

Leveraging NFSv4 to Build a Federated File System Protocol

James Lentini jlentini@netapp.com NetApp, Inc.

Outline

- □ Introduction and overview
 - □ Motivation, background, and goals
 - □ Requirements, terms, and definitions
- Architecture and implementation
 - Basic resolution protocol
 - NFSv4 details
 - State of the standardization effort
- □ Conclusion

Introduction

- FedFs is an open protocol for a cross-platform, federated fileset namespace that can be used to build a very large file system.
 - FedFs is not a file system.
 - FedFs specifies how separate file servers can be joined together to create a common namespace.

Benefits of a Federated Namespace

- □ Simplified management
 - Clients only need to know how to mount the root (or some other part) of the namespace
- Replication: create copies of the namespace in different locations to provide
 - □ load balancing
 - □ high availablity
- Migration: change the physical container of a fileset transparently to clients

Requirements of the FedFs protocol

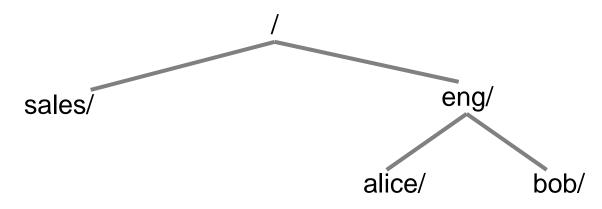
- □ Cross-platform: cross-vendor, cross-product, and cross-version
 - No customer lock-in
- □ Federated: control is decentralized
 - Admins retain control over their systems
- Leverages existing protocols
 - □ NFSv4, CIFS, LDAP, DNS
- No changes to existing protocols or client software

Influences

- □ IBM Almaden Research Center's Glamour Project http://www.almaden.ibm.com/StorageSystems/projects/glamour/
- UMICH CITI NFSv4 Project

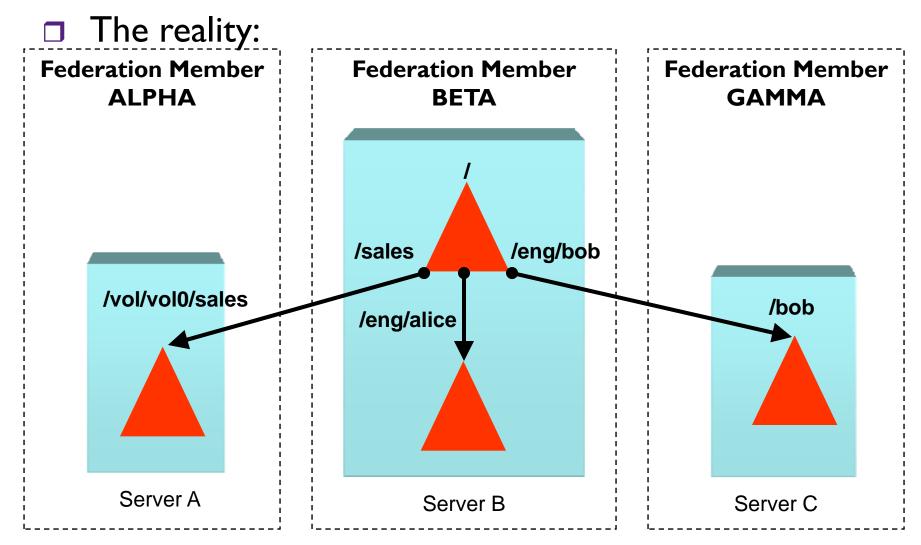
 http://www.citi.umich.edu/techreports/reports/citi-tr-06-1.pdf
- □ DCE/DFS, CMU AFS, ...

An Example Federation



Federation Member Federation Member Federation Member GAMMA ALPHA BETA **NSDB NSDB NSDB** File Servers File Servers File Servers (3)(5)(4)

An example federated namespace


■ The illusion:

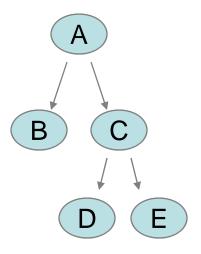
- □ A simple hierarchical namespace is what we want the client (and user) to see.
- Behind the scenes, things may be somewhat more complicated...

