
eXtensible Access Method (XAM™) –
SDK Developer’s Guide

Version 1.01

“Publication of this Working Draft for review and comment has been approved
by the SDK TWG. This draft represents a “best effort” attempt by the SDK
TWG to reach preliminary consensus, and it may be updated, replaced, or
made obsolete at any time. This document should not be used as reference
material or cited as other than a “work in progress.” Suggestion for revision
should be directed to the SNIA Technical Council Managing Director at
tcmd@snia.org.”

WORKING DRAFT

August 31, 2009

© SNIA

ii WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

Revision History

The SNIA hereby grants permission for individuals to use this document for
personal use only, and for corporations and other business entities to use this
document for internal use only (including internal copying, distribution, and
display) provided that:

• Any text, diagram, chart, table or definition reproduced shall be
reproduced in its entirety with no alteration, and,

• Any document, printed or electronic, in which material from this
document (or any portion hereof) is reproduced shall acknowledge
the SNIA copyright on that material, and shall credit the SNIA for
granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial
use of this document, sell any excerpt or this entire document, or distribute
this document to third parties. All rights not explicitly granted are expressly
reserved to SNIA.

Permission to use this document for purposes other than those enumerated
above may be requested by
e-mailing tcmd@snia.org please include the identity of the requesting
individual and/or company and a brief description of the purpose, nature, and
scope of the requested use.

Copyright © 2009 Storage Networking Industry Association.
XAM is a trademark of the Storage Networking Industry Association.

Version Date Originator Sections Comments

0.8 4-9-09 M. McMinn All Added new section placeholders; reorganized doc and
moved existing information.

4-21-09 M. McMinn Ch 3 & 4 Added text to “Installing Compilers and Dependent
Libraries.”

4-28-09 M. McMinn All Added info from updated readme’s (Java XAM Library and
Java Reference VIM) and converted each chapter to MS
Word for SME edits. Posted to Subversion.

0.9 7-16-09 M. McMinn All Incorporated SME edits and information from updated
readme files. Added Error Codes and XAM Configuration
chapters; added Appendix A - Reference VIM Architecture.

1.01 8-31-09 M. McMinn All - Recreated all graphics in Visio
- Updated Ch 4,5,6, & 7
- Added Appendix B - HTTP VIM Architecture & Protocol
- Added trademark to XAM

© SNIA
Contents

 1 About this Guide.. 1
Purpose and Audience ...1
Contents ...1
References ...2
Additional Information ...3
Conventions..3
SNIA Welcomes Your Comments...3

 2 Introduction to the SDK Developer’s Guide.............................. 4
SDK Terms of Use..4
SDK Components ...4
Supported Operating Systems..5
Software Requirements ..5
SDK Installation Instructions...5

 3 XAM™ Library Configuration ... 6
Introduction ...6
Configuration File Format ...7
Configuration File Discovery...7
XAM™ Library Configuration Behavior...8
Stackable VIM Support ...8
XAM™ Library Configuration Namespaces ..8
Configuration File Example...9

Aliasing VIM Implementations..10
Leveraging Lookup Order for VIM Discovery11
Preloading VIM Libraries ..11
Defining VIM Stacks...11
Using Application-Defined Configurations..12
Configuring VIM-Specific Controls ...12
Specifying XAM™ Library Logging Controls12

 4 Java Library.. 13
Understanding What Is Provided ..13
Unpacking Your ZIP file ..14
Installing Compilers and Dependent Libraries ..15

Installing JUnit ..15
Windows ..15
Unix (bash) ..15

Installing libcurl...16
Building the Code for Your Platform ...16

Supported Platforms ..16
Installing the Binaries for Your Platform ...17
Installing a VIM ...17

Running Tests ..17
Using the Java Library ..17

Obtaining an Instance of the XAM™ Library17
Configuring the Library Initialization ...18
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT iii

© SNIA
Logging Parameters ..19
Java Logging Use ..19

Using Classes from XAMLib.jar and XAMToolkit.jar20

 5 C Library ... 21
Understanding What Is Provided ..21
Unpacking Your ZIP file ..22
Installing Compilers and Dependent Libraries ..23

Installing JUnit ..23
Windows ..23
Unix (bash) ..23

Installing libcurl...24
Choosing a C compiler ...24

Building the Code for Your Platform ...24
Building the XAM™ SDK with Visual Studio on Windows25
Building the XAM™ SDK Using ant ...25

Installing the Binaries for Your Platform ...25
Configuring the XAM™ Library ...25

Configuration Options ..26
Supported Configuration Namespaces ..26
Configuration File Syntax ...27
Example Configuration File ..28

Installing a VIM ...28
Configuring the HTTP VIM..29

HTTP VIM Parameters ...29
HTTP VIM Configuration File ...29
Supported Configuration Namespaces ..29
Configuration File Syntax ...29
Example Configuration File: ...30

 6 Java Reference VIM ... 31
Overview...31

Summary of Features...32
XAM™ API Features..32
API Methods Supported ...33

Unpacking your ZIP file...34
Installing Compilers and Dependent Libraries ..34

Installing JUnit ..34
Windows ..34
Unix (bash) ..35

Building the Code for Your Platform ...35
Supported Platforms ..35
Software Requirements..35

Ant ..35
Derby ...35
JUnit...35
Java ...36
JavaCC ..36
JavaMail...36
JavaBeans Activation Framework (JAF)....................................36
Lucene ...36

PATH Requirements ..36
iv WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA
Building the XAM SDK using ant..36
Running the ant test ...37

Installing the Binaries for Your Platform ...37
Configuring and Operating the XAM™ Reference VIM and Library37

Basic Configuration ..38
User Configuration ...38

Access Control Policies ...38
Autodelete Configuration..39
Autodelete and Shred Policies ...40
Retention Policies ..40
Import Processing ..41
Asynchronous Methods..41
Reference VIM Logging ...42
Summary of Configuration Properties ..43
Scalability ...43

Building and Running the Client Example ..43
Building and Running the Example Using ant43
Building and Running the Example From the Command Line44
Viewing Build Example Output - ant...44

Using Reference VIM Example Programs ..45
Building and Running Tests and Examples ..45

Configuring Unit Tests..45
Building and Running Tests Using ant ...46

Running Your Application with XAM™ ...46
Default Repository Location ...46
Directories and Files Created...47

Files Created for a Persisted XSet ..47
Temp Files Created ...47
Database For Query Support...47

Specification of a Different Reference VIM Repository Location......48
Repository Maintenance ..48

 7 HTTP Protocol VIM .. 50
Description..50
Functionality..51
Server Configuration, Installation, Building, and Testing51

Configuring the HTTP VIM Implementation Target of the HTTP VIM
Client..52

Installing Required Runtime Libraries ..52
Building the Server ...53
Running Ant Tasks...53
Verifying the Server..53
Starting the Server ...54

Protocol VIM Use..54
Java VIM Requirements ...55

 8 Error Codes .. 56
XAMException ..56
FieldContainerException...57
JobException ..57
XSetException ..58
XStreamException ..58
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT v

© SNIA
XSystemException..59
Non-Categorized C Errors ..59

Appendix A:Reference VIM Architecture 60
Class Structure ...60

XSystem...61
XSet ...62
XStream ...63
Persistence Manager ...64

Default Repository Location...64
Directories and Files Created ..65
Files Created for a Persisted XSet ..65
Temp Files Created ...65
Specification of a VIM Repository Location65

Policy..66
Access Policies..67
Disposition Policies..67
Retention Policies ..67

Jobs..68
DBManager ..68

Operational Flow...71
Initializing an XSystem ...71
Importing an XSet ..73
Processing a Query..75

Future Ideas..81

Appendix B:HTTP VIM Architecture .. 83
Terms and Scope ...83

Terms ...83
Scope ...84

Overview of HTTP VIM Design...85
Java HTTP VIM Client ..88

Connect Processing ...89
XAsyncCallback Management ...89

Java HTTP VIM Server...90
VIM Class and Library Load Operations...92
VIM Wire Protocol...92

Organization...93
Method Access...93
Return Values ..93
Value Encoding ..93
Example Exchange ..93
Operations..94

XAMCreateFieldIterator ...94
XAsyncClose ...94
XAsyncGetBytesRead ...95
XAsyncGetBytesWritten ..95
XAsyncGetStatus...96
XAsyncGetXOPID..97
XAsyncGetXSet ...97
XAsyncGetXStream...98
XAsyncGetXUID ..98
XAsyncHalt ..99
vi WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA
XAsyncIsComplete ..99
XAsync – POLL ...100
XIteratorClose..101
XIteratorHasNext ...101
XIteratorNext..102
XSetAbandon...102
XSetApplyAccessPolicy...103
XSetApplyAutoDeletePolicy...103
XSetApplyBaseRetention ..104
XSetApplyManagementPolicy ...104
XSetApplyRetentionDurationPolicy ...105
XSetApplyRetentionEnabledPolicy..105
XSetApplyShredPolicy...106
XSetApplyStoragePolicy..106
XSetAsyncCommit...107
XSetAsyncOpenXStream ..107
XSetClose..108
XSetCommit...108
XSetContainsField ...109
XSetCreateProperty...109
XSetCreateRetention...110
XSetCreateXStream ..111
XSetDeleteField...111
XSetGetActualAutoDelete ...112
XSetGetActualRetentionDuration ..112
XSetGetActualRetentionEnabled...113
XSetGetActualShred..113
XSetGetFieldBinding ...114
XSetGetLength ..114
XSetGetFieldReadOnly ...115
XSetGetProperty..115
XSetGetPropertyType..116
XSetHaltJob...117
XSetOpenExportStream ..117
XSetOpenImportStream ..118
XSetOpenXStream ..118
XSetResetAccessFields ..119
XSetResetManagementFields ...119
XSetSetAutoDelete..120
XSetSetBaseRetention ..120
XSetSetFieldAsBinding..121
XSetSetFieldAsNonbinding ...121
XSetSetProperty ..122
XSetSetRetentionDuration...123
XSetSetRetentionEnabledFlag ..123
XSetSetRetentionStarttime..124
XSetSetShred ..124
XSetSubmitJob ..124
XStreamAbandon ..125
XStreamAsyncClose..125
XStreamAsyncRead ..126
XStreamAsyncWrite...126
XStreamClose..127
XStreamRead ..127
XStreamSeek...128
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT vii

© SNIA
XStreamTell ...128
XStreamWrite ..129
XSystemAbandon ..129
XSystemAccessXSet ...130
XSystemAsyncCopyXSet ..131
XSystemAsyncOpenXSet ..131
SystemAsyncOpenXStream ..132
XSystemAuthenticate ..133
XSystemClose ...133
XSystemConnect ...134
XSystemContainsField ..136
XSystemCopyXSet ..136
XSystemCreateProperty ..137
XSystemCreateXSet..137
XSystemCreateXStream..138
XSystemDeleteXSet ..139
XSystemGetFieldBinding...139
XSystemGetFieldLength..140
XSystemGetProperty ...140
XSystemGetPropertyType ...141
XSystemGetXSetAccessTime ...141
XSystemHoldXSet ...142
XSystemIsXSetRetained ...142
XSystemOpenXSet..143
XSystemOpenXStream..143
XSystemReleaseXSet ...144
XSystemSetFieldAsBinding ...145
XSystemSetFieldAsNonbinding...145
XSystemSetProperty ...146

Known Issues ...147
viii WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA

XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT ix

Tables

Table 1 – Typographic Conventions ..3
Table 2 – Logging Parameters ...19
Table 3 – Access Policy Example ..39
Table 4 – Autodelete and Shred Policies ...40
Table 5 – Retention Policies ..40
Table 6 – XAM™ and Java Logging Levels ...42
Table 7 – Summary of Configuration Properties ..43
Table 8 – XAMException Mapping ...56
Table 9 – FieldContainerException Mapping ...57
Table 10 – JobException Mapping ...57
Table 11 – XSetException Mapping ...58
Table 12 – XStreamException Mapping ...58
Table 13 – XSystemException Mapping ..59
Table 14 – Mapping for Non-Categorized C Errors59
Table 15 – Manager Classes ...61
Table 16 – Disposition Policies ..67
Table 17 – Retention Policies ..67
Table 18 – Table Columns and Value Property Names79
Table 19 – Terms - HTTP VIM Design ...83
Table 20 – CRC for XAM_API ..86
Table 21 – CRC for VIM_API ...86
Table 22 – CRC for XAM_Library ..86
Table 23 – CRC for HTTP_VIM_Client ..87
Table 24 – CRC for HTTP_VIM_Server ...88

© SNIA

x WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

Figures

Figure 1 – Manager Classes ..55
Figure 2 – Reference XSet ...56
Figure 3 – Reference XStream ..57
Figure 4 – Policy System ...60
Figure 5 – Job Manager ...62
Figure 6 – DBManager ...63
Figure 7 – XFieldValues Database ..64
Figure 8 – XSystem Initialization ..65
Figure 9 – Importing XSets ..66
Figure 10 – Processing a Query ..68
Figure 11 – Query Results ...69
Figure 12 – Optimized Query ...70

© SNIA Chapter 1: About this Guide
Chapter 1: About this Guide

Purpose and
Audience

The eXtensible Access Method (XAM™) – SDK Developer’s Guide is written
for programmers and application developers who develop custom
applications for XAM Storage Systems. This document, along with the
following three documents, provides the information that you need to develop
custom applications for a XAM Storage System. The three documents include
the following:

• Information Management — Extensible Access Method (XAM™) —
Part 1: Architecture

• Information Management — Extensible Access Method (XAM™) —
Part 2: C API

• Information Management - Extensible Access Method (XAM™) —
Part 3: Java API

Contents The contents of this document are described as follows:

• Chapter 1, “About this Guide” describes the audience and purpose,
contents of this guide, additional references and web sites, and
typographical conventions.

• Chapter 2, “Introduction to the SDK Developer’s Guide” provides an
introduction to the eXtensible Access Method (XAM™) – Software
Development Kit (SDK) and its components.

• Chapter 3, “XAM™ Library Configuration” explains the conventions
and syntax for setting generic properties for the XAM Libraries and
the Reference VIM.

• Chapter 4, “Java Library” describes the Java library components for
the XAM SDK.

• Chapter 5, “C Library” describes the C library components for the
XAM SDK.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 1

Chapter 1: About this Guide © SNIA
• Chapter 6, “Java Reference VIM” provides the deliverables, directory
structure, and build and test instructions for the Java Reference VIM.

• Chapter 7, “HTTP Protocol VIM” provides the HTTP vendor interface
modules for the Java and C language bindings.

• Chapter 8, “Error Codes” provides common error codes for the XAM
SDK.

• Appendix A: “Reference VIM Architecture” documents the
architecture of the SNIA XAM Reference VIM, which is written in and
leverages the object-oriented capabilities of the Java language.

• Appendix B: “HTTP VIM Architecture” documents the architecture of
the HTTP VIM and the wire protocol used between the “halves” of the
HTTP VIM.

References The following referenced documents are indispensable for the application of
this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including
any amendments) applies.

• [XAM-ARCH] “XAM™ Architecture Specification” – Available from the
SNIA Fixed Content Aware Storage TWG, Version 1.0.1

• [XAM-SDK-REQS] “XAM™ SDK Requirements” - Available from the
XAM SDK TWG site, SNIA Working Draft

• [XAM-C-API] “XAM™ C API Specification” - Available from SNIA
Fixed Content Aware Storage TWG, Version 1.0.1

• [XAM-Java-API] “XAM™ Java API Specification” - Available from
SNIA Fixed Content Aware Storage TWG, Version 1.0.1

• [REST] “Representational State Transfer” - http://www.ics.uci.edu/
~fielding/pubs/dissertation/rest_arch_style.htm

• [HTTP-RESPONSE] Hypertext Transfer Protocol – HTTP/1.1,
Chapter 10 Status Code Definitions - http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html

• [URL-Encoding] URL Safe character encoding http://www.w3.org/TR/
html40/appendix/notes.html#non-ascii-chars. This mechanism is
available for Java in the classes URLEncoder and URLDecoder.

• Related third-party web site references. This document references
third-party URLs that provide additional, related information.

Note: SNIA is not responsible for the availability of third-party web sites
mentioned in this document. SNIA does not endorse and is not
responsible or liable for any content, advertising, products, or other
materials that are available on or through such sites or resources.
SNIA will not be responsible or liable for any actual or alleged
damage or loss caused or alleged to be caused by or in connection
with use of or reliance on any such content, goods, or services that
are available on or through such sites or resources.
2 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 1: About this Guide
Additional
Information

The SNIA web site provides additional information about the SNIA XAM™
initiative at http://www.snia.org/xam.

Conventions Table 1 describes the typographic conventions that are used in this
document.

SNIA Welcomes
Your Comments

SNIA is interested in improving its documentation and welcomes your
comments and suggestions. You can submit your comments by sending an
e-mail to tcmd@snia.org.

Table 1 – Typographic Conventions

Convention Description

Fixed-width text The names of commands, files and
directories, and on-screen computer output

Bold, fixed-width text What you type, contrasted with on-screen
computer output

Italicized text Variables, field names, and book titles

Note: Additional or useful informative text.

WARNING:
Indicates that you should pay careful
attention to the probable action, so that you
may avoid system failure or harm.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 3

Chapter 2: Introduction to the SDK Developer’s Guide © SNIA
Chapter 2: Introduction to the SDK
Developer’s Guide

This chapter provides an introduction to the SNIA XAM™ Software
Development Kit (SDK) and its components.

The following topics are discussed:

• SDK Terms of Use

• SDK Components

• Supported Operating Systems

• Software Requirements

• SDK Installation Instructions

SDK Terms of Use The SDK Developer’s Guide is released to you under the following copyright
notice:

“Copyright © 2009 Storage Networking Industry Association. Use is subject to
license terms.”

SDK Components The XAM™ SDK distribution includes the following:

• HTTP VIM

• Java Reference VIM

• Java Library

• C++ Library
4 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 2: Introduction to the SDK Developer’s Guide
Supported
Operating
Systems

This release supports the following operating systems:

• AIX 5.2 and above

• HP-UX B.11.11

• HP-UX B.11.23

• Linux - GCC 3.3

• Linux - GCC 4.0

• Solaris 8.0 and above

• Win32 Dev 8

• Win64 Dev 8

Software
Requirements

For software requirements, refer to the following chapters:

• Chapter 4, “Java Library”

• Chapter 5, “C Library”

• Chapter 6, “Java Reference VIM”

• Chapter 7, “HTTP Protocol VIM”

SDK Installation
Instructions

The working draft VIM SDK is provided as a ZIP file of the SDK source code.
Please unzip this file in the desired directory and follow the instructions
included with each component. Or, check your distribution to see if packaging
is available for your operating systems, i.e. Linux, OpenSolaris.

Requirements include the following:

• Java Library and Java Reference VIM: JDK 5 or later from Sun and
JRE Java 5 or later

• HTTP C VIM - In addition to the standard C run-time libraries provided
by Visual Studio, the HTTP C VIM also uses the free, open source
libcurl (http://curl.haxx.se/libcurl/) and Boost (http://www.boost.org)
libraries. See their respective web sites for licensing information. To
compile the code:

— Download required boost libraries from http://www.boost.org
downloads page (http://www.boost.org/users/download/).

— Extract the libraries to HTTP_C_VIM directory of the trunk.

— Rename the extracted boot library directory from boost_version
to "boost". For Example, If you download boost version 1.37,
rename the extracted directory from boost_1_37_0 to boost.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 5

Chapter 3: XAM™ Library Configuration © SNIA
Chapter 3: XAM™ Library Configuration

This chapter provides a standard set of options and the formatting
requirements for configuring a XAM™ Library. Topics include:

• Introduction

• Configuration File Format

• Configuration File Discovery

• XAM™ Library Configuration Behavior

• Stackable VIM Support

• XAM™ Library Configuration Namespaces

• Configuration File Example

Introduction The configuration options and formatting help to further define the
responsibilities of the XAM Library (especially with respect to awareness of
stackable VIMs and how to pass information among them). Moreover, the
standard configuration format enables the XAM Library to migrate more easily
between implementations. The standard formatting required also helps the
systems administrators more easily manage the storage systems.

The configuration file should provide enough information for the XAM Library
(or a VIM that contains aspects of VIM Management) to:

• Determine a list of libraries that can be loaded to resolve an
xsystemname

• Allow a system administrator to configure a stack of VIMs

• Allow a system administrator to configure VIM-specific options for
multiple VIMs (without requiring application modifications)

• Use a contextual name that is abstracted from the implementation
language's loading semantics. For example, rather than using
com.sun.xxxx that uses Java language semantics, use an
6 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 3: XAM™ Library Configuration
HTTP-like context parameter that uniquely identifies the VIM, such as
StorageTek5800.

• Define a VIM discovery path if an XRI does not contain a VIM name
or alias

• Preload a specific list of VIMs on initialization, such that the
.xam.vim.list.* field namespace is populated for applications
immediately (as opposed to “on-demand”).

• Dynamically control logging facilities

Configuration File
Format

For simplicity, we will use a properties file format that can be loaded from
either C or Java (though Java has direct support for the format via the C
class). Within the property file, we will use namespaces to help organize the
file.

XAM configuration files will have the following attributes:

• Property fields should be specified as a name/value pair delimited by
'=' on a single line, e.g.,

“org.company.my_field_name=my_field_value”

• Property names may not exceed XAM_MAX_STRING characters.

• White space and commented lines (prefixed with the '#' character) are
to be ignored.

• All defined fields are of type xam_string, unless otherwise specified,
and use a simple type prefix (i.e,. <stype>.name=value), where stype
may be either xam_string, xam_int, xam_double, or xam_datetime.

Note: xam_xuid types may only be supported if the XAM Library
implementation provides string-to-XUID conversion services.

Configuration File
Discovery

By default, the XAM Library will check for and load a configuration file named
xam.properties in the working directory. Optionally, an environment
variable named XAM_CONFIG_PATH may be used to specify an alternate
path to the configuration file.

In either case, a string property field named .xam.config.path will be
synthesized by the XAM Library object, and the value will contain the
specified path to the configuration file.

This field may also be set directly by applications. If an application creates or
modifies this field, the properties defined will be loaded from any newly
specified configuration file, which allows applications to refresh the
configuration contents on demand. If an error occurs reading the specified
configuration file, the field will not be synthesized and a non-fatal error will be
returned.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 7

Chapter 3: XAM™ Library Configuration © SNIA
XAM™ Library
Configuration
Behavior

Note that the configuration file is extensible. If a property is found in the
configuration file, a corresponding property field with the same name/value
will be synthesized on the XAM Library object. Because all XSystem
instances inherit all XAM Library fields on construction, this allows for VIM-
specific XSystem configuration options to be automatically supported by the
XAM Library configuration file.

Stackable VIM
Support

A stackable VIM is defined to be a VIM that can be inserted between the XAM
Library and other VIMs or between two VIMs (with the VIM above the
stackable VIM also being a stackable VIM). The bottom-most VIM in a stack
of VIMs must represent a storage system. The stackable VIM receives XAM
API requests and forwards those requests to other VIMs via the VIM API to
the VIM on top of which it is stacked.

An application should be unaware of stackable VIMs and the chain of
responsibility that the VIM stack represents. When an application uses an XRI
to specify an xsystemname, the xsystemname should be recognized and
appropriately handled by the stackable VIM that the XAM Library loaded
directly.

A request by an application to the XAM Library and objects that make up the
[XAM-ARCH] must be processed according to the specification, regardless of
whether one or more stackable VIMs is in the chain of responsibility for
processing the request. On the other hand, once a request to an object that is
represented through a stackable VIM is made, that request may change in
one or more ways en route to the VIMs that represent a storage system at the
other end of the chain of responsibility.

XAM Library implementations are required to support the configuration of
stackable VIMs. A stackable VIM maintains the relationships of the XAM
Library that states that each XSystem instance has a relationship to one VIM.

XAM™ Library
Configuration
Namespaces

The following property namespaces will be recognized by the XAM Library:

• .xam.config.vim.alias.{aliasvalue}={vim path or aliasvalue}

An alias for a VIM. Each aliasvalue must be unique within the
.xam.config.vim.alias namespace. In a property file, the value of this
property name is the name of (or full path to) the library or class that
must be loaded for the VIM. Aliases may reference other aliases.

Example: .xam.config.vim.alias.centera=C:\VIMS\centera_vim.dll

• .xam.config.vim.alias.stack.{aliasvalue}={alias1}:{alias2}:...

Defines an alias for a chain of VIMs. The aliasvalue must be unique
within the .xam.config.vim.alias namespace. The property value is a
chain of aliases (stackable or not) which are “:” delimited. All of the
values in the chain of responsibility must be identified with alias
values, or the chain of responsibility is invalid.

Example: .xam.config.vim.alias.stack=http:encrypter:centera
8 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 3: XAM™ Library Configuration
• .xam.config.vim.alias.{aliasvalue}.param.{name}={value}

Refers to a name/value pair that should be added (or appended) to
the XRI name/value pair list by the XAM Library if a particular
aliasvalue is used in the XRI during connect. May be used for any
aliasvalue defined in the vim.alias or vim.alias.stack namespaces.

• .xam.config.vim.lookuporder.{n}={aliasvalue}

Refers to the order of the VIMs for locating one that can leverage a
particular XRI if multiple VIMs could be used (in the absence of a
specified VIM name). The value n must be a positive integer value
that is unique to the entire lookup order namespace and indicates the
ordinal position of the VIM to use for the lookup (starting with either
index 0 or 1).

• .xam.config.vim.preload.{n}={aliasvalue}

Preloads a VIM library during XAM Library initialization (instead of on
first use), where n is a positive integer (starting with either index 0 or
1) that is unique to the entire namespace. The preload order should
define the lookup order in the absence of both vim.lookuporder
properties and a specified VIM name in the XRI (as the first
component of VIM discovery should be to attempt to connect with
existing loaded VIMs).

