Intel® NAS Performance Toolkit

Anthony Bock
Frank Hady
Storage Technology Group, Intel Corporation
Agenda

- Home/SMB Performance
- NAS Performance Toolkit Introduction
- Consumer NAS Performance Overview
- Using NASPT to improve NAS Performance
- NASPT v1.7 Announcement
Role of DH/SMB NAS Evolving

- More Files/More Data
- Expanding Usage Models
- New Client Platforms
 - Laptops with SSDs
 - MIDs
 - Nettops/Netbooks
 - Connected TVs

Expanding Role for Consumer NAS Devices
NASPT Designed Specifically for Consumer NAS Requirements

- Existing Tools Repurposed from other Uses
 - Local Storage/Network Tools
 - Commercial Desktop Benchmarks
 - Enterprise Storage Tools
- Need: Model Wide Range of Consumer NAS Workloads
 - Useful for Developers
 - Compelling to Consumers
Performance Tool Requirements

End User Relevant

- Usage derived Test Cases
- Easy to Understand Measurements

Easy to Use

- Minimal Learning Curve
- Easily configured and run
- No special test hardware

Accurate

- Minimal test client impact
- Reproducible measurements
- Comparable across NAS devices
Agenda

- Home/SMB Performance
- NAS Performance Toolkit Introduction
- Consumer NAS Performance Overview
- Using NASPT to improve NAS Performance
- NASPT v1.7 Announcement
Intel NAS Performance Toolkit

- Models real applications
 - Trace based workloads
 - Enables file level buffering
 - Writes to both existing and new files
- Controls for:
 - Drive layout
 - Background processes
- Includes graphical analyzer
NASPT Based on Real Workloads

Serving Two Video Streams
NASPT Based on Real Workloads

Copying a Whole Directory
NASPT Based on Real Workloads

Browsing a Collection of Photos
Application Based Workloads

<table>
<thead>
<tr>
<th>Test</th>
<th># files</th>
<th>% seq.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD Video Play</td>
<td>1</td>
<td>99.5%</td>
<td>720p HD stream from Windows Media Player® 256kB reads</td>
</tr>
<tr>
<td>2HD Video Play</td>
<td>2</td>
<td>18.1%</td>
<td>2x playback</td>
</tr>
<tr>
<td>4HD Video Play</td>
<td>4</td>
<td>9.6%</td>
<td>4x playback</td>
</tr>
<tr>
<td>HD Video Record</td>
<td>1</td>
<td>99.9%</td>
<td>720p HD stream, 256kB writes</td>
</tr>
<tr>
<td>HD Video Play & Record</td>
<td>2</td>
<td>17.8%</td>
<td>1 playback, 1 record simultaneously</td>
</tr>
<tr>
<td>Directory Copy From NAS</td>
<td>2833</td>
<td>52.5%</td>
<td>64kB reads</td>
</tr>
<tr>
<td>Directory Copy To NAS</td>
<td>2833</td>
<td>52.5%</td>
<td>Predominantly 64kB writes, wide scattering under 16kB</td>
</tr>
<tr>
<td>File Copy From NAS</td>
<td>1</td>
<td>100%</td>
<td>4GB file copy, 64kB reads</td>
</tr>
<tr>
<td>File Copy To NAS</td>
<td>1</td>
<td>100%</td>
<td>64kB writes</td>
</tr>
<tr>
<td>Photo Album</td>
<td>169</td>
<td>80%</td>
<td>All reads – wide distribution of sizes</td>
</tr>
<tr>
<td>Office Productivity</td>
<td>607</td>
<td>81.3%</td>
<td>Reads & writes; small, 1kB & 4kB reads; Mostly 1kB writes</td>
</tr>
<tr>
<td>Content Creation</td>
<td>98</td>
<td>38.6%</td>
<td>95% writes; 1k, 4k & little reads; Writes up to 64kB</td>
</tr>
</tbody>
</table>

More realistic workloads than synthetic tests
Write to New vs. Write to Existing

Overwriting an existing file and writing to a new file differ in performance:
- Applications do both
- Many tools use just one method
- To better model real apps, NASPT can use either approach as specified by the workload

