Introduction to Data Protection: Backup to Tape, Disk and Beyond

Thomas Rivera / Hitachi Data Systems

Author:
SNIA - Data Protection & Capacity Optimization (DPCO) Committee
The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted.

Member companies and individual members may use this material in presentations and literature under the following conditions:

- Any slide or slides used must be reproduced in their entirety without modification.
- The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations.

This presentation is a project of the SNIA Education Committee.

Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney.

The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.
About the SNIA DPCO Committee

- This tutorial has been developed, reviewed and approved by members of the Data Protection and Capacity Optimization (DPCO) Committee which any SNIA member can join for free.

- The mission of the DPCO is to foster the growth and success of the market for data protection and capacity optimization technologies:
 - Online DPCO Knowledge Base: www.snia.org/dpco/knowledge
 - Online Product Selection Guide: http://sniadataprotectionguide.org

- 2015 goals include educating the vendor and user communities, market outreach, and advocacy and support of any technical work associated with data protection and capacity optimization.

Check out these SNIA Tutorials at www.snia.org/education/tutorials

- Advanced Data Reduction Concepts
- Data Protection in Transition to the Cloud
- Trends in Data Protection
Abstract

Introduction to Data Protection: Backup to Tape, Disk and Beyond

Extending the enterprise backup paradigm with disk-based technologies allow users to significantly shrink or eliminate the backup time window. This tutorial focuses on various methodologies that can deliver efficient and cost effective solutions. This includes approaches to storage pooling inside of modern backup applications, using disk and file systems within these pools, as well as how and when to utilize Continuous Data Protection, deduplication and virtual tape libraries (VTL) within these infrastructures.

Learning Objectives:

- Get a basic grounding in backup and restore technology including tape, disk, snapshots, deduplication, virtual tape, and replication technologies
- Compare and contrast backup and restore alternatives to achieve data protection and data recovery
- Identify and define backup and restore operations and terms
Agenda

- Fundamental concepts in Data Protection
- Overview of Backup Mechanisms
- Backup Technologies
- Appendix
Data Protection: Defined

- Data protection is about data availability

- SNIA definition of Data Protection: *Assurance* that data is not corrupted, is accessible for authorized purposes only, and is in *compliance* with applicable requirements

- There are a wide variety of tools available to us to achieve data protection, including backup, restoration, replication and disaster recovery

- It is critical to stay focused on the actual goal -- availability of the data -- using the right set of tools for the specific job -- within time and budgets

- Held in the balance are concepts like the value of the data (data importance or business criticality), budget, speed, and cost of downtime
The Process of Recovery

Detection
- Corruption or failure reported

Diagnosis / Decision
- What went wrong?
- What recovery point should be used?
- What method of recovery should be used -- overall strategy for the recovery?

Restoration
- Moving the data from backup to primary location
- From tape to disk, or disk to disk, or cloud to disk; Restore the lost or corrupted information from the backup or archive (source), to the primary or production disks.

Recovery – Almost done!
- Application environment - perform standard recovery and startup operations
- Any additional steps
 - Replay log may be applied to a database
 - Journals may be replayed for a file system

Test and Verify
Traditional Recovery

- Last Known-Good Image
- Modifications Since Last Image
- Recovery Point Objective
- Drives
- Recovery Time Objective

APPLICATION DOWNTIME

Analyze
Detect
Restore*
Recover

* Example: 10TB = 3 hours from disk, 5 hours from tape

Application Restarted
Protection Based on Recovery

Protection Methods
- Tape Backups
- Capture on Write
- Synthetic Backup
- Vaults
- Disk Backups
- Data Replication
- Archival
- Snapshots
- Cloud Backup

Recovery Methods
- Instant Recovery
- Restore from Tape, Disk, Cloud
- Point-in-Time Recovery
- Roll Back
- Search & Retrieve

Recovery Point
- Years
- Days
- Hrs
- Mins
- Secs

Recovery Time
- Secs
- Mins
- Hrs
- Days
- ????
Backup Methodologies

- **Cold**
 - Offline image of all data
 - As backup window shrinks & data size expands, cold backup becomes untenable
 - Cheapest and simplest way to backup data

- **Application Consistent**
 - Application supports ability to take parts of data set offline during backup
 - Application knows how to recover from a collection of consistent pieces
 - Avoids downtime due to backup window

- **Crash Consistent or Atomic**
 - Data copied or frozen at the exact same moment across entire dataset
 - Application recovery from an atomic backup similar to an application failover
 - Rebuilding may be needed
 - No backup window
Data Protection Design Trade-offs