• .xam.log.{option}={value}

Supports all defined logging field controls defined by the XAM Library
implementation, including:

— xam_int..xam.log.level

— xam_int..xam.log.verbosity

— xam_string..xam.log.path

Note: These fields should be recognized by the XAM Library whether they
were synthesized by reading the configuration file, or if the
corresponding fields were created by applications directly.

Configuration File
Example

An example of this property file format in action is as follows:

C VIM Aliases
xam.config.vim.alias.emc=C:\VIMS\centera_vim.dll
.xam.config.vim.alias.http=C:\VIMS\http_vim.dll
.xam.config.vim.alias.encrypter=C:\VIMS\encryption_vim.dll

Java VIM Aliases
.xam.config.vim.alias.hp=com.hp.xam.VIMImpl
.xam.config.vim.alias.sun=com.sun.honeycomb.xam.XAMImpl

VIM Stacks
.xam.config.vim.alias.stack.isolated_centera=http:emc
.xam.config.vim.alias.stack.isolated_encrypt_hp=http:e
ncrypter:hp
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 9

Chapter 3: XAM™ Library Configuration © SNIA
.xam.config.vim.alias.stack.isolated_sun=http:sun

VIM Stack name/value pairs (passed to the http VIM in
the XRI)
.xam.config.vim.alias.isolated_centera.param.xsystem=1
0.241.44.10
.xam.config.vim.alias.isolated_centera.param.alias=iso
lated_centera
.xam.config.vim.alias.isolated_encrypt_hp.param.xsyste
m=10.241.44.20
.xam.config.vim.alias.isolated_encrypt_hp.param.alias=
isolated_encrypt_hp
.xam.config.vim.alias.isolated_sun.param.xsystem=192.1
68.1.1
.xam.config.vim.alias.isolated_sun.param.alias=isolate
d_sun

VIM Lookup order (used in the absence of a specified
VIM name in the XRI)
.xam.config.vim.lookuporder.1=isolated_centera
.xam.config.vim.lookuporder.2=isolated_encrypt_hp
.xam.config.vim.lookuporder.3=isolated_sun

Centera VIM XSystem specific properties
xam_int.com.emc.centera.maxconnections=99

Logging
xam_int..xam.log.level=5
xam_int..xam.log.verbosity=5
xam.log.path=C:\xam.log

There are a variety of ways this configuration information can be used. Some
standard use cases are discussed in the following sections:

• Aliasing VIM Implementations

• Leveraging Lookup Order for VIM Discovery

• Preloading VIM Libraries

• Defining VIM Stacks

• Using Application-Defined Configurations

• Configuring VIM-Specific Controls

• Specifying XAM™ Library Logging Controls

Aliasing VIM Implementations
The following XRI refers unequivocally to the aliased entry in the property file,
but the VIM class com.sun.honeycomb.xam.XAMImpl is devoid of the
additional context that the XAM Library can obtain from the property file:

snia-xam//sun!192.168.1.1
10 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 3: XAM™ Library Configuration
The XAM Library is tasked with converting these aliases appropriately before
the connect:

snia-xam//com.sun.honeycomb.xam.XAMImpl!192.168.1.1

Leveraging Lookup Order for VIM Discovery
A XAM Library’s VIM Manager can leverage the lookup order in cases where
an XRI is supplied that does not use the optional vimname parameter. (Recall
that the VIM Name is actually an optional field on an XRI and is ambiguous
without the use of aliases.)

Preloading VIM Libraries
The XAM Library’s .xam.vim.list.* namespace is populated with VIM names as
they are discovered or specified by the application. Some applications may
benefit by having some or all VIM libraries preloaded when the singleton XAM
Library object is initialized, rather than on demand. The application may then
identify the list of available VIMs directly from the XAM Library object’s VIM
list.

Defining VIM Stacks
This format is also useful for stacking VIM libraries. Aliases may be used to
denote a chain of stackable VIMs with a target VIM as the final item. This
target VIM may be a stackable VIM with its own VIM Manager.

The application can use the following XRI to refer to the Sun VIM-managed
xsystemname 192.168.1.1 (serviced via the VIM library
C:\VIMS\http_vim.dll at location 192.168.1.100):

snia-xam://isolated_sun!192.168.1.100

Information configured by the system administrator is used by the XAM
Library to construct the internal XRI:

snia-xam://
C:\VIMS\http_vim.dll!192.168.1.100?xsystem=192.168.1.1
&alias=isolated_sun

Within this XRI, a few important conversions and contextual information
passes have taken place:

• The local VIM Manager has a location to resolve the location of the
HTTP VIM server: 192.168.1.100

• When connecting to the HTTP VIM, the XRI contains enough
information to resolve the target VIM that lies beyond the HTTP VIM.
The HTTP VIM will connect to the VIM underneath it using: snia-
xam://com.sun.honeycomb.xam.XAMImpl!192.168.1.1

• The expansion is repeatable for additional stackable VIMs.

The following XRI defines a VIM stack with automatic encryption of written
XStreams and decryption of read XStreams, serviced by a stackable
encryption VIM via an HTTP VIM server:

snia-xam://isolated_encrypted_hp!192.168.1.110
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 11

Chapter 3: XAM™ Library Configuration © SNIA
The XAM Library would construct the following XRI for the HTTP VIM:

snia-xam://
C:\VIMS\http_vim.dll!192.168.1.110?xsystem=10.241.4
4.20&alias=isolated_encrypted_hp

The HTTP VIM, in turn, could service the request to the encryption VIM, which
would service the request to the final hp VIM. All the information required to
traverse the topology would pass through each VIM in the stack.

Note the all underlying VIMs will receive a copy of all XAM Library
configuration options during XSystem.connect. Having the configuration
options allows stackable VIM libraries to appropriately convert one XRI into
another, based on all the information provided by the administrator.

The aspect of parameterization within the configuration file and on the XRI
syntax is extremely important with the stackable VIMs but can also be used by
storage system VIMs, similar to the Java Servlet context parameters.
Parameterization should be used to hide from the application programmer the
storage ecosystem details that may change. System administrators must be
able to add environmentally relevant information to XRIs without impacting
application XRIs.

Using Application-Defined Configurations
Applications may use the predefined field names to configure these values
directly on the XAM Library object without using a configuration file. The
application may allow users or system administrators to manage the
configuration from within the application, either via the GUI or other means.

Configuring VIM-Specific Controls
Because all XAM Library fields are copied onto all XSystem instances, the
application or system administrator may configure a number of VIM-specific
options via the properties file. VIMs that do not understand these options may
simply ignore them.

Example: # Set the maximum number of open connections for all
Centera VIM-managed XSystem instances

 xam_int.com.emc.centera.maxconnections=99

Specifying XAM™ Library Logging Controls
SNIA has defined a set of XAM Library logging controls, which may be
specified by the configuration file in the absence of any application level
logging control facilities.

Example: # Enable XAM Library Logging

 xam_int..xam.log.level=5
 xam_int..xam.log.verbosity=5
 xam_string..xam.log.path=C:\Logs\xam.log
12 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 4: Java Library
Chapter 4: Java Library

This chapter provides information about the Java Library that is provided with
the XAM™ Storage System SDK.

This chapter discusses the following topics:

• Understanding What Is Provided

• Unpacking Your ZIP file

• Installing Compilers and Dependent Libraries

• Building the Code for Your Platform

• Installing the Binaries for Your Platform

• Installing a VIM

• Using the Java Library

Understanding
What Is Provided

Version 1.0 (in progress) is an implementation of the XAM Library and
optional Toolkit.

The Java Library provides the following:

• An implementation of the XAM Library

• The Java XAM Interfaces as part of the distribution

• XAM Library and Interface implementations are distributed in
xamlib.jar.

• Required Java Toolkit functions (org.snia.xam.util) are distributed in
xamtoolkit.jar.

• An internal implementation of an AbstractFieldContainer, which may
be used by Java-based VIM authors, which is neither standardized
nor required at this time

• Support for the SNIA XAM SDK configuration standard.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 13

Java Library © SNIA
Note: This version does not provide support for using C (.dll/
.so) VIMs.

• Default logging using the standardized logging control properties. The
current implementation uses Java 5 logging.

• Unit tests that test the XAM Library implementation.

Note: These tests do not provide VIM validation tools. VIM vendors/
implementers must do their own validation and testing.

Unpacking Your
ZIP file

The working draft VIM SDK is provided as a ZIP file of the SDK source code.
Please unzip this file in the desired directory and follow the instructions
included with each component.

The directory contents for the Java XAM Library are listed as follows:

/Java_XAM_Library

 /bin Temporary directory created and used
during building

 /deliverables Output directory for the final build
components that are created during the
build

 /doc Output directory of the Java Doc process

 /src Java source for the library code

 /org/snia/xam/base Required source for the Java XAM Library

 /org/snia/xam/util
Optional source for the Java Toolkit
functions

 /test Source for the Java XAM Library Unit Tests

 /org/snia/xam/

 /org/snia/xam/base

 /org/snia/xam/testvim

 /org/snia/xam/util

 build.xml The Ant build script

 XAMImplementation.config
The XAM Library configuration file used for
unit tests

 xam.test.props
A Java properties file to configure the unit
test program
14 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 4: Java Library
The directory contents for the Java Interfaces are listed as follows:

Installing
Compilers and
Dependent
Libraries

Installing JUnit
JUnit is a simple framework for writing and running automated tests.

To install JUnit:

1 Download the latest version of JUnit (junit.zip) from http://
download.sourceforge.net/junit/.

2 Install JUnit on your platform of choice.

Windows To install JUnit on Windows, follow these steps:

1 Unzip the junit.zip distribution file to a directory referred to as
%JUNIT_HOME%.

2 Add JUnit to the class path:

set CLASSPATH=%CLASSPATH%;%JUNIT_HOME%\junit.jar

Unix (bash) To install JUnit on Unix, follow these steps:

1 Unzip the junit.zip distribution file to a directory referred to as
$JUNIT_HOME.

2 Add JUnit to the class path:

export CLASSPATH=$CLASSPATH:$JUNIT_HOME/junit.jar

3 (Optional) Unzip the $JUNIT_HOME/src.jar file.

4 Test the installation by using either the textual or graphical test runner
to run the sample tests distributed with JUnit.

Note: The sample tests are not contained in the junit.jar, but in
the installation directory directly. Therefore, make sure that
the JUnit installation directory is in the class path.

— For the textual TestRunner, type:

java junit.textui.TestRunner
junit.samples.AllTests

/Java_Interfaces

 /bin Temporary directory created and used during building

 /deliverables Output directory for the final build components that
are created during the build

 /doc Output directory of the Java Doc process

 /src

 /org/snia/xam/ Source for the Java XAM Interfaces
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 15

Java Library © SNIA
— For the graphical TestRunner, type:

java junit.swingui.TestRunner
junit.samples.AllTests

All the tests should pass with an "OK" (textual) or a green bar
(graphical). If the tests don't pass, verify that junit.jar is in the
the class path.

Installing libcurl
libcurl is the free, multiprotocol file transfer library.

To install libcurl:

1 For general information, go to http://curl.haxx.se/libcurl/.

2 Download the software from http://curl.haxx.se/
download.html.

Building the Code
for Your Platform

Supported Platforms
Currently supported platforms are Solaris 10 (tested on X86 and SPARC),
Windows (WIN32), Fedora 10, Open SUSE 10, Ubuntu 9, and Apple OS X
Windows.

The Java Library has been tested with Sun Java 5 and Java 6 on the following
platforms:

• Windows XP and Vista (32 bit)

• Linux (32 bit, Fedora 10, Open Suse 10, Ubuntu 9)

• Open Solaris (x86)

• Apple Macintosh OS X (10.5)

The SNIA XAM SDK Technical Working Group would like to hear about
incompatibilities or success stories on platforms other than those listed here.

To build the code for your platform:

1 Make sure you have the required software:

— Ant: http://ant.apache.org (tested with 1.7.0)

— Java: http://java.sun.com (or the platform JVM provider) (Version 1.5
required; tested with 1.5.0_07)

— JUnit - http://junit.org (developed with JUnit version 3.8.1)

2 Set the JAVA_HOME environment variable to point to the root java
installation directory of the compiler, for each platform must exist in the
PATH.

3 Make sure the JAVA_HOME and the java directories containing the
java compiler (javac) and java are in the PATH.
16 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 4: Java Library
To build the XAM Library using ant:

1 Enter the Java_Interfaces directory.

2 Run ant deliverables.

3 Enter the Java_XAM_Library directory.

4 Run ant deliverables.

The following files are generated at the following locations:

— Java_XAM_Library/deliverables/xamlib.jar

— Java_XAM_Library/deliverables/testvim.jar

Note: testvim.jar is part of the unit test process and is not
usable by applications; therefore, it must not be distributed.

— Java_XAM_Library/deliverables/api/<JavaDocs>

— Java_XAM_Library/deliverables/xamtoolkit.jar

Note: You do not need to include the Java Interfaces jar file in your class
path; they are merged into the XAM Library jar (xamlib.jar).

Installing the
Binaries for Your
Platform

Make sure that you put xamlib.jar and xamtoolkit.jar into your class
path.

Installing a VIM See “Configuration File Example” in Chapter 3, “XAM™ Library
Configuration”.

Running Tests

Note: The tests do NOT require a working VIM.

To run tests:

1 Enter the Java_XAM_Library directory.

2 Run ant test

All of the unit tests will run; there should be no errors.

Using the Java
Library

Obtaining an Instance of the XAM™ Library
To use this Java library, the application must locate and include the
xamlib.jar file in the application's class path. If the application uses any of
the classes from the org.snia.xam.util package, it must also locate and
include xamtoolkit.jar.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 17

Java Library © SNIA
To obtain an instance of the XAM Library, do one of the following:

• Use the XAMLibraryFactory class, which is included in the jar files
(recommended). This factory will instantiate the library and isolate
your application from a XAM Library implementation. This
instantiation will let you reconfigure your application to use the C XAM
Library (via the Java Native Interface (JNI)) without needing to
recompile. To use the XAMLibraryFactory to obtain a XAM Library
instance, enter the following:

XAMLibrary lib = XAMLibraryFactory.newXAMLibrary();

This causes the XAM Library to be created without reading a
configuration file, which makes it difficult to configure the library to
specify VIMs, etc. To allow specifying a configuration file, the
application should call:

XAMLibraryFactory.newXAMLibrary(
XAMLibraryFactory.DEFAULT_XAM_LIBRARY,
configFilePath);

• If the application chooses not to use the XAMLibraryFactory, use the
following to obtain an instance:

XAMLibrary xam = new XAMImplementation(
"XAM.config")

If the library is created without a configuration argument (no argument
constructor or the XAMLibraryFactory.getLibrary() method), the Java XAM
Library will read the value of the environment variable XAM_CONFIG_PATH.
If this points to a file, this file will be used as the XAM Config. If there is no
argument and the XAM_CONFIG_PATH environment variable does not exist,
the default value xam.properties will be used.

Configuring the Library Initialization
Each XAM Library instance will load configuration parameters from a
configuration file. The file must contain information to allow the library to find
the referenced VIM. Additionally, the file may contain parameters to control
logging.

Make sure the configuration file contains a line similar to:

.xam.config.vim.alias.TestVIM=org.snia.xam.testvim.Tes
tVim

This line tells the library that a VIM named "TestVIM" is available by creating
an instance of the class "org.snia.xam.testvim.TestVim".

Note: Make sure the class for the VIM is in the application's class path.
18 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 4: Java Library
Logging Parameters Table 2 describes the parameters that control logging:

Java Logging Use The following information is provided for application and VIM authors wishing
to integrate with Java XAM Library use of Java Logging.

The Java XAM Library uses Java native logging (java.util.logging).
Java logging is very versatile but doesn't completely match the functionality of
XAM logging. The Java XAM Library simplifies its use of Java logging by
creating a single instance of a logger for each log file specified via the logging
properties. To accomplish this, a toolkit class
(org.snia.xam.util.LogManager) is provided to encapsulate all the
functionality:

public static Logger GetLogger(String path,
 int logSize,
 int rolloverCount,
 boolean append)
 throws XAMException

The LogManager will create a logger and FileHandler to service the log file.
Whenever log settings have changed (via a XAMLibrary.setProperty() or
XSystem.setProperty() method call), the GetLogger method is called to
update the FileHandler on the logger. It is important to realize that because a
specific log file is global, all settings are shared by the logger. If a VIM is
running in the same JVM as the Java XAM Library, the VIM is encouraged to
use the org.snia.xam.util.LogManager class.

The LogManager uses Java logging in the following ways:

Table 2 – Logging Parameters

Parameter Description

.xam.log.path The file path indicating where to place the log file.

Note: Make sure the application has write permission
to this path location.

.xam.log.verbosity An integer value 0-5 indicating the logging verbosity.
These values are specified in the XAM Architecture
Specification (see [XAM-ARCH]).

.xam.log.debug An integer value 0 to MAX_LONG (2**32-1) indicating
the amount of debug logging to be used. Debug
logging in the Java XAM Library is minimal, and this
value is most useful with a particular VIM.

.xam.log.max.size The maximum size of a log file, in kilobytes, before it is
rolled over to a new file. To cap the log file to 100KB,
the value of this property is set to 100.

.xam.log.max.rollovers The maximum number of log files to keep after they
rolled over.

.xam.log.append A value, if TRUE, will append to the latest log file;
otherwise, the library will create a new file when the
library is created.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 19

Java Library © SNIA
• One logger per uniquely named log file (based on the path property).
This is different than using the classname to identify loggers.

• A single FileHandler attached to the logger.

• Loggers do NOT inherit handlers from the parent logger (in this case,
the root logger).

If the application or VIM is running in another JVM instance or on different
hosts, the log files may not be integrated. It is beyond the scope of this
document to describe logfile unification across multiple processes or hosts.

Using Classes from XAMLib.jar and XAMToolkit.jar
The two jar files contain the entirety of the Java XAM Library. The jar file
XAMLib.jar contains all the classes required to implement the Java XAM
Library, while the jar file XAMToolkit.jar contains the required tool kit
functions specified by the [XAM-JAVA-API]. The toolkit functions include:

• ExtendedFieldContainer (XAM required)

• ISO8601Date

• LogManager

• QueryFactory (XAM required)

• SASLUtils

• XAMIOException (needed for the streams)

• XAMLibraryFactory (XAM SDK Required)

• XStreamInputStream (XAM required)

• XStreamOutputStream (XAM required)

• XUIDIterator (XAM required)

The toolkit functions are programmed using only the publicly defined XAM
interfaces. Thus, the toolkit is usable with either the Java XAM Library or the
C XAM Library (using the JNI bindings).

The core of the Java XAM Library (XAMLib.jar, containing packages
org.snia.xam.base) has all of the classes required to implement the Java
XAM Library. Applications should not use classes from this package. VIM
authors may find the implementation class from org.snia.xam.base to be
of use when implementing a Java base VIM, but be aware that you are tying
your implementation to the Java XAM Library code base. This, in itself, is not
a problem, but VIM authors are strongly encouraged to consider the long-term
consequences of this dependency.
20 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 5: C Library
Chapter 5: C Library

This chapter provides information about the C++ Library that is provided with
the XAM™ Storage System SDK.

The following topics are discussed:

• Understanding What Is Provided

• Unpacking Your ZIP file

• Installing Compilers and Dependent Libraries

• Choosing a C compiler

• Installing the Binaries for Your Platform

• Installing a VIM

• Configuring the HTTP VIM

Understanding
What Is Provided

The following deliverables are provided with the C++ Library:

• XAM C API Public Headers - Defines the XAM C API, which may be
used by application developers to interact with multiple Vendor
Implementation Module (VIM) libraries.

• XAM C Library - Implements the XAM C API, to which applications
may link in order to interact with multiple VIM libraries.

• VIM C API Header - Defines the VIM C API, which may be used by
vendors for developing VIM libraries (i.e., VIMs).

• XAM Java API Wrapper for C Library - Implements the XAM Java
API interfaces, which may be used by application developers in order
to interact with multiple VIM libraries. The Java interfaces are
implemented in XAMLibrary.jar, which uses the XAM C Library
via Java Native Interface (JNI).

• XAM Toolkits - Includes simple XAM toolkit examples for both C and
Java, which include standard XAM-defined utility methods.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 21

C Library © SNIA
• HTTP VIM - A VIM which proxies all XAM operations to a HTTP
server using GET and POST. This can be useful in conjunction with
the HTTP Protocol VIM, as it allows the C versions of the API to use
the Reference VIM, which is written in Java.

Unpacking Your
ZIP file

The working draft VIM SDK is provided as a ZIP file of the SDK source code.
Please unzip this file in the desired directory and follow the instructions
included with each component.

The directory contents are listed as follows::

/C_XAM_Library

 /build_script Contains ant build.xml and miscellaneous
project files

 /<platform> Platform-specific build and project files

 /lib Place to put any needed libraries that are not
installed in the native OS. The cURL libraries
should be manually placed here if they are not
otherwise installed.

 /objects Generated as part of the build process

 /<platform> Contains platform-specific object files

 /src Source code tree

 /c C API source code

 /api Implementation of the XAM interfaces in xam.h

 /classlib Class definitions for all XAM objects

 /doc Contains doxygen documentation on the source
code (generated as part of the build)

 /http_vim HTTP proxy VIM

 /include Public header files

 /jni Java Native Interface (supports java api)

 /logger Logging framework and components

 /posix POSIX compatibility interface

 /toolkit XAM toolkit library implementation

 /utils Various XAM utilities

 /vim Representation of a VIM library (includes the
vim.h interface for VIM development)

 /java Java API source code
22 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 5: C Library
Installing
Compilers and
Dependent
Libraries

Installing JUnit
JUnit is a simple framework for writing and running automated tests.

To install JUnit:

1 Download the latest version of JUnit (junit.zip) from http://
download.sourceforge.net/junit/.

2 Install JUnit on your platform of choice.

Windows To install JUnit on Windows, follow these steps:

1 Unzip the junit.zip distribution file to a directory referred to as
%JUNIT_HOME%.

2 Add JUnit to the class path:

set CLASSPATH=%CLASSPATH%;%JUNIT_HOME%\junit.jar

Unix (bash) To install JUnit on Unix, follow these steps:

1 Unzip the junit.zip distribution file to a directory referred to as
$JUNIT_HOME.

2 Add JUnit to the class path:

export CLASSPATH=$CLASSPATH:$JUNIT_HOME/junit.jar

3 (Optional) Unzip the $JUNIT_HOME/src.jar file.

4 Test the installation by using either the textual or graphical test runner
to run the sample tests distributed with JUnit.

Note: The sample tests are not contained in the junit.jar, but in
the installation directory directly. Therefore, make sure that
the JUnit installation directory is in the class path.

— For the textual TestRunner, type:

java junit.textui.TestRunner
junit.samples.AllTests

 /deliverables Generated as part of the build process

 /<platform> Deliverables for a specific platform

 /include Public headers

 /lib Binary deliverables

 /doc Doxygen documentation for public header files

/Java_Interfaces Contains the Java interfaces required to build the
XAM Java API wrapper jar for interfacing with the
C XAM Library
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 23

C Library © SNIA
— For the graphical TestRunner, type:

java junit.swingui.TestRunner
junit.samples.AllTests

All the tests should pass with an OK (textual) or a green bar
(graphical). If the tests don't pass, verify that junit.jar is in the
class path.

Installing libcurl
libcurl is the free, multiprotocol file transfer library.

To install libcurl:

1 For general information, go to http://curl.haxx.se/libcurl/.

2 Download the software from http://curl.haxx.se/
download.html.

Choosing a C compiler

Building the Code
for Your Platform

Currently supported platforms are (32- and 64-bit where applicable):

• AIX 5.1

• HP-UX-B.11.11

• HP-UX-B.11.23

• Linux-GCC3.3

• Linux-GCC4

• SunOS-5.8

• Win32Dev 8

• Win64Dev 8

Note: See the build_script directory for the current list of platforms.

To build the code for your platform:

1 Make sure you have the required software:

— Ant - http://ant.apache.org (tested with 1.6.5)

— Doxygen - http://www.doxygen.org (required for doc generation)

— Java - http://java.sun.com (or the platform JVM provider)

2 Make sure the compiler for each platform exists in the PATH.

3 Set the JAVA_HOME environment variable to point to the root java
installation directory (e.g. C:\j2sdk1.4.2_12).

4 For doc generation, make sure that doxygen.exe is in the PATH.
24 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 5: C Library
5 For Windows, make sure that devenv.exe is in the PATH so that the
ant builds to work correctly.

Note: For Visual Studio Express Edition on Windows, you must
perform the build from the IDE directly (i.e., you may not use
ant).

Building the XAM™
SDK with Visual Studio

on Windows

1 Load the C_XAM_Library/build_script/Win32Dev8/
XAM_SDK.sln project file.

2 Select either the Win32 or x64 build configuration. (The 64-bit build
will produce a Win64Dev8 deliverable.)

3 Select Build > Build solution.

Binaries, public headers, and documentation are delivered to:

— C_XAM_Library/deliverables/Win32Dev8/lib

— C_XAM_Library/deliverables/Win32Dev8/include

— C_XAM_Library/deliverables/Win32Dev8/doc

Building the XAM™
SDK Using ant

1 Enter the C_XAM_Library/build_script directory.

2 Enter the following:

ant -v -f build.xml -Dplatform=<platform>

where <platform> is one of the directory names under the
build_script directory. For example:

ant -v -f build.xml -Dplatform=Linux-GCC3.3

Files are generated at the following locations:

— C_XAM_Library/deliverables/<platform>/lib

— C_XAM_Library/deliverables/<platform>/include

— C_XAM_Library/deliverables/<platform>/doc

Installing the
Binaries for Your
Platform

Depending on your platform, you may install the binaries in a central location
or a location for your own development.

Configuring the
XAM™ Library

To configure the XAM Library:

1 Decide which options you want to configure. See “Configuration
Options.”

2 Locate the xam.properties file in the working directory.

3 Use the supported namespaces and configuration file syntax to edit
the xam.properties file. See “Supported Configuration
Namespaces” and “Configuration File Syntax, respectively.”
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 25

C Library © SNIA
4 For examples, refer to “Example Configuration File.”

