntax, respectively.”

WORKING DRAFT 25

C Library © SNIA

4 For examples, refer to “Example Configuration File.”

Configuration Options
You may use a properties file to configure any of the following XAM Library
options:

* VIM-specific XSystem configuration fields

* Logging controls

* VIM name aliasing

* VIM stack definitions

* VIM lookup order priority

* Automatic VIM preloading

+ Automatic generation of XRI name/value pairs for a given VIM alias

By default, the XAM Library checks for a configuration file named
xam.properties in the working directory. To specify an alternate path to
the configuration file, use the XAM_CONFIG_PATH env var. In either case,
the XAM Library object synthesizes a string property field named
.xam.config.path, with the value containing the specified path to the
configuration file.

Applications may also set this field directly. If an application modifies or
deletes this field, the newly-specified configuration file will reload the
properties, which allows applications to refresh the configuration contents on
demand.

Note: The configuration file is extensible. If a property is found in the
configuration file, a corresponding property field with the same name/
value is synthesized on the XAM Library object. Because all XSystem
instances inherit all XAM Library fields on construction, VIM-specific
XSystem configuration options are automatically supported by the
XAM Library configuration file.

Supported Configuration Namespaces

The C XAM Library recognizes the following string property namespaces:
» .xam.config.vim.alias.{aliasvalue}={vim path}

A VIM alias. The aliasvalue string may be specified in an XRI to
reference the given vim path, which may be either the full path to a
VIM library or a VIM name. Aliases may also reference other aliases.

Sample Alias Usage (using alias in place of the vim name):

snia-xam://aliasvalue!<connection string>
» .xam.config.vim.alias.stack.{aliasvalue}={aliasvalue 1}.{aliasvalue2}....

Identifies an alias for a chain of VIMs. The value of this property is a
chain of vim names or aliases (stacks or that individual VIMs) are ":"
delimited.

26 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Chapter 5: C Library

Sample Stack Alias Usage (using alias in place of vimname):

snia-xam://aliasvalue!<connection string>
.xam.config.vim.alias.{aliasvalue}.param.{name}={value}

Refers to a name/value pair that should be added to the XRI name/
value pair list by the XAM Library if a particular aliasvalue is used in
the XRI during connect. May be used for any aliasvalue defined in the
vim.alias or vim.alias.stack namespaces.

Sample Result (name/value pairs appended by the XAM Library):

snia-xam://aliasvalue!<connection
string>?name=value"

Multiple name/value pairs my be specified resulting in:

[?namel=valuel [&name2=value2[&...]]1]"
.xam.config.vim.lookuporder.{n}={aliasvalue}

Refers to the order of the VIMs for locating one that can leverage a
particular XRI if multiple VIMs could be used (in the absence of a
specified VIM name). The value n must be a positive integer value
that is unique to the entire lookup order namespace and indicates the
ordinal position of the VIM to use for the lookup. The value of n must
be both sequential (beginning with either 0 or 1) and >= 0.

.xam.config.vim.preload.{n}={aliasvalue}

Preloads a VIM library during XAM Library initialization (instead of on
first use), where n is a positive integer (starting at 0 or 1) that is
unique to the entire namespace. The preload order will define the
lookup order in the absence of both vim.lookuporder properties and a
specified VIM name in the XRI.

.xam.log.{option}={value}

Supports all defined logging field controls, including:

— xam_int..xam.log.level

— xam_int..xam.log.verbosity

— xam_string..xam.log.path

— xam_int..xam.log.max.size

— xam_int..xam.log.max.rollovers
— xam_boolean..xam.log.append
— xam_string..xam.log.message.filter

— xam_string..xam.log.component.filter

Configuration File Syntax

The XAM configuration file has the following attributes (similar to the java
Properties format):

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT 27

C Library

Installing a VIM

28

© SNIA

» Each configured field name is specified as a name/value pair delimited by
'="' (e.g. my_field_name=my_field_value).

* White space and commented lines (prefixed with the # character) are

ignored.

« All defined fields are of type xam_string unless otherwise specified using a
simple type prefix (e.g. <stype>.name=value), where stype may be either
xam_string, xam_int, xam_double, or xam_datetime (note that xam_xuid
types are not currently supported).

Example Configuration File

C VIM Aliases
.xam.config.vim.alias
.xam.config.vim.alias
.xam.config.vim.alias
1

Java VIM Aliases
.xam.config.vim.alias

.xam.config.vim.alias.

VIM Stacks

.xam.config.vim.alias.
.xam.config.vim.alias.

crypter:hp

.xam.config.vim.alias.

.emc=C:\VIMS\centera vim.dll
.http=C:\VIMS\http vim.dll
.encrypter=C:\VIMS\encryption vim.dl

.hp=com.hp.xam.VIMImpl

sun=com.sun.xam.VIMImpl

stack.isolated centera=http:emc
stack.isolated encrypted hp=http:en

stack.isolated sun=http:sun

VIM Stack name/value pairs (passed to the http VIM in

the XRI)

.xam.config.vim.alias.

41.44.10

.xam.config.vim.alias.

=10.241.44.20

.xam.config.vim.alias.

4.42

Preloaded VIMs

isolated centera.param.xsystem=10.2
isolated encrypted hp.param.xsystem

isolated sun.param.xsystem=10.241.4

.xam.config.vim.preload.l=emc
.xam.config.vim.preload.2=isolated encrypted hp

Centera VIM XSystem specific properties
xam int.com.emc.centera.retrycount=100

Logging

xam int..xam.log.level=5
xam_int..xam.log.verbosity=5
.xam.log.path=C:\xam. log

Refer to the vendor-specific installation instructions.

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 5: C Library

Configuring the The HTTP VIM can be configured using a configuration file or by using
HTTP VIM parameters passed as part of the XRI.

HTTP VIM Parameters

Parameters that control the HTTP VIM can be passed as part of the XRI. The
HTTP VIM recognizes the following parameters:

» targetServer.ipAddress={IP address} - The IP address to which the
HTTP server should connect

« targetServer.port={port} - The port to which the HTTP server should
connect

« targetServer.vimname={vimname} - The vimname of the VIM to be
loaded by the HTTP server.

Example XRI (one string, with "\ \" indicating line continuation):

snia-xam://xam vim http g!127.0.0.12\\
targetServer.vimname=Remote&\\
targetServer.ipAddress=1.2.3.4&\\
targetServer.port=9923";

HTTP VIM Configuration File

A properties file may be used to configure any of the following HTTP VIM
options:

* |P Address of HTTP Server
* Port of the HTTP Server
+ vimname of VIM to be loaded by the HTTP Server

The HTTP VIM will check for a config file named "vim.properties” in the
working directory.

Supported Configuration Namespaces

The HTTP VIM recognizes the following string property namespaces:

* .org.snia.xam.vim.parameter.targetServer.ipAddress={IP address} -
The IP address to which the HTTP server should connect

« .org.snia.xam.vim.parameter.targetServer.port={port} - The port to
which the HTTP server should connect

» .org.snia.xam.vim.parameter.targetServer.vimname={vimname} -
The vimname of the VIM to be loaded by the HTTP server.

Configuration File Syntax

The vim configuration file has the following attributes (similar to the java
"Properties" format):

« Each configured field name is specified as a name/value pair
delimited by '=' (e.g,. my_field_name=my_field_value).

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 29

C Library

30

© SNIA

* White space and commented lines (prefixed with the '# character) are
ignored.

All defined fields are of type "xam_string" unless otherwise specified using a
simple type prefix (e.g. <stype>.name=value), where "stype" may be either
xam_string, xam_int, xam_double, or xam_datetime (note that xam_xuid
types are not currently supported).

Example Configuration File:

.org.snia.xam.vim.parameter.targetServer.ipAddress=1.2
.3.4
.org.snia.xam.vim.parameter.targetServer.port=9923
.org.snia.xam.vim.parameter.targetServer.vimname=Remot
e

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 6: Java Reference VIM

Chapter 6: Java Reference VIM

This chapter provides information about the Java Reference VIM that is
provided with the XAM™ Storage System SDK.

The following topics are discussed:
+ Overview
* Unpacking your ZIP file
* Installing Compilers and Dependent Libraries
* Building the Code for Your Platform
» Installing the Binaries for Your Platform
» Configuring and Operating the XAM™ Reference VIM and Library
* Building and Running the Client Example
» Using Reference VIM Example Programs
* Building and Running Tests and Examples

* Running Your Application with XAM™

Overview The Reference VIM is part of the SNIA XAM™ SDK, which is intended to
implement the semantics of the XAM Storage System in a correct and
meaningful manner. The Reference VIM supplies functionality that allows an
application writer to exercise each of the XAM API methods. Application
writers can use the Reference VIM to develop and test an application, without
needing access to a commercial XAM Storage System. Because the
Reference VIM is a development tool and is not intended to be deployed as
part of a robust product, it should not be distributed to end users. While the
Reference VIM is stable and reasonably robust, it will not scale in terms of
performance or large numbers of XSets.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 31

Java Reference VIM

© SNIA

Summary of Features

For the reference implementation, the XSets are persisted as xm1 files. By

default, the directory used as the repository is defined by java.io.tmpdi .
The xm1 file is named xSet <XUID>.xml. Any XStreams persisted for the
XSet will be in a directory named XSet <XUID>.

The Java Reference VIM can specify a different repository location. See
“Specification of a Different Reference VIM Repository Location” under
“Running Your Application with XAM™” for more information.

XAM™ API Features
The Java Reference VIM supports:

Note:

The ability to specify a different repository location. See “Specification
of a Different Reference VIM Repository Location” under “Running
Your Application with XAM™* for more information.

Anonymous and plain authentication, but does not support
authorization level checking. When used without additional
configuration, the username and password are hard coded to
testuser and testpasswd, respectively. The Reference VIM may
optionally be configured to use an external file containing clear text
usernames and passwords. This configuration allows applications to
experience access restrictions, such as may be presentin a
production system.

Single-user mode. Multi-threaded applications and multiple clients
have not been tested and will not work as specified in the [XAM-
ARCH].

XAM-specified retention model. The Reference VIM supports a
minimal set of retention policies. These policies are intended to give
programmers experience in using retention policies. Users should not
expect that these policies will be available on other XAM Storage
Systems.

Setting autodelete and shred values and policies.
Basic job support; only support for XAM Query jobs.
— Can submit and halt jobs.

— Can commit XSets that define a job before or after running the
job.

Commit of a XSet with a running job is NOT supported.

Complete support for XAM Level 1 and XAM Level 2. The Reference
VIM implements query using two important technologies: level 1
query and level 2 query.

1.The directory may also be changed by specifying an argument on the XSystem’s XRI.
See “Configuring and Operating the XAM™ Reference VIM and Library”.

32

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Chapter 6: Java Reference VIM

— The level 1 query is implemented using Java DB, which is
present in Java 6. Users of Java 5 may download Derby DB from
the Apache project and put the Derby jar file in the class path.

— The level 2 query is implemented using the Lucene full text
search engine. Users that want to use the textual search
capabilities of the Reference VIM must download the Lucene
core jar file and add it to the class path. If Lucene is not in the
class path, the Reference VIM indicates that level 2 functionality
is not supported by setting the appropriate property in the
XSystem instance.

« This functionality has been tested with Lucene 1.9 and
Lucene 2.4.1. The Reference VIM only supports this
functionality on XStreams of type text/plain. Level 2
functionality is implemented using the Lucene
StandardAnalyzer which provides case-insensitive searches.

« If you are adding support for level 2 queries to an existing
XSystem, you may wish to delete the ReferencevimDB
directory before starting the Reference VIM. This will cause
existing XSets to be indexed for level 2 functionality.

Exporting and importing of XSets, including those containing streams.
However, importing XSets with retention information is not
guaranteed to work when importing XSets from a different VIM
implementation. The Reference VIM will validate imported XSets,
according to the [XAM-ARCH)], and reject those XSets that contain
retention settings that the Reference VIM is unable to honor.

Example client program that uses the reference VIM
(ReferencexSetClient.java). This program demonstrates how
a client would configure and use the Reference VIM.

API Methods Supported
The Java Reference VIM supports all of the APl methods:

XAM™ SDK 1.01 (August 31, 2009)

VIM: createXSystem

XSystem: connect, authenticate, abandon, close, createXSet,
openXSet, deleteXSet, isXSetRetained, getXSetAccessTime,
asyncOpenXSet, and asyncCopyXSet

XSet: abandon, applyAccessPolicy, applyAutodeletePolicy,
applyShredPolicy, close, commit, createProperty, deleteField,
createXStream, openXStream, getField (most of the field
manipulation methods are supported), openExportStream,
openlmportStream, submitJob, haltJob, createRetention,
setBaseRetention, setRetentionEnabledFlag, setRetentionDuration,
and setRetentionStarttime, holdXSet, releaseXSet, accessXSet,
getXSetAccessTime, getActualAutodelete, getActualShred,
asyncCommit, and asyncOpenXStream

XStream: read, write, close, tell, seek, asyncWrite, asyncRead, and
asyncClose

WORKING DRAFT 33

Java Reference VIM

Unpacking your
ZIP file

Installing
Compilers and
Dependent
Libraries

Windows

34

© SNIA

« XUID: toBytes, toString, and equals. Also XUID creation and
encoding/decoding and ability to instantiate XUID instance based on

a XUID value.

The working draft VIM SDK is provided as a ZIP file of the SDK source code.
Please unzip this file in the desired directory and follow the instructions

included with each component.

The directory contents are listed as follows:

/Java_Reference VIM

/build Temporary directory created and used
during building
build.xml The Ant build script

/config/ReferenceVIM.config

The XAM Library configuration file
used while running the unit tests

/deliverables Output directory for the final build
components that are created during
the build

/doc Output directory for the Java doc
process

/examples Example program source files

/src Java Source for the Reference VIM

/test Java Source for the unit tests

xam.test.props

A Java properties file to configure the
unit test program

Installing JUnit

JUnit is a simple framework for writing and running automated tests.

To install JUnit:

1 Download the latest version of JUnit (junit.zip)from http://
download.sourceforge.net/junit/.

2 Install JUnitin the top level /1ib directory (top level XAM that is), as
it does not need to update the class path. The class path is updated
automatically inside of the ANT script.

Note:

Only JDK and ANT are required to build and run unit tests. During

development, more software may be required, but those
requirements are outside of the scope of this document.

To install JUnit on Windows:

1 Unzip the junit. zip distribution file to a directory referred to as

$JUNIT HOMES%.

2 Add JUnit to the class path:

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Unix (bash)

Building the Code
for Your Platform

Ant

Derby

JUnit

Chapter 6: Java Reference VIM

set CLASSPATH=%CLASSPATHS%;%JUNIT HOME%\junit.jar

To install JUnit on Unix:

1 Unzip the junit. zip distribution file to a directory referred to as
$JUNIT HOME.

2 Add JUnit to the class path:

export CLASSPATH=$CLASSPATH:$JUNIT HOME/junit.Jjar

3 (Optional) Unzip the $JUNIT HOME/src.jar file.

4 Testthe installation by using either the textual or graphical test runner
to run the sample tests distributed with JUnit.

Note: The sample tests are not contained in junit. jar, butin the
installation directory directly. Therefore, make sure that the
JUnit installation directory is in the class path.

— For the textual TestRunner, type:

java junit. textui.TestRunner
junit.samples.AllTests

— For the graphical TestRunner, type:

java junit.swingui.TestRunner
junit.samples.AllTests

All the tests should pass with an Ok (textual) or a green bar
(graphical). If the tests don't pass, verify that junit.jarisinthe
class path.

Supported Platforms

Currently tested platforms are Solaris 10 (tested on X86 and SPARC),
Windows (WIN32), Fedora 10, Open SUSE 10, Ubuntu 9, and Apple OS X.

Software Requirements

The following packages are required to build or run the Reference VIM: ant,
Derby, JUnit, Java, JavaCC, JavaMail, JavaBeans Activation Framework
(JAF), and Lucene. Derby is required to build AND run. Lucene is required to
build and optional to run. If Lucene is not in the runtime class path, Level 2
query is not supported at run time.

Download ant from http://ant.apache.org. This software was tested with
version 1.7.0.

Download Derby from http://db.apache.org/derby/ (if using JDK/JRE earlier
than 1.6).

Note: Sun distributes this as Java DB with JDK/JRE 1.6.

1 Download JUnit from http://www.junit.org.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 35

Java Reference VIM © SNIA

2 Make sure you copy junit-3.8.1.jar inthe <sdk-install-
dir>/trunk/1lib subdirectory.

Java Download Java 1.5 (or later) from http://java.sun.com (or the platform JVM
provider). This software was tested with version 1.5.0_07.

JavaCC Download JavaCC from https://javacc.dev.java.net/ (Version 4.2 or later).
This software is required to build the Reference VIM, but is not required at run
time.

JavaMail 1 Download JavaMail 1.4 or later from http://java.sun.com/products/
javamail.

2 Copy mailapi.jar or mail.jar tothe standard extension library
directory, which will vary depending on java version: <jdk-home>/
jre/lib/ext.

OR

Download mailapi.jar or mail.jar tothe <sdk-install-
dir>/trunk/1lib subdirectory.

JavaBeans Activation 1 Download JAF from http://java.sun.com/javase/technologies/desktop/
Framework (JAF) javabeans/jaf/index.jsp.

Note: JAF is a standard extension of the Java platform. You must
download this unless you are using Java SE 6.0.

2 Copythe activation.jar file to the standard extension library
directory or to <sdk-install-dir>/trunk/lib.

Lucene 1 Download Lucene from http://apache.org/lucene (1.9 through 2.4.1).

Note: This software provides optional functionality, which if present,
will enable level 2 query. Only the Lucene-core jar file is
needed in the class path. It is recommended to use the latest
version.

2 Install this software in the <sdk-install-dir>/trunk/1lib
subdirectory.

PATH Requirements
Make sure to set your PATH as follows:

+ Set the JAVA_HOME environment variable to point to the root java
installation directory.

* Include the compiler for each platform in the PATH.

* Include the JAVA_HOME and the java directories containing the java
compiler (javac) and java in the PATH.

Building the XAM SDK using ant

To build the XAM SDK using ant, follow these steps:

1 If you haven't already done so, download and install ant and java.
Download the other required jar files and place them in the <sdk-

36 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Installing the
Binaries for Your
Platform

Configuring and
Operating the
XAM™ Reference
VIM and Library

Chapter 6: Java Reference VIM

install-dir>/trunk/1lib subdirectory: junit-3-8.1.jar,
mailapi.jar, activation.jar.

Build the xamlib.jar (Java XAM Library)and snia-xam.jar
(Java_Interfaces).

Enter the Java_Reference_VIM directory.

Run ant deliverables to build the Reference VIM jar file.
Deliverables will be generated at the following locations:

Java Reference VIM/dist/referenceVIM.jar -
reference VIM jar

Running the ant test

Build the additional build targets, as follows:

1
2

Note:

To build the tests, use the “build_test” target.

To build the tests and the reference VIM jar files, use the
“deliverables” target.

Retention tests are not run by default; they are run via “ant
test_retention”.

Install all XAM 5 ar files with other application jar files. Make sure you put
them in the application’s class path.

This section contains the following configuration topics:

XAM™ SDK 1.01 (August 31, 2009)

Basic Configuration

User Configuration

Access Control Policies

Autodelete Configuration

Autodelete and Shred Policies
Retention Policies

Import Processing

Asynchronous Methods

Reference VIM Logging

Summary of Configuration Properties

Scalability

WORKING DRAFT 37

Java Reference VIM

Access Control Policies

38

© SNIA

Basic Configuration

The tests and examples use one basic property file to provide configuration
information: . /config/ReferenceVIM.config. This XAM configuration
file is passed to the XAM Library. It contains important property definitions,
including the name of the VIM and its associated Java class name. This file
must contain a property of the form . xam.config.vim.alias.<VIM-
Name>. The last part of the property name has to match the name of the VIM.
The property value must specify the VIM class name.

Example:
.xam.config.vim.alias.SNIA Reference VIM=org.snia.xam.vim
.reference.ReferenceVIM

Logging properties can be specified as well. Please see “Java Library” in this
guide or view the README . txt file in the Java_XAM_Library directory for
more information.

User Configuration

The Reference VIM is capable of being configured to use an external file
describing additional users. Without configuration, a hardcoded user
(testuser) and password (testpasswd) are available. The following
example shows a basic username/password text file which may be used to
provide additional authenticated users to a running instance of the Reference
VIM.

userl passl
user?2 pass2
user3 pass3
xyzzy plugh

Note: This file is a simple text file, and the passwords are not encrypted or
protected. The intention is to provide users with the opportunity to
experience XAM behavior in a multiple, user authenticated
environment, not to provide a secure storage system! If you want to
make this more secure, we suggest protecting the file with the
appropriate file permissions.

To use the external user file, set the XAM system property to refer to the path
of the file. For example, the following line may appear in your XAM
Configuration file:

org.snia.xam.reference.passwd=/tmp/passwd.txt

The Reference VIM will not have the built-in username and password
available if it has been configured to use the external user file.

The Reference VIM will create a unique access control policy for each defined
user. User policies grant read and write access to the named user; other
users have no access.

