PCIe SSD Devices - A Year Later
Standards and Drivers

Robert Randall
Windows Device Driver Architect
Micron Technology, Inc.
Learning Objectives

- Review from last year – where did we start?
- Understand the new developments in the PCIe SSD technology space; standards and open source.
- Understand what PCIe SSDs are available today and their characteristics.
- Understand NAND factors; SLC vs. MLC, risks, limitations, fit.
- Understand deployment models; caching, hot-spots, etc.
Review – why PCIe SSDs?

- No 2.5” form factor restrictions
 - More physical space
 - Higher capacity
 - Room for active cooling – NAND gets hot during writes

- PCIe Performance
 - GEN2 500 MB/sec per lane per direction
 - GEN3 1 GB/sec per lane per direction
 - Example: GEN3 x16
 - Nominal performance of 16 GB/sec
Review – Protocol status last year

- T10 SCSI Over PCIe® Architecture (SOP)
 - Transport layer spec for SCSI of PCIe
 - Last year, in early stage, work in progress
 - Strong support, SCSI compliant
- T10 PCIe® architecture Queuing Interface (PQI)
 - Companion document to SOP
 - Host to controller specification.
 - Well, that is new.
 - May use NVM-Express as the PQI implementation
Review – Protocol status last year

- NVM-Express
 - Design goals
 - Scalability, performance, simplicity
 - Ease of implementation
 - Last year, industry support (80 companies) and some adoption
 - Intel demos at Intel Developers Conference.
 - [Open source driver for Linux](#) (GPL)
Protocol status this year

- T10 SOP and PQI
 - SOP almost a standard (letter ballot) and PQI not far behind. Amazing progress in one year.
- NVM-Express (NVMe)
 - Open source driver for Microsoft Windows (BSD) hosted at Open Fabrics Alliance.
 - NVMe Compliance Suite testing framework
 - Intel in partnership with UNH-IOL
 - Wiki
- Open source projects are active.
Protocols – What’s the difference?

- **T10 SCSI Over PCIe (SOP) & PCIe Queuing Interface (PQI)**
 - SOP - Defines a standard way of transporting SCSI commands over PCIe.
 - PQI – Defines a standard way for a host and a controller to queue SCSI commands.
 - You may use NVMe as the PQI for SOP.

- **NVM-Express**
 - Simple protocol (not SCSI).
 - Defines host to controller interface.
Protocols – What’s the difference

- Complimentary, not competitive
 - T10 SOP & PQI
 - Preserves investment in SCSI protocol
 - Existing testing tools can be re-used.
 - Storage may be shared by several initiators
 - May use NVM-Express as PQI implementation
 - NVM-Express
 - No SCSI target implementation needed
 - Promotes a vision of tiered memory similar to tiered storage.
 - Post NAND like Phase Change Memory (PCM).
PCIe SSDs available now - solutions

- Proprietary host to controller interface
 - No NVM-Express or SOP & PQI solutions in the market but expect some soon.
- A wide variety of proprietary options from many vendors
 - DELL, Fusion IO, Intel, LSI, Micron, OCZ, Virident, and others
 - Range from consumer grade to enterprise grade
 - Price and performance vary
Intel has demonstrated NVMe PCIe SSD at IDCs.

IDT NVMe controllers available
- PCIe GEN3 x 8 and 2 x 4 in single package.
- See IDT website for parts.

PCle GEN3 improvements
- Encoding overhead drops from ~20% to ~1.5%
- Over twice as fast as PCIe GEN2
NAND factors SLC vs. MLC

- **Single Level Cell**
 - One bit per cell
 - More reliable
 - Longer wear life
 - High TBW
 - Lower power consumption
 - More expensive / MB
 - Much more…
 - Usually reserved for enterprise class devices

- **Multi Level Cell**
 - Two bits per cell
 - Twice the capacity per cell
 - Less expensive / MB
 - Shorter wear life
 - Lower TBW
 - Slower write speed
 - 1/3 that of SLC
 - Less reliable
 - Higher bit error ratio
NAND factors SLC vs. MLC

- MLC storage devices typically use firmware and/or drivers to improve performance, extend TBW and improve reliability
 - Caching algorithms
 - Improve write performance (write-back)
 - Improve read performance
 - More robust error correction
 - Intelligent wear leveling
 - Extend the life of each cell
Deployment models

- Where do enterprise PCIe SSDs make sense?
 - If time is money, PCIe SSDs offer the best performance in the smallest package.
- Choice between
 - SATA or SAS attached SSDs
 - Traditional form factors
 - Hot swap is traditional and easy to adopt
 - PCIe SSDs
 - Non-traditional storage form factor – PCIe adapter cards
 - One traditional form factor – DELL 2.5” PCIe hot swap
Deployment models

- Example, requirements call for 500K IOPs
 - 1 15K SAS drive delivers ~175 - ~200
 - 1 SATA SSD drive delivers ~400 - ~20k
 - 1 PCIe SSD SLC drive delivers ~ 50K – ~1.6M IOPs
 - Power, cooling, space trade-offs.
 - FC disk array with ~2500 SAS drives or ~3 PCIe SSDs
 - Power consumption ~18525W vs. ~90W
 - Space - 3 PCIe Slots vs. rack of disk array.
 - Cooling – BTUs…
Deployment models

- Heavy write environments need to be careful
 - TBW – how long will the device last before it must be replaced?
 - Power consumption will be higher, more heat.
- Heavy read environments
 - TBW will be longer
 - Less power consumption, less heat.
- Best fit decisions are ALWAYS workload specific
 - Do your homework before making a decision
Deployment trends

- Cloud computing expected to drive adoption of SSDs in general
 - Less power per GB
 - More IOPs and higher bandwidth per device
 - Certain applications will experience big ROI
 - Think Netflix hosted on Amazon cloud
 - All content access is reads
 - Density, power, cooling, performance all favor PCIe SSDs
Wrap up

- Q & A
- Share opinions
- Discuss trends
- How will this impact management models?
References

- NVM-Express http://www.nvmexpress.org
- Open Fabrics http://www.openfabrics.org
- T10 http://www.t10.org/drafts.htm
- PCI http://www.pci.sig