Configuration Options
You may use a properties file to configure any of the following XAM Library
options:

• VIM-specific XSystem configuration fields

• Logging controls

• VIM name aliasing

• VIM stack definitions

• VIM lookup order priority

• Automatic VIM preloading

• Automatic generation of XRI name/value pairs for a given VIM alias

By default, the XAM Library checks for a configuration file named
xam.properties in the working directory. To specify an alternate path to
the configuration file, use the XAM_CONFIG_PATH env var. In either case,
the XAM Library object synthesizes a string property field named
.xam.config.path, with the value containing the specified path to the
configuration file.

Applications may also set this field directly. If an application modifies or
deletes this field, the newly-specified configuration file will reload the
properties, which allows applications to refresh the configuration contents on
demand.

Note: The configuration file is extensible. If a property is found in the
configuration file, a corresponding property field with the same name/
value is synthesized on the XAM Library object. Because all XSystem
instances inherit all XAM Library fields on construction, VIM-specific
XSystem configuration options are automatically supported by the
XAM Library configuration file.

Supported Configuration Namespaces
The C XAM Library recognizes the following string property namespaces:

• .xam.config.vim.alias.{aliasvalue}={vim path}

A VIM alias. The aliasvalue string may be specified in an XRI to
reference the given vim path, which may be either the full path to a
VIM library or a VIM name. Aliases may also reference other aliases.

Sample Alias Usage (using alias in place of the vim name):

snia-xam://aliasvalue!<connection string>

• .xam.config.vim.alias.stack.{aliasvalue}={aliasvalue1}:{aliasvalue2}:...

Identifies an alias for a chain of VIMs. The value of this property is a
chain of vim names or aliases (stacks or that individual VIMs) are ":"
delimited.
26 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 5: C Library
Sample Stack Alias Usage (using alias in place of vimname):

snia-xam://aliasvalue!<connection string>

• .xam.config.vim.alias.{aliasvalue}.param.{name}={value}

Refers to a name/value pair that should be added to the XRI name/
value pair list by the XAM Library if a particular aliasvalue is used in
the XRI during connect. May be used for any aliasvalue defined in the
vim.alias or vim.alias.stack namespaces.

Sample Result (name/value pairs appended by the XAM Library):

snia-xam://aliasvalue!<connection
string>?name=value"

Multiple name/value pairs my be specified resulting in:

[?name1=value1[&name2=value2[&...]]]"

• .xam.config.vim.lookuporder.{n}={aliasvalue}

Refers to the order of the VIMs for locating one that can leverage a
particular XRI if multiple VIMs could be used (in the absence of a
specified VIM name). The value n must be a positive integer value
that is unique to the entire lookup order namespace and indicates the
ordinal position of the VIM to use for the lookup. The value of n must
be both sequential (beginning with either 0 or 1) and >= 0.

• .xam.config.vim.preload.{n}={aliasvalue}

Preloads a VIM library during XAM Library initialization (instead of on
first use), where n is a positive integer (starting at 0 or 1) that is
unique to the entire namespace. The preload order will define the
lookup order in the absence of both vim.lookuporder properties and a
specified VIM name in the XRI.

• .xam.log.{option}={value}

Supports all defined logging field controls, including:

— xam_int..xam.log.level

— xam_int..xam.log.verbosity

— xam_string..xam.log.path

— xam_int..xam.log.max.size

— xam_int..xam.log.max.rollovers

— xam_boolean..xam.log.append

— xam_string..xam.log.message.filter

— xam_string..xam.log.component.filter

Configuration File Syntax
The XAM configuration file has the following attributes (similar to the java
Properties format):
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 27

C Library © SNIA
• Each configured field name is specified as a name/value pair delimited by
'=' (e.g. my_field_name=my_field_value).

• White space and commented lines (prefixed with the '#' character) are
ignored.

• All defined fields are of type xam_string unless otherwise specified using a
simple type prefix (e.g. <stype>.name=value), where stype may be either
xam_string, xam_int, xam_double, or xam_datetime (note that xam_xuid
types are not currently supported).

Example Configuration File
C VIM Aliases
.xam.config.vim.alias.emc=C:\VIMS\centera_vim.dll
.xam.config.vim.alias.http=C:\VIMS\http_vim.dll
.xam.config.vim.alias.encrypter=C:\VIMS\encryption_vim.dl
l

Java VIM Aliases
.xam.config.vim.alias.hp=com.hp.xam.VIMImpl
.xam.config.vim.alias.sun=com.sun.xam.VIMImpl

VIM Stacks
.xam.config.vim.alias.stack.isolated_centera=http:emc
.xam.config.vim.alias.stack.isolated_encrypted_hp=http:en
crypter:hp
.xam.config.vim.alias.stack.isolated_sun=http:sun

VIM Stack name/value pairs (passed to the http VIM in
the XRI)
.xam.config.vim.alias.isolated_centera.param.xsystem=10.2
41.44.10
.xam.config.vim.alias.isolated_encrypted_hp.param.xsystem
=10.241.44.20
.xam.config.vim.alias.isolated_sun.param.xsystem=10.241.4
4.42

Preloaded VIMs
.xam.config.vim.preload.1=emc
.xam.config.vim.preload.2=isolated_encrypted_hp

Centera VIM XSystem specific properties
xam_int.com.emc.centera.retrycount=100

Logging
xam_int..xam.log.level=5
xam_int..xam.log.verbosity=5
.xam.log.path=C:\xam.log

Installing a VIM Refer to the vendor-specific installation instructions.
28 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 5: C Library
Configuring the
HTTP VIM

The HTTP VIM can be configured using a configuration file or by using
parameters passed as part of the XRI.

HTTP VIM Parameters
Parameters that control the HTTP VIM can be passed as part of the XRI. The
HTTP VIM recognizes the following parameters:

• targetServer.ipAddress={IP address} - The IP address to which the
HTTP server should connect

• targetServer.port={port} - The port to which the HTTP server should
connect

• targetServer.vimname={vimname} - The vimname of the VIM to be
loaded by the HTTP server.

Example XRI (one string, with "\\" indicating line continuation):

snia-xam://xam_vim_http_g!127.0.0.1?\\
targetServer.vimname=Remote&\\
targetServer.ipAddress=1.2.3.4&\\
targetServer.port=9923";

HTTP VIM Configuration File
A properties file may be used to configure any of the following HTTP VIM
options:

• IP Address of HTTP Server

• Port of the HTTP Server

• vimname of VIM to be loaded by the HTTP Server

The HTTP VIM will check for a config file named "vim.properties" in the
working directory.

Supported Configuration Namespaces
The HTTP VIM recognizes the following string property namespaces:

• .org.snia.xam.vim.parameter.targetServer.ipAddress={IP address} -
The IP address to which the HTTP server should connect

• .org.snia.xam.vim.parameter.targetServer.port={port} - The port to
which the HTTP server should connect

• .org.snia.xam.vim.parameter.targetServer.vimname={vimname} -
The vimname of the VIM to be loaded by the HTTP server.

Configuration File Syntax
The vim configuration file has the following attributes (similar to the java
"Properties" format):

• Each configured field name is specified as a name/value pair
delimited by '=' (e.g,. my_field_name=my_field_value).
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 29

C Library © SNIA
• White space and commented lines (prefixed with the '#' character) are
ignored.

All defined fields are of type "xam_string" unless otherwise specified using a
simple type prefix (e.g. <stype>.name=value), where "stype" may be either
xam_string, xam_int, xam_double, or xam_datetime (note that xam_xuid
types are not currently supported).

Example Configuration File:
.org.snia.xam.vim.parameter.targetServer.ipAddress=1.2
.3.4
.org.snia.xam.vim.parameter.targetServer.port=9923
.org.snia.xam.vim.parameter.targetServer.vimname=Remot
e
30 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 6: Java Reference VIM
Chapter 6: Java Reference VIM

This chapter provides information about the Java Reference VIM that is
provided with the XAM™ Storage System SDK.

The following topics are discussed:

• Overview

• Unpacking your ZIP file

• Installing Compilers and Dependent Libraries

• Building the Code for Your Platform

• Installing the Binaries for Your Platform

• Configuring and Operating the XAM™ Reference VIM and Library

• Building and Running the Client Example

• Using Reference VIM Example Programs

• Building and Running Tests and Examples

• Running Your Application with XAM™

Overview The Reference VIM is part of the SNIA XAM™ SDK, which is intended to
implement the semantics of the XAM Storage System in a correct and
meaningful manner. The Reference VIM supplies functionality that allows an
application writer to exercise each of the XAM API methods. Application
writers can use the Reference VIM to develop and test an application, without
needing access to a commercial XAM Storage System. Because the
Reference VIM is a development tool and is not intended to be deployed as
part of a robust product, it should not be distributed to end users. While the
Reference VIM is stable and reasonably robust, it will not scale in terms of
performance or large numbers of XSets.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 31

Java Reference VIM © SNIA
Summary of Features
For the reference implementation, the XSets are persisted as xml files. By
default, the directory used as the repository is defined by java.io.tmpdir.1
The xml file is named XSet_<XUID>.xml. Any XStreams persisted for the
XSet will be in a directory named XSet_<XUID>.

The Java Reference VIM can specify a different repository location. See
“Specification of a Different Reference VIM Repository Location” under
“Running Your Application with XAM™” for more information.

XAM™ API Features
The Java Reference VIM supports:

• The ability to specify a different repository location. See “Specification
of a Different Reference VIM Repository Location” under “Running
Your Application with XAM™“ for more information.

• Anonymous and plain authentication, but does not support
authorization level checking. When used without additional
configuration, the username and password are hard coded to
testuser and testpasswd, respectively. The Reference VIM may
optionally be configured to use an external file containing clear text
usernames and passwords. This configuration allows applications to
experience access restrictions, such as may be present in a
production system.

• Single-user mode. Multi-threaded applications and multiple clients
have not been tested and will not work as specified in the [XAM-
ARCH].

• XAM-specified retention model. The Reference VIM supports a
minimal set of retention policies. These policies are intended to give
programmers experience in using retention policies. Users should not
expect that these policies will be available on other XAM Storage
Systems.

• Setting autodelete and shred values and policies.

• Basic job support; only support for XAM Query jobs.

— Can submit and halt jobs.

— Can commit XSets that define a job before or after running the
job.

Note: Commit of a XSet with a running job is NOT supported.

• Complete support for XAM Level 1 and XAM Level 2. The Reference
VIM implements query using two important technologies: level 1
query and level 2 query.

1.The directory may also be changed by specifying an argument on the XSystem’s XRI.
See “Configuring and Operating the XAM™ Reference VIM and Library”.
32 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 6: Java Reference VIM
— The level 1 query is implemented using Java DB, which is
present in Java 6. Users of Java 5 may download Derby DB from
the Apache project and put the Derby jar file in the class path.

— The level 2 query is implemented using the Lucene full text
search engine. Users that want to use the textual search
capabilities of the Reference VIM must download the Lucene
core jar file and add it to the class path. If Lucene is not in the
class path, the Reference VIM indicates that level 2 functionality
is not supported by setting the appropriate property in the
XSystem instance.

• This functionality has been tested with Lucene 1.9 and
Lucene 2.4.1. The Reference VIM only supports this
functionality on XStreams of type text/plain. Level 2
functionality is implemented using the Lucene
StandardAnalyzer which provides case-insensitive searches.

• If you are adding support for level 2 queries to an existing
XSystem, you may wish to delete the ReferenceVimDB
directory before starting the Reference VIM. This will cause
existing XSets to be indexed for level 2 functionality.

• Exporting and importing of XSets, including those containing streams.
However, importing XSets with retention information is not
guaranteed to work when importing XSets from a different VIM
implementation. The Reference VIM will validate imported XSets,
according to the [XAM-ARCH], and reject those XSets that contain
retention settings that the Reference VIM is unable to honor.

• Example client program that uses the reference VIM
(ReferenceXSetClient.java). This program demonstrates how
a client would configure and use the Reference VIM.

API Methods Supported
The Java Reference VIM supports all of the API methods:

• VIM: createXSystem

• XSystem: connect, authenticate, abandon, close, createXSet,
openXSet, deleteXSet, isXSetRetained, getXSetAccessTime,
asyncOpenXSet, and asyncCopyXSet

• XSet: abandon, applyAccessPolicy, applyAutodeletePolicy,
applyShredPolicy, close, commit, createProperty, deleteField,
createXStream, openXStream, getField (most of the field
manipulation methods are supported), openExportStream,
openImportStream, submitJob, haltJob, createRetention,
setBaseRetention, setRetentionEnabledFlag, setRetentionDuration,
and setRetentionStarttime, holdXSet, releaseXSet, accessXSet,
getXSetAccessTime, getActualAutodelete, getActualShred,
asyncCommit, and asyncOpenXStream

• XStream: read, write, close, tell, seek, asyncWrite, asyncRead, and
asyncClose
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 33

Java Reference VIM © SNIA
• XUID: toBytes, toString, and equals. Also XUID creation and
encoding/decoding and ability to instantiate XUID instance based on
a XUID value.

Unpacking your
ZIP file

The working draft VIM SDK is provided as a ZIP file of the SDK source code.
Please unzip this file in the desired directory and follow the instructions
included with each component.

The directory contents are listed as follows:

Installing
Compilers and
Dependent
Libraries

Installing JUnit
JUnit is a simple framework for writing and running automated tests.

To install JUnit:

1 Download the latest version of JUnit (junit.zip) from http://
download.sourceforge.net/junit/.

2 Install JUnit in the top level /lib directory (top level XAM that is), as
it does not need to update the class path. The class path is updated
automatically inside of the ANT script.

Note: Only JDK and ANT are required to build and run unit tests. During
development, more software may be required, but those
requirements are outside of the scope of this document.

Windows To install JUnit on Windows:

1 Unzip the junit.zip distribution file to a directory referred to as
%JUNIT_HOME%.

2 Add JUnit to the class path:

/Java_Reference_VIM

 /build Temporary directory created and used
during building

 build.xml The Ant build script

 /config/ReferenceVIM.config The XAM Library configuration file
used while running the unit tests

 /deliverables Output directory for the final build
components that are created during
the build

 /doc Output directory for the Java doc
process

 /examples Example program source files

 /src Java Source for the Reference VIM

 /test Java Source for the unit tests

 xam.test.props A Java properties file to configure the
unit test program
34 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 6: Java Reference VIM
set CLASSPATH=%CLASSPATH%;%JUNIT_HOME%\junit.jar

Unix (bash) To install JUnit on Unix:

1 Unzip the junit.zip distribution file to a directory referred to as
$JUNIT_HOME.

2 Add JUnit to the class path:

export CLASSPATH=$CLASSPATH:$JUNIT_HOME/junit.jar

3 (Optional) Unzip the $JUNIT_HOME/src.jar file.

4 Test the installation by using either the textual or graphical test runner
to run the sample tests distributed with JUnit.

Note: The sample tests are not contained in junit.jar, but in the
installation directory directly. Therefore, make sure that the
JUnit installation directory is in the class path.

— For the textual TestRunner, type:

java junit.textui.TestRunner
junit.samples.AllTests

— For the graphical TestRunner, type:

java junit.swingui.TestRunner
junit.samples.AllTests

All the tests should pass with an OK (textual) or a green bar
(graphical). If the tests don't pass, verify that junit.jar is in the
class path.

Building the Code
for Your Platform

Supported Platforms
Currently tested platforms are Solaris 10 (tested on X86 and SPARC),
Windows (WIN32), Fedora 10, Open SUSE 10, Ubuntu 9, and Apple OS X.

Software Requirements
The following packages are required to build or run the Reference VIM: ant,
Derby, JUnit, Java, JavaCC, JavaMail, JavaBeans Activation Framework
(JAF), and Lucene. Derby is required to build AND run. Lucene is required to
build and optional to run. If Lucene is not in the runtime class path, Level 2
query is not supported at run time.

Ant Download ant from http://ant.apache.org. This software was tested with
version 1.7.0.

Derby Download Derby from http://db.apache.org/derby/ (if using JDK/JRE earlier
than 1.6).

Note: Sun distributes this as Java DB with JDK/JRE 1.6.

JUnit 1 Download JUnit from http://www.junit.org.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 35

Java Reference VIM © SNIA
2 Make sure you copy junit-3.8.1.jar in the <sdk-install-
dir>/trunk/lib subdirectory.

Java Download Java 1.5 (or later) from http://java.sun.com (or the platform JVM
provider). This software was tested with version 1.5.0_07.

JavaCC Download JavaCC from https://javacc.dev.java.net/ (Version 4.2 or later).
This software is required to build the Reference VIM, but is not required at run
time.

JavaMail 1 Download JavaMail 1.4 or later from http://java.sun.com/products/
javamail.

2 Copy mailapi.jar or mail.jar to the standard extension library
directory, which will vary depending on java version: <jdk-home>/
jre/lib/ext.
OR
Download mailapi.jar or mail.jar to the <sdk-install-
dir>/trunk/lib subdirectory.

JavaBeans Activation
Framework (JAF)

1 Download JAF from http://java.sun.com/javase/technologies/desktop/
javabeans/jaf/index.jsp.

Note: JAF is a standard extension of the Java platform. You must
download this unless you are using Java SE 6.0.

2 Copy the activation.jar file to the standard extension library
directory or to <sdk-install-dir>/trunk/lib.

Lucene 1 Download Lucene from http://apache.org/lucene (1.9 through 2.4.1).

Note: This software provides optional functionality, which if present,
will enable level 2 query. Only the Lucene-core jar file is
needed in the class path. It is recommended to use the latest
version.

2 Install this software in the <sdk-install-dir>/trunk/lib
subdirectory.

PATH Requirements
Make sure to set your PATH as follows:

• Set the JAVA_HOME environment variable to point to the root java
installation directory.

• Include the compiler for each platform in the PATH.

• Include the JAVA_HOME and the java directories containing the java
compiler (javac) and java in the PATH.

Building the XAM SDK using ant

To build the XAM SDK using ant, follow these steps:

1 If you haven’t already done so, download and install ant and java.
Download the other required jar files and place them in the <sdk-
36 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 6: Java Reference VIM
install-dir>/trunk/lib subdirectory: junit-3-8.1.jar,
mailapi.jar, activation.jar.

2 Build the xamlib.jar (Java_XAM_Library) and snia-xam.jar
(Java_Interfaces).

3 Enter the Java_Reference_VIM directory.

4 Run ant deliverables to build the Reference VIM jar file.
Deliverables will be generated at the following locations:

Java_Reference_VIM/dist/referenceVIM.jar -
reference VIM jar

Running the ant test
Build the additional build targets, as follows:

1 To build the tests, use the “build_test” target.

2 To build the tests and the reference VIM jar files, use the
“deliverables” target.

Note: Retention tests are not run by default; they are run via “ant
test_retention”.

Installing the
Binaries for Your
Platform

Install all XAM jar files with other application jar files. Make sure you put
them in the application’s class path.

Configuring and
Operating the
XAM™ Reference
VIM and Library

This section contains the following configuration topics:

• Basic Configuration

• User Configuration

• Access Control Policies

• Autodelete Configuration

• Autodelete and Shred Policies

• Retention Policies

• Import Processing

• Asynchronous Methods

• Reference VIM Logging

• Summary of Configuration Properties

• Scalability
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 37

Java Reference VIM © SNIA
Basic Configuration
The tests and examples use one basic property file to provide configuration
information: ./config/ReferenceVIM.config. This XAM configuration
file is passed to the XAM Library. It contains important property definitions,
including the name of the VIM and its associated Java class name. This file
must contain a property of the form .xam.config.vim.alias.<VIM-
Name>. The last part of the property name has to match the name of the VIM.
The property value must specify the VIM class name.

Example:
.xam.config.vim.alias.SNIA_Reference_VIM=org.snia.xam.vim
.reference.ReferenceVIM

Logging properties can be specified as well. Please see “Java Library” in this
guide or view the README.txt file in the Java_XAM_Library directory for
more information.

User Configuration
The Reference VIM is capable of being configured to use an external file
describing additional users. Without configuration, a hardcoded user
(testuser) and password (testpasswd) are available. The following
example shows a basic username/password text file which may be used to
provide additional authenticated users to a running instance of the Reference
VIM.

user1 pass1
user2 pass2
user3 pass3
xyzzy plugh

Note: This file is a simple text file, and the passwords are not encrypted or
protected. The intention is to provide users with the opportunity to
experience XAM behavior in a multiple, user authenticated
environment, not to provide a secure storage system! If you want to
make this more secure, we suggest protecting the file with the
appropriate file permissions.

To use the external user file, set the XAM system property to refer to the path
of the file. For example, the following line may appear in your XAM
Configuration file:

org.snia.xam.reference.passwd=/tmp/passwd.txt

The Reference VIM will not have the built-in username and password
available if it has been configured to use the external user file.

Access Control Policies The Reference VIM will create a unique access control policy for each defined
user. User policies grant read and write access to the named user; other
users have no access.
38 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 6: Java Reference VIM
The following example shows what access policies are created if the
ReferenceVIM was created using the password file example in “User
Configuration”:

Setting the access policy on an XSet to “user1” denies all other authenticated
users the ability to read or write the XSet. Also note that if a user is removed
from the password file, any XSets having an access policy of that user are
inaccessible by all users. To regain access to those XSets, the user must be
added to the password file.

Two additional policies are defined. org.snia.refvim.access.read.all grants all
users read access to the XSet, and org.snia.refvim.access.read.write.all grants
read and write access to all XSets. Note that once org.snia.refvim.access.read.all
has been applied and committed, even the original owner of the XSet is unable to
modify the XSet.

Note: These access policies are provided for illustrative purposes; users
are cautioned not to assume that this behavior will be present in
systems supplied by storage vendors.

Autodelete Configuration
The Reference VIM supports autodelete and allows you to configure the time
period used by the autodelete daemon process. The property
org.snia.xam.reference.autodelete.period contains the number of seconds
between autodelete sweeps of the store. The default value is 300 seconds
(five minutes). Shorter times are acceptable to provide a more aggressive
processing and autodelete schedule, but doing so may result in reduced
performance as the Reference VIM spends more time evaluating XSets for
autodeletion criteria.

The value of org.snia.xam.reference.autodelete.period to a negative value will
disable the autodelete process, although setting the autodelete property on
the XSet is still supported.

Because of autodelete functionality, only a single instance of the autodelete
daemon, per store path, is created. Multiple instances of the
ReferenceXSystem using the same store path are all sharing the same
autodelete daemon. Thus, only the first instance of a ReferenceXSystem will
create an autodelete daemon with the specified autodelete period.

Table 3 – Access Policy Example

User
Name XSystem Policy List Policy Name

user1 .xsystem.access.policy.list.user1 user1

user2 .xsystem.access.policy.list.user2 user2

user3 .xsystem.access.policy.list.user3 user3

xyzzy .xsystem.access.policy.list.xyzzy xyzzy

.xsystem.access.policy.list.org.snia.refvim.access.read.write.all org.snia.refvim.access.read.write.all

.xsystem.access.policy.list.org.snia.refvim.access.read.all org.snia.refvim.access.read.all
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 39

Java Reference VIM © SNIA
Be aware that setting autodelete on a simple XSet without setting any
retention will result in the XSet being deleted the next time the autodelete
daemon runs. Depending on where the autodelete daemon is in its timing
cycle, the XSet could be deleted as soon as commit has completed.
Generally, autodelete should not be used on XSets without some retention
settings because the default management policy provides no retention. This
may not be true of other XAM Storage Systems.

Autodelete and Shred Policies
The Reference VIM provides three policies to set autodelete and shred
settings on an XSet using XSet.applyAutodeletePolicy and
XSet.applyShredPolicy settings. The policies provided are summarized in
Table 4.

The Reference VIM does not support external creation or modification of
these policy parameters.

Retention Policies
The Reference VIM provides a set of retention policies allowing the
application to set retention criteria using policies instead of explicit settings.
These policies may be used for base, event, or application-defined retentions,
as shown in Table 5.

Table 4 – Autodelete and Shred Policies

Policy Name Description

org.snia.refvim.disposition.autodelete autodelete = TRUE,
shred = FALSE

org.snia.refvim.disposition.autodelete.and.shred autodelete = TRUE,
shred = TRUE

org.snia.refvim.disposition.shred autodelete = FALSE,
shred = TRUE

Table 5 – Retention Policies

Policy Name Description

org.snia.refvim.retention.none duration = 0, enabled = FALSE

org.snia.refvim.retention.one.second duration = 1000 mS, enabled =
TRUE

org.snia.refvim.retention.one.day duration = one day, enabled = TRUE

org.snia.refvim.retention.thirty.days duration = 30 days, enabled = TRUE

org.snia.refvim.retention.one.year duration = 365.25 days, enabled =
TRUE
40 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 6: Java Reference VIM
The Reference VIM does not support external creation or modification of
these policy parameters.

Import Processing
According to the [XAM-ARCH], the Reference VIM will validate retention and
disposition policies when the XSet is imported. Any error during policy
validation will cause an appropriate exception to be thrown when closing the
import XStream. Another effect of the import validation failing is to place the
XSet in a corrupt state, making it unusable. At this point, the application may
only abandon and close the XSet.

While it is permissible for an XSystem to make adjustments to its policies, or
adjust XSet properties in such a way as to avoid violating retention criteria,
the Reference VIM does neither. Unless the imported XSet's policy
parameters match the Reference VIM's retention policy parameters, the
import process will not successfully complete.

The following is a list of conditions that will cause the import process to fail:

• A policy name in the imported XSet is unknown in the Reference VIM
XSystem.

• The importing XSet policy specifies a retention policy duration longer
than that supported by the Reference VIM's policy of the same name.

• The importing XSet policy specifies a retention enabled differing from
that supported by the Reference VIM's policy of the same name.