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 6: Java Reference VIM

The following example shows what access policies are created if the
ReferenceVIM was created using the password file example in “User
Configuration”:

Table 3 — Access Policy Example

ﬂ:ﬁ:e XSystem Policy List Policy Name

user1 | .xsystem.access.policy.list.user1 usert

user2 | .xsystem.access.policy.list.user2 user2

user3 | .xsystem.access.policy.list.user3 user3

xyzzy | .xsystem.access.policy.list.xyzzy Xyzzy
.xsystem.access.policy.list.org.snia.refvim.access.read.write.all org.snia.refvim.access.read.write.all
.xsystem.access.policy.list.org.snia.refvim.access.read.all org.snia.refvim.access.read.all

Setting the access policy on an XSet to “user1” denies all other authenticated
users the ability to read or write the XSet. Also note that if a user is removed
from the password file, any XSets having an access policy of that user are
inaccessible by all users. To regain access to those XSets, the user must be
added to the password file.

Two additional policies are defined. org.snia.refvim.access.read.all grants all
users read access to the XSet, and org.snia.refvim.access.read.write.all grants
read and write access to all XSets. Note that once org.snia.refvim.access.read.all
has been applied and committed, even the original owner of the XSet is unable to
modify the XSet.

Note: These access policies are provided for illustrative purposes; users
are cautioned not to assume that this behavior will be present in
systems supplied by storage vendors.

Autodelete Configuration

The Reference VIM supports autodelete and allows you to configure the time
period used by the autodelete daemon process. The property
org.snia.xam.reference.autodelete.period contains the number of seconds
between autodelete sweeps of the store. The default value is 300 seconds
(five minutes). Shorter times are acceptable to provide a more aggressive
processing and autodelete schedule, but doing so may result in reduced
performance as the Reference VIM spends more time evaluating XSets for
autodeletion criteria.

The value of org.snia.xam.reference.autodelete.period to a negative value will
disable the autodelete process, although setting the autodelete property on
the XSet is still supported.

Because of autodelete functionality, only a single instance of the autodelete
daemon, per store path, is created. Multiple instances of the
ReferenceXSystem using the same store path are all sharing the same
autodelete daemon. Thus, only the first instance of a ReferenceXSystem will
create an autodelete daemon with the specified autodelete period.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 39

Java Reference VIM

40

© SNIA

Be aware that setting autodelete on a simple XSet without setting any
retention will result in the XSet being deleted the next time the autodelete
daemon runs. Depending on where the autodelete daemon is in its timing
cycle, the XSet could be deleted as soon as commit has completed.
Generally, autodelete should not be used on XSets without some retention
settings because the default management policy provides no retention. This
may not be true of other XAM Storage Systems.

Autodelete and Shred Policies

The Reference VIM provides three policies to set autodelete and shred
settings on an XSet using XSet.applyAutodeletePolicy and
XSet.applyShredPolicy settings. The policies provided are summarized in
Table 4.

Table 4 — Autodelete and Shred Policies

Policy Name Description

org.snia.refvim.disposition.autodelete autodelete = TRUE,
shred = FALSE

org.snia.refvim.disposition.autodelete.and.shred autodelete = TRUE,
shred = TRUE

org.snia.refvim.disposition.shred autodelete = FALSE,
shred = TRUE

The Reference VIM does not support external creation or modification of
these policy parameters.

Retention Policies

The Reference VIM provides a set of retention policies allowing the
application to set retention criteria using policies instead of explicit settings.
These policies may be used for base, event, or application-defined retentions,
as shown in Table 5.

Table 5 — Retention Policies

Policy Name Description
org.snia.refvim.retention.none duration = 0, enabled = FALSE
org.snia.refvim.retention.one.second | duration = 1000 mS, enabled =
TRUE
org.snia.refvim.retention.one.day duration = one day, enabled = TRUE

org.snia.refvim.retention.thirty.days duration = 30 days, enabled = TRUE

org.snia.refvim.retention.one.year duration = 365.25 days, enabled =
TRUE

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Chapter 6: Java Reference VIM

The Reference VIM does not support external creation or modification of
these policy parameters.

Import Processing

According to the [XAM-ARCH], the Reference VIM will validate retention and
disposition policies when the XSet is imported. Any error during policy
validation will cause an appropriate exception to be thrown when closing the
import XStream. Another effect of the import validation failing is to place the
XSet in a corrupt state, making it unusable. At this point, the application may
only abandon and close the XSet.

While it is permissible for an XSystem to make adjustments to its policies, or
adjust XSet properties in such a way as to avoid violating retention criteria,
the Reference VIM does neither. Unless the imported XSet's policy
parameters match the Reference VIM's retention policy parameters, the
import process will not successfully complete.

The following is a list of conditions that will cause the import process to fail:

* A policy name in the imported XSet is unknown in the Reference VIM
XSystem.

+ The importing XSet policy specifies a retention policy duration longer
than that supported by the Reference VIM's policy of the same name.

« The importing XSet policy specifies a retention enabled differing from
that supported by the Reference VIM's policy of the same name.

In all cases of the import process failing (when closing the import XStream),
the XSet becomes corrupt.

If the XSet already exists in the Reference storage, additional processing
takes place.

« If the binding attribute in the import XSet is different than the binding
attributes of the previously stored XSet, a new XUID will be issued
when the XSet is committed. The previously stored XSet is not
affected.

» If the effective retention of the importing XSet is less than that of the
previously stored XSet, the import will fail when closing the
importXStream.

Asynchronous Methods

The Reference VIM supports all the specified asynchronous operations. The
methods are implemented with a single operation queue and worker threads
to execute the operations. The default implementation provides a single
worker thread, but more may be configured.

The XAM_INT property org.snia.refvim.async.thread.count is
used to configure the number of worker threads that the Reference VIM will
use. For example:

xamLibraryInstance.createProperty (
"org.snia.refvim.async.thread.count", false, 2);

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 41

Java Reference VIM

42

© SNIA

configures the Reference VIM to use two worker threads to execute the
asynchronous operations. Applications should treat this parameter with care;
too many threads will result in degraded system performance. A few threads
will provide the most benefit.

Reference VIM Logging

The Reference VIM supports the XAM-specified logging property settings and
integrates with the Java Logging as implemented by the Java XAM Library.
The Reference VIM uses and requires the org.snia.xam.util.LogManager
class.

The LogManager restricts the use of Java Logging to a single logger per
logfile instance. With this pattern, it is possible to integrate log entries from
multiple instances of the Reference VIM. When multiple Reference VIM
instances are running in the same JVM and are using the same logging
parameters, log entries will be integrated into a single log file.

XAM Levels correspond to Java Logging levels as shown in Table 6:

Table 6 - XAM™ and Java Logging Levels

XAM Level Java Level Type of Information Logged

NONE OFF Nothing

FATAL SEVERE Non-recoverable errors

ERROR SEVERE Recoverable errors

WARN WARN Notification of potential problems

INFO INFO Configuration, performance; information
of interest to application programmers

ALL FINEST Debugging information

The Reference VIM will detect a change to the property .xam.log.verbosity.
The following setting, xam. log.verbosity xam int 100, will turn on
method entry/exit trace when the logging level is at XAM_LOG_ALL. Other
verbosity values have no effect at other levels of tracing (i.e., less than
XAM_LOG_ALL).

Note: Configuration of logging when running the Reference VIM in a
separate JVM or on different hosts is not within the scope of this
document.

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 6: Java Reference VIM

Summary of Configuration Properties

Table 7 summarizes the Reference VIM configuration properties.

Table 7 — Summary of Configuration Properties

Property Name Type Description

org.snia.reference.passwd XAM_STRING | Path to the username
password file.

org.snia.reference.autodelete.period XAM_INT Number of seconds
between autodelete
sweeps

org.snia.refvim.async.thread.count XAM_INT Number of worker

threads to execute
async operations

The Reference VIM also supports the XAM-specified logging properties.

Scalability

The Reference VIM has been implemented with a focus on adhering to the
[XAM-ARCH)]. Because of this, no attempt has been made to make the
Reference VIM scale in terms of throughput or large numbers of XSets. While
the Reference VIM is reasonably robust and stable, it may generate run-time
errors when large numbers of XSets have been stored. Programmers are
cautioned to limit the maximum number of XSets in tests to less than 5,000.

Building and Currently there is only one example client program:
Running the Client ReferenceXSetClient.java. This program shows you how to write a
simple XAM client that uses the Reference VIM. Because the reference VIM
Example is run in the same JVM as the client program, the client program also must
load and enable the reference VIM using the XAM Library. The example
program can be run using ant or from the command line. The example
program also depends on the two Reference VIM property files to provide
configuration information. For more information, please see “Configuring and
Operating the XAM™ Reference VIM and Library.”

Building and Running the Example Using ant

Run ant examples.

This command builds and runs the example program. See “Viewing Build
Example Output - ant”.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 43

Java Reference VIM © SNIA

Building and Running the Example From the Command Line

1 Set the default to the Java Reference VIM directory.

2 To build the client program, set the class path to include the two jar
files specified above or specify the jar files using the javac
commands -cp option.

For example, on Solaris:

javac -cp "./deliverables/referenceVIM. jar:../
Java_XAM Library/deliverables/xamlib.jar"
examples/ReferenceXSetClient. java

3 Torun the client program, you must also include the
Java_ Reference VIM directory as part of the class path.

For example, on Solaris:

java -cp ".:./deliverables/referenceVIM. jar:../
Java_XAM Library/deliverables/xamlib.jar"
examples.ReferenceXSetClient

Note: If you do not specify an output directory, then the java
compiler creates the class file in the same directory as the
java file. By contrast, the ant examples target creates the
class file in the . /build/classes/examples directory.
Make sure that you specify the class path so that you are
running the desired ReferenceXSetClient instance.

Viewing Build Example Output - ant
XAM XSet Client Example Program - Uses Reference VIM by default

Initializing VIM

Loading test properties from file: xam.test.props
Loading the VIM using the Java XAM Library.

VIM Configuration contained in file: ./config/
ReferenceVIM.config

Client application example program testing:
Client application connecting to the VIM
Connection arguments: snia-xam://

SNIA Reference VIM!localhost

Client application authenticating user credentials

Client application creating & persisting XSet with
properties.

XSet created - XUID:
AAAGAWAeQQsxMjI4ANDAXNzZMONTI3AXcW190AUPNA

XSet updated (binding change) - XUID:
AAAG6AWAekJIsxMjI4ANDAxXNzMONTUOAngnwDsAPonD

Close & reopen XSet and test getting some property
values

test.boolean=true

test.double=1234.5

44 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 6: Java Reference VIM

test.string=testing string....
Closing XSet and XSystem

Using Reference The directory examples contains three simple programs to exercise basic
VIM Example features of the Reference VIM.
Programs + ReferencexSetClient - Connects to a Reference VIM instance

and creates an XSet.

* ExportXSetClient - Connects to a Reference VIM instance and
exports and XSet. The ExportXSetClient takes exactly one
argument, a base 64-encoded XUID. This program will create a file
with the name <XUID>.dat and put the canonical XSet data in it.

* ImportXSetClient - Connects to a Reference VIM instance and
import an XSet. The ImportXSetClient takes exactly one
argument, a filename. The program expects that the file will contain
canonical XSet data. This data is read and imported into the
XSystem.

All three programs extend a simple class, ExampleBase, which contains
enough structure to hold instance variables for a XAM Library and an
XSystem instance.

Building and Configuring Unit Tests

Running Tests xam.test.props is a properties file used by tests and client example

and Examples programs. It contains definitions for the xri connection argument along with
the name of the XAM configuration file and the default authentication
credentials.

The xam.test.xri property specifies the VIM connection xri value.

To edit the xam. test.props file, modify the xam. test.xri line by
specifying an absolute directory path for the di r parameter. The path
specified will obviously vary depending on the operating system.

Example xri values:
+ Default value - no directory location specified:

xam.test.xri=snia-xam://
SNIA Reference VIM!localhost

» Directory location of /home/mytest/xam storage (Unix)

xam.test.xri=snia-xam://
SNIA Reference VIM!localhost?dir=/home/
mytest/xam storage

» Directory location of C: \mytest\xam storage (Windows)

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 45

Java Reference VIM

Running Your
Application with
XAM™

46

© SNIA

xam.text.xri=snia-xam://
SNIA Reference VIM!localhost?dir=C:\mytest\xa
m_storage

See “Configuring and Operating the XAM™ Reference VIM and Library” for
more information.

Building and Running Tests Using ant

1 Specify directories used for tmp files and persisted XSets. By default,
XSets are persisted to the java.io.tmpdir. This directory also
contains any tmp files created. On Solaris, this defaults to something
like: /var/tmp.

— To specify a different storage location for persisted XSets, modify
the xam.test. xri parameter specified in the xam. test.props file
and add a dir parameter value. An xri value specifying a storage
location (when running on Solaris) would look like:

xam.test.xri=snia-xam://
SNIA Reference VIM!localhost?dir=/home/mytest/
xam storage

Note: See “Running Your Application with XAM™” for more
information on specifying a storage location.

— Thevalue of java.io.tmpdir can also be set to specify the
storage location for tmp files. It will also be used as the XSet
persistence directory if no dir parameter value is specified in the
xri connect information.

2 Run ant test to build (if necessary) and run all the JUnit tests
EXCEPT retention. Other targets include:

— test_retention - runs the retention tests
— clean_test -cleans all test . class files
— build test - builds test files

— also targets to run individual tests: test_xsystem,
test xset, test_xstream, test_auth,
test retention

3 Manually delete the XSet xm1 files and directories when you no longer
want them (e.g., XSet_*). You may also have to delete temp copies
of XStreams (e.g., XStream #####.tmp).

The Reference VIM implements the XAM API but also implements a backing
store. The repository created by the Reference VIM is based on the machine's
file system. The reference VIM persists XSets and associated XStream
objects as files. In a vendor-specific VIM, the backing store would probably be
some entity outside the VIM implementation.

Default Repository Location

By default, the Reference VIM persists XSets and XStreams to the temp
directory specified by java.io.tmpdir. This directory is also where any

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Files Created for a
Persisted XSet

Temp Files Created

Database For Query
Support

Chapter 6: Java Reference VIM

temp files are created. On Solaris, this defaults to something like /var/tmp.
On Windows, it is likely to be c: \temp. To specify a different location for the
repository, see “Specification of a Different Reference VIM Repository
Location”.

Directories and Files Created

To create unique file names, a file name-safe variant of the Base64-encoded
XUID value is used. The Reference VIM uses the filename-safe Base64-
encoded specified in RFC-4648 (Table 2) for flename. The Reference VIM
only supports XUID interchange using the originally specified Base64 variant.

The XSet and its properties are persisted in an XML file. The format of the
XML file follows the XAM specification's export format layout (see [XAM-
ARCH]). In addition, data for each XStream is stored in a separate file. The
XStream data files are located in a subdirectory that is also named using the
XUID's filename-safe string. The XStream contents are stored in the same
format that the application used when creating the XStream. No translation is
performed on the data.

The following files are created for a persisted XSet:
* XSet <xuid-hex-string>.xml

This file contains the XML description of the XSet and conforms to the
XAM Export format.

e XSet <xuid-hex-string>
This directory contains any XStream (stream field data for the XSet).
*+ XSet <xuid-hex-string>/XStream #####.data

This stream field contains payload/data for a single XStream. Note
that the field definition in the XSet XML file will contain the name of
the associated XStream data file.

The following temporary files are created:
* XSet <xuid-string>.tmp

* XStream ####.tmp

The ReferenceVimDB directory is created by the SQL database that the
Reference VIM uses to support internal housekeeping and to query job
support. Generally, this database is automatically created and maintained by
the Reference VIM.

If an error occurs, you can rebuild the database by stopping the Reference
VIM (or the application that has the Reference VIM embedded), by deleting
the database directory, and by restarting the Reference VIM (or application).
The database is automatically rebuilt when this process has been executed.

The ReferencevimDB directory has a subdirectory called contentIndex,
where Lucene segment data is stored. If the Lucene indexes become

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 47

Java Reference VIM

48

© SNIA

corrupted, remove the ReferenceVvimDB directory and restart the Reference
VIM so that the database and content indexes are rebuilt.

Note: If the database has to be rebuilt, the Reference VIM start-up time will
be longer than usual. It could take a few extra seconds to several
minutes.

Specification of a Different Reference VIM Repository Location

Because XRIs support the specification of a host, when an application uses
an XRI that refers directly to a Reference VIM, the host specification is
ignored. The Reference VIM is only connecting directly to a local embedded
XAM Library. To connect across hosts, the http VIM is required (see
Chapter 7, “HTTP Protocol VIM”).

You can specify the location of the repository by providing a value for the dir
on the XRI information passed to the XSystem.connect command. The
absolute path that you specify must exist and be correctly formatted for the
operating system. The user must have full privileges for the directory.

For example, to change the storage location used by the Reference VIM:

1 Set the directory to the Java Reference VIM sub-directory in the
SDK installation.

2 Modify the xam.test.xriline of the xam. test . props file by specifying
a absolute directory path for the dir parameter. The path you specify
will obviously vary depending on the operating system.

See “Configuring and Operating the XAM™ Reference VIM and
Library” for more information.

Example xri values:

» Directory location of /home/mytest/xam storage (Unix)

xam.test.xri=snia-xam://
SNIA Reference VIM!localhost?dir=/home/mytest/
xam storage

» Directory location of C: \mytest\xam storage (Windows)
xam.text.xri=snia-xam://

SNIA Reference VIM!localhost?dir=C:\mytest\xam s
torage

WARNING: Applications will be able to access the hosts entire disk
structure using this XRI parameter. The Reference VIM does
not provide any security restrictions on this setting. Users are
strongly cautioned.

Repository Maintenance

Running the tests or running sample programs over and over again may
create large numbers of files or directories in the repository. Currently, there is
no automated way to clean up the repository once the XSet files and
directories are created. Periodically, it may be necessary to clean out the files

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 6: Java Reference VIM

in the repository by manually deleting files and directories like XSet_* and
XStream_*. Developers may want to specify a private location for the
repository to isolate their files and make debugging and tracking XSets easier.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 49

HTTP Protocol VIM © SNIA

Chapter 7: HTTP Protocol VIM

This chapter provides information about the HTTP VIMs that are provided with
the XAM™ Storage System SDK. Topics include the following:

* Description

* Functionality

» Server Configuration, Installation, Building, and Testing
* Protocol VIM Use

+ Java VIM Requirements

Note: For additional information on the architecture and protocol of the
HTTP VIM, see Appendix B: “HTTP VIM Architecture”.

Description The HTTP Protocol VIM is a prototype that demonstrates how VIMs may be
“stacked” and provides remote access via the HTTP protocol. Stacking VIMs
is an architectural feature of the SNIA XAM™ API and is allowed because the
VIM API is standardized within the SNIA XAM API specification (see [XAM-
ARCH)]).

Stacking VIMs allows systems to be configured with functionality that may not
be supplied by a storage vendor's VIM. Examples of added functionality may
include storage federation, compression, encryption, etc. The HTTP VIM
provides remote access to VIMs, via HTTP, which may otherwise not have
access. Currently, the SNIA XAM SDK contains a reference VIM which
provides correct behavior but is unable to operate over networks. The HTTP
Protocol VIM allows an application to use the Reference VIM across a
network link.

The HTTP Protocol VIM is contained in two parts. The upper half (client) is a
traditional VIM implementation that provides connectivity to the XAM Library.
The client VIM portion translates all XAM API method calls into HTTP
operations and sends them to the HTTP Protocol VIM Server. The HTTP
Protocol VIM Server creates a local instance of an arbitrary VIM and relays
HTTP VIM method calls to the VIM.

50 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 7: HTTP Protocol VIM

The HTTP Protocol VIM Server is written in the Java (1.5) programming
language and can host any VIM that has also been written in the Java
language. Currently, the HTTP Protocol VIM Server cannot host VIMs written
in other languages.

This release of the HTTP Protocol VIM also supplies a Java Client HTTP VIM
that will work with this server. The C XAM Library also supplies functionality
for working with the HTTP Protocol VIM Server.

CAUTION: The HTTP Protocol VIM is a prototype and technology
demonstration. It has not been engineered for performance,
throughput scaling, or security. The HTTP Protocol VIM can
function as a development tool but should not be deployed as
part of a shipping product.

CAUTION: This protocol and VIM server do not currently support
HTTPS. The only security available is the authentication
provided by the target XSystem and the configured legal XRI
listin startup.properties. There is no security provided
on XObject handles, and clients could possibly guess new
handle values and obtain access to objects to which they
may not otherwise have access. Applications should close
unused XObject instances when they are no longer used.
Doing so frees up needed resources in the HTTP Protocol

VIM Server.
Functionality All specified SNIA XAM™ methods are supported for these objects:
* XSystem

+ XSet

+ XStream
+ Xlterator
+ XAsync

Note: Some methods, although specified by the [XAM-ARCH], are not
supported by the Reference VIM and have not been fully tested (e.g.,
XSystem.openXStream).