Assessing your priorities

- Backup window
 - Shorten or eliminate
- Recovery Time Objective (RTO)
 - Speed of recovery
 - What is the cost of application downtime?
- Recovery Point Objective (RPO)
 - Amount of data loss
 - How far back in time to recover data?
- Move data offsite for DR

There are trade-offs everywhere

- Newer technology improves but may not eliminate trade-offs
 - Cost, downtime, business impact
- Need to identify the priority order, and establish SLA targets for each data type
 - What is the cost of a lost application?
Backup to Tape, Disk and Beyond

- Fundamental concepts in Data Protection
- Overview of Backup Mechanisms
- Backup Technologies
- Appendix
Backup Networking 101

Network Clients

Application Hosts

Backup Hosts

Network Attached Storage

Direct Attached Storage

SAN Attached Storage

SAN

Backup Targets

LAN
“Cloud” Backup

Network Attached Storage

Direct Attached Storage

SAN Attached Storage

Backup Targets

SAN

Application Hosts

Backup Hosts

Network Clients

LAN

WAN

CLOUD
Typical Backup Topology Components

- **Backup Management Server**
 - Could be a single server or on some clients, or server(s) in the cloud
 - Owns the Metadata catalog
 - Must protect the catalog

- **Storage Node or Media Server**
 - Collects the data from the Agent
 - Read and writes to a secondary storage device

- **Agent**
 - Manages the collection of the data and Metadata
 - Traditional thin client or modern intelligent client

- **Application Server**
 - Server that owns (produces) the data
 - Maybe structured or unstructured data

- **Secondary Storage**
 - Target media (destination) for the backup data
LAN Backup

- Backup server receives data and Metadata from application server across the LAN
 - LAN is impacted by both backup and restore requests
 - Application server may be impacted by storage I/O
 - CIFS, NFS, iSCSI, NDMP, or vendor specific
The application server allocates a snapshot/mirror of the primary storage volume to a media server that delivers the data over the LAN or SAN.

- Media server must understand the volume structure
 - Mirror: Application server impacted when creating the mirror
 - Snapshot: Application server impacted by volume access
- Metadata over the LAN to the backup server
Server-free Backup (Server-less)

- Backup server delegates the data movement and I/O processing to a "Data-mover" enabled on a device within the environment
 - Network Data Management Protocol (NDMP)
 - NDMP is a general open network protocol for controlling the exchange of data between two parties
Cloud Backup

- Intelligent host-based agent
 - Saves changes and unique blocks
- Security and control issues
 - Secure VPN / IPsec Tunnel
 - Encryption “in-flight” and “at-rest”
- (-) WAN network performance
 - Can use local cache to mitigate (“hybrid cloud”)
- (+) Low CAPEX
- (+) Off-site protection
Traditional Backup Schedules

- **Full Backup**
 - Everything copied to backup (cold or hot backup)
 - Full view of the volume at that point in time
 - Restoration straight-forward as all data is available in one backup image
 - Huge resource consumption (server, network, tapes)

- **Incremental Backup**
 - Only the data that changed since last full or incremental
 - Change in the archive bit
 - Usually requires multiple increments and previous full backup to do full restore
 - Much less data is transferred

- **Differential backup**
 - All of the data that changed from the last full backup
 - Usually less data is transferred than a full
 - Usually less time to restore full dataset than incremental
Synthetic Backup & Incremental Forever

Synthetic Full Backups
- Incremental backups are performed each day
 - Full backups are constructed from incrementals typically weekly or monthly
 - Less application server and network overhead

Incremental Forever
- Incremental backups are performed every day
- Primary backups are often sent to disk-based targets
- Collections of combined incrementals used for offsite copies
 - Usually consolidate images from clients or application and create tapes
 - May construct synthetic full in the cloud
What gets Backed Up and How

File-level backups
- Any change to a file will cause entire file to be backed up
- Open files often require special handling SW
 - Open files may get passed over – measure the risks
- PRO: Ease of BU and restore CON: Moves tons of data

Block-level backups
- Only the blocks that change in a file are saved
- Requires client-side processing to discover changed blocks
- PRO: Smaller backups, Less network impact, Faster
- CON: Client-side impact, increased complexity

Client-side backups
- Intelligent agent monitors changes and protects only new blocks
- Agent enables advanced technology, granular backups and user policies
- Deduplication can enable network efficiency, reduce BU data volume
- PRO: Efficiently distributes work CON: Complex client/server
Backup to Tape, Disk and Beyond