In all cases of the import process failing (when closing the import XStream),
the XSet becomes corrupt.

If the XSet already exists in the Reference storage, additional processing
takes place.

• If the binding attribute in the import XSet is different than the binding
attributes of the previously stored XSet, a new XUID will be issued
when the XSet is committed. The previously stored XSet is not
affected.

• If the effective retention of the importing XSet is less than that of the
previously stored XSet, the import will fail when closing the
importXStream.

Asynchronous Methods
The Reference VIM supports all the specified asynchronous operations. The
methods are implemented with a single operation queue and worker threads
to execute the operations. The default implementation provides a single
worker thread, but more may be configured.

The XAM_INT property org.snia.refvim.async.thread.count is
used to configure the number of worker threads that the Reference VIM will
use. For example:

xamLibraryInstance.createProperty(
"org.snia.refvim.async.thread.count", false, 2);
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 41

Java Reference VIM © SNIA
configures the Reference VIM to use two worker threads to execute the
asynchronous operations. Applications should treat this parameter with care;
too many threads will result in degraded system performance. A few threads
will provide the most benefit.

Reference VIM Logging
The Reference VIM supports the XAM-specified logging property settings and
integrates with the Java Logging as implemented by the Java XAM Library.
The Reference VIM uses and requires the org.snia.xam.util.LogManager
class.

The LogManager restricts the use of Java Logging to a single logger per
logfile instance. With this pattern, it is possible to integrate log entries from
multiple instances of the Reference VIM. When multiple Reference VIM
instances are running in the same JVM and are using the same logging
parameters, log entries will be integrated into a single log file.

XAM Levels correspond to Java Logging levels as shown in Table 6:

The Reference VIM will detect a change to the property .xam.log.verbosity.
The following setting, xam.log.verbosity xam_int 100, will turn on
method entry/exit trace when the logging level is at XAM_LOG_ALL. Other
verbosity values have no effect at other levels of tracing (i.e., less than
XAM_LOG_ALL).

Note: Configuration of logging when running the Reference VIM in a
separate JVM or on different hosts is not within the scope of this
document.

Table 6 – XAM™ and Java Logging Levels

XAM Level Java Level Type of Information Logged

NONE OFF Nothing

FATAL SEVERE Non-recoverable errors

ERROR SEVERE Recoverable errors

WARN WARN Notification of potential problems

INFO INFO Configuration, performance; information
of interest to application programmers

ALL FINEST Debugging information
42 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 6: Java Reference VIM
Summary of Configuration Properties
Table 7 summarizes the Reference VIM configuration properties.

The Reference VIM also supports the XAM-specified logging properties.

Scalability
The Reference VIM has been implemented with a focus on adhering to the
[XAM-ARCH]. Because of this, no attempt has been made to make the
Reference VIM scale in terms of throughput or large numbers of XSets. While
the Reference VIM is reasonably robust and stable, it may generate run-time
errors when large numbers of XSets have been stored. Programmers are
cautioned to limit the maximum number of XSets in tests to less than 5,000.

Building and
Running the Client
Example

Currently there is only one example client program:
ReferenceXSetClient.java.This program shows you how to write a
simple XAM client that uses the Reference VIM. Because the reference VIM
is run in the same JVM as the client program, the client program also must
load and enable the reference VIM using the XAM Library. The example
program can be run using ant or from the command line. The example
program also depends on the two Reference VIM property files to provide
configuration information. For more information, please see “Configuring and
Operating the XAM™ Reference VIM and Library.”

Building and Running the Example Using ant
Run ant examples.

This command builds and runs the example program. See “Viewing Build
Example Output - ant”.

Table 7 – Summary of Configuration Properties

Property Name Type Description

org.snia.reference.passwd XAM_STRING Path to the username
password file.

org.snia.reference.autodelete.period XAM_INT Number of seconds
between autodelete
sweeps

org.snia.refvim.async.thread.count XAM_INT Number of worker
threads to execute
async operations
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 43

Java Reference VIM © SNIA
Building and Running the Example From the Command Line
1 Set the default to the Java_Reference_VIM directory.

2 To build the client program, set the class path to include the two jar
files specified above or specify the jar files using the javac
commands -cp option.

For example, on Solaris:

javac -cp "./deliverables/referenceVIM.jar:../
Java_XAM_Library/deliverables/xamlib.jar"
examples/ReferenceXSetClient.java

3 To run the client program, you must also include the
Java_Reference_VIM directory as part of the class path.

For example, on Solaris:

java -cp ".:./deliverables/referenceVIM.jar:../
Java_XAM_Library/deliverables/xamlib.jar"
examples.ReferenceXSetClient

Note: If you do not specify an output directory, then the java
compiler creates the class file in the same directory as the
java file. By contrast, the ant examples target creates the
class file in the ./build/classes/examples directory.
Make sure that you specify the class path so that you are
running the desired ReferenceXSetClient instance.

Viewing Build Example Output - ant
XAM XSet Client Example Program - Uses Reference VIM by default

Initializing VIM
Loading test properties from file: xam.test.props
Loading the VIM using the Java XAM Library.
VIM Configuration contained in file: ./config/
ReferenceVIM.config

===
Client application example program testing:
Client application connecting to the VIM
Connection arguments: snia-xam://
SNIA_Reference_VIM!localhost

Client application authenticating user credentials

Client application creating & persisting XSet with
properties.
XSet created - XUID:
AAA6AwAeQQsxMjI4NDAxNzM0NTI3AXcWl90AupNA
XSet updated (binding change) - XUID:
AAA6AwAekJsxMjI4NDAxNzM0NTU0AngnwDsAPonD
Close & reopen XSet and test getting some property
values
test.boolean=true
test.double=1234.5
44 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 6: Java Reference VIM
test.string=testing string....
Closing XSet and XSystem
===

Using Reference
VIM Example
Programs

The directory examples contains three simple programs to exercise basic
features of the Reference VIM.

• ReferenceXSetClient - Connects to a Reference VIM instance
and creates an XSet.

• ExportXSetClient - Connects to a Reference VIM instance and
exports and XSet. The ExportXSetClient takes exactly one
argument, a base 64-encoded XUID. This program will create a file
with the name <XUID>.dat and put the canonical XSet data in it.

• ImportXSetClient - Connects to a Reference VIM instance and
import an XSet. The ImportXSetClient takes exactly one
argument, a filename. The program expects that the file will contain
canonical XSet data. This data is read and imported into the
XSystem.

All three programs extend a simple class, ExampleBase, which contains
enough structure to hold instance variables for a XAM Library and an
XSystem instance.

Building and
Running Tests
and Examples

Configuring Unit Tests
xam.test.props is a properties file used by tests and client example
programs. It contains definitions for the xri connection argument along with
the name of the XAM configuration file and the default authentication
credentials.

The xam.test.xri property specifies the VIM connection xri value.

To edit the xam.test.props file, modify the xam.test.xri line by
specifying an absolute directory path for the dir parameter. The path
specified will obviously vary depending on the operating system.

Example xri values:

• Default value - no directory location specified:

xam.test.xri=snia-xam://
SNIA_Reference_VIM!localhost

• Directory location of /home/mytest/xam_storage (Unix)

xam.test.xri=snia-xam://
SNIA_Reference_VIM!localhost?dir=/home/
mytest/xam_storage

• Directory location of C:\mytest\xam_storage (Windows)
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 45

Java Reference VIM © SNIA
xam.text.xri=snia-xam://
SNIA_Reference_VIM!localhost?dir=C:\mytest\xa
m_storage

See “Configuring and Operating the XAM™ Reference VIM and Library“ for
more information.

Building and Running Tests Using ant
1 Specify directories used for tmp files and persisted XSets. By default,

XSets are persisted to the java.io.tmpdir. This directory also
contains any tmp files created. On Solaris, this defaults to something
like: /var/tmp.

— To specify a different storage location for persisted XSets, modify
the xam.test.xri parameter specified in the xam.test.props file
and add a dir parameter value. An xri value specifying a storage
location (when running on Solaris) would look like:

xam.test.xri=snia-xam://
SNIA_Reference_VIM!localhost?dir=/home/mytest/
xam_storage

Note: See “Running Your Application with XAM™” for more
information on specifying a storage location.

— The value of java.io.tmpdir can also be set to specify the
storage location for tmp files. It will also be used as the XSet
persistence directory if no dir parameter value is specified in the
xri connect information.

2 Run ant test to build (if necessary) and run all the JUnit tests
EXCEPT retention. Other targets include:

— test_retention - runs the retention tests

— clean_test - cleans all test .class files

— build_test - builds test files

— also targets to run individual tests: test_xsystem,
test_xset, test_xstream, test_auth,
test_retention

3 Manually delete the XSet xml files and directories when you no longer
want them (e.g., XSet_*). You may also have to delete temp copies
of XStreams (e.g., XStream_#####.tmp).

Running Your
Application with
XAM™

The Reference VIM implements the XAM API but also implements a backing
store. The repository created by the Reference VIM is based on the machine's
file system. The reference VIM persists XSets and associated XStream
objects as files. In a vendor-specific VIM, the backing store would probably be
some entity outside the VIM implementation.

Default Repository Location
By default, the Reference VIM persists XSets and XStreams to the temp
directory specified by java.io.tmpdir. This directory is also where any
46 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 6: Java Reference VIM
temp files are created. On Solaris, this defaults to something like /var/tmp.
On Windows, it is likely to be c:\temp. To specify a different location for the
repository, see “Specification of a Different Reference VIM Repository
Location”.

Directories and Files Created
To create unique file names, a file name-safe variant of the Base64-encoded
XUID value is used. The Reference VIM uses the filename-safe Base64-
encoded specified in RFC-4648 (Table 2) for filename. The Reference VIM
only supports XUID interchange using the originally specified Base64 variant.

The XSet and its properties are persisted in an XML file. The format of the
XML file follows the XAM specification's export format layout (see [XAM-
ARCH]). In addition, data for each XStream is stored in a separate file. The
XStream data files are located in a subdirectory that is also named using the
XUID's filename-safe string. The XStream contents are stored in the same
format that the application used when creating the XStream. No translation is
performed on the data.

Files Created for a
Persisted XSet

The following files are created for a persisted XSet:

• XSet_<xuid-hex-string>.xml

This file contains the XML description of the XSet and conforms to the
XAM Export format.

• XSet_<xuid-hex-string>

This directory contains any XStream (stream field data for the XSet).

• XSet_<xuid-hex-string>/XStream_#####.data

This stream field contains payload/data for a single XStream. Note
that the field definition in the XSet XML file will contain the name of
the associated XStream data file.

Temp Files Created The following temporary files are created:

• XSet_<xuid-string>.tmp

• XStream_####.tmp

Database For Query
Support

The ReferenceVimDB directory is created by the SQL database that the
Reference VIM uses to support internal housekeeping and to query job
support. Generally, this database is automatically created and maintained by
the Reference VIM.

If an error occurs, you can rebuild the database by stopping the Reference
VIM (or the application that has the Reference VIM embedded), by deleting
the database directory, and by restarting the Reference VIM (or application).
The database is automatically rebuilt when this process has been executed.

The ReferenceVimDB directory has a subdirectory called contentIndex,
where Lucene segment data is stored. If the Lucene indexes become
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 47

Java Reference VIM © SNIA
corrupted, remove the ReferenceVimDB directory and restart the Reference
VIM so that the database and content indexes are rebuilt.

Note: If the database has to be rebuilt, the Reference VIM start-up time will
be longer than usual. It could take a few extra seconds to several
minutes.

Specification of a Different Reference VIM Repository Location
Because XRIs support the specification of a host, when an application uses
an XRI that refers directly to a Reference VIM, the host specification is
ignored. The Reference VIM is only connecting directly to a local embedded
XAM Library. To connect across hosts, the http VIM is required (see
Chapter 7, “HTTP Protocol VIM”).

You can specify the location of the repository by providing a value for the dir
on the XRI information passed to the XSystem.connect command. The
absolute path that you specify must exist and be correctly formatted for the
operating system. The user must have full privileges for the directory.

For example, to change the storage location used by the Reference VIM:

1 Set the directory to the Java_Reference_VIM sub-directory in the
SDK installation.

2 Modify the xam.test.xri line of the xam.test.props file by specifying
a absolute directory path for the dir parameter. The path you specify
will obviously vary depending on the operating system.

See “Configuring and Operating the XAM™ Reference VIM and
Library” for more information.

Example xri values:

• Directory location of /home/mytest/xam_storage (Unix)

xam.test.xri=snia-xam://
SNIA_Reference_VIM!localhost?dir=/home/mytest/
xam_storage

• Directory location of C:\mytest\xam_storage (Windows)

xam.text.xri=snia-xam://
SNIA_Reference_VIM!localhost?dir=C:\mytest\xam_s
torage

WARNING: Applications will be able to access the hosts entire disk
structure using this XRI parameter. The Reference VIM does
not provide any security restrictions on this setting. Users are
strongly cautioned.

Repository Maintenance
Running the tests or running sample programs over and over again may
create large numbers of files or directories in the repository. Currently, there is
no automated way to clean up the repository once the XSet files and
directories are created. Periodically, it may be necessary to clean out the files
48 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 6: Java Reference VIM
in the repository by manually deleting files and directories like XSet_* and
XStream_*. Developers may want to specify a private location for the
repository to isolate their files and make debugging and tracking XSets easier.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 49

HTTP Protocol VIM © SNIA
Chapter 7: HTTP Protocol VIM

This chapter provides information about the HTTP VIMs that are provided with
the XAM™ Storage System SDK. Topics include the following:

• Description

• Functionality

• Server Configuration, Installation, Building, and Testing

• Protocol VIM Use

• Java VIM Requirements

Note: For additional information on the architecture and protocol of the
HTTP VIM, see Appendix B: “HTTP VIM Architecture”.

Description The HTTP Protocol VIM is a prototype that demonstrates how VIMs may be
“stacked” and provides remote access via the HTTP protocol. Stacking VIMs
is an architectural feature of the SNIA XAM™ API and is allowed because the
VIM API is standardized within the SNIA XAM API specification (see [XAM-
ARCH]).

Stacking VIMs allows systems to be configured with functionality that may not
be supplied by a storage vendor's VIM. Examples of added functionality may
include storage federation, compression, encryption, etc. The HTTP VIM
provides remote access to VIMs, via HTTP, which may otherwise not have
access. Currently, the SNIA XAM SDK contains a reference VIM which
provides correct behavior but is unable to operate over networks. The HTTP
Protocol VIM allows an application to use the Reference VIM across a
network link.

The HTTP Protocol VIM is contained in two parts. The upper half (client) is a
traditional VIM implementation that provides connectivity to the XAM Library.
The client VIM portion translates all XAM API method calls into HTTP
operations and sends them to the HTTP Protocol VIM Server. The HTTP
Protocol VIM Server creates a local instance of an arbitrary VIM and relays
HTTP VIM method calls to the VIM.
50 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 7: HTTP Protocol VIM
The HTTP Protocol VIM Server is written in the Java (1.5) programming
language and can host any VIM that has also been written in the Java
language. Currently, the HTTP Protocol VIM Server cannot host VIMs written
in other languages.

This release of the HTTP Protocol VIM also supplies a Java Client HTTP VIM
that will work with this server. The C XAM Library also supplies functionality
for working with the HTTP Protocol VIM Server.

CAUTION: The HTTP Protocol VIM is a prototype and technology
demonstration. It has not been engineered for performance,
throughput scaling, or security. The HTTP Protocol VIM can
function as a development tool but should not be deployed as
part of a shipping product.

CAUTION: This protocol and VIM server do not currently support
HTTPS. The only security available is the authentication
provided by the target XSystem and the configured legal XRI
list in startup.properties. There is no security provided
on XObject handles, and clients could possibly guess new
handle values and obtain access to objects to which they
may not otherwise have access. Applications should close
unused XObject instances when they are no longer used.
Doing so frees up needed resources in the HTTP Protocol
VIM Server.

Functionality All specified SNIA XAM™ methods are supported for these objects:

• XSystem

• XSet

• XStream

• XIterator

• XAsync

Note: Some methods, although specified by the [XAM-ARCH], are not
supported by the Reference VIM and have not been fully tested (e.g.,
XSystem.openXStream).

Server
Configuration,
Installation,
Building, and
Testing

This section includes the following topics:

• Configuring the HTTP VIM Implementation Target of the HTTP VIM
Client

• Installing Required Runtime Libraries

• Building the Server
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 51

HTTP Protocol VIM © SNIA
• Running Ant Tasks

• Verifying the Server

• Starting the Server

Configuring the HTTP VIM Implementation Target of the HTTP VIM Client
The HTTP VIM Server configuration files must be located in the run time "base"
directory. The code looks up the configuration files using the “.” directory for the
file named startup.properties. This configuration file is in a standard XAM
configuration format file that allows you to adjust the server address and the
configured VIMs, as follows:

• HTTP VIM Server address - identifies the host IP address to use, the
port, and the server version. The default supplied is 127.0.0.1, which
limits connections to those being sent to 127.0.0.1. To use an external
interface, change this value to match the IP address of your external
interface.

• Configured VIMs - lists the VIM classes and VIM stacks supported for
the server.

Here is an example startup.properties file:

.org.snia.xam.http.server.host=127.0.0.1
xam_int..org.snia.xam.http.server.port=9923
.org.snia.xam.http.server.version=1.0
.org.snia.xam.vim.alias.Remote=dummyVIM|SNIA_Reference_VIM
.org.snia.xam.vim.alias.SNIA_Reference_VIM=org.snia.xam.vim.r
eference.ReferenceVIM
xam_int..xam.log.level=3
xam_int..xam.log.max.size=1024

Two other configuration files are also present in the directory:

• handlers.properties - This configuration file contains a list of
handlers identified by name followed by the class that implements
them. This file must not be modified. It will be integrated into the build in
a later release.

• HTTPTestClient.config - This XAM configuration file is used by
the unit test program and its instance of the XAM Library. Your
application will use a different one.

Installing Required Runtime Libraries
To install required runtime libraries, get the following external jar file libraries
and place them in the HTTP_Protocol_VIM/lib directory:

• concurrent.jar - public thread library often used for thread pools,
etc. (http://g.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html)

• jetty04.2.27.jar - Jetty Web Server (http://jetty.mortbay.org/jetty/)

• servelet.jar - Java Servelet framework (http://java.sun.com)
52 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 7: HTTP Protocol VIM
Building the Server
This project requires Java 5 (or later) and the ant build tool (http://
ant.apache.org/). After retrieving the required library files and ensuring that
Java and ant are installed, you may begin building the HTTP Protocol VIM
Server.

To build the server:

1 Build the Java XAM Java Interfaces by executing ant
deliverables in the Java XAM Interfaces directory.

2 Build the Java XAM Library by executing ant deliverables in the
Java XAM Library directory.

3 Build the Reference VIM by executing ant deliverables in the
Java Reference VIM directory.

4 Build the HTTP server by executing ant in the HTTP Protocol VIM
directory.

Running Ant Tasks
The following ant tasks are described as follows:

• ant - Builds the Isolation VIM jar and places the resulting jar file in
./deliverables

• ant clean - Cleans up and remove all generated files

• ant docs - Builds the associated Java docs

• ant server - Executes a default configuration with the Reference
VIM (using /tmp for storage)

• ant test - Executes unit tests against a currently running server

Verifying the Server
After building the HTTP VIM Protocol server, you may run the unit tests to
verify the server. To do so, you will need two command line shells.

To verify the server:

1 In the first command line shell, start the default server:

ant server

Entering this command produces a listing of log output as the server
register handlers for each VIM method. Successful startup of the
server will conclude with the lines similar to:

[java] 11:39:00.942 EVENT Started SocketListener on
127.0.0.1:9923

[java] 11:39:00.942 EVENT Started
org.mortbay.http.HttpServer@6d75
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 53

HTTP Protocol VIM © SNIA
2 In the second command shell, execute the unit tests with the
command:

ant test

Successful completion of the unit tests will produce output similar to:

[java] .computer.name.local File System
[java]
[java] Time: 46.491
[java]
[java] OK (33 tests)
[java]

Starting the Server
To start the server:

1 Make sure that all of the runtime libraries are in your classpath.

2 Make sure that all of the properties files are set up properly and are
located in the "current" directory.

3 To run the server, execute ant server within the HTTP Protocol
VIM directory. A default configuration for the Reference VIM is
available in this directory.

Protocol VIM Use To use the HTTP Protocol VIM from your application, do the following:

1 Add the protocol VIM jar file (Isolation_VIM_Java.jar) to your
classpath.

2 Use an XRI that points to the HTTP Protocol VIM machine, such as:

snia-xam://
Remote!localhost?targetServer.ipAddress=127.0.0.
1&targetServer.port=9923

Note: The host and VIM portion of the XRI are not interpreted by
the HTTP Protocol VIM. To connect to the HTTP Protocol
VIM, you match add the targetServer.host and port
arguments to your XRI. These arguments tell the HTTP Client
VIM where to find the HTTP VIM Server.

3 Include a VIM alias to cause Remote to map to the HTTP Protocol VIM
Client name. For example, the unit test client uses the following
configuration item in its config file:

.xam.config.vim.alias.Remote=org.snia.xam.vim.http.
client.VIM

The server should alias Remote to point to the actual VIM to be
instantiated. The vimname supplied in the XRI argument will be
translated using the alias mechanism in the server.properties
file.

4 If you wish, you can change the VIM name mapping contained in
startup.properties. Changing the mapping allows your
application to use any appropriate VIM or system names. Your
application must also change its XRI, and the legal XRI list in
54 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 7: HTTP Protocol VIM
startup.properties must also be changed to match the new VIM
name.

Java VIM
Requirements

The Java VIM requirements for use by the HTTP VIM Server include the
following:

• Public, no parameter constructor

• Implements the SNIA Java Bindings XAM Library as top-level object

• No “proprietary” method implementations

• Implements XAM operations appropriately (these will pass through
the HTTP VIM)
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 55

Chapter 8: Error Codes © SNIA
Chapter 8: Error Codes

This chapter maps the C XAM™ error codes to Java XAM exceptions. The
mapping was generated by examining the C XAM Library JNI class
XAMErrors.java. When a mapping was not present, the code
sXAMException is typically used (for instance, in the generic exceptions, like
XSetException, XStreamException, etc).

Note: VIMs may override these codes for vendor-specific errors.

This chapter contains the following mappings:

• XAMException

• FieldContainerException

• JobException

• XSetException

• XStreamException

• XSystemException

• Non-Categorized C Errors

XAMException Table 8 contains the XAMException mapping:

Table 8 – XAMException Mapping

Java Exception C Error Code

AuthenticationException sAuthenticationException

AuthenticationExpiredException sAuthenticationException

AuthorizationException sAuthorizationException

FieldContainerException sXAMException *

* Other status code possible
56 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 8: Error Codes
FieldContainerException Table 9 contains the FieldContainerException mapping.

JobException Table 10 contains the JobException mapping.

InsufficientResourcesException sXAMException *

InvalidArgumentException sInvalidArgumentException

InvalidOperationException sInvalidOperationException

InvalidXUIDException sInvalidXUIDException

JobException sXAMException *

ObjectInUseException sObjectInUseException

XSetException sXAMException *

XStreamException sXAMException *

XSystemException sXAMException *

Table 8 – XAMException Mapping

Java Exception C Error Code

* Other status code possible

Table 9 – FieldContainerException Mapping

Java Exception C Error Code

FieldDoesNotExistException sFieldDoesNotExistException

FieldExistsException sFieldExistsException

FieldInUseException sFieldInUseException

FieldReadOnlyException sFieldReadOnlyException

InvalidFieldNameException sInvalidFieldNameException

InvalidFieldTypeException sInvalidFieldTypeException

MaximumFieldException sMaximumFieldException

Table 10 – JobException Mapping

Java Exception C Error Code

JobCommandException sJobCommandException

JobPermissionsException sJobPermissionsException

JobResourceException sJobResourcesException

JobRunningException sJobRunningException

* Other status code possible
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 57

Chapter 8: Error Codes © SNIA
XSetException Table 11 contains the XSetException mapping.

XStreamException Table 12 contains the XStreamException mapping.

JobUnsupportedException sJobUnsupportedException

QueryException sXAMException *

Table 10 – JobException Mapping

Java Exception C Error Code

* Other status code possible

Table 11 – XSetException Mapping

Java Exception C Error Code

HoldIDException sHoldIdException

InvalidXSetModeException sInvalidXSetModeException

PolicyNameException sPolicyNameException

PolicyMismatchException sPolicyMismatchException

RetentionValueException

XsetInaccessibleException sXSetDoesNotExistException

XsetUnderRetentionException sXSetUnderRetentionException

XsetUnderHoldException sXSetUnderHoldException

XsetAbandonException sXSetAbandonException

XsetCorruptException sXSetCorruptException

Table 12 – XStreamException Mapping

Java Exception C Error Code

InvalidXStreamModeException sInvalidXStreamModeException

XstreamAbandonException sXStreamAbandonException

XstreamCorruptException sXStreamCorruptException
58 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Chapter 8: Error Codes
XSystemException Table 13 contains the XSystemException mapping.

Non-Categorized
C Errors

Table 14 contains the mapping for non-categorized C errors.