Server This section includes the following topics:
Configuration, - Configuring the HTTP VIM Implementation Target of the HTTP VIM
Installation, Client
Building, and _ , _ o
. * Installing Required Runtime Libraries
Testing

* Building the Server

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 51

HTTP Protocol VIM © SNIA

* Running Ant Tasks
* Verifying the Server

« Starting the Server

Configuring the HTTP VIM Implementation Target of the HTTP VIM Client

The HTTP VIM Server configuration files must be located in the run time "base"
directory. The code looks up the configuration files using the “.” directory for the
file named startup.properties. This configuration file is in a standard XAM
configuration format file that allows you to adjust the server address and the
configured VIMs, as follows:

+ HTTP VIM Server address - identifies the host IP address to use, the
port, and the server version. The default supplied is 127.0.0.1, which
limits connections to those being sent to 127.0.0.1. To use an external
interface, change this value to match the IP address of your external
interface.

* Configured VIMs - lists the VIM classes and VIM stacks supported for
the server.

Here is an example startup.properties file:

.org.snia.xam.http.server.host=127.0.0.1
xam_int..org.snia.xam.http.server.port=9923
.org.snia.xam.http.server.version=1.0
.org.snia.xam.vim.alias.Remote=dummyVIM|SNIA Reference VIM
.org.snia.xam.vim.alias.SNIA Reference VIM=org.snia.xam.vim.r
eference.ReferenceVIM

xam_int..xam.log.level=3

xam_int..xam.log.max.size=1024

Two other configuration files are also present in the directory:

* handlers.properties - This configuration file contains a list of
handlers identified by name followed by the class that implements
them. This file must not be modified. It will be integrated into the build in
a later release.

* HTTPTestClient.config - This XAM configuration file is used by
the unit test program and its instance of the XAM Library. Your
application will use a different one.

Installing Required Runtime Libraries

To install required runtime libraries, get the following external jar file libraries
and place them in the HTTP Protocol VIM/1ib directory:

* concurrent.jar - public thread library often used for thread pools,
etc. (http://g.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html)

* Jjetty04.2.27.7ar - Jetty Web Server (http://jetty.mortbay.org/jetty/)

* servelet.jar - Java Servelet framework (http://java.sun.com)

52 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Chapter 7: HTTP Protocol VIM

Building the Server

This project requires Java 5 (or later) and the ant build tool (http://
ant.apache.org/). After retrieving the required library files and ensuring that
Java and ant are installed, you may begin building the HTTP Protocol VIM

Server.

To build the server:

1

Build the Java XAM Java Interfaces by executing ant
deliverables in the Java XAM Interfaces directory.

Build the Java XAM Library by executing ant deliverables in the
Java XAM Library directory.

Build the Reference VIM by executing ant deliverables in the
Java Reference VIM directory.

Build the HTTP server by executing ant in the HTTP Protocol VIM
directory.

Running Ant Tasks

The following ant tasks are described as follows:

ant - Builds the Isolation VIM jar and places the resulting jar file in
./deliverables

ant clean - Cleans up and remove all generated files
ant docs - Builds the associated Java docs

ant server - Executes a default configuration with the Reference
VIM (using /tmp for storage)

ant test - Executes unit tests against a currently running server

Verifying the Server

After building the HTTP VIM Protocol server, you may run the unit tests to
verify the server. To do so, you will need two command line shells.

To verify the server:

1

XAM™ SDK 1.01 (August 31, 2009)

In the first command line shell, start the default server:

ant server

Entering this command produces a listing of log output as the server
register handlers for each VIM method. Successful startup of the
server will conclude with the lines similar to:

[java] 11:39:00.942 EVENT Started SocketListener on
127.0.0.1:9923

[java] 11:39:00.942 EVENT Started
org.mortbay.http.HttpServer@6d75

WORKING DRAFT 53

HTTP Protocol VIM

Protocol VIM Use

54

© SNIA

In the second command shell, execute the unit tests with the
command:

ant test

Successful completion of the unit tests will produce output similar to:

[java] .computer.name.local File System
[Javal

[Java] Time: 46.491

[jJaval

[java] OK (33 tests)

[jJaval

Starting the Server

To start the server:

1
2

Make sure that all of the runtime libraries are in your classpath.

Make sure that all of the properties files are set up properly and are
located in the "current” directory.

To run the server, execute ant server within the HTTP Protocol
vIM directory. A default configuration for the Reference VIM is
available in this directory.

To use the HTTP Protocol VIM from your application, do the following:

1

Add the protocol VIM jar file (Isolation VIM Java.jar)to your
classpath.

Use an XRI that points to the HTTP Protocol VIM machine, such as:

snia-xam://
Remote!localhost?targetServer.ipAddress=127.0.0.
l&targetServer.port=9923

Note: The host and VIM portion of the XRI are not interpreted by
the HTTP Protocol VIM. To connect to the HTTP Protocol
VIM, you match add the targetServer.host and port
arguments to your XRI. These arguments tell the HTTP Client
VIM where to find the HTTP VIM Server.

Include a VIM alias to cause Remote to map to the HTTP Protocol VIM
Client name. For example, the unit test client uses the following
configuration item in its config file:

.xam.config.vim.alias.Remote=org.snia.xam.vim.http.
client.VIM

The server should alias Remote to point to the actual VIM to be
instantiated. The vimname supplied in the XRI argument will be
translated using the alias mechanism in the server.properties
file.

If you wish, you can change the VIM name mapping contained in
startup.properties. Changing the mapping allows your
application to use any appropriate VIM or system names. Your
application must also change its XRI, and the legal XRlI list in

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 7: HTTP Protocol VIM

startup.properties must also be changed to match the new VIM

name.
Java VIM The Java VIM requirements for use by the HTTP VIM Server include the
Requirements following:

* Public, no parameter constructor
* Implements the SNIA Java Bindings XAM Library as top-level object
* No “proprietary” method implementations

* Implements XAM operations appropriately (these will pass through
the HTTP VIM)

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 55

Chapter 8: Error Codes

© SNIA

Chapter 8: Error Codes

This chapter maps the C XAM™ error codes to Java XAM exceptions. The
mapping was generated by examining the C XAM Library JNI class
XAMErrors.java. When a mapping was not present, the code
sXAMException is typically used (for instance, in the generic exceptions, like
XSetException, XStreamException, etc).

Note: VIMs may override these codes for vendor-specific errors.

This chapter contains the following mappings:

+ XAMException

* FieldContainerException
* JobException

* XSetException

» XStreamException

+ XSystemException

* Non-Categorized C Errors

XAMException Table 8 contains the XAMException mapping:

Table 8 — XAMException Mapping

Java Exception

C Error Code

AuthenticationException

sAuthenticationException

AuthenticationExpiredException

sAuthenticationException

AuthorizationException

sAuthorizationException

FieldContainerException

sXAMEXxception *

* Other status code possible

56 WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA

FieldContainerException

JobException

XAM™ SDK 1.01 (August 31, 2009)

Chapter 8: Error Codes

Table 8 — XAMException Mapping

Java Exception

C Error Code

InsufficientResourcesException

sXAMEXxception

InvalidArgumentException

sinvalidArgumentException

InvalidOperationException

sInvalidOperationException

InvalidXUIDException

sinvalidXUIDException

JobException

sXAMEXxception

ObjectinUseException

sObjectinUseException

XSetException sXAMEXxception
XStreamException sXAMException
XSystemException sXAMEXxception

* Other status code possible

Table 9 contains the FieldContainerException mapping.

Table 9 — FieldContainerException Mapping

Java Exception

C Error Code

FieldDoesNotExistException

sFieldDoesNotExistException

FieldExistsException

sFieldExistsException

FieldInUseException

sFieldInUseException

FieldReadOnlyException

sFieldReadOnlyException

InvalidFieldNameException

sInvalidFieldNameException

InvalidFieldTypeException

sInvalidFieldTypeException

MaximumFieldException

sMaximumFieldException

Table 10 contains the JobException mapping.

Table 10 — JobException Mapping

Java Exception

C Error Code

JobCommandException

sJobCommandException

JobPermissionsException

sJobPermissionsException

JobResourceException

sJobResourcesException

JobRunningException

sJobRunningException

* Other status code possible

WORKING DRAFT

57

Chapter 8: Error Codes

XSetException

XStreamException

58

Table 10 — JobException Mapping

© SNIA

Java Exception

C Error Code

JobUnsupportedException

sdJobUnsupportedException

QueryException

sXAMException

* Other status code possible

Table 11 contains the XSetException mapping.

Table 11 — XSetException Mapping

Java Exception

C Error Code

HoldIDException

sHoldldException

InvalidXSetModeException

sInvalidXSetModeException

PolicyNameException

sPolicyNameException

PolicyMismatchException

sPolicyMismatchException

RetentionValueException

XsetlnaccessibleException

sXSetDoesNotExistException

XsetUnderRetentionException

sXSetUnderRetentionException

XsetUnderHoldException sXSetUnderHoldException
XsetAbandonException sXSetAbandonException
XsetCorruptException sXSetCorruptException

Table 12 contains the XStreamException mapping.

Table 12 — XStreamException Mapping

Java Exception

C Error Code

InvalidXStreamModeException

sInvalidXStreamModeException

XstreamAbandonException

sXStreamAbandonException

XstreamCorruptException

sXStreamCorruptException

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

XSystemException

Chapter 8: Error Codes

Table 13 contains the XSystemException mapping.

Table 13 — XSystemException Mapping

Java Exception

C Error Code

ConnectException

sConnectException

InvalidXRIException

sInvalidXRIException

VIMLoadException

sVIMLoadException

XsystemCorruptException

sXSystemCorruptException

XsystemAbandonException

sXSystemAbandonException

AsyncPendingException

sAsyncPendingException

AsyncHaltedException

sXAM_XASYNC_HALTED

XAMEXxception

sXAM_INVALID_HANDLE

XsystemAbandonException

sXAM_FILESYSTEM_ERROR

AthenticationException

SXAM_AUTH_DATA_NEEDED

InvalidOperationException

sXAM_NOT_SUPPORTED

JobException

SXAM_NOT_A_JOB

JobCommandException

SXAM_JOB_INVALID_CMD_SYNTAX

Non-Categorized

Table 14 contains the mapping for non-categorized C errors.

Table 14 — Mapping for Non-Categorized C Errors

Java Exception

C Error Code

XAMException

sXAM_INVALID_HANDLE

XsystemAbandonException

sXAM_FILESYSTEM_ERROR

AthenticationException

sXAM_AUTH_DATA_NEEDED

InvalidOperationException

sXAM_NOT_SUPPORTED

JobException

sXAM_NOT_A_JOB

JobCommandException

SXAM_JOB_INVALID_CMD_SYNTAX

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT

59

Appendix A: Reference VIM Architecture © SNIA

Class Structure

60

Appendix A: Reference VIM Architecture

This appendix documents the architecture of the SNIA XAM™ Reference
VIM. The Reference VIM is written in and leverages the object-oriented
capabilities of the Java language. Most of the implementation is
straightforward; however, parts of the implementation are rather complex and
require further explanation, which is the purpose of this chapter.

As of this writing, the Reference VIM is complete and the structure and
sequences documented here are extracted directly from the existing code.
While much of this document has been written for this purpose, some of the
content has been repurposed from the Reference VIM’'s readme. txt.

This document has the following major sections:
» Class Structure
» Operational Flow

An important point to consider when examining the class structure is the
relationship between the ReferenceXSystem and single or multiple instances
of managers. The most critical dynamic element to understand is the
Reference VIM query processing.

This section discusses the following classes with respect to the class
structure:

* XSystem

+ XSet

* XStream

* Persistence Manager
* Policy

 Jobs

+ DBManager

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix A: Reference VIM Architecture

XSystem

The ReferenceXSystem class is the core of the Reference VIM. Each
XSystem Instance is implemented with an in-memory instance of the
ReferenceXSystem class. This object mediates the creation of top level XAM
objects, as well as various manager classes to help perform XAM operations.

The Reference VIM uses manager instances to manage functionality that is
too complex to implement “in line” with the ReferenceXSystem methods.
Manager classes are described later in this document. The Reference VIM
has been designed so that new implementations for functional areas can be
integrated by changing a manager implementation.

The manager classes that are used are described in Table 15:

Table 15 — Manager Classes

This manager class... Is responsible for...

JobMgr Creating new job instances and managing those
jobs during run time.

AccessPolicyManager Checking the currently authenticated user and
providing access and permission checks.

RetentionMgr Managing XSet retention and retention policies
and for providing data retention checks on
XSets.

DispositionManager Implementing autodelete and shred functionality

for XSets (if requested) and using the
RetentionMgr at run time.

ReferenceVIMPersistenceMgr Storing XSets in the file system.

ReferenceXAsyncManager Maintaining a list of asynchronous operations
and dispatching them to worker threads. This
implementation is simple and just runs the
operations on the appropriate object.

DBManager Implementing a database of XSet field values so
that XAM Queries may be serviced. This
implementation uses a combination of an SQL
relational database management system and the
Lucene search engine for Level 2 queries.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 61

Appendix A: Reference VIM Architecture © SNIA

Figure 1 shows the interaction between the manager classes.

JobMgr AccessPolicyManager

RetentionMgr

AbstractFieldContainer
ReferenceAuthenticationStatus — XSystem DBManager DBSqlTranslator

ReferenceXSystem

authenticatedUsername:String

ReferenceVIMPersistenceMgr ContentindexManager

Runnable Runnable
ReferenceXAsyncManager DispositionManager

Figure 1 — Manager Classes

XSet

The Reference XSet is the Reference VIM’s implementation of the XSet
interface (see Figure 2, “Reference XSet”). This implementation uses the
Java XAM Library’s AbstractFieldContainer class to implement most of the
field storage. All in-memory instances of property fields are stored using the
Java XAM Library’s Property implementation class. Streams are implemented
using the Reference XStream implementations.

Each XSet tracks which state it is in, via an Operational State variable. This
state matches the finite state machine (FSM) of XSets that are specified in the
[XAM-ARCH]. States also include corrupt and abandoned. Closed XSets exist
in the memory space of the Reference VIM.

When an XSet is committed, the Persistence Manager becomes involved and
causes the XSet to store its contents to the file system. This implementation
of the Reference VIM stores the XSet core as XML files, most of which are

62 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix A: Reference VIM Architecture

compatible with the canonical export format. Streams are stored as
unmodified, simple byte stream files.

DefaultHandler
XSetXmlWriter

AbstractFieldContainer
XSystem DefaultHandler
ReferenceXSystem XSetXmIReader OperationalState
AbstractFieldContainer XSetState
XSet
ReferenceXSet
ReferenceXStreamBase ReferenceXStreamBase
ReferenceExportXStream ReferencelmportXStream

Figure 2 — Reference XSet

XStream

XStreams are the most complicated entity related to XSets. An XStream
implementation must represent normal XStream data and import and export
XStream functionality. It must also maintain XStream attributes (see Figure 3,
“‘Reference XStream”).

The ReferenceXStreamBase provides most of the attribute containment and
state tracking. State is tracked with an operational state object similar to
XSets. These states match the FSM in the [XAM-ARCH], including corrupt
and abandon.

The actual byte stream is wrapped by a StreamContents object. Actual
reading and writing of the contents is performed by this class.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 63

Appendix A: Reference VIM Architecture

© SNIA

ReferencelmportXStream and ReferenceExportXStream classes provide the
unique functionality required for these objects. Each implementation makes
use of the XSet’'s XML and XOP writers.

OperationalState

ReferenceXStreamBase

XStream XStreamState

*

ReferenceXStream

ReferenceExportXStream ReferencelmportXStream

ReferenceStreamFieldExport

StreamField
ReferenceStreamField

XStreamContents

Default Repository
Location

64

Figure 3 — Reference XStream

Persistence Manager

The Reference VIM implements the XAM API but also implements a backing
store. The repository created by the Reference VIM is based on the machine's
file system. The reference VIM persists XSets and associated XStream
objects as files. In a vendor-specific VIM, the backing store would probably be
some entity outside the VIM implementation.

This section discusses the following topics with respect to the Persistence

Manager:

» Default Repository Location

e Directories and Files Created

* Files Created for a Persisted XSet

* Temp Files Created

+ Specification of a VIM Repository Location

By default, the Reference VIM persists XSets and XStreams to the temp
directory specified by java.io.tmpdir. This directory is also where any

temp files are created. On Solaris, the temp directory defaults to something

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Directories and Files
Created

Files Created for a
Persisted XSet

Temp Files Created

Specification of a VIM
Repository Location

Appendix A: Reference VIM Architecture

like /var/tmp. On Windows, it is likely to be c: \ temp. To specify a different
location, see “Specification of a VIM Repository Location”.

To create unique filenames, a filename-safe variant of the base64-encoded
XUID value is used. The Reference VIM uses the filename-safe, Base64-
encoded value specified in RFC-4648 (table 2) for filename. The Reference
VIM only supports XUID interchange using the originally specified Base64
variant.

The XSet and its properties are persisted in an XML file. The format of the
XML file follows the export format layout in the [XAM-ARCH]. In addition, data
for each XStream is stored in a separate file. The XStream data files are
located in a subdirectory, which is also named using the XUID's filename-safe
string. The XStream contents are stored in the same format that the
application used when creating the XStream. No translation is performed on
the data.

The following files are created for a persisted XSet:

* XSet <xuid-string>.xml - Contains the XML description of the
XSet. Conforms to the XAM Export format.

* XSet <xuid-string> - Directory containing any XStream (stream
field data for the XSet).

* XSet <xuid-string>/XStream #####.data - Payload/data for
a single XStream (stream field). Note that the field definition in the
XSet XML file will contain the name of the associated XStream data
file.

The following temp files are created:
* XSet <xuid-string>.tmp

* XStream ####.tmp

You can specify the location of the repository by providing a value for the "dir"
on the XRI information that is passed to XSystem.connect.

The absolute path specified must exist and be correctly formatted for the
operating system. The user must also have full privileges for directory

For example, to change the storage location used by the Reference VIM, do
the following:

1 First set the directory to the Java Reference VIM subdirectory in
the SDK installation.

2 Editthe xam.test.props file by specifying an absolute directory
path for the “dir” parameter in the xam. test.xr1i line. The path you
specify will obviously vary depending on the operating system.

See “Configuring and Operating the XAM™ Reference VIM and Library” in
Chapter 6, “Java Reference VIM” for more information.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 65

Appendix A: Reference VIM Architecture © SNIA

66

Example XRI Values

Example XRI values include the following:
» Directory location of /home/mytest/xam storage (Unix)

xam.test.xri=snia-xam://
SNIA Reference VIM!localhost?dir=/home/mytest/
xam_ storage

» Directory location of C: \mytest\xam storage (Windows)
xam.text.xri=snia-am://

SNIA Reference VIM!localhost?dir=C:\mytest\xam s
torage

Repository Maintenance

Running the tests or repeatedly running sample programs may create large
numbers of files or directories in the repository. Currently, there is no
automated way to clean up the repository once the XSet files and directories
are created. Periodically, it may be necessary to clean out the files in the
repository by manually deleting files and directories like XSet_* and
XStream_*. Developers may want to specify a private location for the
repository to isolate their files and make debugging and tracking XSets easier.

Policy
The Policy system in the Reference VIM covers three major areas:

* Access Policies
» Disposition Policies
¢ Retention Policies

The policy system is shown in Figure 4.

AbstractFieldContainer
XSystem

ReferenceXSystem

Runnable Property

AccessPolicyManager DispositionManager RetentionMgr RetentionPolicyReference

\
\,

Retention policy

references are used

AccessPolicy DispositionPolicy EE RetentionPolicy when importing XSets

to verify compliance

with supported

retention settings.

\,
\,
\

Figure 4 — Policy System

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Access Policies

Disposition Policies

Retention Policies

Appendix A: Reference VIM Architecture

Each associated manager maintains a list of supported policies and publishes
those policies in the XSystem property list as required by the [XAM-ARCH]. In
this implementation of the Reference VIM, policies generally do not
implement dynamic behavior, but rather serve as a tag to direct the behavior
of the appropriate manager.

To implement policies derived from an external source (say an LDAP system,
etc.), the manager for that functionality should be extended or modified.

The Reference VIM provides three policies to set autodelete and shred
settings on an XSet using the XSet.applyAutodeletePolicy and
XSet.applyShredPolicy settings.

The disposition policies provided are summarized in the Table 16:

Table 16 — Disposition Policies

Policy Name Description

org.snia.refvim.disposition.autodelete autodelete = TRUE, shred =
FALSE

org.snia.refvim.disposition.autodelete.and.shred autodelete = TRUE, shred =
TRUE

org.snia.refvim.disposition.shred autodelete = FALSE, shred =
TRUE

The Reference VIM does not support external creation or modification of
these policy parameters.

The Reference VIM provides a set of retention policies that allow the
application to set retention criteria using policies instead of explicit settings.
These policies may be used for base, event, or application-defined retentions
(see Table 17).