An example federated namespace

Terms and definitions

- ☐ Fileset: a directory tree (volume)
- FSN (fileset name): a fileset identifier that is independent of the representation of the fileset
 - Each FSN contains an FsnUuid (a UUID) and an NSDB location
- FSL (fileset location): network location of a fileset instance
- Junction: an object that provides a way for one fileset to reference another
- NSDB (namespace database): a service that tracks the mapping between FSNs and FSLs; implemented with LDAP

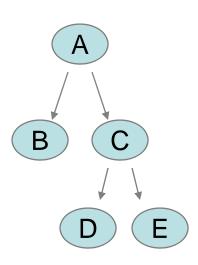
Outline



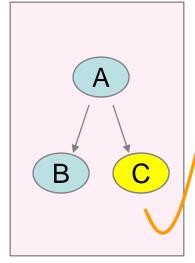
- Introduction and overview
 - Motivation, background, and goals
 - □ Requirements, terms, and definitions
- ☐ Architecture and implementation
 - Basic resolution protocol
 - NFSv4 details
 - □ State of the standardization effort
- □ Conclusion

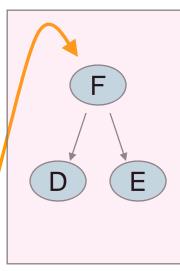
Namespace example

Namespace

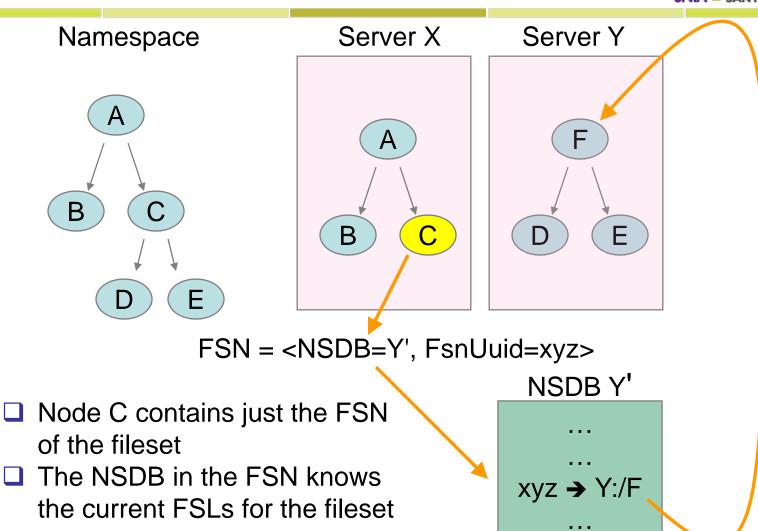


☐ Goal: store nodes A and B on server X and nodes C, D, and E on server Y


Naïve approach


Namespace

Server X

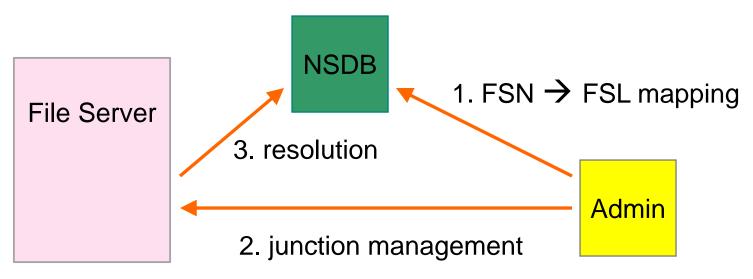

Server Y

- Implementation of the namespace is split across two servers.
- Server X knows to redirect accesses from node C to Y:/F.
- Problem: A local change on one server may require changes on another
 - X's Node C must be updated when Y's admin changes the location of F

FedFs approach

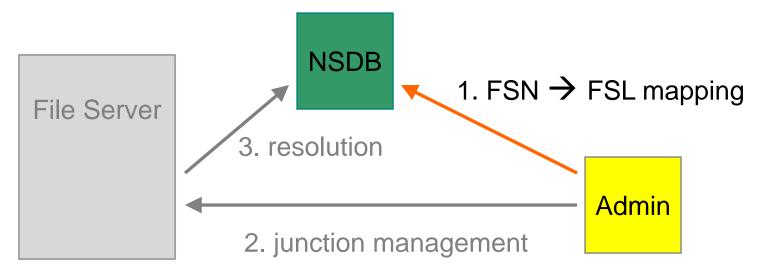
FedFs Steps

- □ Setup:
 - Admin creates FSN to FSL mapping(s) in NSDB
 - Admin creates junction on server
- On a client access:
 - Server determines if location is a junction
 - Server resolves junction's FSN to an FSL using the FSN's NSDB
 - Server returns a referral to the client