Table 13 – XSystemException Mapping

Java Exception C Error Code

ConnectException sConnectException

InvalidXRIException sInvalidXRIException

VIMLoadException sVIMLoadException

XsystemCorruptException sXSystemCorruptException

XsystemAbandonException sXSystemAbandonException

AsyncPendingException sAsyncPendingException

AsyncHaltedException sXAM_XASYNC_HALTED

XAMException sXAM_INVALID_HANDLE

XsystemAbandonException sXAM_FILESYSTEM_ERROR

AthenticationException sXAM_AUTH_DATA_NEEDED

InvalidOperationException sXAM_NOT_SUPPORTED

JobException sXAM_NOT_A_JOB

JobCommandException sXAM_JOB_INVALID_CMD_SYNTAX

Table 14 – Mapping for Non-Categorized C Errors

Java Exception C Error Code

XAMException sXAM_INVALID_HANDLE

XsystemAbandonException sXAM_FILESYSTEM_ERROR

AthenticationException sXAM_AUTH_DATA_NEEDED

InvalidOperationException sXAM_NOT_SUPPORTED

JobException sXAM_NOT_A_JOB

JobCommandException sXAM_JOB_INVALID_CMD_SYNTAX
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 59

Appendix A: Reference VIM Architecture © SNIA
Appendix A: Reference VIM Architecture

This appendix documents the architecture of the SNIA XAM™ Reference
VIM. The Reference VIM is written in and leverages the object-oriented
capabilities of the Java language. Most of the implementation is
straightforward; however, parts of the implementation are rather complex and
require further explanation, which is the purpose of this chapter.

As of this writing, the Reference VIM is complete and the structure and
sequences documented here are extracted directly from the existing code.
While much of this document has been written for this purpose, some of the
content has been repurposed from the Reference VIM’s readme.txt.

This document has the following major sections:

• Class Structure

• Operational Flow

An important point to consider when examining the class structure is the
relationship between the ReferenceXSystem and single or multiple instances
of managers. The most critical dynamic element to understand is the
Reference VIM query processing.

Class Structure This section discusses the following classes with respect to the class
structure:

• XSystem

• XSet

• XStream

• Persistence Manager

• Policy

• Jobs

• DBManager
60 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix A: Reference VIM Architecture
XSystem
The ReferenceXSystem class is the core of the Reference VIM. Each
XSystem Instance is implemented with an in-memory instance of the
ReferenceXSystem class. This object mediates the creation of top level XAM
objects, as well as various manager classes to help perform XAM operations.

The Reference VIM uses manager instances to manage functionality that is
too complex to implement “in line” with the ReferenceXSystem methods.
Manager classes are described later in this document. The Reference VIM
has been designed so that new implementations for functional areas can be
integrated by changing a manager implementation.

The manager classes that are used are described in Table 15:

Table 15 – Manager Classes

This manager class... Is responsible for...

JobMgr Creating new job instances and managing those
jobs during run time.

AccessPolicyManager Checking the currently authenticated user and
providing access and permission checks.

RetentionMgr Managing XSet retention and retention policies
and for providing data retention checks on
XSets.

DispositionManager Implementing autodelete and shred functionality
for XSets (if requested) and using the
RetentionMgr at run time.

ReferenceVIMPersistenceMgr Storing XSets in the file system.

ReferenceXAsyncManager Maintaining a list of asynchronous operations
and dispatching them to worker threads. This
implementation is simple and just runs the
operations on the appropriate object.

DBManager Implementing a database of XSet field values so
that XAM Queries may be serviced. This
implementation uses a combination of an SQL
relational database management system and the
Lucene search engine for Level 2 queries.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 61

Appendix A: Reference VIM Architecture © SNIA
Figure 1 shows the interaction between the manager classes.

XSet
The Reference XSet is the Reference VIM’s implementation of the XSet
interface (see Figure 2, “Reference XSet”). This implementation uses the
Java XAM Library’s AbstractFieldContainer class to implement most of the
field storage. All in-memory instances of property fields are stored using the
Java XAM Library’s Property implementation class. Streams are implemented
using the Reference XStream implementations.

Each XSet tracks which state it is in, via an Operational State variable. This
state matches the finite state machine (FSM) of XSets that are specified in the
[XAM-ARCH]. States also include corrupt and abandoned. Closed XSets exist
in the memory space of the Reference VIM.

When an XSet is committed, the Persistence Manager becomes involved and
causes the XSet to store its contents to the file system. This implementation
of the Reference VIM stores the XSet core as XML files, most of which are

Figure 1 – Manager Classes

AccessPolicyManager

Runnable
DispositionManager

AbstractFieldContainer
XSystem

ReferenceXSystem

Runnable
ReferenceXAsyncManager

JobMgr

ReferenceAuthenticationStatus

authenticatedUsername:String

DBSqlTranslator

ContentIndexManagerReferenceVIMPersistenceMgr

RetentionMgr

DBManager
62 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix A: Reference VIM Architecture
compatible with the canonical export format. Streams are stored as
unmodified, simple byte stream files.

XStream
XStreams are the most complicated entity related to XSets. An XStream
implementation must represent normal XStream data and import and export
XStream functionality. It must also maintain XStream attributes (see Figure 3,
“Reference XStream”).

The ReferenceXStreamBase provides most of the attribute containment and
state tracking. State is tracked with an operational state object similar to
XSets. These states match the FSM in the [XAM-ARCH], including corrupt
and abandon.

The actual byte stream is wrapped by a StreamContents object. Actual
reading and writing of the contents is performed by this class.

Figure 2 – Reference XSet

AbstractFieldContainer
XSystem

ReferenceXSystem OperationalState
DefaultHandler

XSetXmlReader

DefaultHandler
XSetXmlWriter

XSetStateAbstractFieldContainer
XSet

ReferenceXSet

ReferenceXStreamBase
ReferenceExportXStream

ReferenceXStreamBase
ReferenceImportXStream
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 63

Appendix A: Reference VIM Architecture © SNIA
ReferenceImportXStream and ReferenceExportXStream classes provide the
unique functionality required for these objects. Each implementation makes
use of the XSet’s XML and XOP writers.

Persistence Manager
The Reference VIM implements the XAM API but also implements a backing
store. The repository created by the Reference VIM is based on the machine's
file system. The reference VIM persists XSets and associated XStream
objects as files. In a vendor-specific VIM, the backing store would probably be
some entity outside the VIM implementation.

This section discusses the following topics with respect to the Persistence
Manager:

• Default Repository Location

• Directories and Files Created

• Files Created for a Persisted XSet

• Temp Files Created

• Specification of a VIM Repository Location

Default Repository
Location

By default, the Reference VIM persists XSets and XStreams to the temp
directory specified by java.io.tmpdir. This directory is also where any
temp files are created. On Solaris, the temp directory defaults to something

Figure 3 – Reference XStream

OperationalState

XStream
ReferenceXStreamBase

ReferenceImportXStream

XStreamState

ReferenceExportXStreamReferenceXStream

ReferenceStreamFieldExport

StreamField
ReferenceStreamField

XStreamContents
64 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix A: Reference VIM Architecture
like /var/tmp. On Windows, it is likely to be c:\temp. To specify a different
location, see “Specification of a VIM Repository Location”.

Directories and Files
Created

To create unique filenames, a filename-safe variant of the base64-encoded
XUID value is used. The Reference VIM uses the filename-safe, Base64-
encoded value specified in RFC-4648 (table 2) for filename. The Reference
VIM only supports XUID interchange using the originally specified Base64
variant.

The XSet and its properties are persisted in an XML file. The format of the
XML file follows the export format layout in the [XAM-ARCH]. In addition, data
for each XStream is stored in a separate file. The XStream data files are
located in a subdirectory, which is also named using the XUID's filename-safe
string. The XStream contents are stored in the same format that the
application used when creating the XStream. No translation is performed on
the data.

Files Created for a
Persisted XSet

The following files are created for a persisted XSet:

• XSet_<xuid-string>.xml - Contains the XML description of the
XSet. Conforms to the XAM Export format.

• XSet_<xuid-string> - Directory containing any XStream (stream
field data for the XSet).

• XSet_<xuid-string>/XStream_#####.data - Payload/data for
a single XStream (stream field). Note that the field definition in the
XSet XML file will contain the name of the associated XStream data
file.

Temp Files Created The following temp files are created:

• XSet_<xuid-string>.tmp

• XStream_####.tmp

Specification of a VIM
Repository Location

You can specify the location of the repository by providing a value for the "dir"
on the XRI information that is passed to XSystem.connect.

The absolute path specified must exist and be correctly formatted for the
operating system. The user must also have full privileges for directory

For example, to change the storage location used by the Reference VIM, do
the following:

1 First set the directory to the Java_Reference_VIM subdirectory in
the SDK installation.

2 Edit the xam.test.props file by specifying an absolute directory
path for the “dir” parameter in the xam.test.xri line. The path you
specify will obviously vary depending on the operating system.

See “Configuring and Operating the XAM™ Reference VIM and Library” in
Chapter 6, “Java Reference VIM” for more information.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 65

Appendix A: Reference VIM Architecture © SNIA
Example XRI Values

Example XRI values include the following:

• Directory location of /home/mytest/xam_storage (Unix)

xam.test.xri=snia-xam://
SNIA_Reference_VIM!localhost?dir=/home/mytest/
xam_storage

• Directory location of C:\mytest\xam_storage (Windows)

 xam.text.xri=snia-am://
SNIA_Reference_VIM!localhost?dir=C:\mytest\xam_s
torage

Repository Maintenance

Running the tests or repeatedly running sample programs may create large
numbers of files or directories in the repository. Currently, there is no
automated way to clean up the repository once the XSet files and directories
are created. Periodically, it may be necessary to clean out the files in the
repository by manually deleting files and directories like XSet_* and
XStream_*. Developers may want to specify a private location for the
repository to isolate their files and make debugging and tracking XSets easier.

Policy
The Policy system in the Reference VIM covers three major areas:

• Access Policies

• Disposition Policies

• Retention Policies

The policy system is shown in Figure 4.

Figure 4 – Policy System

AbstractFieldContainer
XSystem

ReferenceXSystem

RetentionMgr
Runnable

DispositionManagerAccessPolicyManager

DispositionPolicy

Property
RetentionPolicyReference

RetentionPolicyAccessPolicy

Retention policy
references are used
when importing XSets
to verify compliance
with supported
retention settings.
66 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix A: Reference VIM Architecture
Access Policies Each associated manager maintains a list of supported policies and publishes
those policies in the XSystem property list as required by the [XAM-ARCH]. In
this implementation of the Reference VIM, policies generally do not
implement dynamic behavior, but rather serve as a tag to direct the behavior
of the appropriate manager.

To implement policies derived from an external source (say an LDAP system,
etc.), the manager for that functionality should be extended or modified.

Disposition Policies The Reference VIM provides three policies to set autodelete and shred
settings on an XSet using the XSet.applyAutodeletePolicy and
XSet.applyShredPolicy settings.

The disposition policies provided are summarized in the Table 16:

The Reference VIM does not support external creation or modification of
these policy parameters.

Retention Policies The Reference VIM provides a set of retention policies that allow the
application to set retention criteria using policies instead of explicit settings.
These policies may be used for base, event, or application-defined retentions
(see Table 17).

The Reference VIM does not support external creation or modification of
these policy parameters.

Table 16 – Disposition Policies

Policy Name Description

org.snia.refvim.disposition.autodelete autodelete = TRUE, shred =
FALSE

org.snia.refvim.disposition.autodelete.and.shred autodelete = TRUE, shred =
TRUE

org.snia.refvim.disposition.shred autodelete = FALSE, shred =
TRUE

Table 17 – Retention Policies

Policy Name Description

org.snia.refvim.retention.none duration= 0, enabled = FALSE

org.snia.refvim.retention.one.second duration= 1000 mS, enabled = TRUE

org.snia.refvim.retention.one.day duration= one day, enabled = TRUE

org.snia.refvim.retention.thirty.days duration= 30 days, enabled = TRUE

org.snia.refvim.retention.one.year duration= 365.25 days, enabled = TRUE
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 67

Appendix A: Reference VIM Architecture © SNIA
Jobs
The Job Manager is responsible for creating job instances and running them
(see Figure 5, “Job Manager”). A JVM instance contains a single static
instance of the Job Manager. The Job Manager controls jobs across the
entire JVM. The Job Manager ensures that a single job may be running on an
XSet at any time and handles the job start, stop, and abort.

A job object links to the XSet that is running the job and tracks the status of
the job specified by the Job FSM in the [XAM-ARCH]. A ReferenceJob object
is not an XSet because the job-XSet association is not set up until
XSet.submit is called. The ReferenceJob object is responsible for creating
generic job fields and changing their read-only status as reflected by the job’s
run state.

The only job implemented in this release of the Reference VIM is the
ReferenceQueryJob. This job interacts with the DBManager to cause the
XAM QL command to be parsed and run. Job-specific fields (e.g., query
results, etc.) are the responsibility of the job implementation. Results are
stored in the XSet according to the [XAM-ARCH].

To extend the types of jobs, a new, specific job class must be implemented to
extend ReferenceJob, and the job command needs to be published in the
XSystem instance (ReferenceXSystem). The XSet.submit code path must be
altered to extend to the new job, as this is not yet fully extensible.

DBManager
The DBManager is responsible for maintaining XSet property and stream data
in a manner which can later satisfy a query. This implementation of the

Figure 5 – Job Manager

AbstractFieldContainer
XSystem

ReferenceXSystem

Runnable Interface
JobJobMgr

ReferenceJob

ReferenceQuery
Job

OperationalState
JobStatus

AbstractFieldContainer
XSet

ReferenceXSet
68 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix A: Reference VIM Architecture
Reference VIM uses an SQL database (JavaDB AKA Derby) and search
engine (Apache Lucene) to implement XAM Query compliance (see Figure 6).

When an XSet is committed, properties are stored to the database and any
text/plain streams are indexed by the search engine. Since the expectation of
the [XAM-ARCH] is that once committed an XSet is instantly available for
query, this processing is done before XSet.commit completes.

Because SQL-based databases require columns to be homogeneously typed,
it is impossible to create a single column per unique property/field. Because
XAM is completely late bound and not as strongly typed as SQL databases, it
is impossible to use a straightforward implementation. Additionally, most
databases have limits on the number of columns allowable in a table. This
limitation would not allow the Reference VIM to be able to scale to 16,000
fields per XSet.

The Reference VIM takes another approach. This approach stores property
and field attributes in a simple table and relies on building a table that is
specific to the query at the time the query is run. The DBManager reads each
field from the XSet and stores the field attributes in a database table
“XFieldValues”.

Figure 6 – DBManager

DBManager

ContentIndexManagerDBSqlTranslator DBOptimizedSqlTranslator
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 69

A
ppendix A

: R
eference VIM

 A
rchitecture

©
 SN

IA

70
W

O
R

K
IN

G
 D

R
A

FT
XA

M
™

 SD
K

 1.01 (A
ugust 31, 2009)
Figure 7 – XFieldValues Database

© SNIA Appendix A: Reference VIM Architecture
The columns of the table are described as follows:

• Propname – The name of the field

• Svalue – The string equivalent value of XAM_STRING,
XAM_DATETIME, and XAM_XUID property types

• NumValue – The numeric value, as a double, for XAM_INT or
XAM_DOUBLE property values

• Bvalue – XAM_BOOLEAN property values

• ReadOnly – A Boolean indicating if the field is readonly

• Binding – The Boolean value indicating if the field is bound

• Type – The MIME type of the field

• XUID – The XUID of the XSet to which this field belongs

While the XFieldValues database stores the property values and field
attributes, this table is not generally directly usable to service queries. While
processing a query job, the DBManager subsystem constructs a temporary
table with the structure required to execute the XAM query that has been
translated into SQL. For details of these temporary tables, see “Operational
Flow”.

Operational Flow The operational flow of the Reference VIM includes the following topics:

• Initializing an XSystem

• Importing an XSet

• Processing a Query

Initializing an XSystem
When an application calls XAMLibrary.connect, the Reference VIM class
creates the XSystem. According to the [XAM-ARCH], the XSystem is created
first, then the library copies the library fields to the XSystem.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 71

A
ppendix A

: R
eference VIM

 A
rchitecture

©
 SN

IA

72
W

O
R

K
IN

G
 D

R
A

FT
XA

M
™

 SD
K

 1.01 (A
ugust 31, 2009)

After the fields are copied, the library calls XSystem.connect, as shown in Figure 8, “XSystem Initialization”.

ger
er

authStatus
ReferenceAuthenticationStatus
Figure 8 – XSystem Initialization

XAMLibrary copies all
XAMLibrary fields to
system.

Final call causes
XAMSystem to
complete connection

persistenceMgr
ReferenceVIMPersistenceMgr

m db mana
DBManag

m disposition manager
DispositionManager

XAM Library connect()

Initial
ReferenceXSystem

loadDefaults():void

addRetentionPolicies():void

<constructor>

<constructor>(ReferenceXSystem,String)

GetInstance(ReferenceXSystem):Disposition Manager

GetInstance(ReferenceXSystem):DBManager

setUnAuthenticated():void

createProperty():void

Connect(String):void

© SNIA Appendix A: Reference VIM Architecture
The connect method of the ReferenceXSystem is used to complete the
creation of the ReferenceXSystem by creating or obtaining the references to
the various managers that are needed to run and maintain the
ReferenceXSystem instance.

Importing an XSet
According to the [XAM-ARCH], the Reference VIM will validate retention and
disposition policies when the XSet is imported. If an error occurs during policy
validation, an appropriate exception is thrown when closing the import
XStream. When the import validation fails, the XSet is also placed in a corrupt
state, making it unusable. At this point, the application must abandon and
close the XSet. Even though an XSystem may adjust its policies or may adjust
XSet properties to avoid violating retention criteria, the Reference VIM does
neither. Unless the imported XSet's policy parameters match the Reference
VIM's retention policy parameters, the import process will fail.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 73

A
ppendix A

: R
eference VIM

 A
rchitecture

©
 SN

IA

74
W

O
R

K
IN

G
 D

R
A

FT
XA

M
™

 SD
K

 1.01 (A
ugust 31, 2009)

e Figure 9, “Importing XSets”.)

ous
nMgr

while(iterateOverRetentionPolicies)

Compare new vs. old retention
policy periods. Ensure periods
will not reduce.
When the import process fails (when closing the import XStream), the XSet becomes corrupt (se

Figure 9 – Importing XSets

Complete standard, non-import
commit processing for XSet.

initial
ReferenceXSet

xsystem
ReferenceXSystem

anonym
Retentio

static
XSetState

checkAccessAllowed(XSetOperation.OPEN_IMPORT_XSTREAM):void

write(byte[],long,long):long

openImportXStream():XStream

validateOperation(xsetState, operation):void

if(containsField(XSet.XAM_XUID) || containsField(XSet.XAM_DIRTY))

if(JobMgr.isJobSubmittedByXSetRunning(this))

xsetImportStream
ReferenceImportXStream

<constructor>(xsystem, this)

close():void

commit():XUID

checkAccessAllowed(XSetOperation):void

checkXStreamsClosed():void

checkBindingChanges():void

If(wasImported)

openXSet(XUID,String):XSet

while(allFields)

validateRetentionPeriods():void

Compare binding state of existing fields; check for addition or removal of bound fields.

Application writes import data; import stream parses
data and adds fields to the XSet instance.

Application

© SNIA Appendix A: Reference VIM Architecture
The following conditions will cause the import process to fail:

• A policy name in the imported XSet is unknown in the Reference VIM
XSystem.

• The importing XSet policy specifies a retention policy duration longer
than that supported by the Reference VIM's policy of the same name.

• The importing XSet policy specifies a retention enabled differing from
that supporter by the Reference VIM's policy of the same name.

If the XSet already exists in the Reference storage, additional processing
takes place.

• If the binding attribute in the import XSet is different than the binding
attributes of the previously stored XSet, a new XUID will be issued
when the XSet is committed. The previously stored XSet is not
affected.

• If the effective retention of the importing XSet is less than that of the
previously stored XSet, the import will fail when closing the
importXStream.

Processing a Query
As previously mentioned, in the static class structure of the DBManager, all
Property values and field attributes are stored in the table “XFieldValues". The
DBManager subsystem executes query jobs with these steps (see Figure 10,
“Processing a Query”:

1 Parse the query using the JavaCC-based parser to produce a
ParsedQuery (implemented in the org.snia.xam.vim.reference.query
package).

2 Construct a temporary table to hold values for only this query job
(createQueryTable method). The table’s columns are:

— Unique property and field attributes appearing in the query

— Fields appearing in any “exists()” subclause of the query. The
default value of this column is FALSE.

— Unique Level 2 subexpressions.

3 Select all property values specified in the query, ordered by the XUID
value. (polulateQueryTable method).

— XAM requires all property values to be present in an XSet before
it may be included in the result set.

— XSets not containing all field values/attributes are not included in
the temporary table.

4 Select all fields from the “exists()” clauses, setting their exists column
values to TRUE.

5 For each Level 2 clause (if Lucene is installed), run Lucene queries
matching the Level 2 subexpressions. Each document (XUID)
returned from the Lucene queries are inserted into the temporary
table.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 75

Appendix A: Reference VIM Architecture © SNIA
6 Translate the parsed query (in the form of an abstract syntax tree) into
SQL.

7 Execute the SQL against the temporary table, selecting the XUID
values. Process the result set from the SQL, adding the XUIDs into the
job XSet’s result XStream.

8 Complete the query job.
76 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

A
ppendix A

: R
eference VIM

 A
rchitecture

©
 SN

IA

77
W

O
R

K
IN

G
 D

R
A

FT
XA

M
™

 SD
K

 1.01 (A
ugust 31, 2009)

m contentMgr
ContentIndexManager

tWhereExpression().isFactor()) && (readPolicies = = null))

etWhereExpression().isFactor()) && (readPolicies = = null))
Figure 10 shows the transformations that take place as a query is processed.

Figure 10 – Processing a Query

initial
DBManager

static
DBOptimizedSqlTranslator

executeXamQuery(Job,StringParsedQuery,Vector):ResultSet

translator
DBSqlTranslator

ReferenceJobQuery

else

if((parsed_query.getWhereExpression() = = null) && (readPolicies = = null))
rs:=selectAllXUIDs(m_conn):ResultSet

if((parsed_query.getWherePropertyList().size() = = 1) && (parsed_query.getExistsPropertyList().size() = = 0) && (parsed_query.ge
rs:=selectSimpleWhere(m_conn, parsed_query):ResultSet

else

if((parsed_query.getWherePropertyList().size() = = 0) && (parsed_query.getExistsPropertyList().size() = = 1) && (parsed_query.g
rs:=selectSimpleExists(m_conn, parsed_query):ResultSet

else

New DBSqlTranslator

rs:=selectXamQuery(qjob, id, parsed_query, readPolicies):ResultSet

Appendix A: Reference VIM Architecture © SNIA
The following examples show the various transformations taking place as the
query is processed.

Example Query:

select ".xset.xuid" where binding(".xset.xuid") and not
readonly("com.example.property.1236288089957.xam_int")
and
length("com.example.property.1236288089957.xam_double") =
8 and
typeof("com.example.property.1236288089957.xam_string") =

 'application/vnd.snia.xam.string' and
("com.example.property.1236288089957.xam_int" > 0 or
"com.example.property.1236288089957.xam_double" > 0 or
"com.example.property.1236288089957.xam_string" =

 'testSimpleWhere.value' or
"com.example.property.1236288089957.xam_xuid" =

 xuid('AAA6AwAeS+4xMjM2Mjg4MDg3Mzc5B1Lwu4gAE1gt') or
"com.example.property.1236288089957.xam_datetime" =

 date('2009-03-05T13:21:27.352-08:00'))

Parsed Version of the Query:

###T(F(binding(.xset.xuid)) AND
T(F(readonly(com.example.property.1236288089957.xam_int))
AND
T(F(length(com.example.property.1236288089957.xam_double)
= 8) AND
T(F(typeof(com.example.property.1236288089957.xam_string)
= ‘application/vnd.snia.xam.string’) AND
T(F(com.example.property.1236288089957.xam_int > 0) OR
T(F(com.example.property.1236288089957.xam_double > 0) OR
T(F(com.example.property.1236288089957.xam_string =
testSimpleWhere.value) OR
T(F(com.example.property.1236288089957.xam_xuid =
AAA6AwAeS+4xMjM2Mjg4MDg3Mzc5B1Lwu4gAE1gt) OR
F(com.example.property.1236288089957.xam_datetime =
'2009-03-05T13:21:27.352-08:00')))))))))
78 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix A: Reference VIM Architecture
The following table is created and populated (see Figure 11):

The columns contain the property values as described in Table 18:

Note that column names with an alias (e.g., P0) represent a property
value, whereas columns named with suffixes (P1_RO) represent field
attributes.

9 Finally, translate the query into SQL and run it against the table.

select xuid from JOBID_35_20090305_21_21_41GMT
where
(p2_BND=1) and
(not (p1_RO=1) and
((p7_LEN=8) and
((p5_TYP='application/vnd.snia.xam.string') and
((p0>0) or ((p8>0) or
((p6='testSimpleWhere.value') or
((p4='AAA6AwAeS+4xMjM2Mjg4MDg3Mzc5B1Lwu4gAE1gt')
or
(p3= '2009-03-05T13:21:27.352-08:00'))))))))

Figure 11 – Query Results

Table 18 – Table Columns and Value Property Names

Column Name Value/Property Name

P0 com.example.property.#.xam_int

P1_RO readonly(com.example.property.#.xam_int)

P2_BND binding(.xset.xuid)

P3 com.example.property.#.xam_datetime

P4 com.example.property.#.xam_double

P5_TYP typeof(com.example.property.#.xam_string)

P6 com.example.property.#.xam_string

P7_LEN length(com.example.property.#.xam_double)

P8 com.example.property.#.xam_double

XUID The XSet XUID
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 79

A
ppendix A

: R
eference VIM

 A
rchitecture

©
 SN

IA

80
W

O
R

K
IN

G
 D

R
A

FT
XA

M
™

 SD
K

 1.01 (A
ugust 31, 2009)

Optimized Query

The DBManager provides an optimized SQL translator (see Figure 12) to handle simplified queries. Simplified
torNode).

tatic
anager

p, valueList,selectSQL):int
queries are those in which the where clause consists of a single subexpression (Fac

Figure 12 – Optimized Query

initial
DBSqlTranslator

s
DBM

m ContentMgr
ContentIndexManager

selectXamQuery(Job,StringParsedQuery,Vector):ResultSet

Object1

if(accessList ! = null)

propertyNameMap:=createQueryTable(sanitizedTableName, parsed_query):Hashtable

addAccessRestrictions(accesslist, parsed_query):void

populateQueryTable(qJob, sanitizedTableName, parsed_query, propertyNameMap):void

Propertycount:=selectValuesorGeneralizedQuery(sanitizedTableName, propertyList, existsList, propertyNameMa

while(results from valueSelect)

insertIntoQueryTable(Connection,StringBuffer,StringBuffer,String):void

populateLevel2Query(qJob, sanitizedTableName, parsed_query, propertyNameMap):void
while(field.hasMoreElements())
 documents:=search(L2Pfn):String[]

if(parsed_query.getLevel() = = 2)

for(int i = 0;i < docList.length;i++)

rs:=executeGeneralizedXamQuery(sanitizedTableName, parsed_query, propertyNameMap):ResultSet
if(USE_TEMP_TABLES)

© SNIA Appendix A: Reference VIM Architecture
Examples of simplified queries:

• select “.xset.xuid” where “com.example.prop” = 1234

• select “.xset.xuid” where “com.example.string” like
‘%foo%’

When these queries execute, they are able to do so directly against the
XFieldValues without needing to construct a temporary table and populate it.
Because the access policy restrictions are applied early in the process, no
user queries will execute in this code path.