Table 17 — Retention Policies

Policy Name Description

org.snia.refvim.retention.none duration= 0, enabled = FALSE

org.snia.refvim.retention.one.second | duration= 1000 mS, enabled = TRUE

org.snia.refvim.retention.one.day duration= one day, enabled = TRUE
org.snia.refvim.retention.thirty.days duration= 30 days, enabled = TRUE
org.snia.refvim.retention.one.year duration= 365.25 days, enabled = TRUE

The Reference VIM does not support external creation or modification of
these policy parameters.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 67

Appendix A: Reference VIM Architecture © SNIA

Jobs

The Job Manager is responsible for creating job instances and running them
(see Figure 5, “Job Manager”). A JVM instance contains a single static
instance of the Job Manager. The Job Manager controls jobs across the
entire JVM. The Job Manager ensures that a single job may be running on an
XSet at any time and handles the job start, stop, and abort.

A job object links to the XSet that is running the job and tracks the status of
the job specified by the Job FSM in the [XAM-ARCH]. A ReferenceJob object
is not an XSet because the job-XSet association is not set up until
XSet.submit is called. The Referencedob object is responsible for creating
generic job fields and changing their read-only status as reflected by the job’s
run state.

The only job implemented in this release of the Reference VIM is the
ReferenceQueryJob. This job interacts with the DBManager to cause the
XAM QL command to be parsed and run. Job-specific fields (e.g., query
results, etc.) are the responsibility of the job implementation. Results are
stored in the XSet according to the [XAM-ARCH].

To extend the types of jobs, a new, specific job class must be implemented to
extend Referencedob, and the job command needs to be published in the
XSystem instance (ReferenceXSystem). The XSet.submit code path must be
altered to extend to the new job, as this is not yet fully extensible.

AbstractFieldContainer
XSystem
ReferenceXSystem

1

AbstractFieldContainer
Runnable Interface XSet
JobMgr Job 7 ReferenceXSet

/

ReferenceJob
4
OperationalState
JobStatus
ReferenceQuery
Job

Figure 5 — Job Manager

DBManager

The DBManager is responsible for maintaining XSet property and stream data
in @ manner which can later satisfy a query. This implementation of the

68 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix A: Reference VIM Architecture

Reference VIM uses an SQL database (JavaDB AKA Derby) and search
engine (Apache Lucene) to implement XAM Query compliance (see Figure 6).

DBManager

DBSqlTranslator ContentindexManager DBOptimizedSqlTranslator

Figure 6 — DBManager

When an XSet is committed, properties are stored to the database and any
text/plain streams are indexed by the search engine. Since the expectation of
the [XAM-ARCH] is that once committed an XSet is instantly available for
query, this processing is done before XSet.commit completes.

Because SQL-based databases require columns to be homogeneously typed,
it is impossible to create a single column per unique property/field. Because
XAM is completely late bound and not as strongly typed as SQL databases, it
is impossible to use a straightforward implementation. Additionally, most
databases have limits on the number of columns allowable in a table. This
limitation would not allow the Reference VIM to be able to scale to 16,000
fields per XSet.

The Reference VIM takes another approach. This approach stores property
and field attributes in a simple table and relies on building a table that is
specific to the query at the time the query is run. The DBManager reads each
field from the XSet and stores the field attributes in a database table
“XFieldValues”.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 69

0.

14vdd ONIMHOM

(6002 ‘1€ ISnBNy) L0'L MAS w.INVX

PROPNAME SVALUE NU...ALUE | BVALUE |BINDING |REA..NLY |LENGTH | TYPE

1 .xset.hold <NULL= [} @ a 1 1 application/vnd.snia.xam.boole
2 | .xset.management.policy .org.snia.refvim.default.mgmt.p @ 2] al 1 36 application/vnd.snia.xam.strin
3 .xset.retention.base.enabled <NULL=> a 1 1 1 1 application/vnd.snia.xam.boole
4| .xset.retention.base.starttime 2009-93-13T10:31:@8.577-07:08 |2 2] 1 1 29 application/vnd.snia.xam.datet
5 .xset.retention.list.base base a] 1 1 4 application/vnd.snia.xam.strin
6| .xset.retention. list.event event] 2] il 1 g application/vnd.snia.xam.strin
7 .xset.time.access 2009-93-13T10:31:08.577-07:00 |2 [*] a 1 29 application/vnd.snia.xaom.datet
8 .xset.time.commit 2009-93-13T10:31:08.577-07:00 |2 a a 1 29 application/vnd.snia.xam.datet
9 .xset.time.creation 2009-93-13T19:31:@8.575-07:08 |2 a 1 1 29 application/vnd.sniao.xam.datet
18 | .xset.time.residency 2009-03-13T10:31:08.577-07:00 |0 "] a 1 29 application/vnd. snia.xam.datet
11 .xset.time.xuid 2009-93-13T10:31:08.577-07:08 @ a a 1 29 gpplication/vnd.sniao.xam.datet
12 | .xset.xuid AAABAwWA e+ MMxMIMZ0TYINDYANTcIEE: @ a 1 1 3a application/vnd. snia.xam.xuid
13 com.example.property.l1236965468315. testStream <NULL= a a a a 3a72 gpplication/1

14 | com.example.property.1236965468315 . xam_boolean |<NULL= [} 2] a [} 1 application/vnd.snia.xam.boole
15 |com.example. property. 1236965468315 . xam_datetime 2089-03-13T10:31:06.366-07:00 08 [*] a 2] 29 application/vnd.snia.xaom.datet
16 | com.example.property.1236965468315 . xam_double <NULL=> 2.81 "] a 2] 3 application/vnd. snia.xam.doubl
17 | com.example.property.1236965468315. xam_1int <NULL= 1 a a a & gpplication/vnd.snia.xam.int
18 | com.example.property.1236965468315. xam_odd <NULL= 1 a a] 2 application/vnd.sniag.xam.int
19 | com.example.property.1236965468315 . xam_promote |<NULL= 1 a a a 2 agpplicationfvnd.snia.xam.doubl
2@ com.example.property.1236965468315. xam_string testSimpleWhere.value a a a] 21 application/vnd.sniag.xam.strin
21| .vnd.org.snia.xom.reference.access_policy a a a 1 a gpplication/vnd.snia.xam.strin
22 | .xset.hold <NULL= a 2] a 1 1 application/vnd.snia.xam.boole
23 | .xset.management.policy .org.snmig.refvim.default.mgmt. [@ a 1 1 36 gpplication/vnd.sniag.xam.strin
24 | .xset.retention.base.enabled <NULL=] 1 al 1 1 application/vnd.snia.xam.boole
25 | .xset.retention.base.starttime 2009-03-13T10:47:48.965-07:00 |2 [*] 1 1 29 application/vnd.snia.xaom.datet
26 | .xset.retention.list.base base [} 2] 1 1 4 application/vnd.snia.xam.strin
27 | .xset.retention. list.event event a] 1 1 5 application/vnd.snia.xam.strin
28 | .xset.time.access Z009-03-13T10:47:48.965-07:08 |8 2] a 1 249 application/vnd. snio.xam.daotet
29 | .xset.time.commit 2009-03-13T10:47:48.965-07:08 @ a a 1 249 gpplication/vnd.sniao.xam.datet
3@ | .xset.time.creation 2009-93-13T10:47:48.958-07:08 |0 a 1 1 29 application/vnd. snia.xam.datet
31 .xset.time.residency 2009-83-13T19:47:48.965-87:08 |8 8 a 1 29 application/vnd.snia.xam.datet

Figure 7 — XFieldValues Database

94N329}1Y24y NIA 92Udid}ay Y Xipuaddy

VINS ®

© SNIA Appendix A: Reference VIM Architecture

The columns of the table are described as follows:
* Propname — The name of the field

* Svalue — The string equivalent value of XAM_STRING,
XAM_DATETIME, and XAM_XUID property types

* NumValue — The numeric value, as a double, for XAM_INT or
XAM_DOUBLE property values

* Bvalue — XAM_BOOLEAN property values

* ReadOnly — A Boolean indicating if the field is readonly

* Binding — The Boolean value indicating if the field is bound
* Type — The MIME type of the field

* XUID - The XUID of the XSet to which this field belongs

While the XFieldValues database stores the property values and field
attributes, this table is not generally directly usable to service queries. While
processing a query job, the DBManager subsystem constructs a temporary
table with the structure required to execute the XAM query that has been
translated into SQL. For details of these temporary tables, see “Operational
Flow”.

Operational Flow The operational flow of the Reference VIM includes the following topics:
* Initializing an XSystem
* Importing an XSet
* Processing a Query

Initializing an XSystem

When an application calls XAMLibrary.connect, the Reference VIM class
creates the XSystem. According to the [XAM-ARCH], the XSystem is created
first, then the library copies the library fields to the XSystem.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 71

4]

14vdd ONIMHOM

(6002 ‘1€ ISnBNy) L0'L MAS w.INVX

X XAM Library connect()

After the fields are copied, the library calls XSystem.connect, as shown in Figure 8, “XSystem Initialization”.

<constructor>,

| ReferenceXSystem

Initial

createProperty():void

loadDefaults():void

addRetentionPolicies():void

|
| XAMLibrary copies all
' —~——— XAMLibrary fields to

Connect(String):void

P
’m/ -7 system.

|
| Final call causes
| _-——— XAMSystemto

L- complete connection

m disposition manager
DispositionManager

m db manager
DBManager

authStatus
ReferenceAuthenticationStatus

<constructor>(ReferenceXSystem,String)

ReferenceVIMPersistenceMgr

persistenceMgr

Getlnstance(ReferenceXSystem):Disposition Manager

Getlnstance(ReferenceXSystem):DBManager

\

\4

setUnAuthenticated():void

—————

;

Figure 8 — XSystem Initialization

;

B

81N3129})1Y2ay NIA @2uslasey v xipuaddy

VINS ®

© SNIA

Appendix A: Reference VIM Architecture

The connect method of the ReferenceXSystem is used to complete the
creation of the ReferenceXSystem by creating or obtaining the references to
the various managers that are needed to run and maintain the
ReferenceXSystem instance.

Importing an XSet

According to the [XAM-ARCH], the Reference VIM will validate retention and
disposition policies when the XSet is imported. If an error occurs during policy
validation, an appropriate exception is thrown when closing the import
XStream. When the import validation fails, the XSet is also placed in a corrupt
state, making it unusable. At this point, the application must abandon and
close the XSet. Even though an XSystem may adjust its policies or may adjust
XSet properties to avoid violating retention criteria, the Reference VIM does
neither. Unless the imported XSet's policy parameters match the Reference
VIM's retention policy parameters, the import process will fail.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 73

V.

14vdd ONIMHOM

(6002 ‘1€ ISnBNy) L0'L MAS w.INVX

=X Application

initial static
ReferenceXSet

openImportXStream():XSt}eam

XSetState

—
write(byte[],long,long):long

checkAccessAllowed(XSetOperation.OPEN_IMPORT_XS
validateOperation(xsetState, operation):void

>

if(JobMgr.isJobSubmittedByXSetRunning(this))

<constructor>(xsystem, this)

T

if(containsField(XSet.XAM_XUID) || containsField(XSet.XAM_DIRTY))

TREAM):void

When the import process fails (when closing the import XStream), the XSet becomes corrupt (see Figure 9, “Importing XSets”.)

xsystem
ReferenceXSystem

anonymous
RetentionMgr

L]

Application writes import data; import stream parses
data and adds fields to the XSet instance.

xsetimportStream
ReferencelmportXStream

n
|

close():void

\4

v

commit():XUID

checkAccessAllowed(XSetOperation):void
checkXStreamsClosed():void
f(wasImported)

checkBindingChanges():void
openXSet(XUID,String):XSet

n
0

while(allFields)

Compare binding state of existing fields; check for a

validateRetentionPeriods():void

ddition or removal

of bound fields.

Complete standard, non-import
commit processing for XSet.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| »
|
|
|
I
|
|
|
1
}
|
|
|
|
|
|
|
|
|

Figure 9 — Importing XSets

\4

while(iterateOverRetentionPolicies)

Compare new vs. old retention
policy periods. Ensure periods
will not reduce.

81N3129})1Y2ay NIA @2uslasey v xipuaddy

VINS ®

© SNIA

Appendix A: Reference VIM Architecture

The following conditions will cause the import process to fail:

A policy name in the imported XSet is unknown in the Reference VIM
XSystem.

The importing XSet policy specifies a retention policy duration longer
than that supported by the Reference VIM's policy of the same name.

The importing XSet policy specifies a retention enabled differing from
that supporter by the Reference VIM's policy of the same name.

If the XSet already exists in the Reference storage, additional processing
takes place.

If the binding attribute in the import XSet is different than the binding
attributes of the previously stored XSet, a new XUID will be issued
when the XSet is committed. The previously stored XSet is not
affected.

If the effective retention of the importing XSet is less than that of the
previously stored XSet, the import will fail when closing the
importXStream.

Processing a Query

As previously mentioned, in the static class structure of the DBManager, all
Property values and field attributes are stored in the table “XFieldValues". The
DBManager subsystem executes query jobs with these steps (see Figure 10,
“Processing a Query”:

1

XAM™ SDK 1.01 (August 31, 2009)

Parse the query using the JavaCC-based parser to produce a
ParsedQuery (implemented in the org.snia.xam.vim.reference.query
package).

Construct a temporary table to hold values for only this query job
(createQueryTable method). The table’s columns are:

— Unique property and field attributes appearing in the query

— Fields appearing in any “exists()” subclause of the query. The
default value of this column is FALSE.

— Unique Level 2 subexpressions.

Select all property values specified in the query, ordered by the XUID
value. (polulateQueryTable method).

— XAM requires all property values to be present in an XSet before
it may be included in the result set.

— XSets not containing all field values/attributes are not included in
the temporary table.

Select all fields from the “exists()” clauses, setting their exists column
values to TRUE.

For each Level 2 clause (if Lucene is installed), run Lucene queries
matching the Level 2 subexpressions. Each document (XUID)
returned from the Lucene queries are inserted into the temporary
table.

WORKING DRAFT 75

Appendix A: Reference VIM Architecture © SNIA

6 Translate the parsed query (in the form of an abstract syntax tree) into
SQL.

7 Execute the SQL against the temporary table, selecting the XUID
values. Process the result set from the SQL, adding the XUIDs into the
job XSet’s result XStream.

8 Complete the query job.

76 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

LL

14vdd ONIMHOM

(6002 ‘1€ ISnBNy) L0'L MAS w.INVX

Figure 10 shows the transformations that take place as a query is processed.

= ReferenceJobQuery

initial

st

atic
DBManager DBOptimizedSqlTranslator

executeXamQuery(Job,StringParsedQuery,Vector):ResultSet

rs:=selectAlIXUIDs(m_conn):ResultSet

if((parsed_query.getWhereExpression() = = null) && (readPolicies = = null))

else

rs:=selectSimpleWhere(m_conn, parsed_query):ResultSet

>

else

rs:=selectSimpleExists(m_conn, parsed_query):ResultSet

if((parsed_query.getWherePropertyList().size() = = 0) && (parsed_query.getExis

1

>

Kelse

New DBSq|Translator

1]

m contentMar
ContentindexManager

rs:=selectXamQuery(qgjob, id, parsed_query, readPolicies):ResultSet

A,

translator
DBSq|Translator

Figure 10 — Processing a Query

if((parsed_query.getWherePropertyList().size() = = 1) && (parsed_query.getExistsPropertyList().size() = = 0) && (parsed_query.getWhereExpression().isFactor()) && (readPolicies = = null))

sPropertyList().size() = = 1) && (parsed_query.getWhereExpression().isFactor()) && (readPalicies = = null))

81N3129})1Y2ay NIA @2uslasey v xipuaddy

VINS ®

Appendix A: Reference VIM Architecture © SNIA

The following examples show the various transformations taking place as the
query is processed.

Example Query:

select ".xset.xuid" where binding(".xset.xuid") and not
readonly ("com.example.property.1236288089957.xam int")
and

length ("com.example.property.1236288089957.xam double") =
8 and

typeof ("com.example.property.1236288089957.xam string")

'application/vnd.snia.xam.string' and
("com.example.property.1236288089957.xam_int" > 0 or
"com.example.property.1236288089957.xam double" > 0 or
"com.example.property.1236288089957.xam string" =

'testSimpleWhere.value' or
"com.example.property.1236288089957.xam xuid" =

xuid ('AAAG6AWAeS+4xMIM2Mjg4MDg3Mzc5B1Lwud4gAElgt') or
"com.example.property.1236288089957.xam datetime" =

date ('2009-03-05T13:21:27.352-08:00"))

Parsed Version of the Query:

##4#T (F (binding (.xset.xuid)) AND
T (F (readonly (com.example.property.1236288089957.xam_int))

AND
T (F (length (com.example.property.1236288089957.xam double)
= 8) AND

T (F (typeof (com.example.property.1236288089957.xam_string)
= l‘application/vnd.snia.xam.string’) AND

T (F (com.example.property.1236288089957.xam int > 0) OR

T (F (com.example.property.1236288089957.xam double > 0) OR
T (F (com.example.property.1236288089957.xam string =
testSimpleWhere.value) OR

T (F (com.example.property.1236288089957.xam xuid =
AAAG6AWAeS+4xMIM2Mjg4MDg3Mzc5B1LwudgAElgt) OR
F(com.example.property.1236288089957.xam datetime
'2009-03-05T13:21:27.352-08:00")))))))))

78 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

PO P
16 @ 1
FAL | 1
34 @ 1
48 @ 1
52 @ 1
B|¥ @ 1
7310 1
g9 @ 1
9|5 @ 1
11 9 1

XAM™ SDK 1.01 (August 31, 2009)

1 RO (P2 BND (P3

Z0g9-83-
2009-83

20ed-83-
Z089-83-
2083-83-
2009-83-
2080-83-
Z0g3-83-
2009-83

20ed-83-

Appendix A: Reference VIM Architecture

The following table is created and populated (see Figure 11):

P4 P5_TYP PG
B5T13:21: AAAEAwWAeS+4xM- gpplication/vnd.snia.xom.string testSimplelhert B
B5T13:21: AAABAwWARS+d4xM; applicetion/vnd.snia. xom.sktring LtestSimploWherd 8
B5T13:21: AdnBAwheS«4aM] applicetion/vad. snia. em. string |testSimplelherd 8
B5T13:21: AdABAwAeS+4xM; application/vnd. snia. wom. string testSimplelher: 8
B5T13:21: AMAGAwAeS+dxM- opplicationswnd, snia.xom, skring testSimplelher 8
A5T13:21: AAAGAWALS+4aM] applicationSvnd. snia. xom. skring | testSimpleWherd 8
B5T13:21: AMABAwheS+dxM- applicationdvnd. snia. xom. string testSimplelher: 8
B5T13:21: AAABAwAeS+4xM- gpplication/vnd.snia.xom.string testSimplelher: B
B5T13:21: ARAGAwADS+4xM- opplicationsvnd, snia.xom, skring testSimplolher 8
B5T13:21: AdnBAwheS«4aM] applicetion/vad. snia. xem. string |testSimplelherd 8

Figure 11 — Query Results

The columns contain the property values as described in Table 18:

PT_LEN

P& | XLUID

SOl R 2 R R R S e

Table 18 — Table Columns and Value Property Names

AANEARAcBEANM JMIM]
ARNEAWA o BCAxM MM
ARABAWAREY T 2M MR
AANEAWA G2 M jH2M)
AAAEAWA e K ownM MZM]
AMNEAWA Y M IH2H
ARAGAwh el T jH2M |
AANEAWA o bMuM MM
AAAEAWA oL M N2
ARABAWA e g RN

Column Name | Value/Property Name

PO com.example.property.#.xam_int

P1_RO readonly(com.example.property.#.xam_int)
P2_BND binding(.xset.xuid)

P3 com.example.property.#.xam_datetime

P4 com.example.property.#.xam_double
P5_TYP typeof(com.example.property.#.xam_string)
P6 com.example.property.#.xam_string
P7_LEN length(com.example.property.#.xam_double)
P8 com.example.property.#.xam_double

XUID The XSet XUID

Note that column names with an alias (e.g., PO) represent a property
value, whereas columns named with suffixes (P1_RO) represent field

attributes.

9 Finally, translate the query into SQL and run it against the table.

select xuid from JOBID 35 20090305 21 21 41GMT

where

p2 BND=1) and
not (pl RO=1)
p7 LEN=8) and

and

p6="'testSimpleWhere.value') or

(
(
((
((
((p0>0) or ((p8>0) or
((
((

WORKING DRAFT

p5 TYP='application/vnd.snia.xam.string"')

and

p4="AAAGAWAeS+4xMjM2Mjg4MDg3Mzc5Bl1LwudgAElgt ")

'2009-03-05T13:21:27.352-08:00"))))))))

79

08

14vdd ONIMHOM

(6002 ‘1€ ISnBNy) L0'L MAS w.INVX

Optimized Query

The DBManager provides an optimized SQL translator (see Figure 12) to handle simplified queries. Simplified

queries are those in which the where clause consists of a single subexpression (FactorNode).