- Fundamental concepts in Data Protection
- Overview of Backup Mechanisms
- Backup Technologies
- Appendix
Introduction to Tape

- Sequential access technology
 - Versus random access
- Can be removed and stored on a shelf or offsite
 - Disaster Recovery
 - Encrypted, Archived for compliance?
 - Reduce power consumption
- Media replacement costs
 - Tape life, reusability
- Performance and Utilization
 - Can accept data at very high speeds, if you can push it
 - Streaming and multiplexing
- Typically Managed by backup and recovery software
 - Controls robotics (Inventory)
 - Media management

Tape Library

Tape is not Dead!
Tape Based Backup: Considerations

- Tape drives run faster than most backup jobs – Is this good?
 - Matching backup speed is more important than exceeding it
 - Avoid shoe-shining

- Slower hosts can tie up an expensive drive
 - It’s a shame to waste a drive on these hosts

- Slower tapes can tie up expensive (important) servers
 - It is a shame to let the tape drive throttle backup servers
 - Slow backup can impact production servers as well

- Replacing your tapes may not solve your backup challenges
 - A well designed backup architecture is the best answer

- If backup target speed is your issue:
 - Consider alternates such as virtual tape (VTL) or D2D2T

- Security, security, security……..
Introduction to B2D / D2D

- **What?**
 - Backup to Disk / Disk to Disk Backup
 - Disk as a primary backup target

- **Why?**
 - Performance and reliability
 - Reduced backup window
 - Greatly improved restores
 - RAID protection
 - Eliminate mechanical interfaces
 - More effective sharing of backup targets

- **Considerations**
 - Fibre Channel Disks versus SATA versus SAS
 - I/O random access vs. MB/s sequential
 - SAN, NAS or DAS
 - VTL or mirroring
 - Consider a mix of Disk and Tape (D2D2T)
 - Consider a capacity-optimized appliance
Introduction to VTL

What:
- Virtual Tape Libraries emulate traditional tape
- Fits within existing backup environment
- Easy to deploy and integrate
- Reduce / eliminate tape handling

Why:
- Improved performance and reliability (see B2D)
- Reduced complexity versus straight B2D or tape
- Unlimited tape drives reduce device sharing, improve backup times
- Enables technologies such as remote replication, deduplication

Considerations:
- Easy to manage in traditional backup software environment
- Can extend the life of current physical tape investment
Introduction to CDP

What:
- Continuous Data Protection
- Capture every change as it occurs
- May be host-based, SAN-based, array-based
- Protected copy in a secondary location
- “Roll back” to any point in time

How:
- Block-based
- File-based
- Application-based

Why:
- Implementations of true CDP today are delivering zero data loss, zero backup window and simple recovery; CDP customers can protect all data at all times and recover directly to any point in time
- “Near CDP” (Snapshots, checkpoints) may also help but will not catch every change
Contrasting CDP and Replication

- **Replication is not CDP (Synchronous)**
 - Replica or mirror is a single PIT copy of the data
 - Multiple replicas plus logs can create multiple points in time

- **Snapshots are not CDP (Asynchronous)**
 - Data loss possible if crash or corruption happens between snaps
 - Snapshots frequently to same system as primary
 - Lack continuous index with embedded knowledge of relationship of data to files, folders, application and server

- **Backups (even multiple backups) are not CDP:**
 - Schedule frequency
 - Database logging can provide additional granularity but still not CDP
Introduction to Snapshots

What?

- A disk based “instant copy” that captures the original data at a specific point in time
 - Snapshots can be read-only or read-write.
- Also known as Checkpoint, Point-in-Time, Stable Image, Clone
- Often handled at the storage level
 - May be done at application server, hypervisor, and/or in cloud

Why?

- Allows for complete backup or restore
 - With application downtime measured in minutes (or less)
- May be able to be combined with replication
- Most vendors: Image only = (entire Volume)
- Backup/Restore of individual files is possible
 - If conventional backup is done from snapshot
 - Or, if file-map is stored with Image backup
Snapshot Considerations