This module was written for early implementations and testing of the
Reference VIM structure. This functionality is being retained for future internal
use. At this time, removing this functionality will not impair the Reference VIM.

Future Ideas This list contains some ideas for future modifications to the Reference VIM.

• To simplify the code, remove the optimized SQL submodule.

• Remove the SQL entirely and use the Lucene search engine to
provide a more scalable solution.

• Externalize authentication and authorization roles.

• Add new jobs, perhaps the job chaining proposal being considered in
the FCAS TWG.

• Make the DBManager so that other databases may be configured via
external configuration.

• Externalize policy management, perhaps to an LDAP implementation.

• Rewrite the XML Parser. The current implementation is rather fragile;
the syntax rules for the canonical format make it difficult to change.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 81

Appendix A: Reference VIM Architecture © SNIA
82 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Appendix B: HTTP VIM Architecture

This appendix documents the architecture and protocol of the SNIA XAM™
HTTP VIM and contains the following topics:

• Terms and Scope

• Overview of HTTP VIM Design

• Java HTTP VIM Client

• Java HTTP VIM Server

• VIM Class and Library Load Operations

• VIM Wire Protocol

• Known Issues

Terms and Scope Terms
The following terms are provided as a convenience and an extension for
terms that are particular to the HTTP VIM Design. For all terms, see [XAM-
ARCH].

Table 19 – Terms - HTTP VIM Design

Term Definition

HTTP VIM A “Stackable VIM” that is split into two halves. The “top” half of the
VIM plugs into a XAM Library via the VIM API and translates VIM
requests to a wire protocol. The “bottom” half of the VIM resides in
a different process (that may or may not be co-located with the top
half of the HTTP VIM), receives requests via the wire protocol, and
makes requests of another VIM via the VIM API.

Marshall The act of bundling information into a package that can be
transmitted

Stackable
VIM

In whole, a VIM that implements a VIM API on the “top” to facilitate
plugging into a VIM Manager and a VIM “consuming” API on the
bottom
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 83

Appendix B: HTTP VIM Architecture © SNIA
Scope
The following items are in scope for this document (items not listed here are,
by default, out of scope):

• Design decisions for implementing the bridge between the VIM
Application Programming Interface that plugs into the C- and Java-
based XAM Library and compatible XAM VIM that implements the
Java VIM API and all discovery and deployment decisions for the
stack

• Design of the HTTP VIM, including the following components:

— Wire protocol to communicate between HTTP VIM Client and the
HTTP VIM Server

— The design of the HTTP VIM Client that plugs into the C-based
XAM Library

— The design of the HTTP VIM Client that plugs into the Java-
based XAM Library

— The design of the HTTP VIM Server that hosts VIMs that
implement the Java-based VIM API

• Build for the entire stack from the HTTP VIM Server

• Deployment environment for the HTTP VIM Server

• Known issues in the design

The VIM Application Programming Interface (C and Java) is out of scope for
this document. This programming interface is used to communicate “upward”
in the XAM Library stack and is dictated by the [XAM-ARCH].

Unmarshall Restoring information to a native format that was previously
bundled for transmission

Vendor
Interface
Module

The unit or logical software component that represents a vendor-
specific implementation of a system to the vendor agnostic model
of the XAM interface.

VIM Acronym for Vendor Interface Module

Wire Protocol A protocol and model for making “transactions” across physical
and logical barriers, such as separate deployment machines or
separate processes within an operating system.

XAM Acronym for eXtensible Access Method

XAM SDK The XAM Software Developer's Kit

Table 19 – Terms - HTTP VIM Design

Term Definition
84 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Overview of HTTP
VIM Design

The HTTP VIM provides remote access to a hosted Java VIM (such as the
XAM SDK Reference VIM) via the HTTP Protocol. The purpose for this
mechanism allows remote access to VIMs which may not support such a
feature (Reference VIM), or access to Java only VIM from the C XAM Library.

The HTTP VIM separates most of the logic and implementation from the XAM
Library process. Further, by the nature of its implementation, a separation of
deployment systems can easily be achieved. All of the high-level software
components to be delivered are shown in Figure 13, “High-Level Components
and Deployment”.

Note: Not shown in the diagram is an actual XAM Storage System. The
Target VIM resides in the same process on the same host as the
HTTP Protocol VIM Server, but the XAM Storage System which
operates with the Target VIM is potentially on another host.

Figure 13 – High-Level Components and Deployment

VIM API

Attributes

Operations

Application Host

HTTP Client VIM
(C or Java)

XAM Library

VIM Manager

XAM API

Attributes

Operations

HTTP VIM Server

Remote Target
VIM

Target XSystem

HTTP VIM Server Host
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 85

Appendix B: HTTP VIM Architecture © SNIA
From the illustration above, the following Component, Responsibilities, and
Collaborations (CRC) are derived (along with additional notes about design
issues, documentation and owners).

Table 20 – CRC for XAM_API

Interface XAM_API

Responsibilities Represent XAM functionality to vendor applications, including

- Defines interfaces for locating individual systems

- Defines interfaces for interacting with individual systems

- Defines interfaces for interacting with sets of objects

- Defines interfaces on individual objects

- Defines security interfaces

- Defines query interfaces

Documentation - C API – See xam*.h from src/xam/include directory in the
xam_sdk package available in Subversion

- Java API – See [XAM-Java-API]

Table 21 – CRC for VIM_API

Interface VIM_API

Responsibilities Represent VIM functionality to the VIM Manager and up to the
XAM Library itself, including

- Defines interfaces for locating individual systems

- Defines interfaces for interacting with individual systems

- Defines interfaces for interacting with sets of objects

- Defines interfaces on individual objects

- Defines security interfaces

- Defines query interfaces

Documentation - C API – See vim*.h from src/xam/vim directory in the
xam_sdk package available in Subversion

- Java API – Generate JavaDoc from Interface code

Table 22 – CRC for XAM_Library

Component XAM_Library

Responsibilities Receive API requests and process accordingly

Several of the XAM Library and API calls are “organizational”
in nature and do not pass through to the underlying VIMs and
VIM Objects. These calls include functions to:

- Discover individual systems

- Load individual libraries
86 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Collaborations VIM Manager – Local API call

Documentation - [XAM-ARCH]

- [XAM-C-API]

Table 23 – CRC for HTTP_VIM_Client

Component HTTP_VIM_Client

Responsibilities - Implement the VIM_API

- Implement a mechanism to input the target
HTTP_VIM_Server (network location including host name or
IP address and port)

- Receive VIM API requests (on the various VIM API Objects,
including XSystems, XSets, and XStreams)

- Marshall VIM API parameters and method calls into the
neutral wire format

- Do any mappings necessary between the VIM API and the
neutral wire format

- Pass VIM API request in neutral “wire” format to the target
HTTP_VIM_Requestor and receive response in neutral
“wire” format

- Unmarshall / Map the response from the
HTTP_VIM_Requestor back to the C VIM API

- Return VIM API request to requestor (asynchronous and/or
synchronous responses must be implemented)

Collaborations HTTP_VIM_Server – HTTP(S) – Asynchronous and
Synchronous – neutral wire format, one HTTP VIM Requestor
may use one HTTP VIM Server. One HTTP VIM Server may
be used by many HTTP VIM Requestors.

Documentation VIM C API available from xam_sdk

Table 22 – CRC for XAM_Library

Component XAM_Library
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 87

Appendix B: HTTP VIM Architecture © SNIA
Java HTTP VIM
Client

The supplied Java HTTP Client VIM provide implementations for each of the
required XAM™ Objects:

• HTTPFieldContainer.java

• HTTPXAsync.java

• HTTPAsyncCallbackManager.java

• HTTPIterator.java

• HTTPXSet.java

• HTTPXStream.java

• HTTPXSystem.java

Each of these objects directly implements the similarly named XAM Interface
and present the expected XAM methods to the application. Each of the XAM
objects retains a reference to the handle created in the HTTP VIM Server as
well as host and port information used to form the appropriate HTTP Request.

Each HTTP XAM Object utilizes the utlity class HTTPRequest, which mainly
marshals arguments to HTTP request form. The HTTPRequest methods also
unmarshal responses to produce the correct return values for presentation to
the application. The HTTP XAM objects are “thin client,” in that no caching is
performed and little state is retained locally. Each XAM method translates
directly to a HTTP request to the HTTP VIM Server.

Table 24 – CRC for HTTP_VIM_Server

Component HTTP_VIM_Server

Responsibilities - Receive requests in the defined neutral wire format

- Unmarshall requests

- Map any requests that require mapping to the Java VIM
Interface

- Call the appropriate VIM or [XAM-ARCH] object (XSystem,
XSet, etc.) with the appropriate parameters

- Keep track of active VIM API objects and maintain handle to
object relationships that the HTTP VIM Client can use to
associate with the objects that it is manipulating

- Receive responses from a VIM or VIM API Object

- Do any required mapping between the VIM response and the
neutral wire format

- Marshall the parameters and method to the neutral wire format

- Return a response to the requestor

Collaborations Java VIM Implementation via the Java VIM Interface (such as the
XAM SDK Reference VIM)

Documentation Java VIM Interface
88 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
A sample implementation of the the Java Client VIM looks like the following
for the method XSet.getActualRetentionEnabled():

public boolean getActualRetentionEnabled(String retentionID)
 throws AuthenticationExpiredException,
 InvalidArgumentException,
 PolicyMismatchException, ObjectInUseException,
 XSetAbandonException,
 XSetCorruptException, XAMException
{
 HashMap<String, String> responses;
 try
 {
 responses = HTTPRequest.request(m_host,

ProtocolConstants.XSET_GET_ACTUAL_RETENTION_ENABLED_HANDLER,
 ProtocolConstants.ARGUMENT_RETENTION_ID,
 URLEncoder.encode(retentionID,
ProtocolConstants.UTF8),
 ProtocolConstants.XSET_HANDLE, m_handle);
 boolean enables = Boolean.parseBoolean(responses.get

 (ProtocolConstants. ARGUMENT_ENABLED));
 responses.clear();
 return enables;
 } catch(UnsupportedEncodingException e)
 {
 throw new XAMException(ProtocolConstants.TRANSPORT_ENCODE_ERROR,
e);
 }
}

The actual HTTP request is performed in the method
HTTPRequest.request(). Input arguments are passed to the request()
method, to be marshaled in the URL connection. The result page is
processed and passed back to the caller as a property map. This method
extracts the single argument needed, ARGUMENT_ENABLED, converts its
string value to the boolean required, and returns to the application. The
method HTTPRequest.request() also processes the “status” and “statusMsg”
values. If any value other than SUCCESS (zero) is returned, these two items
are used to construct an appropriate XAMException, or subclass, which is
thrown to the application.

Connect Processing
Because the XSystemConnect method expects a buffer of initialization
properties to be sent, the HTTPXSystem object must buffer up all properties
from the local XAM Library and send them to the remote VIM for the
XSystemConnect method. To do this, HTTPXSystem instantiates a local
FieldContainer, class TempFieldContainer. This object is deleted once the
connect has completed.

XAsyncCallback Management
Because the HTTP VIM Server does not, and cannot, handle callback
methods (for XAsyncListeners), the Java HTTP Client VIM does so locally.
Each HTTPXSystem instantiates a local copy of a
HTTPXAsyncCallbackManager manager. Each manager is passed a
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 89

Appendix B: HTTP VIM Architecture © SNIA
reference to a newly created HTTPXAsync object. Periodically, the callback
manager executes the POLL method to the HTTP VIM Server.

When an async operation has been indicated that it is complete (a result
comes back from the HTTP VIM Server), the callback manager will do the
following:

1 If the XAsync is the result of an XStreamAsyncRead operation,
perform a GetData method to retrieve the bytes. Data is copied to the
buffer that is supplied in the HTTPXStream.asyncRead method.

2 Mark the HTTPXAsync object as complete so that calls to the
HTTPXAsync.isComplete() return the correct value. The Java HTTP
VIM does not call the HTTP VIM Server isComplete() method because
of a race condition between the application, the callback manager, and
the HTTP VIM Server.

3 If an XAsyncListener object has been provided for the XAsync
operation, call the listener.

Closing the HTTPXAsync object removes it from the callback manager's
watch list.

Java HTTP VIM
Server

The HTTP VIM Server uses Java as the implementation language to create
an end-to-end implementation stack that combines with the Java-based XAM
VIM implementations. The Java-based VIM implementations should also be
usable directly from the Java-based XAM Library.

The generic responsibilities of the Java HTTP VIM Server are documented in
“Functionality”. The components described here interact to deliver the HTTP
VIM Server functionality. The actual implementation of the components is
documented within the implementation code for the Java HTTP VIM Server.
90 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
A component diagram is shown in Figure 14, “HTTP VIM Server Overview”

An HTTP VIM Requestor delivers a message to the Generic_Storage_Server.
The interfaces for the Storage Server are, theoretically, generic in nature, but
the implementation itself is bound to the HTTP protocol. As a result, the
message is delivered to the Generic_Storage_Server via a socket connection.

The Generic_Storage_Server in the Java HTTP VIM Server implementation
package uses the Jetty WebServer. The various wire operations subclass
(often multiple generations) the AbstractHttpHandler from the Jetty
WebServer. These subclasses are generically labeled “Operation” in
Figure 14, “HTTP VIM Server Overview”. The Jetty WebServer calls the
proper Operation depending on the contents of the HTTP Header sent from
the HTTP VIM Requestor.

Other than the XSystemConnect call itself, each Operation includes a
“handle” that identifies an active object in the Active_Object_Cache. The

Figure 14 – HTTP VIM Server Overview

<<component>>
Generic_Storage_Server

<<component>>
VIM

<<component>>
VIM_Manager

<<component>>
Operation

<<component>>
Active_Object_Cache

<<interface>>
VIM_API

Attributes

Operations

<<usage>>

<<usage>> <<usage>>

<<usage>>

<<realization>>
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 91

Appendix B: HTTP VIM Architecture © SNIA
active object may be a top-level object (like an XSystem, XSet or XStream) or
a lower-level object that can be independently manipulated, like an XIterator.
The active objects should only be associated with a single HTTP VIM
Requestor. In practice, multiple HTTP VIM Requestors may be using active
objects from a single HTTP VIM Server, so the active object handles should
not be available between requestors.

The VIM Manager locates the proper class for XSystem top-level objects,
identified by XRIs. The VIM Manager loads classes at bootstrap time into the
virtual machine and then instantiates the VIM classes as objects as needed or
at bootstrap time. Each XMLIB.connect Operation will go to the VIM Manager
to instantiate a VIM object instance that can be used to retrieve an XSystem.
Once the Operation retrieves the XSystem, it is stored in the
Active_Object_Cache, and a handle gets returned to the requestor.

VIM Class and
Library Load
Operations

The design of the HTTP Protocol VIM includes two locations where VIM Class
and Library loading come into play.

• The first load operation occurs when the XAM Library loads the
C-based HTTP VIM Requestor. This operation must adhere to the
XAM Library process for locating classes and identifying the XRIs
associated with that class.

• The second load operation occurs within the HTTP VIM Server, as it
contains its own “version” of a VIM Manager. This VIM Manager and
the VIM Manager in the Java-based XAM Library could rely on the
same file formats or process for identifying loadable classes and the
XRIs to which those classes attach when such a format is available.

VIM Wire Protocol While not a first-class software component, the wire protocol used between
the “halves” of the HTTP VIM is the most important component in the
architecture, design, and implementation of the HTTP VIM. The wire protocol
must be open and flexible for use in languages and collaborations that this
design specification does not address. Uses of the wire protocol include
building VIMs with language bindings other than Java and C or producing
other variants of “split” VIMs that cross process, network, and/or language
boundaries.

It is assumed that the wire protocol will be passed between components via
the preferred route of HTTPS or the unsecure path of HTTP. HTTP has a
variety of advantages over HTTPS during development (i.e., traceability,
debugging, performance, etc.) but will be widely shunned by customers in
production environments for security reasons.

As HTTPS and HTTP are the transmission protocol, the overall wire protocol
will make heavy use of the HTTP standard for the headers and bodies of
messages, as well as the encoding and mime types that constitute an HTTP
message. The wire protocol will also inherit the attributes of HTTP/HTTPS,
including the attributes of the REST architecture, such as the statelessness
inherent in the architecture, transparency, and the ability to insert proxies and
routers, and more. For a complete dissertation on the REST architecture, see
[REST]. Note also that the HTTP/HTTPS protocols do not exhibit all of the
characteristics of the REST architecture.
92 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Organization

The following sections document the various HTTP Headers and bodies that
are exchanged over the course of an operation. Details about behavior and
state are also listed. Please refer to [XAM-ARCH] for a complete discussion of
the life cycle of the objects on which these operations occur and a complete
description of the semantics and behavior for the operations.

The sections are labelled with the operation names in the [XAM-ARCH]. The
names are translated to more accessible wire format names within the
sections.

Method Access

Each method is accessed by presenting a properly formed HTTP GET or
HTTP Post request to the HTTP VIM Server. For the most part, each method
is represented by a simple URL. Arguments may be passed via the standard
URL argument method or as HTTP Header values.

Return Values

All return values from the method are returned as name/value pairs in the
HTTP response page. The names are defined in the following sections for
each method. Values are generally printable value, except for reading byte
buffers from XStreams. In addition to method-specific return values, each
method returns “status” and “statusMsg”. The “status” value is the XAM status
code (as defined by the XAM SDK). The HTTP VIM Server also provides the
“statusMsg”, which is a descriptive string corresponding to the status code.
The “statusMsg” value is an obtained exception message() of the VIM
method. If the status value is success (zero), statusMsg is generally not
included.

Value Encoding

All string values (xam_string, xam_xuid) are encoded to be URL safe [URL-
Encoding]. All XUID values are transmitted using the base64 representation
(also URL safe encoded). Numeric values are transmitted in their printable
formats. Boolean values are transmitted using the values “true” and “false”.
Datetime values are transmitted using millisecond values of the stdclib format,
in a printable numeric format.

Example Exchange

This example shows the method “XSet.abandon()”.

Method invocation:
GET /XSetAbandon HTTP/1.1
handle: 2000202
User-Agent: Jakarta Commons-HttpClient/3.0.1
Host: 192.168.1.100:9925

A complete URL to perform the same thing looks like:

http://192.168.1.100:9925/XSetAbandon?handle=20000202
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 93

Appendix B: HTTP VIM Architecture © SNIA
A complete response may look like the following:

HTTP/1.1 200 OK
Date: Wed, 22 Aug 2007 12:45:13 GMT
Server: Jetty/4.2.20 (Windows XP/5.1 x86 java/
1.6.0_02)
Transfer-Encoding: chunked
status=0

Example exchanges are not included for the following methods but generally
follow the example which has just been presented.

Operations

XAMCreateFieldIterator This operation abandons an XSet and all of the resources associated with it.
The XSet handle implies an association with an XSystem. The handle will no
longer identify a valid active XSet object instance after the abandon operation
completes.

Response:

XAsyncClose This operation closes the specified XAsync XAM operation.

HTTP
Attribute Type Example Description

Method /XAMCreateFieldIterator GET /XCreateFieldIterator
HTTP/1.1

Identifies operation and
scope

class xam_string class=xset Identifies to what class of
XAM object this method is to
be applied

handle xam_handle handle=2000202 Identifies the XAM object
instance on which the
operation should be
performed

Name Type Example Description

status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with
the status code. Not returned if
status=0.

HTTP
Attribute Type Example Description

Method /XAsyncClose GET /XAsyncClose HTTP/
1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The XAsync handle
94 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response

XAsyncGetBytesRead This operation returns the number of bytes read by the XAsync operation.

Response:

XAsyncGetBytesWritten This method returns the bytes written by the XAsync operation. The body will
contain the following information in name/value pairs.

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

HTTP
Attribute Type Example Description

Method /XAsyncGetBytesRead GET /XAsyncGetBytesRead
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The XAsync handle

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

async_bytes
read

xam_integer async_bytes_read=1024 The number of bytes read
by the XAsync operation

HTTP
Attribute Type Example Description

Method /XAsyncGetBytesWritten GET /
XAsyncGetBytesWritten
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The XAsync handle
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 95

Appendix B: HTTP VIM Architecture © SNIA
Response: XAsyncGetData

This method returns the data obtained from the most recent
XStreamAsyncRead operation. The body contains the following information in
name/value pairs.

The response to the request will contain the contents of the XStream data in
the body. If no body is included, an error occurred in the response. Clients
should be prepared to read as much data as was originally requested.

XAsyncGetStatus This method gets the status of the XAsync operation. The body will contain
the following information in name/value pairs.

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

async_bytes
written

xam_integer async_byteswritten=728 The number of bytes written
by the XAsync operation.

HTTP
Attribute Type Example Description

Method /XStreamRead GET /XStreamRead HTTP/
1.1

Identifies operation and
scope

handle xam_handle handle=33333333 Identifies the XStream
instance on which the
operation should be
performed

HTTP
Attribute Type Example Description

Method /XAsyncGetStatus GET /XAsyncGetStatus
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The XAsync handle
96 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response:

XAsyncGetXOPID This method returns the XOPID of the XAsync operation. The body will
contain the following information in name/value pairs.

Response:

XAsyncGetXSet This method returns the XSet handle associated the XAsync operation. The
body will contain the following information in name/value pairs.

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

async_status xam_integer status=0 The XAM operation status of
the XAsync operation.

async_status
Msg

xam_string async_statusMsg=XSystem
is not authenticated

A string message
associated with the
async_status code. Not
returned if async_status=0.

HTTP
Attribute Type Example Description

Method /XAsyncGetXOPID GET /XAsyncGetXOPID
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The XAsync handle

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

async_xopid xam_integer async_xopid=67890 The XOPID associated with
the XAsync operation.

HTTP
Attribute Type Example Description

Method /XAsyncGetXSet GET /XAsyncGetXSet
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The XAsync handle
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 97

Appendix B: HTTP VIM Architecture © SNIA
Response:

XAsyncGetXStream This method returns the XStream associated with the XAsync operation. The
body will contain the following information in name/value pairs.

Response:

XAsyncGetXUID This method returns the XUID associated with the XAsync operation. The
body will contain the following information in name/value pairs.

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

async_xset xam_handle async_xset=2000202 The handle of the XSet
associated with the XAsync
operation.

HTTP
Attribute Type Example Description

Method /XAsyncGetXStream GET /XAsyncGetXStream
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The handle of XAsync

Name Type Example Description

status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

async_xstream xam_handle async_xstream=2000202 The XStream handle associated with
the XAsync operation.

HTTP
Attribute Type Example Description

Method /XAsyncGetXUID GET /XAsyncGetXUID
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The handle of XAsync
98 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response:

XAsyncHalt This method halts the XAsync operation. The body will contain the following
information in name/value pairs.

Response:

XAsyncIsComplete This method returns the complete status associated with the XAsync
operation. The body will contain the following information in name/value pairs.

Because of a race condition between application, client vim, and server vim
threads, all Client HTTP VIMs are encouraged to use the poll mechanism to
determine if the XAsync is complete. During the processing of the complete
status, the client VIM should transfer data read. This problem is only likely to
occur when the operation was an XStreamAsyncRead.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

async_xuid xam_string async_xstream=AAA... The XUID handle associated with the
XAsync operation.

HTTP
Attribute Type Example Description

Method /XAsyncHalt GET /XAsyncHalt HTTP/1.1 Identifies operation and
scope

handle xam_handle handle=2000202 The handle of XAsync

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

HTTP
Attribute Type Example Description

Method /XAsyncIsComplete GET /XAsyncIsComplete
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The handle of XAsync
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 99

Appendix B: HTTP VIM Architecture © SNIA
Response:

XAsync – POLL The POLL method is available so that clients can determine, in bulk, when
XAsync operations are completed. This method specifies an XSystem handle.
All completed XAsync handles are returned. It is the responsibility of the
client-side VIM to manage and call the callback/listener methods specified by
the application.

If the XAsync operation was an XStreamAsyncRead, the data should be
retrieved and copied to the application's buffer before setting the XAsync
complete status.

The response to the request will contain the contents of the XStream in the
body. If no body is included, an error occurred in the response.

A complete request may look like the following:

POST /XStreamWrite HTTP/1.1
handle: 33333333
User-Agent: Jakarta Commons-HttpClient/3.0.1
Host: 192.168.1.100:9925

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

async_iscomplete xam_boolean async_iscomplete=true The Boolean value of the
XAsync operation
isComplete().