= Object1

Initial m ContentMgr static
DBSqlTranslator ContentindexManager DBManager

selectXamQue
|y

(Job,StringParsedQuery,Vector):ResultSet

if(accessList ! = null)

addAccessRestrictions(accesslist, parsed_query):void

populateQueryTable(gJob, sanitizedTableName, parsed_query, propertyNam

while(results from valueSelect)

insertintoQueryTable(Connection,StringBuffer,StringBuffer,String):void

if(parsed_query.getLevel() = = 2)

while(field.hasMoreElements())
documents:=search(L2Pfn):String[]

rs:=executeGeneralizedXamQuery(sanitizedTableName, parsed_query, prop:
if(USE_TEMP_TABLES)

Figure 12 — Optimized Query

propertyNameMap:=createQueryTable(sanitizedTableName, parsed_query):hHashtable

populateLevel2Query(qJob, sanitizedTableName, parsed_query, propertyNgmeMap):void

L

eMap):void

Propertycount:=selectValuesorGeneralizedQuery(sanitizedTableName, propertyList, existsList, propertyNameMap,| valueList,selectSQL):int

for(int i = 0;i < docList.length;i++)

ertyNameMap):ResultSet

81N3129})1Y2ay NIA @2uslasey v xipuaddy

VINS ®

© SNIA Appendix A: Reference VIM Architecture

Examples of simplified queries:
¢ select “.xset.xuid” where “com.example.prop” = 1234

e select “.xset.xuid” where “com.example.string” like
‘3foo%’
o o

When these queries execute, they are able to do so directly against the
XFieldValues without needing to construct a temporary table and populate it.
Because the access policy restrictions are applied early in the process, no
user queries will execute in this code path.

This module was written for early implementations and testing of the
Reference VIM structure. This functionality is being retained for future internal
use. At this time, removing this functionality will not impair the Reference VIM.

Future Ideas This list contains some ideas for future modifications to the Reference VIM.
+ To simplify the code, remove the optimized SQL submodule.

* Remove the SQL entirely and use the Lucene search engine to
provide a more scalable solution.

e Externalize authentication and authorization roles.

* Add new jobs, perhaps the job chaining proposal being considered in
the FCAS TWG.

+ Make the DBManager so that other databases may be configured via
external configuration.

+ Externalize policy management, perhaps to an LDAP implementation.

* Rewrite the XML Parser. The current implementation is rather fragile;
the syntax rules for the canonical format make it difficult to change.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 81

Appendix A: Reference VIM Architecture © SNIA

82 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Appendix B: HTTP VIM Architecture

Appendix B: HTTP VIM Architecture

This appendix documents the architecture and protocol of the SNIA XAM™
HTTP VIM and contains the following topics:

* Terms and Scope

* Overview of HTTP VIM Design

e Java HTTP VIM Client

« Java HTTP VIM Server

* VIM Class and Library Load Operations

* VIM Wire Protocol

¢« Known Issues

Terms and Scope Terms

The following terms are provided as a convenience and an extension for
terms that are particular to the HTTP VIM Design. For all terms, see [XAM-

ARCH.

Table 19 — Terms - HTTP VIM Design

Term

Definition

HTTP VIM

A “Stackable VIM” that is split into two halves. The “top” half of the
VIM plugs into a XAM Library via the VIM API and translates VIM
requests to a wire protocol. The “bottom” half of the VIM resides in
a different process (that may or may not be co-located with the top
half of the HTTP VIM), receives requests via the wire protocol, and
makes requests of another VIM via the VIM API.

Marshall

The act of bundling information into a package that can be
transmitted

Stackable
VIM

In whole, a VIM that implements a VIM API on the “top” to facilitate
plugging into a VIM Manager and a VIM “consuming” APl on the
bottom

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT 83

Appendix B: HTTP VIM Architecture

© SNIA

Table 19 — Terms - HTTP VIM Design

Term

Definition

Unmarshall

Restoring information to a native format that was previously
bundled for transmission

Vendor
Interface
Module

The unit or logical software component that represents a vendor-
specific implementation of a system to the vendor agnostic model
of the XAM interface.

VIM

Acronym for Vendor Interface Module

Wire Protocol

A protocol and model for making “transactions” across physical
and logical barriers, such as separate deployment machines or
separate processes within an operating system.

XAM

Acronym for eXtensible Access Method

XAM SDK

The XAM Software Developer's Kit

Scope

The following items are in scope for this document (items not listed here are,
by default, out of scope):

» Design decisions for implementing the bridge between the VIM
Application Programming Interface that plugs into the C- and Java-
based XAM Library and compatible XAM VIM that implements the
Java VIM API and all discovery and deployment decisions for the

stack

» Design of the HTTP VIM, including the following components:

— Wire protocol to communicate between HTTP VIM Client and the
HTTP VIM Server

— The design of the HTTP VIM Client that plugs into the C-based
XAM Library

— The design of the HTTP VIM Client that plugs into the Java-
based XAM Library

— The design of the HTTP VIM Server that hosts VIMs that
implement the Java-based VIM API

« Build for the entire stack from the HTTP VIM Server

* Deployment environment for the HTTP VIM Server

+ Known issues in the design

The VIM Application Programming Interface (C and Java) is out of scope for
this document. This programming interface is used to communicate “upward”
in the XAM Library stack and is dictated by the [XAM-ARCH].

84

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Overview of HTTP ~ The HTTP VIM provides remote access to a hosted Java VIM (such as the

Appendix B: HTTP VIM Architecture

VIM Design XAM SDK Reference VIM) via the HTTP Protocol. The purpose for this
mechanism allows remote access to VIMs which may not support such a

feature (Reference VIM), or access to Java only VIM from the C XAM Library.

The HTTP VIM separates most of the logic and implementation from the XAM
Library process. Further, by the nature of its implementation, a separation of
deployment systems can easily be achieved. All of the high-level software

components to be delivered are shown in Figure 13, “High-Level Components

and Deployment”.

XAM API
Fmm—mm—m o Attributes
|
! Operations
|
Application Host
\/
XAM Library
o mmmmmmeo
VIM Manager i
|
|
|
|
i |
HTTP Client VIM !
(C or Java) !
A
|
I
! VIM API
|
e Attributes
Operations

HTTP VIM Server Host

HTTP VIM Server

|

Remote Target
VIM

Y

i—>
|
|
|
I
1
|
|
|
|
|
|
|
|

Target XSystem

Figure 13 — High-Level Components and Deployment

Note: Not shown in the diagram is an actual XAM Storage System. The

Target VIM resides in the same process on the same host as the
HTTP Protocol VIM Server, but the XAM Storage System which
operates with the Target VIM is potentially on another host.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT

Appendix B: HTTP VIM Architecture

86

© SNIA

From the illustration above, the following Component, Responsibilities, and
Collaborations (CRC) are derived (along with additional notes about design
issues, documentation and owners).

Table 20 — CRC for XAM_API

Interface

XAM_API

Responsibilities

Represent XAM functionality to vendor applications, including
- Defines interfaces for locating individual systems

- Defines interfaces for interacting with individual systems

- Defines interfaces for interacting with sets of objects

- Defines interfaces on individual objects

- Defines security interfaces

- Defines query interfaces

Documentation - C API — See xam*.h from src/xam/include directory in the
xam_sdk package available in Subversion
- Java API — See [XAM-Java-API]
Table 21 — CRC for VIM_API
Interface VIM_API

Responsibilities

Represent VIM functionality to the VIM Manager and up to the
XAM Library itself, including

- Defines interfaces for locating individual systems

- Defines interfaces for interacting with individual systems
- Defines interfaces for interacting with sets of objects

- Defines interfaces on individual objects

- Defines security interfaces

- Defines query interfaces

Documentation - C API — See vim*.h from src/xam/vim directory in the
xam_sdk package available in Subversion
- Java API — Generate JavaDoc from Interface code
Table 22 — CRC for XAM_Library
Component XAM_Library

Responsibilities

Receive API requests and process accordingly

Several of the XAM Library and API calls are “organizational”
in nature and do not pass through to the underlying VIMs and
VIM Objects. These calls include functions to:

- Discover individual systems

- Load individual libraries

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Appendix B: HTTP VIM Architecture

Table 22 — CRC for XAM_Library

Component

XAM_Library

Collaborations

VIM Manager — Local API call

Documentation

- [XAM-ARCH]
- [XAM-C-API]

Table 23 — CRC for HTTP_VIM_Client

Component

HTTP_VIM_Client

Responsibilities

- Implement the VIM_API

- Implement a mechanism to input the target
HTTP_VIM_Server (network location including host name or
IP address and port)

- Receive VIM API requests (on the various VIM API Objects,
including XSystems, XSets, and XStreams)

- Marshall VIM API parameters and method calls into the
neutral wire format

- Do any mappings necessary between the VIM API and the
neutral wire format

- Pass VIM API request in neutral “wire” format to the target
HTTP_VIM_Requestor and receive response in neutral
“wire” format

- Unmarshall / Map the response from the
HTTP_VIM_Requestor back to the C VIM API

- Return VIM API request to requestor (asynchronous and/or
synchronous responses must be implemented)

Collaborations

HTTP_VIM_Server — HTTP(S) — Asynchronous and
Synchronous — neutral wire format, one HTTP VIM Requestor
may use one HTTP VIM Server. One HTTP VIM Server may
be used by many HTTP VIM Requestors.

Documentation

VIM C API available from xam_sdk

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT 87

Appendix B: HTTP VIM Architecture © SNIA

Java HTTP VIM
Client

88

Table 24 — CRC for HTTP_VIM_Server

Component HTTP_VIM_Server

Responsibilities - Receive requests in the defined neutral wire format
- Unmarshall requests

- Map any requests that require mapping to the Java VIM
Interface

- Call the appropriate VIM or [XAM-ARCH] object (XSystem,
XSet, etc.) with the appropriate parameters

- Keep track of active VIM API objects and maintain handle to
object relationships that the HTTP VIM Client can use to
associate with the objects that it is manipulating

- Receive responses from a VIM or VIM API Object

- Do any required mapping between the VIM response and the
neutral wire format

- Marshall the parameters and method to the neutral wire format

- Return a response to the requestor

Collaborations Java VIM Implementation via the Java VIM Interface (such as the
XAM SDK Reference VIM)

Documentation Java VIM Interface

The supplied Java HTTP Client VIM provide implementations for each of the
required XAM™ Obijects:

+ HTTPFieldContainer.java

« HTTPXAsync.java

+ HTTPAsyncCallbackManager.java
* HTTPIlterator.java

+ HTTPXSet.java

+ HTTPXStream.java

« HTTPXSystem.java

Each of these objects directly implements the similarly named XAM Interface
and present the expected XAM methods to the application. Each of the XAM
objects retains a reference to the handle created in the HTTP VIM Server as
well as host and port information used to form the appropriate HTTP Request.

Each HTTP XAM Obiject utilizes the utlity class HTTPRequest, which mainly
marshals arguments to HTTP request form. The HTTPRequest methods also
unmarshal responses to produce the correct return values for presentation to
the application. The HTTP XAM objects are “thin client,” in that no caching is
performed and little state is retained locally. Each XAM method translates
directly to a HTTP request to the HTTP VIM Server.

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Appendix B: HTTP VIM Architecture

A sample implementation of the the Java Client VIM looks like the following
for the method XSet.getActualRetentionEnabled():

public boolean getActualRetentionEnabled(String retentionID)
throws AuthenticationExpiredException,
InvalidArgumentException,
PolicyMismatchException, ObjectInUseException,
XSetAbandonException,
XSetCorruptException, XAMException

HashMap<String, String> responses;
try
{

responses = HTTPRequest.request (m host,

ProtocolConstants.XSET GET ACTUAL RETENTION ENABLED HANDLER,
ProtocolConstants.ARGUMENT RETENTION ID,
URLEncoder.encode (retentionID,
ProtocolConstants.UTF8),
ProtocolConstants.XSET HANDLE, m handle);
boolean enables = Boolean.parseBoolean (responses.get
(ProtocolConstants. ARGUMENT ENABLED)) ;
responses.clear();
return enables;
} catch(UnsupportedEncodingException e)
{
throw new XAMException(ProtocolConstants.TRANSPORT ENCODE ERROR,
e);
}
}

The actual HTTP request is performed in the method
HTTPRequest.request(). Input arguments are passed to the request()
method, to be marshaled in the URL connection. The result page is
processed and passed back to the caller as a property map. This method
extracts the single argument needed, ARGUMENT_ENABLED, converts its
string value to the boolean required, and returns to the application. The
method HTTPRequest.request() also processes the “status” and “statusMsg”
values. If any value other than SUCCESS (zero) is returned, these two items
are used to construct an appropriate XAMEXxception, or subclass, which is
thrown to the application.

Connect Processing

Because the XSystemConnect method expects a buffer of initialization
properties to be sent, the HTTPXSystem object must buffer up all properties
from the local XAM Library and send them to the remote VIM for the
XSystemConnect method. To do this, HTTPXSystem instantiates a local
FieldContainer, class TempFieldContainer. This object is deleted once the
connect has completed.

XAsyncCallback Management

Because the HTTP VIM Server does not, and cannot, handle callback
methods (for XAsyncListeners), the Java HTTP Client VIM does so locally.
Each HTTPXSystem instantiates a local copy of a
HTTPXAsyncCallbackManager manager. Each manager is passed a

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 89

Appendix B: HTTP VIM Architecture © SNIA

Java HTTP VIM
Server

90

reference to a newly created HTTPXAsync object. Periodically, the callback
manager executes the POLL method to the HTTP VIM Server.

When an async operation has been indicated that it is complete (a result
comes back from the HTTP VIM Server), the callback manager will do the
following:

1 If the XAsync is the result of an XStreamAsyncRead operation,
perform a GetData method to retrieve the bytes. Data is copied to the
buffer that is supplied in the HTTPXStream.asyncRead method.

2 Mark the HTTPXAsync object as complete so that calls to the
HTTPXAsync.isComplete() return the correct value. The Java HTTP
VIM does not call the HTTP VIM Server isComplete() method because
of a race condition between the application, the callback manager, and
the HTTP VIM Server.

3 If an XAsyncListener object has been provided for the XAsync
operation, call the listener.

Closing the HTTPXAsync object removes it from the callback manager's
watch list.

The HTTP VIM Server uses Java as the implementation language to create
an end-to-end implementation stack that combines with the Java-based XAM
VIM implementations. The Java-based VIM implementations should also be
usable directly from the Java-based XAM Library.

The generic responsibilities of the Java HTTP VIM Server are documented in
“Functionality”. The components described here interact to deliver the HTTP
VIM Server functionality. The actual implementation of the components is
documented within the implementation code for the Java HTTP VIM Server.

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Appendix B: HTTP VIM Architecture

A component diagram is shown in Figure 14, “HTTP VIM Server Overview”

<<interface>>
VIM_API

————— » Attributes

Operations
A

<<component>>
VIM

A

<<realization>>

<<usage>>

<<component>> <<component>>
Active_Object_Cache VIM_Manager

<<usage>> v | <<usage>>

<<component>>
Operation

<<usage>>

<<component>>
Generic_Storage_Server

Figure 14 — HTTP VIM Server Overview

An HTTP VIM Requestor delivers a message to the Generic_Storage_Server.
The interfaces for the Storage Server are, theoretically, generic in nature, but
the implementation itself is bound to the HTTP protocol. As a result, the

message is delivered to the Generic_Storage_Server via a socket connection.

The Generic_Storage_Server in the Java HTTP VIM Server implementation
package uses the Jetty WebServer. The various wire operations subclass
(often multiple generations) the AbstractHttpHandler from the Jetty
WebServer. These subclasses are generically labeled “Operation” in

Figure 14, “HTTP VIM Server Overview”. The Jetty WebServer calls the
proper Operation depending on the contents of the HTTP Header sent from
the HTTP VIM Requestor.

Other than the XSystemConnect call itself, each Operation includes a
“handle” that identifies an active object in the Active_Object_Cache. The

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 91

Appendix B: HTTP VIM Architecture © SNIA

VIM Class and
Library Load
Operations

VIM Wire Protocol

92

active object may be a top-level object (like an XSystem, XSet or XStream) or
a lower-level object that can be independently manipulated, like an Xlterator.
The active objects should only be associated with a single HTTP VIM
Requestor. In practice, multiple HTTP VIM Requestors may be using active
objects from a single HTTP VIM Server, so the active object handles should
not be available between requestors.

The VIM Manager locates the proper class for XSystem top-level objects,
identified by XRIs. The VIM Manager loads classes at bootstrap time into the
virtual machine and then instantiates the VIM classes as objects as needed or
at bootstrap time. Each XMLIB.connect Operation will go to the VIM Manager
to instantiate a VIM object instance that can be used to retrieve an XSystem.
Once the Operation retrieves the XSystem, it is stored in the
Active_Object_Cache, and a handle gets returned to the requestor.

The design of the HTTP Protocol VIM includes two locations where VIM Class
and Library loading come into play.

* The first load operation occurs when the XAM Library loads the
C-based HTTP VIM Requestor. This operation must adhere to the
XAM Library process for locating classes and identifying the XRls
associated with that class.

* The second load operation occurs within the HTTP VIM Server, as it
contains its own “version” of a VIM Manager. This VIM Manager and
the VIM Manager in the Java-based XAM Library could rely on the
same file formats or process for identifying loadable classes and the
XRiIs to which those classes attach when such a format is available.

While not a first-class software component, the wire protocol used between
the “halves” of the HTTP VIM is the most important component in the
architecture, design, and implementation of the HTTP VIM. The wire protocol
must be open and flexible for use in languages and collaborations that this
design specification does not address. Uses of the wire protocol include
building VIMs with language bindings other than Java and C or producing
other variants of “split” VIMs that cross process, network, and/or language
boundaries.

It is assumed that the wire protocol will be passed between components via
the preferred route of HTTPS or the unsecure path of HTTP. HTTP has a
variety of advantages over HTTPS during development (i.e., traceability,
debugging, performance, etc.) but will be widely shunned by customers in
production environments for security reasons.

As HTTPS and HTTP are the transmission protocol, the overall wire protocol
will make heavy use of the HTTP standard for the headers and bodies of
messages, as well as the encoding and mime types that constitute an HTTP
message. The wire protocol will also inherit the attributes of HTTP/HTTPS,
including the attributes of the REST architecture, such as the statelessness
inherent in the architecture, transparency, and the ability to insert proxies and
routers, and more. For a complete dissertation on the REST architecture, see
[REST]. Note also that the HTTP/HTTPS protocols do not exhibit all of the
characteristics of the REST architecture.

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Appendix B: HTTP VIM Architecture

Organization

The following sections document the various HTTP Headers and bodies that
are exchanged over the course of an operation. Details about behavior and
state are also listed. Please refer to [XAM-ARCH] for a complete discussion of
the life cycle of the objects on which these operations occur and a complete
description of the semantics and behavior for the operations.

The sections are labelled with the operation names in the [XAM-ARCH]. The
names are translated to more accessible wire format names within the
sections.

Method Access

Each method is accessed by presenting a properly formed HTTP GET or
HTTP Post request to the HTTP VIM Server. For the most part, each method
is represented by a simple URL. Arguments may be passed via the standard
URL argument method or as HTTP Header values.

Return Values

All return values from the method are returned as name/value pairs in the
HTTP response page. The names are defined in the following sections for
each method. Values are generally printable value, except for reading byte
buffers from XStreams. In addition to method-specific return values, each
method returns “status” and “statusMsg”. The “status” value is the XAM status
code (as defined by the XAM SDK). The HTTP VIM Server also provides the
“statusMsg”, which is a descriptive string corresponding to the status code.
The “statusMsg” value is an obtained exception message() of the VIM
method. If the status value is success (zero), statusMsg is generally not
included.

Value Encoding

All string values (xam_string, xam_xuid) are encoded to be URL safe [URL-
Encoding]. All XUID values are transmitted using the base64 representation
(also URL safe encoded). Numeric values are transmitted in their printable
formats. Boolean values are transmitted using the values “true” and “false”.
Datetime values are transmitted using millisecond values of the stdclib format,
in a printable numeric format.

Example Exchange
This example shows the method “XSet.abandon()”.

Method invocation:

GET /XSetAbandon HTTP/1.1

handle: 2000202

User-Agent: Jakarta Commons-HttpClient/3.0.1
Host: 192.168.1.100:9925

A complete URL to perform the same thing looks like:

http://192.168.1.100:9925/XSetAbandon?handle=20000202

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 93

Appendix B: HTTP VIM Architecture © SNIA

A complete response may look like the following:

HTTP/1.1 200 OK

Date: Wed, 22 Aug 2007 12:45:13 GMT

Server: Jetty/4.2.20 (Windows XP/5.1 x86 java/
1.6.0 02)

Transfer-Encoding: chunked

status=0

Example exchanges are not included for the following methods but generally
follow the example which has just been presented.

Operations

XAMCreateFieldlterator ~ This operation abandons an XSet and all of the resources associated with it.
The XSet handle implies an association with an XSystem. The handle will no
longer identify a valid active XSet object instance after the abandon operation

completes.
HTTP e
Attribute Type Example Description
Method /XAMCreateFieldlterator GET /XCreateFieldlterator Identifies operation and
HTTP/1.1 scope
class xam_string class=xset Identifies to what class of
XAM object this method is to
be applied
handle xam_handle handle=2000202 Identifies the XAM object
instance on which the
operation should be
performed
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.
statusMsg xam_string statusMsg=Object is closed A string message associated with
the status code. Not returned if
status=0.

XAsyncClose This operation closes the specified XAsync XAM operation.