Three sub-protocols

- 1. Admin to NSDB (FSN → FSL mapping)
- 2. Admin to server (junction management)
- 3. Server to NSDB (resolution)

Note: no changes to client protocols

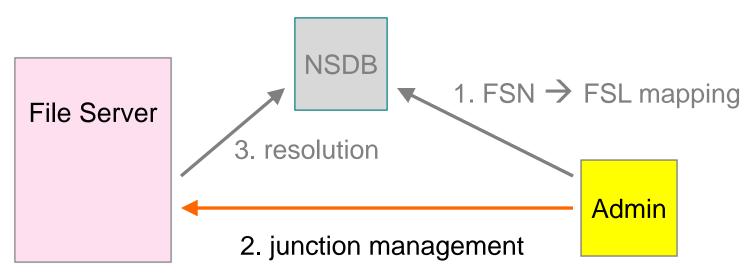


FSN → FSL Mapping

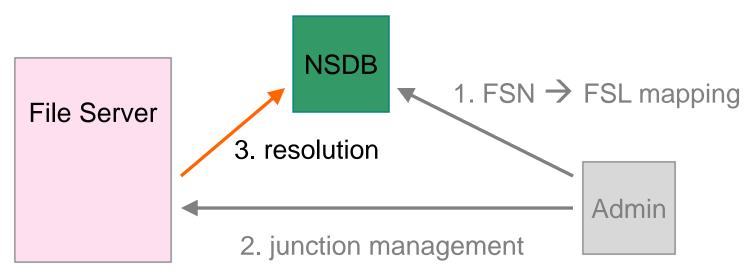
NFS Client

- Admin creates an FSL entry in the NSDB using LDAP with
 - UUID [RFC4122]
 - hostname (myserver.foo.com)
 - path (/vol/vol0/home)
 - type (NFSv4 or CIFS)

What is a FedFs Junction?


- ☐ A filesystem object used to link a directory name in the current fileset to the root of the target fileset
- ☐ A leaf object of a fileset
- An object that stitches together the federated namespace

Junction Management

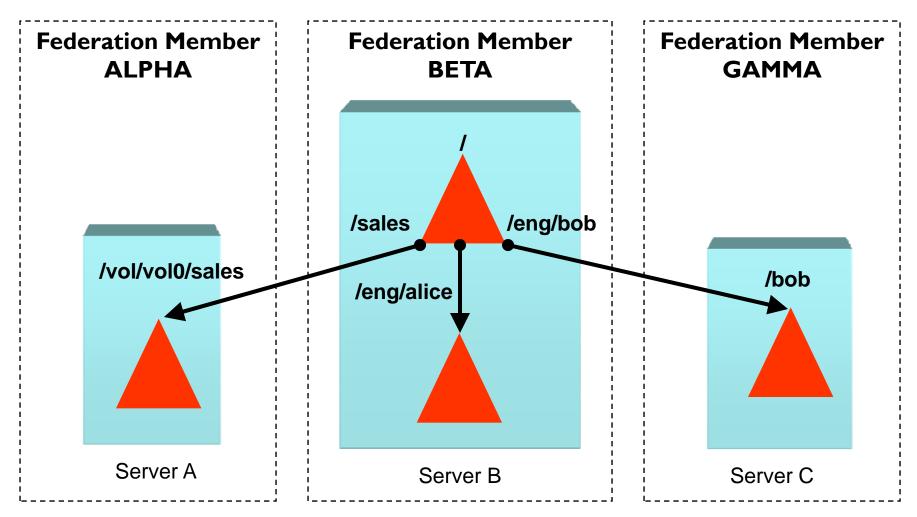

- Admin uses an ONC RPC protocol to
 - Create junctions
 - Delete junctions
 - Lookup FSNs

FSN Resolution

NFS Client □ File server looks up FSN to FSL mappings in NSDB using LDAP

NFSv4 Referrals (I)