HTTP
Attribute Type Example Description

Method /POLL GET /XPOLL HTTP/1.1 Identifies operation and
scope

handle xam_handle handle=33333333 Identifies the XSystem
instance on which the
operation should be
performed

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

async_complete# xam_handle async_complete0=1248 XAsync object with handle
1248 is complete.
100 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
A complete response may look like the following:

HTTP/1.1 200 OK
Date: Wed, 22 Aug 2007 12:45:13 GMT
Server: Jetty/4.2.20 (Windows XP/5.1 x86 java/
1.6.0_02)
Transfer-Encoding: chunked
status=0
async_complete0=1248
async_complete1=467230
async_complete2=72438

XIteratorClose This method closes the XIterator object. The body will contain the following
information in name/value pairs.

Response:

XIteratorHasNext This method returns the hasNext() value of the XIterator. The body will
contain the following information in name/value pairs.

HTTP
Attribute Type Example Description

Method /XIteratorClose GET /XIteratorClose HTTP/1.1 Identifies operation and
scope

handle xam_handle handle=2000202 The handle of the
XIterator object.

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

HTTP
Attribute Type Example Description

Method /XIteratorHasNext GET /XIteratorNext HTTP/1.1 Identifies operation and
scope

handle xam_handle handle=2000202 The handle of XIterator.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 101

Appendix B: HTTP VIM Architecture © SNIA
Response:

XIteratorNext This method returns the next field name from the XIterator. The body will
contain the following information in name/value pairs.

Response:

XSetAbandon This operation abandons an XSet and all of the resources associated with it.
The XSet handle implies an association with an XSystem. The handle will no
longer identify a valid active XSet object instance after the abandon operation
completes.

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

hasnext xam_boolean hasnext=true The Boolean value of the
XIterator.hasNext() method.

HTTP
Attribute Type Example Description

Method /XIteratorNext GET /XIteratorNext HTTP/
1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The handle of XIterator.

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

next xam_string next=com.example.name The next field name
returned from the
XIterator.next() method.

HTTP
Attribute Type Example Description

Method /XSetAbandon GET /XSetAbandon HTTP/
1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
102 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response:

XSetApplyAccessPolicy This method applies the access policy on the specified XSet. The body will
contain the following information in name/value pairs.

Response:

XSetApplyAutoDeletePolicy This method applies the auto delete on the specified XSet. The body will
contain the following information in name/value pairs.

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

HTTP
Attribute Type Example Description

Method /XSetApplyAccessPolicy GET /
XSetApplyAccessPolicy
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The handle of the XSet

binding xam_boolean binding=true The binding setting for the
operation

policy xam_string policy:access_name The access policy name for
the operation

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

HTTP
Attribute Type Example Description

Method /XSetApplyAutoDeletePolicy GET /
XSetApplyAutoDeletePolicy
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The handle of the XSet

binding xam_boolean binding=true The binding setting for
the operation

policy xam_string policy:access_name The access policy name
for the operation
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 103

Appendix B: HTTP VIM Architecture © SNIA
Response:

XSetApplyBaseRetention This method applies the base retention policy on the specified XSet. The body
will contain the following information in name/value pairs.

Response:

XSetApplyManagement
Policy

This method applies the management policy on the specified XSet. The body
will contain the following information in name/value pairs.

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

HTTP
Attribute Type Example Description

Method /XSetApplyBaseRetention GET /
XSetApplyBaseRetention
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The handle of the XSet

binding xam_boolean binding=true The binding setting for the
operation

policy xam_string policy:access_name The access policy name for
the operation

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XAsyncGetBytesWritten GET /
XAsyncGetBytesWritten
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The handle of the XSet

binding xam_boolean binding=true The binding setting for the
operation

policy xam_string policy:access_name The access policy name for
the operation
104 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response:

XSetApplyRetentionDuration
Policy

This method applies the retention duration policy on the specified XSet. The
body will contain the following information in name/value pairs.

Response:

XSetApplyRetentionEnabled
Policy

This method applies the retention enabled policy on the specified XSet. The
body will contain the following information in name/value pairs.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSetApplyRetentionDurationPolicy GET /
XSetApplyRetentionDurationPolicy
HTTP/1.1

Identifies
operation and
scope

handle xam_handle handle=2000202 The handle of
the XSet

binding xam_boolean binding=true The binding
setting for the
operation

policy xam_string policy:access_name The access
policy name
for the
operation

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /
XSetApplyRetention
EnabledPolicy

GET /
XSetApplyRetentionEnabled
Policy HTTP/1.1

Identifies operation and scope

handle xam_handle handle=2000202 The handle of the XSet

binding xam_boolean binding=true The binding setting for the
operation

policy xam_string policy:access_name The access policy name for
the operation
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 105

Appendix B: HTTP VIM Architecture © SNIA
Response:

XSetApplyShredPolicy This method applies the shred policy on the specified XSet. The body will
contain the following information in name/value pairs.

Response:

XSetApplyStoragePolicy This method applies the storage policy on the specified XSet. The body will
contain the following information in name/value pairs.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSetApplyShredPolicy GET /XSetApplyShredPolicy
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The handle of the XSet

binding xam_boolean binding=true The binding setting for the
operation

policy xam_string policy:access_name The access policy name for
the operation

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSetApplyStoragePolicy GET /
XSetApplyStoragePolicy
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The handle of the XSet

binding xam_boolean binding=true The binding setting for the
operation

policy xam_string policy:access_name The access policy name for
the operation
106 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response:

XSetAsyncCommit This creates an asynchronous XSet commit operation. The body will contain
the following information in name/value pairs.

Response:

XSetAsyncOpenXStream This creates an asynchronous XSet open XStream operation. The body will
contain the following information in name/value pairs. At some point later, the
XStream will be opened and available for retrieval.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSetCommit GET /XSetCommit HTTP/
1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The handle of the XSet

xopid xam_integer xopid:678890 The xopid to be associated
with this operation

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

handle xam_handle handle=2000202 The handle of the XAsync
object

HTTP
Attribute Type Example Description

Method /XSetAsyncOpenXStream GET /
XSetAsyncOpenXStream
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The handle of the XSet

xopid xam_integer xopid:678890 The xopid to be associated
with this operation
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 107

Appendix B: HTTP VIM Architecture © SNIA
Response:

XSetClose This operation closes an XSet and all of the resources associated with it. The
XSet handle implies an association with an XSystem. Various errors may
occur during the close operation, often implying that the XSet has pending
operations on it. In the case of a successful operation, the handle to the XSet
is no longer valid once the close operation completes. In the case of some of
the failure status codes (identified below), the handle will remain valid.

Response:

XSetCommit The commit operation commits the changes to an XSet to the storage server.
After the operation, the handle to the XSet will no longer be valid, assuming
the returned status indicates success. Some return values may leave a valid
handle intact; see the values below.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle=2000202 The handle of the XAsync object.

HTTP
Attribute Type Example Description

Method /XSetClose GET /XSetClose HTTP/1.1 Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSetCommit GET /XSetCommit HTTP/1.1 Identifies operation and scope

handle xam_handle handle=2000202 Identifies the XSet instance on
which the operation should be
performed
108 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response:

XSetContainsField The XSetContainsField will determine if the XSet contains the named field.

Response:

XSetCreateProperty The XSetCreateProperty operation does not have a direct parallel in the
[XAM-ARCH]. Instead, this is an “aggregate” operation that is overloaded to
simplify the creation of the handlers on each side of the wire. All possible
property creation operations are collapsed to this single call. As all information
on the wire can be treated as string information, the value on the wire must be
convertible from a string to the target property type. The CreateProperty

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

xuid xam_xuid xuid=AAA.... The xuid returned from the
XSet.commit() method.

HTTP
Attribute Type Example Description

Method /XSetContainsField GET /XSetContainsField
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

name xam_string name=com.example.field The name of the field to be
checked for inclusion. Must
be URL safe encoded.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

value xam_boolean value=false The Boolean value of the
containsField() method.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 109

Appendix B: HTTP VIM Architecture © SNIA
operation will return parameter errors in the status if the value is not readily
convertible using the Java type conversion rules.

Response:

XSetCreateRetention This method will create the named retention on the XSet.

HTTP
Attribute Type Example Description

Method /XSetCreateProperty GET /XSetCreateProperty
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

ptype xam_string

Possible values include:

- boolean
- int
- float
- xuid
- string
- datetime

ptype=boolean The type of property to
create. The type of property
will dictate the format of the
value property.

name xam_string name=propertyname The name of the property to
set

binding xam_boolean binding=true Whether this field should be
binding

value variable value=true The value to which the
property should be set. This
value will always be a string,
but the string must be
convertible to the property
ptype.

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.

HTTP
Attribute Type Example Description

Method /XSetCreateRetention GET /XSetCreateRetention
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

binding xam_boolean binding=true The Boolean value of the
binding setting.

retentionid xam_string retentionid=test_retention The name of the retention to
be created. The string must
be encoded to URL safe.
110 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response:

XSetCreateXStream Creates an XStream within a particular XSet with the values that were passed
to this function.

Response:

XSetDeleteField This method deletes the named field from the XSet.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSetCreateXStream GET /XSetCreateXStream
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

name xam_string name: propertyname The name of the property to
set

binding xam_boolean binding: true Whether this field should be
binding

type xam_string type: text/html The MIME type for the new
field.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_integer handle:2000202 The handle of the newly created
XStream

HTTP
Attribute Type Example Description

Method /XSetDeleteField GET /XSetDeleteField
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

name xam_string name=com.example.field The name of the field to be
deleted
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 111

Appendix B: HTTP VIM Architecture © SNIA
Response:

XSetGetActualAutoDelete This method returns the actual auto delete setting from the XSet.

Response:

XSetGetActualRetention
Duration

This method returns the actual auto delete setting from the XSet.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSetGetActualAutoDelete GET /
XSetGetActualAutoDelete
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

autodelete autodelete autodelete:true The Boolean return value from the
XSet.getActualAutoDelete() method.

HTTP
Attribute Type Example Description

Method /
XSetGetActualRetention
Duration

GET /
XSetGetActualRetention
Duration HTTP/1.1

Identifies operation and scope

handle xam_handle handle=2000202 Identifies the XSet instance on
which the operation should be
performed
112 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response:

XSetGetActualRetention
Enabled

This method returns the actual retention enabled setting from the XSet.

Response:

XSetGetActualShred This method returns the actual shred setting from the XSet.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

autodelete autodelete autodelete:true The Boolean return value from the
XSet.getActualAutoDelete() method.

HTTP
Attribute Type Example Description

Method /
XSetGetActualRetention
Enabled

GET /
XSetGetActualRetention
Enabled HTTP/1.1

Identifies operation and scope

handle xam_handle handle=2000202 Identifies the XSet instance on
which the operation should be
performed

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

enabled xam_boolean enabled=true The Boolean return value from the
XSet.getActualRetentionEnabled()
method.

HTTP
Attribute Type Example Description

Method /XSetGetActualShred GET /XSetGetActualShred
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 113

Appendix B: HTTP VIM Architecture © SNIA
Response:

XSetGetFieldBinding This method returns the field binding setting from the XSet.

Response:

XSetGetLength This method returns the actual field length setting from the XSet.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

shred xam_boolean shred:true The Boolean return value from the
XSet.getActualShred() method.

HTTP
Attribute Type Example Description

Method /XSetGetFieldBinding GET /XSetGetFieldBinding
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

name xam_string name=com.example.field The name of the field to
interrogate

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

value xam_boolean value=true The Boolean return value from the
XSet.getFieldBinding() method.

HTTP
Attribute Type Example Description

Method /XSetGetFieldLength GET /XSetGetFieldLength
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

name xam_string name=com.example.field The name of the field to
interrogate
114 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response:

XSetGetFieldReadOnly This method returns the field readonly setting from the XSet.

Response:

XSetGetProperty The XSetGetProperty operation does not have a direct parallel in the [XAM-
ARCH]. Instead, this is an “aggregate” operation that is overloaded to simplify
the creation of the handlers on each side of the wire. This operation returns a

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

value xam_integer value=73 The integer return value from the
XSet.getFieldLength() method.

HTTP
Attribute Type Example Description

Method /XSetGetFieldReadOnly GET /
XSetGetFieldReadOnly
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

name xam_string name=com.example.field The name of the field to
interrogate

Name Type Example Description

status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

value xam_boolean value=true The Boolean return value from the
XSet.getFieldReadOnly() method
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 115

Appendix B: HTTP VIM Architecture © SNIA
string value that is convertible into the requested property type using the Java
type conversion rules.

The response to the request will contain no additional information within the
HTTP Header beyond normal response codes identified in [HTTP-
RESPONSE]. The body will contain the following information in name/value
pairs.

XSetGetPropertyType This method returns the field type setting from the XSet. Despite the naming,
this method actually executes the getFieldType() method on the specified
XSet.

HTTP
Attribute Type Example Description

Method /XSetGetProperty GET /XSetGetProperty
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

ptype xam_string

Possible values include:

- boolean
- int
- float
- xuid
- string
- datetime

ptype=boolean The type of property to
create. The type of property
will dictate the format of the
value property.

name xam_string name=propertyname The name of the property to
set

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

value xam_string value=true The value that the property is set to. This
will always be a string, but the string
must be convertible into the property
ptype.

HTTP
Attribute Type Example Description

Method /XSetGetPropertyType GET /XSetGetPropertyType
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

name xam_string name=com.example.field The name of the field to
interrogate
116 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response:

XSetHaltJob This method executes the method haltJob() on the XSet.

Response:

XSetOpenExportStream This method returns the handle of an export XStream on the XSet.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

value xam_string value=application/octet-type The MIME content type of the named
field.

HTTP
Attribute Type Example Description

Method /XSetHaltJob GET /XSetHaltJob HTTP/
1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSetOpenExportStream GET /
XSetOpenExportStream
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 117

Appendix B: HTTP VIM Architecture © SNIA
Response:

XSetOpenImportStream This method returns the handle of an import stream on the XSet.

Response:

XSetOpenXStream Opens an existing XStream within a particular XSet with the values that were
passed to this function. This operation also creates a handle for the operation
and returns it to the caller.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle=2000202 The handle of the newly created export
stream.

HTTP
Attribute Type Example Description

Method /XSetOpenImportStream GET /
XSetOpenImportStream
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle=2000202 The handle of the newly created import
stream.

HTTP
Attribute Type Example Description

Method /XSetOpenXStream GET /XSetOpenXStream
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

name xam_string name=com.example.name The name of the XStream to
open

mode xam_string where value
is “readonly” or
“writeonly”

mode=readonly The mode in which the
XStream should be opened
118 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response:

XSetResetAccessFields This method executes the method resetAccessFields() on the XSet.

Response:

XSetResetManagement
Fields

This method executes the method resetManagementFields() on the XSet.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle = 33333333 Identifies the XStream instance that was
opened. Future operations on the
XStream must include this handle. Use
of this handle IMPLIES a connection to
a particular XSet.

HTTP
Attribute Type Example Description

Method /XSetResetAccessFields GET /
XSetResetAccessFields
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /
XSetResetManagement
Fields

GET /
XSetResetManagement
Fields HTTP/1.1

Identifies operation and scope

handle xam_handle handle=2000202 Identifies the XSet instance on
which the operation should be
performed
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 119

Appendix B: HTTP VIM Architecture © SNIA
Response:

XSetSetAutoDelete This method sets the explicit AutoDelete setting on the XSet.

Response:

XSetSetBaseRetention This method sets the base retention on the XSet.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSetSetAutoDelete GET /XSetSetAutoDelete
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

autodelete xam_boolean autodelete=true The auto delete setting

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSetSetBaseRetention GET /
XSetSetBaseRetention
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

binding xam_boolean binding=false The binding setting for the
base retention.

duration xam_integer duration=1000 The duration value for the
base retention.
120 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response:

XSetSetFieldAsBinding This method sets the named field to be bound on the XSet.

Response:

XSetSetFieldAsNonbinding This method returns the handle of an import stream on the XSet.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSetSetFieldAsBinding GET /
XSetSetFieldAsBinding
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

name xam_string name=com.example.field The name of the field to be
bound.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /
XSetSetFieldAsNonbinding

GET /
XSetSetFieldAsNonbinding
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet
instance on which the
operation should be
performed

name xam_string name=com.example.field The name of the field to
be unbound
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 121

Appendix B: HTTP VIM Architecture © SNIA
Response:

XSetSetProperty The XSetSetProperty operation does not have a direct parallel in the [XAM-
ARCH]. Instead, this is an “aggregate” operation that is overloaded to simplify
the creation of the handlers on each side of the wire. All possible operations
for setting properties are collapsed to this single call. As all information on the
wire can be treated as string information, the value on the wire must be
convertible from a string to the target property type. The SetProperty
operation will return parameter errors in the status if the value is not readily
convertible using the Java type conversion rules.

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSetSetProperty GET /XSetSetProperty
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

ptype xam_string

Possible values include:

- boolean
- int
- float
- xuid
- string
- datetime

ptype=boolean The type of property to
create. The type of property
will dictate the format of the
value property.

name xam_string name=propertyname The name of the property to
set

value various value=true The value to which the
property should be set. This
value will always be a string,
but the string must be
convertible to the property
ptype.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.
122 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
XSetSetRetentionDuration This method returns the handle of an import stream on the XSet.

Response:

XSetSetRetentionEnabled
Flag

This method returns the handle of an import stream on the XSet.

Response:

HTTP
Attribute Type Example Description

Method /XSetSetRetentionDuration GET /
XSetSetRetentionDuration
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet
instance on which the
operation should be
performed

retentionid xam_string retentionid=test_retention The name of the retention
to modify

duration xam_integer duration=1000 The new retention
duration value to be set

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSetSetRetentionEnabledFlag GET /
XSetSetRetentionEnabledFlag
HTTP/1.1

Identifies operation
and scope

handle xam_handle handle=2000202 Identifies the XSet
instance on which the
operation should be
performed

retentionid xam_string retentionid=test_retention The name of the
retention to modify

enabled xam_boolean enabled=true The new enabled
value of the retention

Name Type Example Description

status xam_integer status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message
associated with the status
code. Not returned if
status=0.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 123

Appendix B: HTTP VIM Architecture © SNIA
XSetSetRetentionStarttime This method executes the setRetentionStarttime() method on the XSet.

Response:

XSetSetShred This method sets the shred setting on the XSet.

Response:

XSetSubmitJob This method executes the submitJob() method on the XSet.

HTTP
Attribute Type Example Description

Method /XSetSetRetentionStarttime GET /
XSetSetRetentionStarttime
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet
instance on which the
operation should be
performed

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSetSetShred GET /XSetSetShred HTTP/
1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

shred xam_boolean shred=true The new shred value to be
set on the XSet

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSetSubmitJob GET /XSetSubmitJob
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed
124 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response:

XStreamAbandon This operation abandons an XStream and all of the resources associated with
it. The XStream handle implies an association with an XSet. After this call, the
handle will no longer identify an active XStream object instance. The XStream
will have to be re-opened, and a new handle will have to be retrieved.

Response:

XStreamAsyncClose This creates an asynchronous XStream operation. The body will contain the
following information in name/value pairs.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XStreamAbandon GET /XStreamAbandon
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=33333333 Identifies the XStream
instance on which the
operation should be
performed

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XStreamAsyncClose GET /XStreamAsyncClose
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The handle of the XSet

xopid xam_integer xopid=678890 The xopid to be associated
with this operation
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 125

Appendix B: HTTP VIM Architecture © SNIA
Response:

XStreamAsyncRead This method creates an asynchronous XStream operation. At some point
later, the number of bytes read will be available, and bytes themselves will be
available. The client must retrieve the data with the method XAsyncGetData.
The body will contain the following information in name/value pairs.

Response:

XStreamAsyncWrite This operation starts an asynchronous write operation to an XStream. The
write of this buffer will start sequentially after the last byte written or after the
position of the last byte of the stream (if the seek operation is supported). The
XAsync method will return as soon as the data has been transferred.

The body will contain the bytes that should be written to the XStream.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle=2000202 The handle of the XAsync object.

HTTP
Attribute Type Example Description

Method /XStreamAsyncRead GET /XStreamAsyncRead
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 The handle of the XSet

xopid xam_integer xopid=678890 The xopid to be associated
with this operation.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle=2000202 The handle of the XAsync object.

HTTP
Attribute Type Example Description

Method /XStreamAsyncWrite POST /XStreamAsyncWrite
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=33333333 Identifies the XStream
instance on which the
operation should be
performed
126 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response:

XStreamClose This operation closes an XStream and all of the resources associated with it.
The XStream handle implies an association with an XSet. Note that the
handle to the XStream “may” still be valid after this operation, depending on
the status returned. If the operation is successful, the handle will never be
valid after the operation completes.

Response:

XStreamRead This operation reads from an XStream. For the purpose of the first iteration,
the size of the requested read is not possible; only the entire XStream can be
read.

Name Type Example Description

status status=value status=0 Gives the status of the
connection. The status uses
the standard or extended
error codes as defined by
the [XAM-ARCH], [XAM-C-
API] and/or the vim.h
header files. The Java API
does not leverage status
codes in its internal
communication, and the
Exceptions will have to be
converted appropriately to
standard status codes.

handle xam_handle handle=2000202 The handle of the XAsync
object.

HTTP
Attribute Type Example Description

Method /XStreamClose GET /XStreamClose HTTP/
1.1

Identifies operation and
scope

handle handle: value where
“value” is an 8-byte
signed integer, we will
use the “long” Java type

handle: 33333333 Identifies the XStream
instance on which the
operation should be
performed

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XStreamRead GET /XStreamRead HTTP/
1.1

Identifies operation and
scope

handle xam_handle handle=33333333 Identifies the XStream
instance on which the
operation should be
performed
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 127

Appendix B: HTTP VIM Architecture © SNIA
The response to the request will contain the contents of the XStream in the
body. If no body is included, an error occurred in the response.

XStreamSeek This operation executes the seek() method on the specified XStream object.

Response:

XStreamTell This operation executes the tell() method on the specified XStream object.

Response:

HTTP
Attribute Type Example Description

Method /XStreamSeek GET /XStreamSeek HTTP/1.1 Identifies operation and scope

handle xam_handle handle=33333333 Identifies the XStream instance on
which the operation should be
performed

whence xam_integer whence=0 The whence value from the seek
method.

offset xam_integer offset=12 The number of bytes to seek,
relative to whence.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XStreamTell GET /XStreamTell HTTP/1.1 Identifies operation and
scope

handle xam_handle handle=33333333 Identifies the XStream
instance on which the
operation should be
performed

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

position xam_integer position=42 Byte offset relative to the beginning of
the XStream
128 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
XStreamWrite This operation writes to an XStream. The write of this buffer will start
sequentially after the last byte written or after the position of the last byte of
the stream (if the seek operation is supported).

The body will contain the bytes that should be written to the XStream.

The response to the request will contain no additional information within the
HTTP Header beyond normal response codes identified in [HTTP-
RESPONSE]. The body will contain the following information in name/value
pairs.

A complete request may look like the following:

POST /XStreamWrite HTTP/1.1
handle: 33333333
User-Agent: Jakarta Commons-HttpClient/3.0.1
Host: 192.168.1.100:9925
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaacccccccccbbbbb

A complete response may look like the following:

HTTP/1.1 200 OK
Date: Wed, 22 Aug 2007 12:45:13 GMT
Server: Jetty/4.2.20 (Windows XP/5.1 x86 java/
1.6.0_02)
Transfer-Encoding: chunked
status=0
byteswritten=1000

XSystemAbandon This operation releases all resources used by an XSystem and the XSystem
itself. The XSystem cannot be used after the call. The request is expected to

HTTP
Attribute Type Example Description

Method /XStreamWrite POST /XStreamWrite HTTP/1.1 Identifies operation and scope

handle xam_handle handle=33333333 Identifies the XStream instance
on which the operation should be
performed

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

byteswritten xam_int byteswritten=1000 The number of bytes written to the
XStream
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 129

Appendix B: HTTP VIM Architecture © SNIA
be a generic HTTP GET request with the request parameters in the HTTP
Header; there is no information contained in the HTTP Body for the request.

Response:

XSystemAccessXSet This operation determines if a particular XSet is accessible with a particular
mode. This operation does not reserve the XSet, so the state may change
before your open. The XSystem must be connected to and a valid handle to
that XSystem supplied. This operation on the HTTP VIM passes through to
the implementation VIM.

Response:

HTTP
Attribute Type Example Description

Method /XSystemAbandon GET /XSystemAbandon
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=1010101 Identifies the XSystem
instance on which the
operation should be
performed

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSystemAccessXSet GET /XSystemAccessXSet
HTTP/1.1

Identifies operation and
scope

xuid xam_xuid xuid=AAA.... Identifies the XSet that
should be opened for the
client. XUID value to be
base64 encoded.

handle xam_handle handle=1010101 Identifies the XSystem
instance on which the
operation should be
performed

mode xam_string mode=readonly Identifies the mode in which
the XSet should be opened.
Different language bindings
vary dramatically here.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

accessible xam_boolean accessible=true
130 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
XSystemAsyncCopyXSet This operation initiates an asynchronous CopyXSet method on the specified
XSystem object.

Response:

XSystemAsyncOpenXSet This operation initiates an asynchronous OpenXSet method on the specified
XSystem object.

HTTP
Attribute Type Example Description

Method /XSystemAsyncCopyXSet GET /
XSystemAsyncCopyXSet
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=33333333 Identifies the XSystem
instance on which the
operation should be
performed

xuid xam_xuid xuid=AAA..... The base64/URL safe
encoded XUID value.

mode xam_string mode=restricted The copy mode argument

xopid xam_int xopid=1357 The XOPID argument from
the AsyncCopyXSet
method.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle=2000202 The handle of the XAsync Object

HTTP
Attribute Type Example Description

Method /XSystemAsyncOpenXSet GET /
XSystemAsyncOpenXSet
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=33333333 Identifies the XSystem
instance on which the
operation should be
performed

xuid xam_xuid xuid=AAA..... The base64/URL safe
encoded XUID value

mode xam_string mode=restricted The copy mode argument

xopid xam_int xopid=1357 The XOPID argument from
the AsyncOpenXSet method
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 131

Appendix B: HTTP VIM Architecture © SNIA
Response:

SystemAsyncOpenXStream This operation initiates an asynchronous OpenXStream method on the
specified XSystem object.

