Health monitoring & predictive analytics
To lower the TCO in a datacenter

Christian B Madsen & Andrei Khurshudov
Seagate Technology
christian.b.madsen@seagate.com
Outline

1. The opportunity
2. Our vision & implementation
3. Use cases
4. Summary
The opportunity
What if…

Seagate offered you a technology that could help you

- Improve datacenter efficiency
- Optimize system management
- Reduce potential cost of operation
The problem

- **1 billion hard drives** will be used in cloud datacenters by 2020, highlighting the need to manage drive health at scale

- One total outage per datacenter is statistically expected every year

- 80% of those outages are not completely explained (or linked to root causes)

- $700,000 is the average cost per incident
 - $8,000 is the average cost per minute of an unplanned outage

- **Up to 10% of datacenter accidents are related to storage**

Source: Seagate Strategic Marketing and Research 2013
Better drive management will lower the TCO

Top 4 challenges in drive management

1. **Drive health monitoring**
 - Need reliable key performance indicators to track drive health status

2. **Drive failure prediction**
 - “Ultimately, we want to know when our drives will fail so we can take actions before that happens”

3. **Drive failure diagnostics and management automation**
 - Need to correctly identify and quickly resolve issues
 - Need to prevent false alerts to reduce cost of failure handling

4. **Drive lifespan extension**
 - Need to know how to optimize operating environment for better reliability
 - Need to reuse partially good drives (should be possible with in-drive diagnostic, IDD)
Our vision & implementation
Our vision

Monitoring, analytics, prediction and control – “The internet of things”

• Drive-centric health monitoring
• Analytics and predictive models
• Closed-loop automation
Functional diagram

- Monitoring, intelligent decisions and automation

Closed-loop automation

- Monitor
 - Compliance (threshold)
 - No
 - Exception (alert)
 - Recommended action
 - Choose action
 - Resolution

Example

- Monitor
 - Drive health
 - Not passing
 - Drive predicted to fail
 - Reset or turn off drive
 - Choose action
 - Turn off drive

Automation
Choosing action from recommended action can be automated by tying it to the specific application or saving choices.
Implementation

Architecture overview

Cloud Gazer™ Elements

- Storage Server
 - Drives
- Storage Server
 - Drives

Agents

Real-time metric aggregation

Data pool (10,000s of drives)

Server

- Clusters
- Servers
- Drives

Query data
Check thresholds
Manage drives

Cloud Gazer™ Dashboard

REST API Calls

Storage Software

Implementation Architecture overview
Use cases
Compliance (thresholds)

- Degradation and performance warnings
Compliance (thresholds)

- Degradation and performance warnings

Overload detection
Detecting and reporting when drive load exceeds design limits

Projected Failure Rate Compared to Default (%)

- Danger zone
- Overstressed region
- Datacenter failure rate

- **Overloaded drives**: 19 overloads
- Inspect the workload statistics page, heat map or list view to see if the trend is persistent and affects reliability

Health Tiles (2 minutes ago)

- **Failing Drives**: 0% (0 Drives / 402 Drives)
- **Drive Capacity Utilization**: 0% (0 Drives / 402 Drives)
- **Overheated Drives**: 72% (290 Drives / 402 Drives)
- **Overloaded Drives**: 5% (19 Drives / 402 Drives)
Compliance (thresholds)

- Degradation and performance warnings

Recommended action
How to increase drive reliability

Overload detection
Detecting and reporting when drive load exceeds design limits
Compliance (thresholds)

- Degradation and performance warnings

Recommended action
How to increase drive reliability

Overload detection
Detecting and reporting when drive load exceeds design limits

HDD population failure rate
Measuring stress and estimating failure acceleration of the disk drive population in real time. Relies on the proprietary failure prediction algorithms

Projected Failure Rate Compared to Default (%)

- **Overstressed region**: Datacenter failure rate
- **Danger zone**: Overload detection

Health Tiles (2 minutes ago)

- **19 overloaded drives**: Inspect the workload statistics page, heat map or list view to see if the trend is persistent and affects reliability.