Source: NASPT Measurements
Disk Layout Matters to NAS Performance

- Disk layout has significant impact on performance
- Applications have no control over layout
- Some tools use direct/unbuffered I/O to force idealized layout
- NASPT’s Batch Mode performs 5 trials with independent disk images
 - Result is median of all five trials
 - Retains output traces from all trials

Source: NASPT Measurements
Agenda

- Home/SMB Performance
- NAS Performance Toolkit Introduction
- Consumer NAS Performance Overview
- Using NASPT to improve NAS Performance
- NASPT v1.7 Announcement
NAS Usage: Still & Streaming Media

Digital Photo Browsing
(~10 minute fetch of 100+ images)

- Local HD
- Fastest NAS
- Slowest NAS

Storage Wait Time (Minutes)

- 5.6x slower than local HD
- 2.7x slower than fastest NAS

Video Distribution

- Maximum Throughput (MB/s)
- Source: NASPT Measurements

Interactive Usage Highlights Value of Performance
Consumer NAS Performance Varies Widely

Source: NASPT measurements

Be a NAS performance leader – Users will notice
Users Will Notice...

- Many users will already notice superior NAS performance
- As users upgrade networks, NAS performance becomes more and more visible

Source: NASPT Measurements
Agenda

- Home/SMB Performance
- NAS Performance Toolkit Introduction
- Consumer NAS Performance Overview
- Using NASPT to improve NAS Performance
- NASPT v1.7 Announcement
Realistic File Usage Enables NASPT to find Issues

NTFS and EXT3 Handle “Data Holes” Differently

Application
Two writes to file “foo” with never-written “data hole” between

NTFS
Gap is preserved as allocated but invalid disk space

EXT3
Gap is eliminated by abutting discontiguous writes

And with “file buffering” on, Windows* generates 1-byte hints

Combination Leads to Unintended Consequences for Linux* NAS

Application
Contiguous write stream

Network
Windows OS adds one byte writes to high offsets

EXT3 result
Severe fragmentation - ~18/MB
Low performance – 50% drop
Strict Allocation Doesn’t Quite Work

Samba’s included “strict allocate” feature fills gaps with zeroes

Disk layout improves dramatically

Files with many discontinuous writes and large gaps experience severe delays

Strict Allocation Doesn’t Quite Work

Application

Two writes to file “foo” with never-written “data hole” between

Strict Allocate

Gap is preserved by filling intervening space with zeroes

000000000

1

2

unwritten
Solution: Modify Samba Zero Fills

Two small changes improve strict allocate behavior with Windows* clients

- Skip zero fills when copying files
 - 1-byte hints don’t occur when file size is known ahead of time
- Only fill to 2MB past current end of file

```c
samba/source/smbd/vfs.c
vfs_fill_sparse(...)
{
  ...
  if (len <= st.st_size)
    return 0;
  //Impose limit on how much to write ahead of current position
  #define ALLOCATION_LIMIT 0x200000
  if (len - st.st_size > ALLOCATION_LIMIT)
    return 0;
  ...
}
```

```c
samba/source/modules/vfs_default.c:
vfswrap_ftruncate(...)
{
  int result = -1;
  SMB_STRUCT_STAT st;
  char c = 0;
  SMB_OFF_T currpos;
  START_PROFILE(syscall_ftruncate);
  /* ignore file fill when presented with new file of known size.
   * if (lp_strict_allocate(SNUM(fsp->conn)))
   *       result = strict_allocate_ftruncate(handle, fsp, fd, len);
   * END_PROFILE(syscall_ftruncate);
   * return result;
   */
  ...
}
```
Agenda

- Home/SMB Performance
- NAS Performance Toolkit Introduction
- Consumer NAS Performance Overview
- Using NASPT to improve NAS Performance
- NASPT v1.7 Announcement
NASPT Version 1.7 Available

- General usability enhancements
- Reduced run time
- Better controls for sources of variance
 - Variations in disk layout
 - Competition from background processes
- Users may add custom workloads

http://www.intel.com/software/naspt
http://www.intel.com/design/servers/storage/NAS_Perf_Toolkit.htm
Would this tool be valuable to you as an open source project?
How many would anticipate contributing code?