- Referrals are an NFSv4 feature that permit a server to redirect a client to another location, possibly on another server.
- □ The server refers a client to another location by returning an ERR_MOVED. The client can discover the object's new location via the information in the
 - ☐ fs_locations attribute (v4)
 - ☐ fs_locations_info attribute (v4.1)
- □ Referrals supported in Linux as of 2.6.20


NFSv4 Referrals (2)

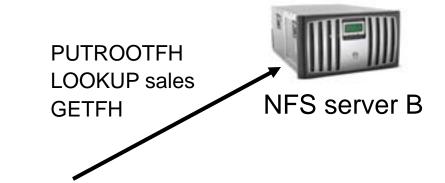
- Client sends PUTROOTFH, LOOKUP (sales), GETFH
- Server sends ERR_MOVED error to client
- Client sends GETATTR (fs_locations)
- Server sends fs_locations attribute with
 - fs_root -- path on current server
 - one or more pairs of
 - □ Server -- target server
 - □ Rootpath -- path on target server
 - fs_locations_info attribute extends fs_locations with additional information on replicas
- Client mounts rootpath from target server

An example federated namespace

Referral Example (I)

□Client mounts server B:/□User does "cd sales"

NFS Client


NFS server A

NSDB Server

Referral Example (2)

NFS Client

NFS server A



NSDB Server

- □Client mounts server B:/
- □User does "cd sales"

Referral Example (3)

- □Client mounts server B:/□User does "cd sales"
- □NFS server B determines sales is a junction

NFS Client

NFS server A

NSDB Server

Referral Example (4)

NFS server B

- ■User does "cd sales"
- NFS server B determines sales is a junction
- ■NFS server B queries NSDB for FSL

LDAP query

NFS Client

NFS server A

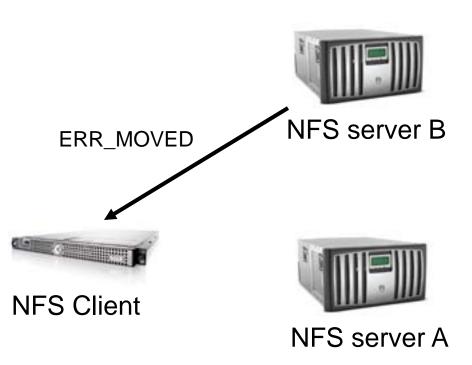
NSDB Server

Referral Example (5)

- □Client mounts server B:/
- ☐User does "cd sales"
- ■NFS server B determines sales is a junction
- □NFS server B queries NSDB for FSLs

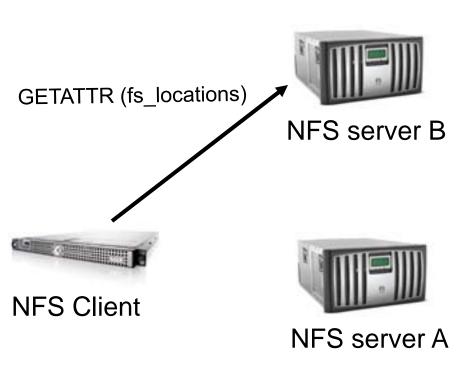
LDAP reply

NFS Client


NFS server A

NSDB Server

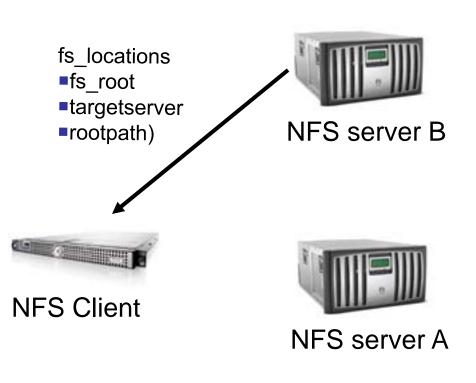
Referral Example (6)



NSDB Server

- □Client mounts server B:/
- □User does "cd sales"
- ■NFS server B determines sales is a junction
- ■NFS server B queries NSDB for FSLs
- ■NFS server B returns ERR_MOVED

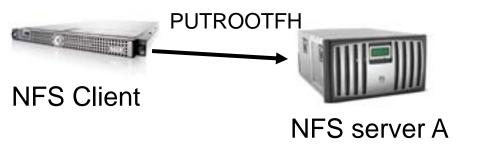
Referral Example (7)