HTTP o

Attribute Type Example Description

Method /XAsyncClose GET /XAsyncClose HTTP/ Identifies operation and
1.1 scope

handle xam_handle handle=2000202 The XAsync handle

94 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Response

Appendix B: HTTP VIM Architecture

Name

Type

Example

Description

status

xam_integer

status=0

Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg

xam_string

statusMsg=Object is closed

A string message
associated with the status
code. Not returned if
status=0.

XAsyncGetBytesRead This operation returns the number of bytes read by the XAsync operation.
HTTP ipti
Attribute Type Example Description
Method /XAsyncGetBytesRead GET /XAsyncGetBytesRead Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=2000202 The XAsync handle
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.
statusMsg xam_string statusMsg=0Object is closed A string message
associated with the status
code. Not returned if
status=0.
async_bytes xam_integer async_bytes_read=1024 The number of bytes read
read by the XAsync operation
XAsyncGetBytesWritten This method returns the bytes written by the XAsync operation. The body will
contain the following information in name/value pairs.
HTTP e
Attribute Type Example Description
Method /XAsyncGetBytesWritten GET/ Identifies operation and
XAsyncGetBytesWritten scope
HTTP/1.1
handle xam_handle handle=2000202 The XAsync handle

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT

95

Appendix B: HTTP VIM Architecture

© SNIA

Response: XAsyncGetData

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=0Object is closed A string message

associated with the status
code. Not returned if
status=0.

async_bytes
written

xam_integer

async_byteswritten=728

The number of bytes written
by the XAsync operation.

This method returns the data obtained from the most recent
XStreamAsyncRead operation. The body contains the following information in
name/value pairs.

HTTP s

Attribute Type Example Description

Method /XStreamRead GET /XStreamRead HTTP/ Identifies operation and

1.1 scope

handle xam_handle handle=33333333 Identifies the XStream
instance on which the
operation should be
performed

The response to the request will contain the contents of the XStream data in
the body. If no body is included, an error occurred in the response. Clients
should be prepared to read as much data as was originally requested.

XAsyncGetStatus ~ This method gets the status of the XAsync operation. The body will contain
the following information in name/value pairs.
HTTP ipti
Attribute Type Example Description
Method /XAsyncGetStatus GET /XAsyncGetStatus Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=2000202 The XAsync handle

96

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Appendix B: HTTP VIM Architecture

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=0Object is closed A string message

associated with the status
code. Not returned if
status=0.

async_status

xam_integer

status=0

The XAM operation status of
the XAsync operation.

async_status
Msg

xam_string

async_statusMsg=XSystem
is not authenticated

A string message
associated with the
async_status code. Not
returned if async_status=0.

XAsyncGetXOPID

contain the following information in name/value pairs.

This method returns the XOPID of the XAsync operation. The body will

HTTP e

Attribute Type Example Description

Method /XAsyncGetXOPID GET /XAsyncGetXOPID Identifies operation and

HTTP/1.1 scope
handle xam_handle handle=2000202 The XAsync handle
Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=0Object is closed A string message
associated with the status
code. Not returned if
status=0.

async_xopid xam_integer async_xopid=67890 The XOPID associated with
the XAsync operation.

XAsyncGetXSet This method returns the XSet handle associated the XAsync operation. The
body will contain the following information in name/value pairs.
HTTP ipti
Attribute Type Example Description
Method /XAsyncGetXSet GET /XAsyncGetXSet Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=2000202 The XAsync handle

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT

97

Appendix B: HTTP VIM Architecture

98

XAsyncGetXStream

XAsyncGetXUID

Response:

© SNIA

Name

Type

Example

Description

status

xam_integer

status=0

Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg

xam_string

statusMsg=0Object is closed

A string message
associated with the status
code. Not returned if
status=0.

async_xset

xam_handle

async_xset=2000202

The handle of the XSet
associated with the XAsync
operation.

This method returns the XStream associated with the XAsync operation. The
body will contain the following information in name/value pairs.

HTTP ipti

Attribute Type Example Description

Method /XAsyncGetXStream GET /XAsyncGetXStream Identifies operation and

HTTP/1.1 scope
handle xam_handle handle=2000202 The handle of XAsync
Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

async_xstream | xam_handle async_xstream=2000202 The XStream handle associated with

the XAsync operation.

This method returns the XUID associated with the XAsync operation. The
body will contain the following information in name/value pairs.

HTTP e

Attribute Type Example Description

Method /XAsyncGetXUID GET /XAsyncGetXUID Identifies operation and
HTTP/1.1 scope

handle xam_handle handle=2000202 The handle of XAsync

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

async_xuid xam_string async_xstream=AAA... The XUID handle associated with the
XAsync operation.

XAsyncHalt ~ This method halts the XAsync operation. The body will contain the following
information in name/value pairs.

HTTP o

Attribute Type Example Description

Method /XAsyncHalt GET /XAsyncHalt HTTP/1.1 Identifies operation and
scope

handle xam_handle handle=2000202 The handle of XAsync

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=0Object is closed A string message
associated with the status
code. Not returned if
status=0.

XAsynclsComplete This method returns the complete status associated with the XAsync
operation. The body will contain the following information in name/value pairs.

Because of a race condition between application, client vim, and server vim

threads, all Client HTTP VIMs are encouraged to use the poll mechanism to
determine if the XAsync is complete. During the processing of the complete

status, the client VIM should transfer data read. This problem is only likely to
occur when the operation was an XStreamAsyncRead.

HTTP ipti

Attribute Type Example Description

Method /XAsynclsComplete GET /XAsynclsComplete Identifies operation and
HTTP/1.1 scope

handle xam_handle handle=2000202 The handle of XAsync

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 99

Appendix B: HTTP VIM Architecture © SNIA

100

XAsync — POLL

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

async_iscomplete xam_boolean async_iscomplete=true The Boolean value of the
XAsync operation
isComplete().

The POLL method is available so that clients can determine, in bulk, when
XAsync operations are completed. This method specifies an XSystem handle.
All completed XAsync handles are returned. It is the responsibility of the
client-side VIM to manage and call the callback/listener methods specified by
the application.

If the XAsync operation was an XStreamAsyncRead, the data should be
retrieved and copied to the application's buffer before setting the XAsync
complete status.

HTTP ipti

Attribute Type Example Description

Method /POLL GET /XPOLL HTTP/1.1 Identifies operation and
scope

handle xam_handle handle=33333333 Identifies the XSystem
instance on which the
operation should be
performed

The response to the request will contain the contents of the XStream in the
body. If no body is included, an error occurred in the response.

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=0Object is closed A string message
associated with the status
code. Not returned if
status=0.

async_complete# xam_handle async_complete0=1248 XAsync object with handle
1248 is complete.

A complete request may look like the following:

POST /XStreamWrite HTTP/1.1

handle: 33333333

User-Agent: Jakarta Commons-HttpClient/3.0.1
Host: 192.168.1.100:9925

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Appendix B: HTTP VIM Architecture

A complete response may look like the following:

HTTP/1.1 200 OK

Date: Wed, 22 Aug 2007 12:45:13 GMT
Server: Jetty/4.2.20 (Windows XP/5.1 x86 java/
1.6.0 02)

Transfer-Encoding:

chunked

status=0
async_complete(0=1248
async_completel=467230
async_complete2=72438

XlteratorClose

This method closes the Xlterator object. The body will contain the following

information in name/value pairs.

HTTP ipti
Attribute Type Example Description
Method /XlteratorClose GET /XlteratorClose HTTP/1.1 Identifies operation and
scope
handle xam_handle handle=2000202 The handle of the
Xlterator object.
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.
statusMsg xam_string statusMsg=0Object is closed A string message
associated with the status
code. Not returned if
status=0.

XlteratorHasNext

This method returns the hasNext() value of the Xlterator. The body will

contain the following information in name/value pairs.

HTTP
Attribute

Type Example Description

Method

/XlteratorHasNext GET /XlteratorNext HTTP/1.1 Identifies operation and

scope

handle

xam_handle handle=2000202 The handle of Xlterator.

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT 101

Appendix B: HTTP VIM Architecture

102

Response:

© SNIA

Name

Type

Example

Description

status

xam_integer

status=0

Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg

xam_string

statusMsg=0Object is closed

A string message
associated with the status
code. Not returned if
status=0.

hasnext

xam_boolean

hasnext=true

The Boolean value of the
Xlterator.hasNext() method.

XlteratorNext

This method returns the next field name from the Xlterator. The body will
contain the following information in name/value pairs.

HTTP o

Attribute Type Example Description

Method /XlteratorNext GET /XlteratorNext HTTP/ Identifies operation and

1.1 scope
handle xam_handle handle=2000202 The handle of Xlterator.
Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=0Object is closed A string message
associated with the status
code. Not returned if
status=0.

next xam_string next=com.example.name The next field name
returned from the
Xlterator.next() method.

XSetAbandon

This operation abandons an XSet and all of the resources associated with it.

The XSet handle implies an association with an XSystem. The handle will no
longer identify a valid active XSet object instance after the abandon operation

completes.

HTTP e

Attribute Type Example Description

Method /XSetAbandon GET /XSetAbandon HTTP/ Identifies operation and

1.1 scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=0Object is closed A string message
associated with the status
code. Not returned if
status=0.

XSetApplyAccessPolicy This method applies the access policy on the specified XSet. The body will
contain the following information in name/value pairs.

HTTP e

Attribute Type Example Description

Method /XSetApplyAccessPolicy GET/ Identifies operation and

XSetApplyAccessPolicy scope
HTTP/1.1

handle xam_handle handle=2000202 The handle of the XSet

binding xam_boolean binding=true The binding setting for the
operation

policy xam_string policy:access_name The access policy name for
the operation

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=0bject is closed A string message
associated with the status
code. Not returned if
status=0.

XSetApplyAutoDeletePolicy This method applies the auto delete on the specified XSet. The body will
contain the following information in name/value pairs.

HTTP ipti
Attribute Type Example Description
Method /XSetApplyAutoDeletePolicy GET/ Identifies operation and
XSetApplyAutoDeletePolicy scope
HTTP/1.1
handle xam_handle handle=2000202 The handle of the XSet
binding xam_boolean binding=true The binding setting for
the operation
policy xam_string policy:access_name The access policy name
for the operation

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 103

Appendix B: HTTP VIM Architecture

Response:

© SNIA

Name

Type

Example

Description

status

xam_integer

status=0

Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg

xam_string

statusMsg=0Object is closed

A string message
associated with the status
code. Not returned if
status=0.

XSetApplyBaseRetention This method applies the base retention policy on the specified XSet. The body
will contain the following information in name/value pairs.
HTTP e
Attribute Type Example Description
Method /XSetApplyBaseRetention GET/ Identifies operation and
XSetApplyBaseRetention scope
HTTP/1.1
handle xam_handle handle=2000202 The handle of the XSet
binding xam_boolean binding=true The binding setting for the
operation
policy xam_string policy:access_name The access policy name for
the operation
Response:
Name Type Example Description
status xam_integer | status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.
XSetApplyManagement This method applies the management policy on the specified XSet. The body
Policy will contain the following information in name/value pairs.
HTTP e
Attribute Type Example Description
Method /XAsyncGetBytesWritten | GET / Identifies operation and
XAsyncGetBytesWritten scope
HTTP/1.1
handle xam_handle handle=2000202 The handle of the XSet
binding xam_boolean binding=true The binding setting for the
operation
policy xam_string policy:access_name The access policy name for
the operation
104 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

XSetApplyRetentionDuration This method applies the retention duration policy on the specified XSet. The
Policy body will contain the following information in name/value pairs.

HTTP ety
Attribute Type Example Description
Method /XSetApplyRetentionDurationPolicy | GET/ Identifies
XSetApplyRetentionDurationPolicy operation and
HTTP/1.1 scope
handle xam_handle handle=2000202 The handle of
the XSet
binding xam_boolean binding=true The binding
setting for the
operation
policy xam_string policy:access_name The access
policy name
for the
operation
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

XSetApplyRetentionEnabled ~ This method applies the retention enabled policy on the specified XSet. The
Policy body will contain the following information in name/value pairs.

HTTP ipti
Attribute Type Example Description
Method / GET/ Identifies operation and scope
XSetApplyRetention XSetApplyRetentionEnabled
EnabledPolicy Policy HTTP/1.1
handle xam_handle handle=2000202 The handle of the XSet
binding xam_boolean binding=true The binding setting for the
operation
policy xam_string policy:access_name The access policy name for
the operation

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 105

Appendix B: HTTP VIM Architecture

© SNIA

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

XSetApplyShredPolicy

contain the following information in name/value pairs.

This method applies the shred policy on the specified XSet. The body will

HTTP e
Attribute Type Example Description
Method /XSetApplyShredPolicy GET/XSetApplyShredPolicy Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=2000202 The handle of the XSet
binding xam_boolean binding=true The binding setting for the
operation
policy xam_string policy:access_name The access policy name for
the operation
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

XSetApplyStoragePolicy

contain the following information in name/value pairs.

This method applies the storage policy on the specified XSet. The body will

HTTP]
Attribute Type Example Description
Method /XSetApplyStoragePolicy GET/ Identifies operation and
XSetApplyStoragePolicy scope
HTTP/1.1
handle xam_handle handle=2000202 The handle of the XSet
binding xam_boolean binding=true The binding setting for the
operation
policy xam_string policy:access_name The access policy name for
the operation

106

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Appendix B: HTTP VIM Architecture

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

XSetAsyncCommit This creates an asynchronous XSet commit operation. The body will contain
the following information in name/value pairs.
HTTP e
Attribute Type Example Description
Method /XSetCommit GET /XSetCommit HTTP/ Identifies operation and
1.1 scope
handle xam_handle handle=2000202 The handle of the XSet
xopid xam_integer xopid:678890 The xopid to be associated
with this operation
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.
statusMsg xam_string statusMsg=0Object is closed A string message
associated with the status
code. Not returned if
status=0.
handle xam_handle handle=2000202 The handle of the XAsync
object
XSetAsyncOpenXStream This creates an asynchronous XSet open XStream operation. The body will

contain the following information in name/value pairs. At some point later, the
XStream will be opened and available for retrieval.

HTTP ipti
Attribute Type Example Description
Method /XSetAsyncOpenXStream GET/ Identifies operation and
XSetAsyncOpenXStream scope
HTTP/1.1
handle xam_handle handle=2000202 The handle of the XSet
xopid xam_integer xopid:678890 The xopid to be associated
with this operation

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT

107

Appendix B: HTTP VIM Architecture

108

XSetClose

XSetCommit

© SNIA

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle=2000202 The handle of the XAsync object.

This operation closes an XSet and all of the resources associated with it. The
XSet handle implies an association with an XSystem. Various errors may
occur during the close operation, often implying that the XSet has pending
operations on it. In the case of a successful operation, the handle to the XSet
is no longer valid once the close operation completes. In the case of some of
the failure status codes (identified below), the handle will remain valid.

HTTP e
Attribute Type Example Description
Method /XSetClose GET /XSetClose HTTP/1.1 Identifies operation and
scope
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

The commit operation commits the changes to an XSet to the storage server.
After the operation, the handle to the XSet will no longer be valid, assuming

the returned status indicates success. Some return values may leave a valid
handle intact; see the values below.

HTTP

Attribute Type Example Description
Method /XSetCommit GET /XSetCommit HTTP/1.1 Identifies operation and scope
handle xam_handle handle=2000202 Identifies the XSet instance on

which the operation should be
performed

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

xuid xam_xuid xuid=AAA.... The xuid returned from the
XSet.commit() method.

XSetContainsField The XSetContainsField will determine if the XSet contains the named field.

HTTP o
Attribute Type Example Description
Method /XSetContainsField GET /XSetContainsField Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
name xam_string name=com.example.field The name of the field to be
checked for inclusion. Must
be URL safe encoded.
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.
value xam_boolean value=false The Boolean value of the
containsField() method.

XSetCreateProperty The XSetCreateProperty operation does not have a direct parallel in the
[XAM-ARCH]. Instead, this is an “aggregate” operation that is overloaded to
simplify the creation of the handlers on each side of the wire. All possible
property creation operations are collapsed to this single call. As all information
on the wire can be treated as string information, the value on the wire must be
convertible from a string to the target property type. The CreateProperty

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 109

Appendix B: HTTP VIM Architecture

110

XSetCreateRetention

© SNIA

operation will return parameter errors in the status if the value is not readily
convertible using the Java type conversion rules.

HTTP e
Attribute Type Example Description
Method /XSetCreateProperty GET /XSetCreateProperty Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
ptype xam_string ptype=boolean The type of property to
. . . create. The type of property
Possible values include: will dictate the format of the
- boolean value property.
- int
- float
- xuid
- string
- datetime
name xam_string name=propertyname The name of the property to
set
binding xam_boolean binding=true Whether this field should be
binding
value variable value=true The value to which the
property should be set. This
value will always be a string,
but the string must be
convertible to the property
ptype.
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.
statusMsg xam_string statusMsg=0Object is closed A string message
associated with the status
code. Not returned if
status=0.

This method will create the named retention on the XSet.

HTTP e

Attribute Type Example Description

Method /XSetCreateRetention GET /XSetCreateRetention Identifies operation and

HTTP/1.1 scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

binding xam_boolean binding=true The Boolean value of the
binding setting.

retentionid xam_string retentionid=test_retention The name of the retention to

be created. The string must
be encoded to URL safe.

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA

XSetCreateXStream

XSetDeleteField

Appendix B: HTTP VIM Architecture

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

Creates an XStream within a particular XSet with the values that were passed
to this function.

HTTP e
Attribute Type Example Description
Method /XSetCreateXStream GET /XSetCreateXStream Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
name xam_string name: propertyname The name of the property to
set
binding xam_boolean binding: true Whether this field should be
binding
type xam_string type: text/html The MIME type for the new
field.
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.
handle xam_integer handle:2000202 The handle of the newly created
XStream

This method deletes the named field from the XSet.

HTTP e

Attribute Type Example Description

Method /XSetDeleteField GET /XSetDeleteField Identifies operation and

HTTP/1.1 scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

name xam_string name=com.example.field The name of the field to be
deleted

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT

111

Appendix B: HTTP VIM Architecture

© SNIA

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

XSetGetActualAutoDelete

This method returns the actual auto delete setting from the XSet.

HTTP A
Attribute Type Example Description
Method /XSetGetActualAutoDelete GET/ Identifies operation and
XSetGetActualAutoDelete scope
HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.
autodelete autodelete autodelete:true The Boolean return value from the
XSet.getActualAutoDelete() method.
XSetGetActualRetention ~ This method returns the actual auto delete setting from the XSet.
Duration
HTTP ipti
Attribute Type Example Description
Method / GET/ Identifies operation and scope
XSetGetActualRetention XSetGetActualRetention
Duration Duration HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet instance on
which the operation should be
performed
112 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Appendix B: HTTP VIM Architecture

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

autodelete autodelete autodelete:true The Boolean return value from the
XSet.getActualAutoDelete() method.

XSetGetActualRetention This method returns the actual retention enabled setting from the XSet.
Enabled
HTTP o
Attribute Type Example Description
Method / GET/ Identifies operation and scope
XSetGetActualRetention | XSetGetActualRetention
Enabled Enabled HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet instance on
which the operation should be
performed
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.
enabled xam_boolean enabled=true The Boolean return value from the
XSet.getActualRetentionEnabled()
method.
XSetGetActualShred This method returns the actual shred setting from the XSet.
HTTP e
Attribute Type Example Description
Method /XSetGetActualShred GET /XSetGetActualShred Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT

113

Appendix B: HTTP VIM Architecture

114

XSetGetFieldBinding

XSetGetlLength

© SNIA

Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.
statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.
shred xam_boolean shred:true The Boolean return value from the
XSet.getActualShred() method.
This method returns the field binding setting from the XSet.
HTTP o
Attribute Type Example Description
Method /XSetGetFieldBinding GET /XSetGetFieldBinding Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
name xam_string name=com.example.field The name of the field to
interrogate
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.
value xam_boolean value=true The Boolean return value from the
XSet.getFieldBinding() method.

This method returns the actual field length setting from the XSet.

HTTP P

Attribute Type Example Description

Method /XSetGetFieldLength GET /XSetGetFieldLength Identifies operation and

HTTP/1.1 scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

name xam_string name=com.example.field The name of the field to
interrogate

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Appendix B: HTTP VIM Architecture

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

value xam_integer value=73 The integer return value from the
XSet.getFieldLength() method.

XSetGetFieldReadOnly This method returns the field readonly setting from the XSet.
HTTP o
Attribute Type Example Description
Method /XSetGetFieldReadOnly GET/ Identifies operation and
XSetGetFieldReadOnly scope
HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
name xam_string name=com.example.field The name of the field to
interrogate
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.
statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.
value xam_boolean value=true The Boolean return value from the
XSet.getFieldReadOnly() method
XSetGetProperty The XSetGetProperty operation does not have a direct parallel in the [XAM-

ARCH]. Instead, this is an “aggregate” operation that is overloaded to simplify
the creation of the handlers on each side of the wire. This operation returns a

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT

115

Appendix B: HTTP VIM Architecture

© SNIA

string value that is convertible into the requested property type using the Java
type conversion rules.

