SMI-S Deployment Best Practices

Make sure customers love it from the start!

Paul von Behren, Symantec
Duane Baldwin, IBM
Deployment Background

- SMI-S is a standard for Storage Management
- SMI-S solutions started shipping 2002 - 2003
- A couple years later
 - Vague reports of installation and configuration issues
 - Frustration from folks doing the installations
- Many spec improvements related to installability
- In 2006, SNIA’s Storage Management Initiative (SMI) started investigating “deployment issues”
In 2007, SMI started the “Production Ready Task Force”. This task force:

- Finds themes in reports of deployment issues
- Investigates root causes
- Includes spec developers, product developers, product installers
- Developing installation checklist (for installers) and best practices (for developers)

This presentation is based on the best practices
Motivation

- CIM/SMI-S nearly always involves 3rd-party CIMOMs
 - May not be as well integrated or documented as vendor-developed components
 - Some open-source CIMOMs were poorly supported – have disappeared – but impacted early products
- CIM/SMI-S involves multiple vendors
- Bad customer experiences during initial installation and configuration can cause perception of problems in all CIM/SMI-S solutions
 - Hence, the motivation to educate developers
 - Make sure customers love SMI-S installations!
Deployment Options

- Developers have several options for deploying CIM providers for storage.
- The choices made for where providers are deployed influence a variety of issues related to installation experiences.
- Consider several common approaches to deployment:
 - For host-based components (HBAs, filesystems, ...), providers run in a CIMOM running on the *data server*.

```
  CIMOM
  Provider
  Customer Data Server
  Managed Device (HBA)
```
Deployment Options

- For external devices (storage arrays, tape libraries, ...)
 - Providers could run on a proxy server

- Providers and CIMOM could be embedded in devices either acting as an integral component or as a management server possibly supporting multiple devices.
If the device uses the *datapath* (as opposed to Ethernet) for management communication, then the deployment may be a merge of the Data and Proxy Server approaches.
Consider integrating with the OS and/or platform vendors

- If the SMI-S instrumentation is “just there”, many installation issues disappear
- If this is not possible, make sure that your CIMOM infrastructure coexists with others
 - Make sure you look for potential conflicts with TCP ports
 - Make sure customer knows which ports are actually in use
 - Don’t change the port number later (clients probably have it persisted)
Proxy Server Deployment

Best Practices

- Provide guidelines on scalability
 - Number of devices per reference proxy server configurations
 - Impact (if any) of adding memory
- Provide proxy server software requirements
 - versions, options, middleware
- Smart installer
 - Handle installation of JRE, CIMOM, providers, provider support SDKs if necessary
 - Rather than forcing people to determine when this installations are necessary
Consider customer reaction to device unavailability due to management software upgrades
- Consider embedded architectures where the management components can be restarted with no impact to data availability

Consider scalability
- In most devices, not an issue – the configuration scales up via multiple devices
- For network switches, a large network may result in too much management activity for resources of one switch
Datapath Communication
Best Practices

- Documentation on HBA and HBA firmware requirements
- Even if your vendor documentation is sub-optimal, customers may be able to troubleshoot Ethernet connectivity issues
 - But customers are likely to be less familiar with datapath trouble-shooting tools
 - Consider more-detailed trouble-shooting documentation
Post Installation Configuration

- In many systems, the configuration of resources is separate from the installation
 - Make sure installer realizes that additional steps are needed to make the device manageable by clients
 - Document the steps needed to configure devices using serial ports, ... to make the device usable with SMI-S
 - Document requirements for middleware (such as APIs) on the server hosting the providers
Compatibility with Device

- Avoid requiring the installer to know the compatibility matrix
 - Have provider validate the device has appropriate firmware level
 - Have provider validate the device is configured as needed
 - Have provider validate the device model is supported
Deployment-independent Best Practices

- Make sure software and documentation is easy to locate
 - Consider third-party installations (from integrators, client vendors)
- Make sure CIM components scale up to the maximum supported configuration
 - Consider view classes
 - Consider client pull operations
- Make sure software elegantly deals with situation where installer configures second proxy to manage the same device
Standard Provider APIs

- Considering using a standard provider API (such as CMPI or JSR48)
 - In the future there may be a need to switch to a different CIMOM
 - Use of a standard may make it possible to offer customers a choice between open-source and commercially supported CIMOMs
CIMOM Coexistence

- Don’t disallow customer installing multiple CIMOMs on same server
- Most vendors do not want to allow customer installs of providers in a pre-existing CIMOM
 - Concerns about stability
- Multiple CIMOMs may not perform optimally
- But customer may have a few small CIM configurations
 - Several CIMOMs on one server – with possible performance bump – may be more attractive than several servers
CIMOM Coexistence
Best Practices

- Make sure your CIMOM startup elegantly deals with another running CIMOM
- Make sure your CIMOM is able to handle TCP port conflicts
- Make sure your CIMOM is not using the same /var/run/whatever.pid file name or Windows service name as a previously installed CIMOM
SLP (for Client Developers)

- SMI-S requires support of SLP as a initial discovery mechanism
 - It appears that CIMOMs have SLP working fairly well
 - Thought developers may need to enable SLP support
 - SLP uses both unicast and multicast
 - Clients do not need a user to provide multicast IP address
 - But multicast often limited by administrators due to potential issues in security and bandwidth
 - But unicast SLP still useful
 - Client makes unicast request to CIMOM servers to discover supported TCP ports, schemes, interop namespace name, and profiles
 - Eliminates the need to ask user for this info
Security Best Practices

- Document information on how to install certificates (if supported)
 - Sometime this is simply a matter of copying certificate files to a known location
- Consider 3rd Party Authentication and Authorization
 - For example, allow devices to use an Active Directory server
- Consider Supporting Mutual Authentication for indications
Questions?