<table>
<thead>
<tr>
<th></th>
<th>Full Copy Snapshots</th>
<th>Differential (or “Delta”) Copy Snapshots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upsides</td>
<td>➤ Minimal performance impact</td>
<td>➤ Less storage consumption</td>
</tr>
<tr>
<td></td>
<td>➤ Independent copy available for DR</td>
<td>➤ Often takes advantage of cheaper disk</td>
</tr>
<tr>
<td>Downsides</td>
<td>➤ High disk utilization</td>
<td>➤ Performance may be impacted</td>
</tr>
<tr>
<td></td>
<td>➤ No GEO-redundant protection</td>
<td>➤ Dependent on primary copy</td>
</tr>
<tr>
<td>Applications</td>
<td>➤ Disaster Recovery</td>
<td>➤ Backup source</td>
</tr>
<tr>
<td></td>
<td>➤ Near zero backup window</td>
<td>➤ Near zero backup window</td>
</tr>
<tr>
<td></td>
<td>➤ Fastest restore</td>
<td>➤ Fast restore</td>
</tr>
<tr>
<td></td>
<td>➤ Valuable for data repurposing</td>
<td>➤ Can help with data repurposing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➤ Beware performance impact</td>
</tr>
</tbody>
</table>
Introduction to Data Deduplication

What?
- The process of examining a data-set or I/O stream at the sub-file level and storing and/or sending only unique data
- Client-side SW, Target-side HW or SW, can be both client and target

Why?
- Reduction in cost per terabyte stored
- Significant reduction in storage footprint
- Less network bandwidth required

Considerations
- Greater amount of data stored in less physical space
- Suitable for backup, archive and (maybe) primary storage
- Enables lower cost replication for offsite copies
- Store more data for longer periods
- Beware 1000:1 dedupe claims – Know your data and use case
- Multiple performance trade-offs

Check out SNIA Tutorial: Advanced Deduplication Concepts
Factors Impacting Space Savings

<table>
<thead>
<tr>
<th>More Effective Deduplication</th>
<th>Less Effective Deduplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data created by users</td>
<td>Data captured from mother nature</td>
</tr>
<tr>
<td>Low change rates</td>
<td>High change rates</td>
</tr>
<tr>
<td>Reference data and inactive data</td>
<td>Active data, encrypted data, compressed data</td>
</tr>
<tr>
<td>Applications with lower data transfer rates</td>
<td>Applications with higher data transfer rates</td>
</tr>
<tr>
<td>Use of full backups</td>
<td>Use of incremental backups</td>
</tr>
<tr>
<td>Longer retention of deduplicated data</td>
<td>Shorter retention of deduplicated data</td>
</tr>
<tr>
<td>Continuous business process improvement</td>
<td>Business as usual operational procedures</td>
</tr>
<tr>
<td>Format awareness</td>
<td>No format awareness</td>
</tr>
<tr>
<td>Temporal data deduplication</td>
<td>Spatial data deduplication</td>
</tr>
</tbody>
</table>

Don’t forget about compression!
Next Steps in Data Protection

♦ Choose the appropriate level of protection
 ♦ Assess risk versus cost versus complexity
 ♦ Include your “customers” in your decisions

♦ Match RPO, RTO goals with technology
 ♦ Consider resources required to support your decisions
 ♦ Consider centralized versus distributed solutions

♦ Performance is ALWAYS a consideration
 ♦ Assess your system today for strengths and weaknesses
 ♦ A new box or new SW may NOT be the answer

♦ Use archive to reduce the volume of data to be backed up
♦ When in doubt, call in the experts
Where to Get More Information

Related tutorials
- Active Archive – Data Protection for the Data Center
- Advanced Deduplication Concepts
- Trends in Data Protection and Restoration Technologies
- Understanding Data Deduplication
- Retaining Information for 100 Years

Visit the Data Protection and Capacity Optimization Committee website http://www.snia.org/dpco/

DPCO online Product Selection Guide
 - http://sniadataprotectionguide.org/
The SNIA Education Committee thanks the following individuals for their contributions to this Tutorial:

Authorship History
Original Author: DPCO Committee, 8/2010
Updates:
- DPCO Committee, 9/2010
- DPCO Committee, 2/2012
- DPCO Committee, 8/2012
- DPCO Committee, 2/2013
- DPCO Committee, 8/2013
- DPCO Committee, 3/2015

Additional Contributors
- David A. Chapa
- Kevin Dudak
- Mike Dutch
- Mike Fishman
- Larry Freeman
- David Hill
- Jason iehl
- Tom McNeal
- Gene Nagle
- Ronald Pagani
- Thomas Rivera
- Tom Sas
- Gideon Senderov
- Paul Talbut
- SW Worth

Please send any questions or comments regarding this SNIA Tutorial to tracktutorials@snia.org
Local Data Mover for Performance

- Sometimes known as LAN-Free backup
- Application server reads and writes the data locally
 - Application server acts as a media server
 - Storage is accessible by the application server
- Minimal LAN impact
- Significant application server impact