HTTP e
Attribute Type Example Description
Method /XSetGetProperty GET /XSetGetProperty Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
ptype xam_string ptype=boolean The type of property to
. . . create. The type of property
Possible values include: will dictate the format of the
- boolean value property.
- int
- float
- xuid
- string
- datetime
name xam_string name=propertyname The name of the property to
set

The response to the request will contain no additional information within the
HTTP Header beyond normal response codes identified in [HTTP-
RESPONSE]. The body will contain the following information in name/value

pairs.

Name Type Example Description

status xam_integer | status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

value xam_string value=true The value that the property is set to. This
will always be a string, but the string
must be convertible into the property
ptype.

XSetGetPropertyType This method returns the field type setting from the XSet. Despite the naming,
this method actually executes the getFieldType() method on the specified
XSet.

HTTP e

Attribute Type Example Description

Method /XSetGetPropertyType GET /XSetGetPropertyType Identifies operation and

HTTP/1.1 scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

name xam_string name=com.example.field The name of the field to
interrogate

116

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Appendix B: HTTP VIM Architecture

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

value xam_string value=application/octet-type | The MIME content type of the named
field.

XSetHaltdob This method executes the method haltJob() on the XSet.
HTTP o
Attribute Type Example Description
Method /XSetHaltJob GET /XSetHaltJob HTTP/ Identifies operation and
1.1 scope
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=Object is closed | A string message associated with the
status code. Not returned if status=0.
XSetOpenExportStream This method returns the handle of an export XStream on the XSet.
HTTP o
Attribute Type Example Description
Method /XSetOpenExportStream | GET/ Identifies operation and
XSetOpenExportStream scope
HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT

117

Appendix B: HTTP VIM Architecture © SNIA

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle=2000202 The handle of the newly created export
stream.

XSetOpenlmportStream This method returns the handle of an import stream on the XSet.

HTTP o
Attribute Type Example Description
Method /XSetOpenlmportStream GET/ Identifies operation and
XSetOpenlmportStream scope
HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.
handle xam_handle handle=2000202 The handle of the newly created import
stream.

XSetOpenXStream Opens an existing XStream within a particular XSet with the values that were
passed to this function. This operation also creates a handle for the operation
and returns it to the caller.

HTTP e
Attribute Type Example Description
Method /XSetOpenXStream GET /XSetOpenXStream Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
name xam_string name=com.example.name The name of the XStream to
open
mode xam_string where value mode=readonly The mode in which the
is “readonly” or XStream should be opened
“writeonly”

118 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Response:

Appendix B: HTTP VIM Architecture

Name

Type

Example

Description

status

xam_integer

status=0

Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg

xam_string

statusMsg=0Object is closed

A string message associated with the
status code. Not returned if status=0.

handle

xam_handle

handle = 33333333

Identifies the XStream instance that was
opened. Future operations on the
XStream must include this handle. Use
of this handle IMPLIES a connection to
a particular XSet.

XSetResetAccessFields ~ This method executes the method resetAccessFields() on the XSet.
HTTP o
Attribute Type Example Description
Method /XSetResetAccessFields | GET/ Identifies operation and
XSetResetAccessFields scope
HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.
XSetResetManagement This method executes the method resetManagementFields() on the XSet.
Fields
HTTP ol
Attribute Type Example Description
Method / GET/ Identifies operation and scope
XSetResetManagement XSetResetManagement
Fields Fields HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet instance on
which the operation should be
performed

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT

119

Appendix B: HTTP VIM Architecture

XSetSetAutoDelete

XSetSetBaseRetention

120

© SNIA

Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the

status code. Not returned if status=0.

This method sets the explicit AutoDelete setting on the XSet.

HTTP e
Attribute Type Example Description
Method /XSetSetAutoDelete GET /XSetSetAutoDelete Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
autodelete xam_boolean autodelete=true The auto delete setting
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the

status code. Not returned if status=0.

This method sets the base retention on the XSet.

HTTP

Attribute Type Example Description
Method /XSetSetBaseRetention GET/ Identifies operation and
XSetSetBaseRetention scope
HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
binding xam_boolean binding=false The binding setting for the
base retention.
duration xam_integer duration=1000 The duration value for the

base retention.

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA

XSetSetFieldAsBinding

XSetSetFieldAsNonbinding

Appendix B: HTTP VIM Architecture

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

This method sets the named field to be bound on the XSet.

HTTP e
Attribute Type Example Description
Method /XSetSetFieldAsBinding GET/ Identifies operation and
XSetSetFieldAsBinding scope
HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
name xam_string name=com.example.field The name of the field to be
bound.
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

This method returns the handle of an import stream on the XSet.

HTTP ipti

Attribute Type Example Description

Method / GET/ Identifies operation and

XSetSetFieldAsNonbinding | XSetSetFieldAsNonbinding scope
HTTP/1.1

handle xam_handle handle=2000202 Identifies the XSet
instance on which the
operation should be
performed

name xam_string name=com.example.field The name of the field to

be unbound

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT

121

Appendix B: HTTP VIM Architecture

© SNIA

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

XSetSetProperty

The XSetSetProperty operation does not have a direct parallel in the [XAM-

ARCH]. Instead, this is an “aggregate” operation that is overloaded to simplify
the creation of the handlers on each side of the wire. All possible operations
for setting properties are collapsed to this single call. As all information on the
wire can be treated as string information, the value on the wire must be
convertible from a string to the target property type. The SetProperty
operation will return parameter errors in the status if the value is not readily
convertible using the Java type conversion rules.

HTTP s
Attribute Type Example Description
Method /XSetSetProperty GET /XSetSetProperty Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
ptype xam_string ptype=boolean The type of property to
. . . create. The type of property
Possible values include: will dictate the format of the
- boolean value property.
- int
- float
- xuid
- string
- datetime
name xam_string name=propertyname The name of the property to
set
value various value=true The value to which the
property should be set. This
value will always be a string,
but the string must be
convertible to the property
ptype.
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

122

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA

XSetSetRetentionDuration

Appendix B: HTTP VIM Architecture

This method returns the handle of an import stream on the XSet.

HTTP ipti
Attribute Type Example Description
Method /XSetSetRetentionDuration GET/ Identifies operation and
XSetSetRetentionDuration scope
HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet
instance on which the
operation should be
performed
retentionid xam_string retentionid=test_retention The name of the retention
to modify
duration xam_integer duration=1000 The new retention
duration value to be set
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

XSetSetRetentionEnabled

This method returns the handle of an import stream on the XSet.

Flag
HTTP et
Attribute Type Example Description
Method /XSetSetRetentionEnabledFlag GET/ Identifies operation
XSetSetRetentionEnabledFlag and scope
HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet
instance on which the
operation should be
performed
retentionid | xam_string retentionid=test_retention The name of the
retention to modify
enabled xam_boolean enabled=true The new enabled
value of the retention
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.
statusMsg xam_string statusMsg=0bject is closed A string message
associated with the status
code. Not returned if
status=0.

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT

123

Appendix B: HTTP VIM Architecture

XSetSetRetentionStarttime

© SNIA

This method executes the setRetentionStarttime() method on the XSet.

HTTP ipti
Attribute Type Example Description
Method /XSetSetRetentionStarttime GET/ Identifies operation and
XSetSetRetentionStarttime scope
HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet
instance on which the
operation should be
performed
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

XSetSetShred This method sets the shred setting on the XSet.
HTTP e
Attribute Type Example Description
Method /XSetSetShred GET /XSetSetShred HTTP/ Identifies operation and
1.1 scope
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
shred xam_boolean shred=true The new shred value to be
set on the XSet
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.
XSetSubmitJob This method executes the submitJob() method on the XSet.
HTTP e
Attribute Type Example Description
Method /XSetSubmitJob GET /XSetSubmitJob Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

124

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

XStreamAbandon This operation abandons an XStream and all of the resources associated with
it. The XStream handle implies an association with an XSet. After this call, the
handle will no longer identify an active XStream object instance. The XStream
will have to be re-opened, and a new handle will have to be retrieved.

HTTP s e
Attribute Type Example Description
Method /XStreamAbandon GET /XStreamAbandon Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=33333333 Identifies the XStream
instance on which the
operation should be
performed
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

XStreamAsyncClose This creates an asynchronous XStream operation. The body will contain the
following information in name/value pairs.

HTTP ipti
Attribute Type Example Description
Method /XStreamAsyncClose GET /XStreamAsyncClose Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=2000202 The handle of the XSet
xopid xam_integer xopid=678890 The xopid to be associated
with this operation

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 125

Appendix B: HTTP VIM Architecture

© SNIA

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle=2000202 The handle of the XAsync object.

XStreamAsyncRead This method creates an asynchronous XStream operation. At some point
later, the number of bytes read will be available, and bytes themselves will be
available. The client must retrieve the data with the method XAsyncGetData.
The body will contain the following information in name/value pairs.

R;I;Iipbute Type Example Description

Method /XStreamAsyncRead GET /XStreamAsyncRead Identifies operation and

HTTP/1.1 scope
handle xam_handle handle=2000202 The handle of the XSet
xopid xam_integer xopid=678890 The xopid to be associated
with this operation.
Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=0bject is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle=2000202 The handle of the XAsync object.

XStreamAsyncWrite This operation starts an asynchronous write operation to an XStream. The

write of this buffer will start sequentially after the last byte written or after the
position of the last byte of the stream (if the seek operation is supported). The
XAsync method will return as soon as the data has been transferred.

HTTP o

Attribute Type Example Description

Method /XStreamAsyncWrite POST /XStreamAsyncWrite Identifies operation and

HTTP/1.1 scope

handle xam_handle handle=33333333 Identifies the XStream
instance on which the
operation should be
performed

The body will contain the bytes that should be written to the XStream.

126

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Response:

Appendix B: HTTP VIM Architecture

Name

Type

Example

Description

status

status=value

status=0

Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the [XAM-ARCH], [XAM-C-
API] and/or the vim.h
header files. The Java API
does not leverage status
codes in its internal
communication, and the
Exceptions will have to be
converted appropriately to
standard status codes.

handle

xam_handle

handle=2000202

The handle of the XAsync
object.

XStreamClose This operation closes an XStream and all of the resources associated with it.
The XStream handle implies an association with an XSet. Note that the
handle to the XStream “may” still be valid after this operation, depending on
the status returned. If the operation is successful, the handle will never be
valid after the operation completes.

HTTP e
Attribute Type Example Description
Method /XStreamClose GET /XStreamClose HTTP/ Identifies operation and
1.1 scope
handle handle: value where handle: 33333333 Identifies the XStream
“value” is an 8-byte instance on which the
signed integer, we will operation should be
use the “long” Java type performed
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

XStreamRead This operation reads from an XStream. For the purpose of the first iteration,
the size of the requested read is not possible; only the entire XStream can be
read.

HTTP ipti

Attribute Type Example Description

Method /XStreamRead GET /XStreamRead HTTP/ Identifies operation and

1.1 scope

handle xam_handle handle=33333333 Identifies the XStream
instance on which the
operation should be
performed

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT

127

Appendix B: HTTP VIM Architecture © SNIA

The response to the request will contain the contents of the XStream in the
body. If no body is included, an error occurred in the response.

XStreamSeek This operation executes the seek() method on the specified XStream object.

HTTP ety
Attribute Type Example Description
Method /XStreamSeek GET /XStreamSeek HTTP/1.1 Identifies operation and scope
handle xam_handle handle=33333333 Identifies the XStream instance on
which the operation should be
performed
whence xam_integer whence=0 The whence value from the seek
method.
offset xam_integer offset=12 The number of bytes to seek,
relative to whence.
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.
XStreamTell This operation executes the tell() method on the specified XStream object.
HTTP e
Attribute Type Example Description
Method /XStreamTell GET /XStreamTell HTTP/1.1 Identifies operation and
scope
handle xam_handle handle=33333333 Identifies the XStream
instance on which the
operation should be
performed
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.
position xam_integer position=42 Byte offset relative to the beginning of
the XStream

128 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture

XStreamWrite ~ This operation writes to an XStream. The write of this buffer will start
sequentially after the last byte written or after the position of the last byte of
the stream (if the seek operation is supported).

HTTP s

Attribute Type Example Description

Method /XStreamWrite POST /XStreamWrite HTTP/1.1 Identifies operation and scope

handle xam_handle handle=33333333 Identifies the XStream instance
on which the operation should be
performed

The body will contain the bytes that should be written to the XStream.

The response to the request will contain no additional information within the
HTTP Header beyond normal response codes identified in [HTTP-
RESPONSE]. The body will contain the following information in name/value

pairs.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

byteswritten xam_int byteswritten=1000 The number of bytes written to the
XStream

A complete request may look like the following:

POST /XStreamWrite HTTP/1.1

handle: 33333333

User-Agent: Jakarta Commons-HttpClient/3.0.1
Host: 192.168.1.100:9925
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaacccccccccbbbbb

A complete response may look like the following:

HTTP/1.1 200 OK

Date: Wed, 22 Aug 2007 12:45:13 GMT

Server: Jetty/4.2.20 (Windows XP/5.1 x86 java/
1.6.0 02)

Transfer-Encoding: chunked

status=0

byteswritten=1000

XSystemAbandon This operation releases all resources used by an XSystem and the XSystem
itself. The XSystem cannot be used after the call. The request is expected to

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 129

Appendix B: HTTP VIM Architecture © SNIA

be a generic HTTP GET request with the request parameters in the HTTP
Header; there is no information contained in the HTTP Body for the request.

HTTP e
Attribute Type Example Description
Method /XSystemAbandon GET /XSystemAbandon Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=1010101 Identifies the XSystem
instance on which the
operation should be
performed
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

XSystemAccessXSet This operation determines if a particular XSet is accessible with a particular
mode. This operation does not reserve the XSet, so the state may change
before your open. The XSystem must be connected to and a valid handle to
that XSystem supplied. This operation on the HTTP VIM passes through to
the implementation VIM.

HTTP o
Attribute Type Example Description
Method /XSystemAccessXSet GET /XSystemAccessXSet Identifies operation and
HTTP/1.1 scope
xuid xam_xuid xuid=AAA.... Identifies the XSet that
should be opened for the
client. XUID value to be
base64 encoded.
handle xam_handle handle=1010101 Identifies the XSystem
instance on which the
operation should be
performed
mode xam_string mode=readonly Identifies the mode in which
the XSet should be opened.
Different language bindings
vary dramatically here.
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.
statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.
accessible xam_boolean accessible=true

130 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture

XSystemAsyncCopyXSet This operation initiates an asynchronous CopyXSet method on the specified
XSystem object.

HTTP ipti
Attribute Type Example Description
Method /XSystemAsyncCopyXSet GET/ Identifies operation and
XSystemAsyncCopyXSet scope
HTTP/1.1
handle xam_handle handle=33333333 Identifies the XSystem
instance on which the
operation should be
performed
xuid xam_xuid xuid=AAA..... The base64/URL safe
encoded XUID value.
mode xam_string mode=restricted The copy mode argument
xopid xam_int xopid=1357 The XOPID argument from
the AsyncCopyXSet
method.
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.
handle xam_handle handle=2000202 The handle of the XAsync Object

XSystemAsyncOpenXSet This operation initiates an asynchronous OpenXSet method on the specified
XSystem object.

HTTP ipti
Attribute Type Example Description
Method /XSystemAsyncOpenXSet GET/ Identifies operation and
XSystemAsyncOpenXSet scope
HTTP/1.1
handle xam_handle handle=33333333 Identifies the XSystem
instance on which the
operation should be
performed
xuid xam_xuid xuid=AAA..... The base64/URL safe
encoded XUID value
mode xam_string mode-=restricted The copy mode argument
xopid xam_int xopid=1357 The XOPID argument from
the AsyncOpenXSet method

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 131

Appendix B: HTTP VIM Architecture

SystemAsyncOpenXStream

132

© SNIA

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle=2000202 The handle of the XAsync Object

This operation initiates an asynchronous OpenXStream method on the
specified XSystem object.

HTTP e
Attribute Type Example Description
Method /XSystemAsyncOpenXStream GET/ Identifies operation
XSystemAsyncOpenXStream and scope
HTTP/1.1
handle xam_handle handle=33333333 Identifies the
XSystem instance
on which the
operation should be
performed
name xam_string name=com.example.stream The name of the
stream to open
mode xam_string mode=restricted The open mode
argument
xopid xam_int xopid=1357 The XOPID
argument from the
AsyncOpenXSet
method
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.
handle xam_handle handle=2000202 The handle of the XAsync Object

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Appendix B: HTTP VIM Architecture

XSystemAuthenticate ~ This operation calls the authenticate method on the specified XSystem. The
contents of the authenticate buffer are sent as body of the POST operation.

HTTP e
Attribute Type Example Description
Method /XSystemAuthenticate POST / Identifies operation and
XSystemAuthenticate scope
HTTP/1.1
handle xam_handle handle=33333333 Identifies the XSystem
instance on which the
operation should be
performed

The body will contain the bytes that should be passed to the authenticate.

Response

Name

Type Example Description

status

xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg

xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

handle

xam_handle handle=2000202 A handle to the XStream containing the
results from the authenticate call.

A complete request may look like the following:

POST /XStreamWrite HTTP/1.1
handle: 33333333
User-Agent: Jakarta Commons-HttpClient/3.0.1

Host:

192.168.1.100:9925

<NUL>Users<NUL>Password

A complete response may look like the following:

HTTP/1.1 200 OK

Date:

Wed, 22 Aug 2007 12:45:13 GMT

Server: Jetty/4.2.20 (Windows XP/5.1 x86 java/
1.6.0 _02)

Transfer-Encoding: chunked

status=0

handle=2000202

XSystemClose This operation releases all resources used by an XSystem and the XSystem
itself. The XSystem cannot be used after the call, and the handle will no
longer identify a valid XSystem object instance. The request is expected to be

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT 133

Appendix B: HTTP VIM Architecture © SNIA

134

XSystemConnect

a generic HTTP GET request with the request parameters in the HTTP
Header; there is no information contained in the HTTP Body for the request.

HTTP et

Attribute Type Example Description

Method /XSystemClose GET /XSystemClose HTTP/1.1 Identifies operation and scope

handle xam_handle handle=1010101 Identifies the XSystem instance
on which the operation should be
performed

The response to the request will contain no additional information within the
HTTP Header beyond normal response codes identified in [HTTP-
RESPONSE]. The body will contain the following information in name/value
pairs.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

This operation establishes a XAM connection to a system. The request is
expected to be a generic HTTP GET request with the request parameters in
the HTTP Header; there is no information contained in the HTTP Body. As the
HTTP protocol is stateless, the result of this operation will be a “handle”
returned to the requester. Future requests must include this handle to identify
the active XSystem object.

HTTP i e
Attribute Type Example Description
Method /XSystemConnect POST /XSystemConnect Identifies the operation as a
HTTP/1.1 /Connect operation
xri Xri: snia-xam://value xri: snia-xam://localhost Identifies to which XSystem
to locate and connect

The body of the post must contain all of the initialization parameters for the
XSystem. These parameters include write properties to the XSystem and are
passed to the XSystem as part of the XSystem initialization protocol. Each
parameter is a name value pair, three of which are needed to completely
specify the semantics of an XSystem property: name, value, binding, and
type. For example, an XLibrary is going to initialize the XSystem with the
following properties:

com.example.pl,a string, value=absdefg
com.example.p2,an integer, value=42
com.example.p3,a boolean, value=false

A buffer containing these values is sent to in the POST body:

com.example.pl.type=string
com.example.pl.value=absdefqg
com.example.pl.binding=false
com.example.p2.type=integer com.example.p2.value=42

WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture

com.example.p2.bdining=false

com.example.p3.type=boolean com.example.p3.value=false

com.example.p3.binding=false

Note that each name/value pair is space delimited. Thus, any name/value pair
must be URL encoded to prevent spaces in a value from confusing the parser.
Also note that as of the current level of implementation, there are no known

VIMs which provide binding values for properties, but this may not be true for

the future.
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.
statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.
handle xam_handle handle=1010101 Identifies the XSystem for future
operations

A complete request may look like the following:

GET /XAMLIBConnect HTTP/1.1
xri: snia-xam://localhost

User-Agent: Jakarta Commons-HttpClient/3.0.1

Host: 192.168.1.100:9925

com.example.pl.type=string
com.example.pl.value=absdefqg
com.example.pl.binding=false

com.example.p2.type=integer com.example.p2.value=42

com.example.p2.bdining=false

com.example.p3.type=boolean com.example.p3.value=false

com.example.p3.binding=false

A complete response may look like the following:

HTTP/1.1 200 OK

Date: Wed, 22 Aug 2007 12:45:13 GMT
Server: Jetty/4.2.20 (Windows XP/5.1 x86 java/

1.6.0 02)
Transfer-Encoding: chunked

status=1020
handle=1010101

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT

135

Appendix B: HTTP VIM Architecture

XSystemContainsField

XSystemCopyXSet

136

© SNIA

This operation initiates an asynchronous OpenXStream method on the

specified XSystem object.

HTTP e
Attribute Type Example Description
Method /XSystemContainsField GET/ Identifies operation and
XSystemContainsField scope
HTTP/1.1
handle xam_handle handle=33333333 Identifies the XSystem
instance on which the
operation should be
performed
name xam_string name=com.example.stream The name of the field to test
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.
value xam_booleam value=true The Boolean return value from the
XSystem.containsField() method.