- □Client mounts server B:/
- □User does "cd sales"
- ■NFS server B determines sales is a junction
- ■NFS server B queries NSDB for FSLs
- ■NFS server B returns ERR_MOVED
- □Client gets fs_locations

NSDB Server

Referral Example (8)


- □Client mounts server B:/
- □User does "cd sales"
- ■NFS server B determines sales is a junction
- ■NFS server B queries NSDB for FSLs
- ■NFS server B returns ERR_MOVED
- □Client gets fs_locations

Referral Example (9)

NFS server B

NSDB Server

- ☐ Client mounts server B:/
- ☐ User does "cd sales"
- NFS server A determines sales is a junction
- ■NFS server B queries NSDB for FSLs
- ■NFS server B returns ERR_MOVED
- □Client gets fs_locations
- □Client mounts NFS server A

FedFs Standardization (I)

- □ Informal group with participants from several organizations
 - Weekly meetings
 - Open community list: federated-fs@sdsc.edu
- Open source NSDB
 - http://snsdb.sourceforge.net
- Four IETF drafts
 - □ Requirements for Federated File Systems https://datatracker.ietf.org/drafts/draft-ellard-nfsv4-federated-fs/
 - NSDB Protocol for Federated Filesystems

https://datatracker.ietf.org/drafts/draft-tewari-nfsv4-federated-fs-protocol/

Admin Protocol for Federated Filesystems

https://datatracker.ietf.org/drafts/draft-ellard-nfsv4-federated-fs-admin/

Using DNS SRV to Specify a Global File Name Space with NFS version 4

https://datatracker.ietf.org/drafts/draft-everhart-nfsv4-namespace-via-dns-srv/

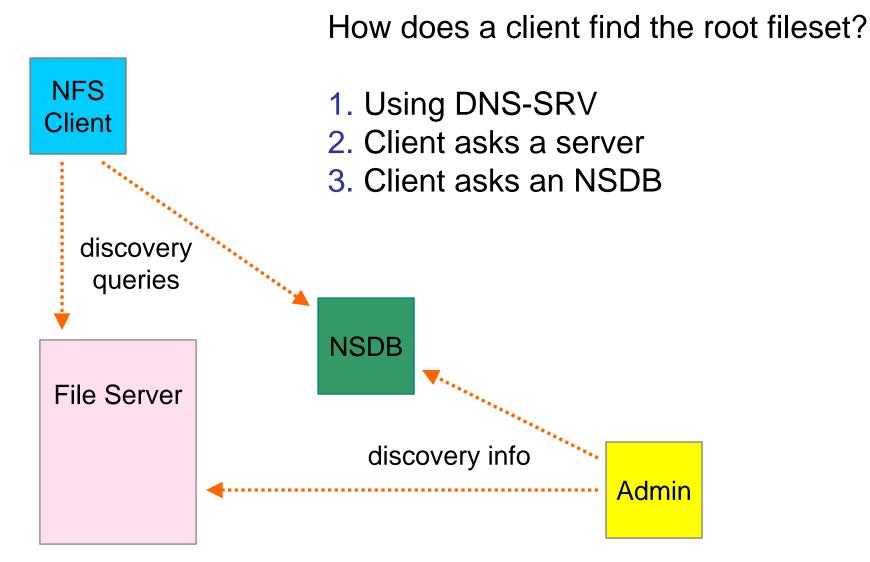
FedFs Standardization (2)

- □ Requirements agreed upon
- Common terms and definitions agreed upon
- Substantial progress on the protocol drafts
 - Three sub-protocols defined
 - Continuing discussion over additional protocols
- This work will be incorporated into the IETF NFSv4 working group
 - documents will be re-published as WG drafts
 - charter will be updated
- NetApp has a working prototype that was demonstrated at the IETF NFSv4 Working Group Meeting in Dublin

Outline

- Introduction and overview
 - Motivation, background, and goals
 - □ Requirements, terms, and definitions
- Architecture and implementation
 - Basic resolution protocol
 - NFSv4 details
 - State of the standardization effort
- □ Conclusion

Conclusions


- □ The FedFs project has made considerable progress toward an open standard for a global, federated namespace.
 - Standards drafts with community support
 - ☐ A proof-of-concept demonstration
- Next steps:
 - Formal standardization through IETF process
 - Leveraging the federated namespace for new features
 - replication
 - migration

Questions?

Backup: Discovery protocol?