Response:

Name Type Example Description

status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle=2000202 The handle of the XAsync Object

HTTP
Attribute Type Example Description

Method /XSystemAsyncOpenXStream GET /
XSystemAsyncOpenXStream
HTTP/1.1

Identifies operation
and scope

handle xam_handle handle=33333333 Identifies the
XSystem instance
on which the
operation should be
performed

name xam_string name=com.example.stream The name of the
stream to open

mode xam_string mode=restricted The open mode
argument

xopid xam_int xopid=1357 The XOPID
argument from the
AsyncOpenXSet
method

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle=2000202 The handle of the XAsync Object
132 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
XSystemAuthenticate This operation calls the authenticate method on the specified XSystem. The
contents of the authenticate buffer are sent as body of the POST operation.

The body will contain the bytes that should be passed to the authenticate.

Response

A complete request may look like the following:

POST /XStreamWrite HTTP/1.1
handle: 33333333
User-Agent: Jakarta Commons-HttpClient/3.0.1
Host: 192.168.1.100:9925
<NUL>Users<NUL>Password

A complete response may look like the following:

HTTP/1.1 200 OK
Date: Wed, 22 Aug 2007 12:45:13 GMT
Server: Jetty/4.2.20 (Windows XP/5.1 x86 java/
1.6.0_02)
Transfer-Encoding: chunked
status=0
handle=2000202

XSystemClose This operation releases all resources used by an XSystem and the XSystem
itself. The XSystem cannot be used after the call, and the handle will no
longer identify a valid XSystem object instance. The request is expected to be

HTTP
Attribute Type Example Description

Method /XSystemAuthenticate POST /
XSystemAuthenticate
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=33333333 Identifies the XSystem
instance on which the
operation should be
performed

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle=2000202 A handle to the XStream containing the
results from the authenticate call.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 133

Appendix B: HTTP VIM Architecture © SNIA
a generic HTTP GET request with the request parameters in the HTTP
Header; there is no information contained in the HTTP Body for the request.

The response to the request will contain no additional information within the
HTTP Header beyond normal response codes identified in [HTTP-
RESPONSE]. The body will contain the following information in name/value
pairs.

XSystemConnect This operation establishes a XAM connection to a system. The request is
expected to be a generic HTTP GET request with the request parameters in
the HTTP Header; there is no information contained in the HTTP Body. As the
HTTP protocol is stateless, the result of this operation will be a “handle”
returned to the requester. Future requests must include this handle to identify
the active XSystem object.

The body of the post must contain all of the initialization parameters for the
XSystem. These parameters include write properties to the XSystem and are
passed to the XSystem as part of the XSystem initialization protocol. Each
parameter is a name value pair, three of which are needed to completely
specify the semantics of an XSystem property: name, value, binding, and
type. For example, an XLibrary is going to initialize the XSystem with the
following properties:

com.example.p1,a string, value=absdefg
com.example.p2,an integer, value=42
com.example.p3,a boolean, value=false

A buffer containing these values is sent to in the POST body:

com.example.p1.type=string
com.example.p1.value=absdefg
com.example.p1.binding=false
com.example.p2.type=integer com.example.p2.value=42

HTTP
Attribute Type Example Description

Method /XSystemClose GET /XSystemClose HTTP/1.1 Identifies operation and scope

handle xam_handle handle=1010101 Identifies the XSystem instance
on which the operation should be
performed

Name Type Example Description

status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSystemConnect POST /XSystemConnect
HTTP/1.1

Identifies the operation as a
 /Connect operation

xri xri: snia-xam://value xri: snia-xam://localhost Identifies to which XSystem
to locate and connect
134 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
com.example.p2.bdining=false
com.example.p3.type=boolean com.example.p3.value=false
com.example.p3.binding=false

Note that each name/value pair is space delimited. Thus, any name/value pair
must be URL encoded to prevent spaces in a value from confusing the parser.
Also note that as of the current level of implementation, there are no known
VIMs which provide binding values for properties, but this may not be true for
the future.

Response:

A complete request may look like the following:

GET /XAMLIBConnect HTTP/1.1
xri: snia-xam://localhost
User-Agent: Jakarta Commons-HttpClient/3.0.1
Host: 192.168.1.100:9925

com.example.p1.type=string
com.example.p1.value=absdefg
com.example.p1.binding=false
com.example.p2.type=integer com.example.p2.value=42
com.example.p2.bdining=false
com.example.p3.type=boolean com.example.p3.value=false
com.example.p3.binding=false

A complete response may look like the following:

HTTP/1.1 200 OK
Date: Wed, 22 Aug 2007 12:45:13 GMT
Server: Jetty/4.2.20 (Windows XP/5.1 x86 java/
1.6.0_02)
Transfer-Encoding: chunked

status=1020
handle=1010101

Name Type Example Description

status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle=1010101 Identifies the XSystem for future
operations
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 135

Appendix B: HTTP VIM Architecture © SNIA
XSystemContainsField This operation initiates an asynchronous OpenXStream method on the
specified XSystem object.

Response:

XSystemCopyXSet This operation executes the method CopyXSet on the specified XSystem
object.

Response:

HTTP
Attribute Type Example Description

Method /XSystemContainsField GET /
XSystemContainsField
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=33333333 Identifies the XSystem
instance on which the
operation should be
performed

name xam_string name=com.example.stream The name of the field to test

Name Type Example Description

status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

value xam_booleam value=true The Boolean return value from the
XSystem.containsField() method.

HTTP
Attribute Type Example Description

Method /XSystemCopyXSet GET /XSystemCopyXSet
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=33333333 Identifies the XSystem
instance on which the
operation should be
performed

xuid xam_xuid xuid=AAA... The base64/URL encoded
value of the XUID

mode xam_string mode=restricted The open mode of the
copied XSet

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle=2000202 The handle to the newly copied XSet.
136 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
XSystemCreateProperty The XSystemCreateProperty operation does not have a direct parallel in the
[XAM-ARCH]. Instead, this is an “aggregate” operation that is overloaded to
simplify the creation of the handlers on each side of the wire. This version of
the wire format operates on a system rather than an XSet. This may be able
to be collapsed into the XSetCreateProperty with an additional value in the
HTTP Header on the request.

The response to the request will contain no additional information within the
HTTP Header beyond normal response codes identified in [HTTP-
RESPONSE]. The body will contain the following information in name/value
pairs.

XSystemCreateXSet This operation creates an XSet within a specified XSystem. The XSystem
must be connected to and must have a valid handle to the XSystem supplied.

HTTP
Attribute Type Example Description

Method /XSystemCreateProperty GET /
XSystemCreateProperty
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=1010101 Identifies the XSystem
instance on which the
operation should be
performed

ptype xam_string

Possible values include:

- boolean
- int
- float
- xuid string
- datetime

ptype=boolean The type of property to
create. The type of property
will dictate the format of the
value property.

name xam_string name=propertyname The name of the property to
set

binding xam_boolean binding=true Whether this field should be
binding

value xam_string value=true The value to which the
property should be set. This
value will always be a string,
but the string must be
convertible to the property
ptype.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 137

Appendix B: HTTP VIM Architecture © SNIA
This operation returns a handle to the requester that must be used for future
interactions with the created XSet.

Response:

XSystemCreateXStream This operation creates an XStream within a specified XSystem. The XSystem
must be connected to and must be a valid handle to the XSystem supplied.
This operation returns a handle to the requester that must be used for future
interactions with the created XStream. As of XAM version 1.0.1, no known
XSystems support stream creation.

Response:

HTTP
Attribute Type Example Description

Method /XSystemCreateXSet GET /XSystemCreateXSet
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=1010101 Identifies the XSystem
instance on which the
operation should be
performed

mode xam_string mode=readonly Identifies the mode in which
the XSet should be opened

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle = 2000202 Identifies the XSet instance that was
created. Future operations on the XSet
must include this handle.

HTTP
Attribute Type Example Description

Method /XSystemCreateXStream GET /
XSystemCreateXStream
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=1010101 Identifies the XSystem
instance on which the
operation should be
performed

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

handle xam_handle handle = 2000202 Identifies the XStream instance that was
created. Future operations on the
XStream must include this handle.
138 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
XSystemDeleteXSet This operation deletes an existing XSet within a specified XSystem. The
XSystem must be connected to and must be a valid handle to the XSystem
supplied. This operation on the HTTP VIM passes through to the
implementation VIM.

Response:

XSystemGetFieldBinding This method returns the field binding setting from the XSystem.

Response:

HTTP
Attribute Type Example Description

Method /XSystemDeleteXSet GET /XSystemDeleteXSet
HTTP/1.1

Identifies operation and
scope

xuid xam_xuid xuid=AAA... Identifies the XSet that
should be opened for the
client.

handle xam_handle handle=1010101 Identifies the XSystem
instance on which the
operation should be
performed

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSystemGetFieldBinding GET /
XSystemGetFieldBinding
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSystem
instance on which the
operation should be
performed

name xam_string name=com.example.field The name of the field to
interrogate

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

value xam_boolean value=true The Boolean return value from the
XSystem.getFieldBinding() method
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 139

Appendix B: HTTP VIM Architecture © SNIA
XSystemGetFieldLength This method returns the actual field length setting from the XSet.

Response:

XSystemGetProperty The XSystemGetProperty operation does not have a direct parallel in the
[XAM-ARCH]. Instead, this is an “aggregate” operation that is overloaded to
simplify the creation of the handlers on each side of the wire. This version of
the wire format operates on a system rather than an XSet. This may be able
to be collapsed into the XSetGetProperty with an additional value in the HTTP
Header on the request. This operation returns a string value that is convertible
into the requested property type using the Java type conversion rules.

HTTP
Attribute Type Example Description

Method /XSystemGetFieldLength GET /
XSystemGetFieldLength
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

name xam_string name=com.example.field The name of the field to
interrogate

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

value xam_integer value=73 The integer return value from the
XSet.getFieldLength() method

HTTP
Attribute Type Example Description

Method /XSystemGetProperty GET /XSystemGetProperty
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=1010101 Identifies the XSystem
instance on which the
operation should be
performed

ptype xam_string

Possible values include:

- boolean
- int
- float
- xuid
- string
- datetime

ptype=boolean The type of property to
create. The type of property
will dictate the format of the
value property.

name xam_string name=propertyname The name of the property to
set
140 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response:

XSystemGetPropertyType This method returns the field type setting from the XSet. Despite the naming,
this method actually executes the getFieldType() method on the specified
XSet.

Response:

XSystemGetXSetAccess
Time

This method returns the access time of the specified XSet.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

value various value=true The value that the property is set to.
This will always be a string, but the
string must be convertible into the
property ptype.

HTTP
Attribute Type Example Description

Method /XSystemGetPropertyType GET /
XSystemGetPropertyType
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet
instance on which the
operation should be
performed

name xam_string name=com.example.field The name of the field to
interrogate

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

value xam_string value=application/octet-type The MIME content type of the named
field.

HTTP
Attribute Type Example Description

Method /XSystemGetXSetAccessTime GET /
XSystemGetXSetAccess
Time HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

xuid xam_xuid xuid=AAA... The base64/URL safe
encoded XUID value.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 141

Appendix B: HTTP VIM Architecture © SNIA
Response:

XSystemHoldXSet This method executes the holdXSet() method on the XSystem

Response:

XSystemIsXSetRetained This method executes the isXSetRetained() method on the XSystem.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM
SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

accesstime xam_datetime asccesstime=12374568 The date time of the last time the XSet
was accessed.

HTTP
Attribute Type Example Description

Method /XSystemHoldXSet GET /XSystemHoldXSet
HTTP/1.1

Identifies operation and scope

handle xam_handle handle=2000202 Identifies the XSet instance on
which the operation should be
performed

holdid xam_string holdid=case_1234 The holdID to be applied to the
XSet.

xuid xam_xuid xuid=AAAA..... The base64/URL safe encoded
XUID value of the XSet.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSystemIsXSetRetained GET /
XSystemIsXSetRetained
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

xuid xam_xuid xuid=AAAA..... The base64/URL safe
encoded XUID value of the
XSet
142 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response:

XSystemOpenXSet This operation opens an existing XSet within a specified XSystem. The
XSystem must be connected to and a valid handle to the XSystem supplied.
This operation on the HTTP VIM passes through to the implementation VIM.
A handle is returned to the client that must be used to refer to the active XSet
object in future operations on the XSet.

Response:

XSystemOpenXStream This operation opens an existing XStream within a specified XSystem. The
XSystem must be connected to and a valid handle to that XSystem supplied.
This operation on the HTTP VIM passes through to the implementation VIM.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

retained xam_boolean retained=true The Boolean return value from the
isXSetRetained() method.

HTTP
Attribute Type Example Description

Method /XSystemOpenXSet GET /XSystemOpenXSet
HTTP/1.1

Identifies operation and
scope

xuid xam_xuid xuid=AAA.... Identifies the XSet that
should be opened for the
client

handle xam_handle handle=1010102 Identifies the XSystem
instance on which the
operation should be
performed

mode xam_string mode=readonly Identifies the mode in which
the XSet should be opened

Name Type Example Description

status xam_integer status=0 Gives the status of the connection.
The status uses the standard or
extended error codes as defined by
the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with
the status code. Not returned if
status=0.

handle handle: value where
“value” is an 8-byte
signed integer

handle = 2000202 Identifies the XSet instance that was
opened. Future operations on the
XSet must include this handle.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 143

Appendix B: HTTP VIM Architecture © SNIA
A handle is returned to the client that must be used to refer to the active XSet
object in future operations on the XSet.

Response:

XSystemReleaseXSet This method executes the releaseXSet() method on the XSystem

HTTP
Attribute Type Example Description

Method /XSystemOpenXStream GET /
XSystemOpenXStream
HTTP/1.1

Identifies operation and
scope

xuid xam_xuid xuid=AAA.... Identifies the XSet that
should be opened for the
client

handle xam_handle handle=1010102 Identifies the XSystem
instance on which the
operation should be
performed

name xam_string name=com.example.name The stream name to be
opened

mode xam_string mode=readonly Identifies the mode in which
the XSet should be opened

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended error
codes as defined by the XAM SDK TWG.

statusMsg xam_string statusMsg=Object is
closed

A string message associated with the
status code. Not returned if status=0.

handle handle: value where
“value” is an 8-byte
signed integer.

handle = 2000202 Identifies the XStream instance that was
opened. Future operations on the XStream
must include this handle.

HTTP
Attribute Type Example Description

Method /XSystemReleaseXSet GET /XSystemReleaseXSet
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSet instance
on which the operation
should be performed

holdid xam_string holdid=case_1234 The holdID to be applied to
the XSet

xuid xam_xuid xuid=AAAA..... The base64/URL safe
encoded XUID value of the
XSet
144 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Response:

XSystemSetFieldAsBinding This method sets the named field to be bound on the XSystem. As of XAM
version 1.0.1, there is no definition as to what a bound XSystem field means.
This method will pass execution to the XSystem, but it is expected that this
operation will fail on current VIMs.

Response:

XSystemSetFieldAsNon
binding

This method sets the named field to be unbound on the XSystem. As of XAM
version 1.0.1, there is no definition as to what a bound XSystem field means.
This method will pass execution to the XSystem, but it is expected that this
operation will fail on current VIMs.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSystemSetFieldAsBinding GET /
XSystemSetFieldAsBinding
HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSystem
instance on which the
operation should be
performed

name xam_string name=com.example.field The name of the field to be
bound.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSystemSetFieldAsNonbinding GET /XSystemSetFieldAs
Nonbinding HTTP/1.1

Identifies operation and
scope

handle xam_handle handle=2000202 Identifies the XSystem
instance on which the
operation should be
performed

name xam_string name=com.example.field The name of the field to
be unbound
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 145

Appendix B: HTTP VIM Architecture © SNIA
Response:

XSystemSetProperty The XSystemSetProperty operation does not have a direct parallel in the
[XAM-ARCH]. Instead, this is an “aggregate” operation that is overloaded to
simplify the creation of the handlers on each side of the wire. This version of
the wire format operates on a system rather than an XSet. This may be able
to be collapsed into the XSystemSetProperty with an additional value in the
HTTP Header on the request in a future version of this design specification.
As all information on the wire can be treated as string information, the value
on the wire must be convertible from a string to the target property type. The
SetProperty operation will return parameter errors in the status if the value is
not readily convertible using the Java type conversion rules.

The response to the request will contain no additional information within the
HTTP Header beyond normal response codes identified in
[HTTP-RESPONSE]. The body will contain the following information in name/
value pairs.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.

HTTP
Attribute Type Example Description

Method /XSystemSetProperty GET /XSystemSetProperty
HTTP/1.1

Identifies operation and scope

handle xam_handle handle=1010101 Identifies the XSystem instance
on which the operation should be
performed

ptype xam_string

Possible values
include:

- boolean
- int
- float
- xuid
- string
- datetime

ptype=boolean The type of property to create.
The type of property will dictate
the format of the value property.

name xam_string name=propertyname The name of the property to set

value xam_string value=true The value to which the property
should be set. This value will
always be a string, but the string
must be convertible to the
property ptype.

Name Type Example Description

status xam_integer status=0 Gives the status of the connection. The
status uses the standard or extended
error codes as defined by the XAM SDK
TWG.

statusMsg xam_string statusMsg=Object is closed A string message associated with the
status code. Not returned if status=0.
146 WORKING DRAFT XAM™ SDK 1.01 (August 31, 2009)

© SNIA Appendix B: HTTP VIM Architecture
Known Issues The HTTP Protocol VIM has the following known issues:

• HTTPS is not currently implemented

• Handles are relatively unsecured, allowing potential clients to “guess”
at handles and gain access to XAM objects that they might not
otherwise have access to.

• No leasing mechanism is implemented. Improperly disconnected, or
crash clients, will leave many orphaned objects in the caches of the
VIM server. A possible way to solve this problem is to place a lease
on XAM objects by adding a lease/last used properties to the
XSystem.

• The HTTP VIM Server can periodically clean up XSystems that fail
the lease time, freeing resources.

• XSystems would be abandoned, then closed.
XAM™ SDK 1.01 (August 31, 2009) WORKING DRAFT 147

	eXtensible Access Method (XAM™) - SDK Developer’s Guide
	Contents
	Tables
	Figures

	Chapter 1: About this Guide
	Purpose and Audience
	Contents
	References
	Additional Information
	Conventions
	SNIA Welcomes Your Comments

	Chapter 2: Introduction to the SDK Developer’s Guide
	SDK Terms of Use
	SDK Components
	Supported Operating Systems
	Software Requirements
	SDK Installation Instructions

	Chapter 3: XAM™ Library Configuration
	Introduction
	Configuration File Format
	Configuration File Discovery
	XAM™ Library Configuration Behavior
	Stackable VIM Support
	XAM™ Library Configuration Namespaces
	Configuration File Example
	Aliasing VIM Implementations
	Leveraging Lookup Order for VIM Discovery
	Preloading VIM Libraries
	Defining VIM Stacks
	Using Application-Defined Configurations
	Configuring VIM-Specific Controls
	Specifying XAM™ Library Logging Controls

	Chapter 4: Java Library
	Understanding What Is Provided
	Unpacking Your ZIP file
	Installing Compilers and Dependent Libraries
	Installing JUnit
	Windows
	Unix (bash)

	Installing libcurl

	Building the Code for Your Platform
	Supported Platforms

	Installing the Binaries for Your Platform
	Installing a VIM
	Running Tests

	Using the Java Library
	Obtaining an Instance of the XAM™ Library
	Configuring the Library Initialization
	Logging Parameters
	Java Logging Use

	Using Classes from XAMLib.jar and XAMToolkit.jar

	Chapter 5: C Library
	Understanding What Is Provided
	Unpacking Your ZIP file
	Installing Compilers and Dependent Libraries
	Installing JUnit
	Windows
	Unix (bash)

	Installing libcurl
	Choosing a C compiler

	Building the Code for Your Platform
	Building the XAM™ SDK with Visual Studio on Windows
	Building the XAM™ SDK Using ant

	Installing the Binaries for Your Platform
	Configuring the XAM™ Library
	Configuration Options
	Supported Configuration Namespaces
	Configuration File Syntax
	Example Configuration File

	Installing a VIM
	Configuring the HTTP VIM
	HTTP VIM Parameters
	HTTP VIM Configuration File
	Supported Configuration Namespaces
	Configuration File Syntax
	Example Configuration File:

	Chapter 6: Java Reference VIM
	Overview
	Summary of Features
	XAM™ API Features
	API Methods Supported

	Unpacking your ZIP file
	Installing Compilers and Dependent Libraries
	Installing JUnit
	Windows
	Unix (bash)

	Building the Code for Your Platform
	Supported Platforms
	Software Requirements
	Ant
	Derby
	JUnit
	Java
	JavaCC
	JavaMail
	JavaBeans Activation Framework (JAF)
	Lucene

	PATH Requirements
	Building the XAM SDK using ant
	Running the ant test

	Installing the Binaries for Your Platform
	Configuring and Operating the XAM™ Reference VIM and Library
	Basic Configuration
	User Configuration
	Access Control Policies

	Autodelete Configuration
	Autodelete and Shred Policies
	Retention Policies
	Import Processing
	Asynchronous Methods
	Reference VIM Logging
	Summary of Configuration Properties
	Scalability

	Building and Running the Client Example
	Building and Running the Example Using ant
	Building and Running the Example From the Command Line
	Viewing Build Example Output - ant

	Using Reference VIM Example Programs
	Building and Running Tests and Examples
	Configuring Unit Tests
	Building and Running Tests Using ant

	Running Your Application with XAM™
	Default Repository Location
	Directories and Files Created
	Files Created for a Persisted XSet
	Temp Files Created
	Database For Query Support

	Specification of a Different Reference VIM Repository Location
	Repository Maintenance

	Chapter 7: HTTP Protocol VIM
	Description
	Functionality
	Server Configuration, Installation, Building, and Testing
	Configuring the HTTP VIM Implementation Target of the HTTP VIM Client
	Installing Required Runtime Libraries
	Building the Server
	Running Ant Tasks
	Verifying the Server
	Starting the Server

	Protocol VIM Use
	Java VIM Requirements

	Chapter 8: Error Codes
	XAMException
	FieldContainerException
	JobException
	XSetException
	XStreamException
	XSystemException
	Non-Categorized C Errors
	Class Structure
	XSystem
	XSet
	XStream
	Persistence Manager
	Default Repository Location
	Directories and Files Created
	Files Created for a Persisted XSet
	Temp Files Created
	Specification of a VIM Repository Location

	Policy
	Access Policies
	Disposition Policies
	Retention Policies

	Jobs
	DBManager

	Operational Flow
	Initializing an XSystem
	Importing an XSet
	Processing a Query

	Future Ideas
	Terms and Scope
	Terms
	Scope

	Overview of HTTP VIM Design
	Java HTTP VIM Client
	Connect Processing
	XAsyncCallback Management

	Java HTTP VIM Server
	VIM Class and Library Load Operations
	VIM Wire Protocol
	Organization
	Method Access
	Return Values
	Value Encoding
	Example Exchange
	Operations
	XAMCreateFieldIterator
	XAsyncClose
	XAsyncGetBytesRead
	XAsyncGetBytesWritten
	XAsyncGetStatus
	XAsyncGetXOPID
	XAsyncGetXSet
	XAsyncGetXStream
	XAsyncGetXUID
	XAsyncHalt
	XAsyncIsComplete
	XAsync - POLL
	XIteratorClose
	XIteratorHasNext
	XIteratorNext
	XSetAbandon
	XSetApplyAccessPolicy
	XSetApplyAutoDeletePolicy
	XSetApplyBaseRetention
	XSetApplyManagement Policy
	XSetApplyRetentionDuration Policy
	XSetApplyRetentionEnabled Policy
	XSetApplyShredPolicy
	XSetApplyStoragePolicy
	XSetAsyncCommit
	XSetAsyncOpenXStream
	XSetClose
	XSetCommit
	XSetContainsField
	XSetCreateProperty
	XSetCreateRetention
	XSetCreateXStream
	XSetDeleteField
	XSetGetActualAutoDelete
	XSetGetActualRetention Duration
	XSetGetActualRetention Enabled
	XSetGetActualShred
	XSetGetFieldBinding
	XSetGetLength
	XSetGetFieldReadOnly
	XSetGetProperty
	XSetGetPropertyType
	XSetHaltJob
	XSetOpenExportStream
	XSetOpenImportStream
	XSetOpenXStream
	XSetResetAccessFields
	XSetResetManagement Fields
	XSetSetAutoDelete
	XSetSetBaseRetention
	XSetSetFieldAsBinding
	XSetSetFieldAsNonbinding
	XSetSetProperty
	XSetSetRetentionDuration
	XSetSetRetentionEnabled Flag
	XSetSetRetentionStarttime
	XSetSetShred
	XSetSubmitJob
	XStreamAbandon
	XStreamAsyncClose
	XStreamAsyncRead
	XStreamAsyncWrite
	XStreamClose
	XStreamRead
	XStreamSeek
	XStreamTell
	XStreamWrite
	XSystemAbandon
	XSystemAccessXSet
	XSystemAsyncCopyXSet
	XSystemAsyncOpenXSet
	SystemAsyncOpenXStream
	XSystemAuthenticate
	XSystemClose
	XSystemConnect
	XSystemContainsField
	XSystemCopyXSet
	XSystemCreateProperty
	XSystemCreateXSet
	XSystemCreateXStream
	XSystemDeleteXSet
	XSystemGetFieldBinding
	XSystemGetFieldLength
	XSystemGetProperty
	XSystemGetPropertyType
	XSystemGetXSetAccess Time
	XSystemHoldXSet
	XSystemIsXSetRetained
	XSystemOpenXSet
	XSystemOpenXStream
	XSystemReleaseXSet
	XSystemSetFieldAsBinding
	XSystemSetFieldAsNon binding
	XSystemSetProperty

	Known Issues

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