- **Failing Drives**: 0% 0 Drives / 402 Drives
- **Drive Capacity Utilization**: 0% 0 Drives / 402 Drives
- **Overheated Drives**: 72% 290 Drives / 402 Drives
- **Overloaded Drives**: 5% 19 Drives / 402 Drives
Compliance (thresholds)

Degradation and performance warnings

Failure detection
Warning about expected drive failures. Relies on the proprietary failure prediction algorithms that use unsupervised machine learning techniques. Expected average failure prediction time window is from 9 days to 12 days.

Overload detection
Detecting and reporting when drive load exceeds design limits.

Recommended action
How to increase drive reliability.

HDD population failure rate
Measuring stress and estimating failure acceleration of the disk drive population in real time. Relies on the proprietary failure prediction algorithms.

Projected Failure Rate Compared to Default (%)
- Projected
- Default
- Overstressed region

Datacenter failure rate

Failing Drives: 0%
Drive Capacity Utilization: 0%
Overheated Drives: 72%
Overloaded Drives: 5%

19 overloaded drives: Inspect the workload statistics page, heat map or list view to see if the trend is persistent and affects reliability.

Health Tiles (2 minutes ago)
- Watching: 1 clusters, 1 servers, 3 drives
- Failures: 0 Drives / 402 Drives
- Overheats: 290 Drives / 402 Drives
- Overloads: 19 Drives / 402 Drives

2015 Data Storage Innovation Conference. © Seagate Technology. All Rights Reserved.
Workload optimization

Drive visibility tools to improve workload balancing

Before Load balancing issues

Workload predominantly hitting one server

After Workload distributed over servers and time

Workload peaked on Sunday
Unsupervised machine learning and failure prediction

- No interaction between drive set, no prior knowledge

For now, an average failure prediction window is on the order of 9 to 12 days
Failure prediction accuracy ranges from 55% to 90%
Prediction and follow up actions

- Heat map indicates drives at risk and you can issue drive tests (DST, IDD, …) to resolve or corroborate.

Systematic failure predicted: 3 out of 5 drives predicted to fail sit in end location of servers.
Find failure triggers

Root cause tools including a drive temperature heat map can help you triage the cause of your drive issues.

- Systematic failure predicted: 3 out of 5 drives predicted to fail sit in end location of servers.

- Common factors for drives in the end position is a cooler temperature. Therefore increasing the server temperature may reduce the (dominant) failure mechanism and increase drive reliability.
Failure prediction lead time

We can predict drives will fail on average 9 -10 days before the failure

Case study 1, we predicted most drives (118 drives) to fail 12 days prior to failure

Case study 2, we predicted 5 drives to failed 23 days prior to failure, 2 drives 22 days prior to failure,… 2 drives just one day in advance

Currently catch 55-90% of failures ahead of time
Summary
Why Cloud Gazer™?

- Truly drive-centric management tool for the cloud
- Most efficient tool for extracting drive health information using Seagate IP
 - Nobody knows drives better than us
 - Freeware utilities are frequently wrong
- Runs on any Linux system with little overhead (<1%)
 - Windows is next
- Data can be collected, monitored and analyzed locally or in the Cloud
- ReSTful API to interact with other software
- New analytics, prediction, AI, and control capabilities are added continually
- Drive repair will be possible with in-drive diagnostic
- Enclosure control will be possible by summer 2015

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Seagate's CloudGazer™</th>
<th>Competition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Error Rate</td>
<td>Yes</td>
<td>Partial</td>
</tr>
<tr>
<td>Spin Up Time</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Start/Stop Count</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Retried Sectors Count</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Seek Error Rate</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Power On Hours</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Power Cycle Count</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Reported Uncorrectable</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Command Timeout</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>High Fly Wristas</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Emergency Retact Count</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Load/Unload Count</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Temperature</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ECC Count</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Load Cycle Count</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Pending Sparing Count</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Head Flight Hours</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Lifetime Wristas</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Lifetime Reads</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Flags 1</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RV Abs Mian</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Motor Power</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Critical Event Errors</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Seagate drives
Questions?