This operation executes the method CopyXSet on the specified XSystem

object.
HTTP i e
Attribute Type Example Description
Method /XSystemCopyXSet GET /XSystemCopyXSet Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=33333333 Identifies the XSystem
instance on which the
operation should be
performed
xuid xam_xuid xuid=AAA... The base64/URL encoded
value of the XUID
mode xam_string mode=restricted The open mode of the
copied XSet
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.
statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.
handle xam_handle handle=2000202 The handle to the newly copied XSet.

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA

Appendix B: HTTP VIM Architecture

XSystemCreateProperty ~ The XSystemCreateProperty operation does not have a direct parallel in the
[XAM-ARCH]. Instead, this is an “aggregate” operation that is overloaded to
simplify the creation of the handlers on each side of the wire. This version of
the wire format operates on a system rather than an XSet. This may be able
to be collapsed into the XSetCreateProperty with an additional value in the
HTTP Header on the request.

HTTP e
Attribute Type Example Description
Method /XSystemCreateProperty GET/ Identifies operation and
XSystemCreateProperty scope
HTTP/1.1
handle xam_handle handle=1010101 Identifies the XSystem
instance on which the
operation should be
performed
ptype xam_string ptype=boolean The type of property to
. . . create. The type of property
Possible values include: will dictate the format of the
- boolean value property.
- int
- float
- xuid string
- datetime
name xam_string name=propertyname The name of the property to
set
binding xam_boolean binding=true Whether this field should be
binding
value xam_string value=true The value to which the
property should be set. This
value will always be a string,
but the string must be
convertible to the property
ptype.
The response to the request will contain no additional information within the
HTTP Header beyond normal response codes identified in [HTTP-
RESPONSE]. The body will contain the following information in name/value
pairs.
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.
XSystemCreateXSet This operation creates an XSet within a specified XSystem. The XSystem

must be connected to and must have a valid handle to the XSystem supplied.

XAM™ SDK 1.01 (August 31, 2009)

WORKING DRAFT

137

Appendix B: HTTP VIM Architecture

© SNIA

This operation returns a handle to the requester that must be used for future
interactions with the created XSet.

HTTP e
Attribute Type Example Description
Method /XSystemCreateXSet GET /XSystemCreateXSet Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=1010101 Identifies the XSystem
instance on which the
operation should be
performed
mode xam_string mode=readonly Identifies the mode in which
the XSet should be opened
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.
handle xam_handle handle = 2000202 Identifies the XSet instance that was
created. Future operations on the XSet
must include this handle.

XSystemCreateXStream This operation creates an XStream within a specified XSystem. The XSystem
must be connected to and must be a valid handle to the XSystem supplied.
This operation returns a handle to the requester that must be used for future
interactions with the created XStream. As of XAM version 1.0.1, no known
XSystems support stream creation.

HTTP e
Attribute Type Example Description
Method /XSystemCreateXStream GET/ Identifies operation and
XSystemCreateXStream scope
HTTP/1.1
handle xam_handle handle=1010101 Identifies the XSystem
instance on which the
operation should be
performed
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.
handle xam_handle handle = 2000202 Identifies the XStream instance that was
created. Future operations on the
XStream must include this handle.
138 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture

XSystemDeleteXSet ~ This operation deletes an existing XSet within a specified XSystem. The
XSystem must be connected to and must be a valid handle to the XSystem
supplied. This operation on the HTTP VIM passes through to the
implementation VIM.

HTTP e
Attribute Type Example Description
Method /XSystemDeleteXSet GET /XSystemDeleteXSet Identifies operation and
HTTP/1.1 scope
xuid xam_xuid xuid=AAA... Identifies the XSet that
should be opened for the
client.
handle xam_handle handle=1010101 Identifies the XSystem
instance on which the
operation should be
performed
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

XSystemGetFieldBinding This method returns the field binding setting from the XSystem.

HTTP S
Attribute Type Example Description
Method /XSystemGetFieldBinding GET/ Identifies operation and
XSystemGetFieldBinding scope
HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSystem
instance on which the
operation should be
performed
name xam_string name=com.example.field The name of the field to
interrogate
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.
value xam_boolean value=true The Boolean return value from the
XSystem.getFieldBinding() method

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 139

Appendix B: HTTP VIM Architecture © SNIA

XSystemGetFieldLength ~ This method returns the actual field length setting from the XSet.

HTTP e
Attribute Type Example Description
Method /XSystemGetFieldLength | GET/ Identifies operation and
XSystemGetFieldLength scope
HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
name xam_string name=com.example.field The name of the field to
interrogate
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.
value xam_integer value=73 The integer return value from the
XSet.getFieldLength() method

XSystemGetProperty The XSystemGetProperty operation does not have a direct parallel in the
[XAM-ARCH]. Instead, this is an “aggregate” operation that is overloaded to
simplify the creation of the handlers on each side of the wire. This version of
the wire format operates on a system rather than an XSet. This may be able
to be collapsed into the XSetGetProperty with an additional value in the HTTP
Header on the request. This operation returns a string value that is convertible
into the requested property type using the Java type conversion rules.

HTTP e
Attribute Type Example Description
Method /XSystemGetProperty GET /XSystemGetProperty Identifies operation and
HTTP/1.1 scope
handle xam_handle handle=1010101 Identifies the XSystem
instance on which the
operation should be
performed
ptype xam_string ptype=boolean The type of property to
. . . create. The type of property
Possible values include: will dictate the format of the
- boolean value property.
- int
- float
- xuid
- string
- datetime
name xam_string name=propertyname The name of the property to
set

140 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

value various value=true The value that the property is set to.
This will always be a string, but the
string must be convertible into the
property ptype.

XSystemGetPropertyType This method returns the field type setting from the XSet. Despite the naming,
this method actually executes the getFieldType() method on the specified

XSet.
HTTP ipti
Attribute Type Example Description
Method /XSystemGetProperty Type GET/ Identifies operation and
XSystemGetProperty Type scope
HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet
instance on which the
operation should be
performed
name xam_string name=com.example.field The name of the field to
interrogate
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.
value xam_string value=application/octet-type The MIME content type of the named
field.

XSystemGetXSetAccess This method returns the access time of the specified XSet.

Time
HTTP ey
Attribute Type Example Description
Method /XSystemGetXSetAccessTime | GET/ Identifies operation and
XSystemGetXSetAccess scope
Time HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
xuid xam_xuid xuid=AAA... The base64/URL safe
encoded XUID value.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 141

Appendix B: HTTP VIM Architecture © SNIA

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

accesstime xam_datetime asccesstime=12374568 The date time of the last time the XSet
was accessed.

XSystemHoldXSet This method executes the holdXSet() method on the XSystem

HTTP Lo
Attribute Type Example Description
Method /XSystemHoldXSet GET /XSystemHoldXSet Identifies operation and scope
HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet instance on
which the operation should be
performed
holdid xam_string holdid=case_1234 The holdID to be applied to the
XSet.
xuid xam_xuid xuid=AAAA..... The base64/URL safe encoded
XUID value of the XSet.
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

XSystemlsXSetRetained This method executes the isXSetRetained() method on the XSystem.

HTTP ipti
Attribute Type Example Description
Method /XSystemlsXSetRetained GET/ Identifies operation and
XSystemlsXSetRetained scope
HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
xuid xam_xuid xuid=AAAA..... The base64/URL safe
encoded XUID value of the
XSet

142 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

retained xam_boolean retained=true The Boolean return value from the
isXSetRetained() method.

XSystemOpenXSet This operation opens an existing XSet within a specified XSystem. The
XSystem must be connected to and a valid handle to the XSystem supplied.
This operation on the HTTP VIM passes through to the implementation VIM.
A handle is returned to the client that must be used to refer to the active XSet
object in future operations on the XSet.

HTTP s
Attribute Type Example Description
Method /XSystemOpenXSet GET /XSystemOpenXSet Identifies operation and
HTTP/1.1 scope
xuid xam_xuid xuid=AAA.... Identifies the XSet that
should be opened for the
client
handle xam_handle handle=1010102 Identifies the XSystem
instance on which the
operation should be
performed
mode xam_string mode=readonly Identifies the mode in which
the XSet should be opened
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.
statusMsg | xam_string statusMsg=0Object is closed | A string message associated with
the status code. Not returned if
status=0.
handle handle: value where handle = 2000202 Identifies the XSet instance that was
“value” is an 8-byte opened. Future operations on the
signed integer XSet must include this handle.

XSystemOpenXStream This operation opens an existing XStream within a specified XSystem. The
XSystem must be connected to and a valid handle to that XSystem supplied.
This operation on the HTTP VIM passes through to the implementation VIM.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 143

Appendix B: HTTP VIM Architecture

144

XSystemReleaseXSet

© SNIA

A handle is returned to the client that must be used to refer to the active XSet
object in future operations on the XSet.

HTTP e
Attribute Type Example Description
Method /XSystemOpenXStream GET/ Identifies operation and
XSystemOpenXStream scope
HTTP/1.1
xuid xam_xuid xuid=AAA.... Identifies the XSet that
should be opened for the
client
handle xam_handle handle=1010102 Identifies the XSystem
instance on which the
operation should be
performed
name xam_string name=com.example.name The stream name to be
opened
mode xam_string mode=readonly Identifies the mode in which
the XSet should be opened
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended error
codes as defined by the XAM SDK TWG.
statusMsg xam_string statusMsg=0Object is A string message associated with the
closed status code. Not returned if status=0.
handle handle: value where handle = 2000202 Identifies the XStream instance that was
“value” is an 8-byte opened. Future operations on the XStream
signed integer. must include this handle.

This method executes the releaseXSet() method on the XSystem

HTTP e

Attribute Type Example Description

Method /XSystemReleaseXSet GET /XSystemReleaseXSet Identifies operation and

HTTP/1.1 scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

holdid xam_string holdid=case_1234 The holdID to be applied to
the XSet

xuid xam_xuid xuid=AAAA..... The base64/URL safe
encoded XUID value of the
XSet

WORKING DRAFT

XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture

Response:

Name Type Example Description

status xam_integer | status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

XSystemSetFieldAsBinding This method sets the named field to be bound on the XSystem. As of XAM
version 1.0.1, there is no definition as to what a bound XSystem field means.
This method will pass execution to the XSystem, but it is expected that this
operation will fail on current VIMs.

HTTP e
Attribute Type Example Description
Method /XSystemSetFieldAsBinding | GET/ Identifies operation and
XSystemSetFieldAsBinding scope
HTTP/1.1
handle xam_handle handle=2000202 Identifies the XSystem
instance on which the
operation should be
performed
name xam_string name=com.example.field The name of the field to be
bound.
Response:
Name Type Example Description
status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.
statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

XSystemSetFieldAsNon This method sets the named field to be unbound on the XSystem. As of XAM
binding version 1.0.1, there is no definition as to what a bound XSystem field means.
This method will pass execution to the XSystem, but it is expected that this
operation will fail on current VIMs.

HTTP ipti

Attribute Type Example Description

Method /XSystemSetFieldAsNonbinding GET /XSystemSetFieldAs Identifies operation and

Nonbinding HTTP/1.1 scope

handle xam_handle handle=2000202 Identifies the XSystem
instance on which the
operation should be
performed

name xam_string name=com.example.field The name of the field to
be unbound

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 145

Appendix B: HTTP VIM Architecture © SNIA

Response:

Name Type Example Description

status xam_integer | status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

XSystemSetProperty ~ The XSystemSetProperty operation does not have a direct parallel in the
[XAM-ARCH]. Instead, this is an “aggregate” operation that is overloaded to
simplify the creation of the handlers on each side of the wire. This version of
the wire format operates on a system rather than an XSet. This may be able
to be collapsed into the XSystemSetProperty with an additional value in the
HTTP Header on the request in a future version of this design specification.
As all information on the wire can be treated as string information, the value
on the wire must be convertible from a string to the target property type. The
SetProperty operation will return parameter errors in the status if the value is
not readily convertible using the Java type conversion rules.

HTTP ey
Attribute Type Example Description
Method /XSystemSetProperty GET /XSystemSetProperty Identifies operation and scope
HTTP/1.1
handle xam_handle handle=1010101 Identifies the XSystem instance
on which the operation should be
performed
ptype xam_string ptype=boolean The type of property to create.
. The type of property will dictate
Possible values the format of the value property.
include:
- boolean
- int
- float
- xuid
- string
- datetime
name xam_string name=propertyname The name of the property to set
value xam_string value=true The value to which the property
should be set. This value will
always be a string, but the string
must be convertible to the
property ptype.

The response to the request will contain no additional information within the
HTTP Header beyond normal response codes identified in
[HTTP-RESPONSE]. The body will contain the following information in name/

value pairs.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=0Object is closed A string message associated with the
status code. Not returned if status=0.

146 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture

Known Issues The HTTP Protocol VIM has the following known issues:
» HTTPS is not currently implemented

* Handles are relatively unsecured, allowing potential clients to “guess”
at handles and gain access to XAM objects that they might not
otherwise have access to.

* No leasing mechanism is implemented. Improperly disconnected, or
crash clients, will leave many orphaned objects in the caches of the
VIM server. A possible way to solve this problem is to place a lease
on XAM objects by adding a lease/last used properties to the
XSystem.

* The HTTP VIM Server can periodically clean up XSystems that fail
the lease time, freeing resources.

* XSystems would be abandoned, then closed.

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 147

	eXtensible Access Method (XAM™) - SDK Developer’s Guide
	Contents
	Tables
	Figures

	Chapter 1: About this Guide
	Purpose and Audience
	Contents
	References
	Additional Information
	Conventions
	SNIA Welcomes Your Comments

	Chapter 2: Introduction to the SDK Developer’s Guide
	SDK Terms of Use
	SDK Components
	Supported Operating Systems
	Software Requirements
	SDK Installation Instructions

	Chapter 3: XAM™ Library Configuration
	Introduction
	Configuration File Format
	Configuration File Discovery
	XAM™ Library Configuration Behavior
	Stackable VIM Support
	XAM™ Library Configuration Namespaces
	Configuration File Example
	Aliasing VIM Implementations
	Leveraging Lookup Order for VIM Discovery
	Preloading VIM Libraries
	Defining VIM Stacks
	Using Application-Defined Configurations
	Configuring VIM-Specific Controls
	Specifying XAM™ Library Logging Controls

	Chapter 4: Java Library
	Understanding What Is Provided
	Unpacking Your ZIP file
	Installing Compilers and Dependent Libraries
	Installing JUnit
	Windows
	Unix (bash)

	Installing libcurl

	Building the Code for Your Platform
	Supported Platforms

	Installing the Binaries for Your Platform
	Installing a VIM
	Running Tests

	Using the Java Library
	Obtaining an Instance of the XAM™ Library
	Configuring the Library Initialization
	Logging Parameters
	Java Logging Use

	Using Classes from XAMLib.jar and XAMToolkit.jar

	Chapter 5: C Library
	Understanding What Is Provided
	Unpacking Your ZIP file
	Installing Compilers and Dependent Libraries
	Installing JUnit
	Windows
	Unix (bash)

	Installing libcurl
	Choosing a C compiler

	Building the Code for Your Platform
	Building the XAM™ SDK with Visual Studio on Windows
	Building the XAM™ SDK Using ant

	Installing the Binaries for Your Platform
	Configuring the XAM™ Library
	Configuration Options
	Supported Configuration Namespaces
	Configuration File Syntax
	Example Configuration File

	Installing a VIM
	Configuring the HTTP VIM
	HTTP VIM Parameters
	HTTP VIM Configuration File
	Supported Configuration Namespaces
	Configuration File Syntax
	Example Configuration File:

	Chapter 6: Java Reference VIM
	Overview
	Summary of Features
	XAM™ API Features
	API Methods Supported

	Unpacking your ZIP file
	Installing Compilers and Dependent Libraries
	Installing JUnit
	Windows
	Unix (bash)

	Building the Code for Your Platform
	Supported Platforms
	Software Requirements
	Ant
	Derby
	JUnit
	Java
	JavaCC
	JavaMail
	JavaBeans Activation Framework (JAF)
	Lucene

	PATH Requirements
	Building the XAM SDK using ant
	Running the ant test

	Installing the Binaries for Your Platform
	Configuring and Operating the XAM™ Reference VIM and Library
	Basic Configuration
	User Configuration
	Access Control Policies

	Autodelete Configuration
	Autodelete and Shred Policies
	Retention Policies
	Import Processing
	Asynchronous Methods
	Reference VIM Logging
	Summary of Configuration Properties
	Scalability

	Building and Running the Client Example
	Building and Running the Example Using ant
	Building and Running the Example From the Command Line
	Viewing Build Example Output - ant

	Using Reference VIM Example Programs
	Building and Running Tests and Examples
	Configuring Unit Tests
	Building and Running Tests Using ant

	Running Your Application with XAM™
	Default Repository Location
	Directories and Files Created
	Files Created for a Persisted XSet
	Temp Files Created
	Database For Query Support

	Specification of a Different Reference VIM Repository Location
	Repository Maintenance

	Chapter 7: HTTP Protocol VIM
	Description
	Functionality
	Server Configuration, Installation, Building, and Testing
	Configuring the HTTP VIM Implementation Target of the HTTP VIM Client
	Installing Required Runtime Libraries
	Building the Server
	Running Ant Tasks
	Verifying the Server
	Starting the Server

	Protocol VIM Use
	Java VIM Requirements

	Chapter 8: Error Codes
	XAMException
	FieldContainerException
	JobException
	XSetException
	XStreamException
	XSystemException
	Non-Categorized C Errors
	Class Structure
	XSystem
	XSet
	XStream
	Persistence Manager
	Default Repository Location
	Directories and Files Created
	Files Created for a Persisted XSet
	Temp Files Created
	Specification of a VIM Repository Location

	Policy
	Access Policies
	Disposition Policies
	Retention Policies

	Jobs
	DBManager

	Operational Flow
	Initializing an XSystem
	Importing an XSet
	Processing a Query

	Future Ideas
	Terms and Scope
	Terms
	Scope

	Overview of HTTP VIM Design
	Java HTTP VIM Client
	Connect Processing
	XAsyncCallback Management

	Java HTTP VIM Server
	VIM Class and Library Load Operations
	VIM Wire Protocol
	Organization
	Method Access
	Return Values
	Value Encoding
	Example Exchange
	Operations
	XAMCreateFieldIterator
	XAsyncClose
	XAsyncGetBytesRead
	XAsyncGetBytesWritten
	XAsyncGetStatus
	XAsyncGetXOPID
	XAsyncGetXSet
	XAsyncGetXStream
	XAsyncGetXUID
	XAsyncHalt
	XAsyncIsComplete
	XAsync - POLL
	XIteratorClose
	XIteratorHasNext
	XIteratorNext
	XSetAbandon
	XSetApplyAccessPolicy
	XSetApplyAutoDeletePolicy
	XSetApplyBaseRetention
	XSetApplyManagement Policy
	XSetApplyRetentionDuration Policy
	XSetApplyRetentionEnabled Policy
	XSetApplyShredPolicy
	XSetApplyStoragePolicy
	XSetAsyncCommit
	XSetAsyncOpenXStream
	XSetClose
	XSetCommit
	XSetContainsField
	XSetCreateProperty
	XSetCreateRetention
	XSetCreateXStream
	XSetDeleteField
	XSetGetActualAutoDelete
	XSetGetActualRetention Duration
	XSetGetActualRetention Enabled
	XSetGetActualShred
	XSetGetFieldBinding
	XSetGetLength
	XSetGetFieldReadOnly
	XSetGetProperty
	XSetGetPropertyType
	XSetHaltJob
	XSetOpenExportStream
	XSetOpenImportStream
	XSetOpenXStream
	XSetResetAccessFields
	XSetResetManagement Fields
	XSetSetAutoDelete
	XSetSetBaseRetention
	XSetSetFieldAsBinding
	XSetSetFieldAsNonbinding
	XSetSetProperty
	XSetSetRetentionDuration
	XSetSetRetentionEnabled Flag
	XSetSetRetentionStarttime
	XSetSetShred
	XSetSubmitJob
	XStreamAbandon
	XStreamAsyncClose
	XStreamAsyncRead
	XStreamAsyncWrite
	XStreamClose
	XStreamRead
	XStreamSeek
	XStreamTell
	XStreamWrite
	XSystemAbandon
	XSystemAccessXSet
	XSystemAsyncCopyXSet
	XSystemAsyncOpenXSet
	SystemAsyncOpenXStream
	XSystemAuthenticate
	XSystemClose
	XSystemConnect
	XSystemContainsField
	XSystemCopyXSet
	XSystemCreateProperty
	XSystemCreateXSet
	XSystemCreateXStream
	XSystemDeleteXSet
	XSystemGetFieldBinding
	XSystemGetFieldLength
	XSystemGetProperty
	XSystemGetPropertyType
	XSystemGetXSetAccess Time
	XSystemHoldXSet
	XSystemIsXSetRetained
	XSystemOpenXSet
	XSystemOpenXStream
	XSystemReleaseXSet
	XSystemSetFieldAsBinding
	XSystemSetFieldAsNon binding
	XSystemSetProperty

	Known Issues

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

