

Intra-Disk Parallelism: A Green Storage Solution for Data Centers

Sudhanva Gurumurthi

University of Virginia

E-mail: gurumurthi@cs.virginia.edu

Research Team

- ☐ Faculty: Mircea R. Stan
- Students
 - □ Sriram Sankar
 - ☐ Yan Zhang

Data-Centric Computing

- Store and process massive datasets
- Concurrent accesses from many users

Traditional Application Domains

Emerging Application Domains

Data Keeps Growing

1 exabyte = **10**¹⁸ bytes

Source: IDC Whitepaper, "The Expanding Digital Universe", March 2007.

Need High-Performance and High-Capacity SDC _ ¬ **Storage Systems**

Source: IDC Whitepaper, "The Expanding Digital Universe", March 2007.

Disks Are Slow

- □ Disk access time ~ milliseconds
 - □ Random I/O exposes these delays
- Approaches to Boost Storage Performance
 - Use faster disk drives
 - □ Not scalable due to thermal design reasons
 - Build storage arrays
 - □ Increases storage system power consumption
 - Short-stroking to trade disk capacity for storage performance
- Higher Power Consumption

Data Center Computing Equipment Power Consumption

80% of the storage power is consumed by the disk arrays

Source: The green data center: Energy-efficient computing in the 21st century, Chapter 4, 2007.

Disk Drive Capacity

Moore's Law vs. Kryder's Law

Source: Mark Kryder, "Future Storage Technologies: A Look Beyond the Horizon", SNIA Storage Networking World, 2007.

Green Storage

- □ We would like to the storage system to:
 - Deliver high performance
 - Utilize the disk capacity to the fullest
 - Consume lower power
- Our Approach
 - Extend the architecture of conventional disk drives
 - Intra-Disk Parallelism

Why Not Just Use SSDs?

- □ SSD Benefits: Power, Performance
- □ Cost/GB of SSDs
 - ☐ Flash: \$3.58/GB
 - ☐ HDD: 38¢/GB
- HDDs will be an integral part of enterprise storage systems for a while
 - Look at HDD solutions that can complement SSDs

Source: Computerworld Storage, "Seagate plans SSD, 2TB hard drive for next year", May 30, 2008.

Outline

- Intuition Behind Intra-Disk Parallelism
- ☐ Historical Retrospective
- Experimental Results
- Cost and Engineering Issues
- Other Green Storage Research
- Conclusions

Parallelism in Storage Systems

- □ **Disk Request:** Seek, Rotational Latency, Data Transfer
 - All disk resources (arms, heads, channel) are dedicated for each request
- "Intra-Disk Parallelism" in current drives
 - Tagged command queuing
 - Read-ahead buffering
- Good parallel I/O performance in servers requires multiple disks

Inter-Disk vs. Intra-Disk Parallelism

Power = 1*SPM + 2*VCM

History of Intra-Disk Parallelism

Disk Drive Characteristics	IBM 3380 AK4 (1980)	Seagate Barracuda ES (2006)	4-Actuator Parallel HDD (Future?)
Areal Density (Mb/in²)			
Disk Diameter (in)			
Capacity (GB)			
No. of Actuators			
HDD Power (Watts)			

IBM 3380 AK4

Disk Drive Characteristics	IBM 3380 AK4 (1980)
Areal Density (Mb/in²)	12
Disk Diameter (in)	14
Capacity (GB)	7.5
No. of Actuators	4
HDD Power (Watts)	6,600

Seagate Barracuda ES

Disk Drive Characteristics	IBM 3380 AK4 (1980)	Seagate Barracuda ES (2006)
Areal Density (Mb/in²)	12	128,000
Disk Diameter (in)	14	3.7
Capacity (GB)	7.5	750
No. of Actuators	4	I
HDD Power (Watts)	6,600	13

Hypothetical Modern Parallel HDD

Disk Drive Characteristics	IBM 3380 AK4 (1980)	Seagate Barracuda ES (2006)	4-Actuator Parallel HDD
Areal Density (Mb/in²)	12	I 28,000	
Disk Diameter (in)	14	3.7	
Capacity (GB)	7.5	750	
No. of Actuators	4	I	
HDD Power (Watts)	6,600	13	

Intra-Disk Parallelism Taxonomy

- Disk/Spindle [D]
- Arm Assembly [A]
- □ Surface [S]
- Head [H]

$$A = 2$$

$$S = 2$$

$$H = 2$$

Experimental Setup

- □ Simulator
 - Disksim with power models
- □ Commercial workload traces
 - ☐ Financial
 - Websearch
 - TPC-C
 - TPC-H

Impact of Data Consolidation

- What if we migrate data from multiple disks on to one high-capacity drive?
- Baseline Multiple-Disk Configuration (MD)

Workload	Disks	Capacity (GB)	RPM	Platters
Financial	24	19.07	10,000	4
Websearch	6	19.07	10,000	4
TPC-C	4	37.17	10,000	4
TPC-H	15	35.96	7,200	6

- Migrate data from MD to a High-Capacity Single Disk (HC-SD) drive
 - Modeled based on Seagate Barracuda ES (750 GB)

Impact of Data Consolidation Websearch

Bottleneck Analysis

- **□** Transfer time
 - Much smaller compared to seek time and rotational latency
- □ Cache Size
 - □ Increased from 8 MB to 64 MB Negligible impact
- Seek Time and Rotational Latency
 - Progressively reduced latencies for each to be:
 - □ 1/2 of original value
 - □ ¼ of original value
 - □ Latency = 0 (Eliminate performance impact)

Impact of Seek Time

Response Time(ms)

Impact of Rotational Latency

Response Time(ms)

Multi-Actuator Drives

□ Single-Arm Movement:

HC-SD-SA(n)

- Peak power ~conventional HDD
- Number of Actuators:

$$n = 1, 2, 3, 4$$

SPTF-Based Disk Arm Scheduling

HC-SD-SA(2) Drive

HC-SD-SA(n) Power Consumption

Websearch

Lower the RPM to Reduce Power

Websearch

Storage Array Power Comparison

Iso-Performance Configurations

Iso-performance datapoints determined via simulation using synthetic workloads

Preliminary Cost Analysis

- □ Material costs dominate manufacturing costs
- Identified the key HDD components
- Contacted several component manufacturers for price quotes
 - Data provided as price ranges

Cost Comparison

Engineering Issues

- ☐ Air Turbulence and Vibration
 - Use vibration-sensors and servo-based compensation techniques
- □ Disk Drive Reliability
 - Modify drive firmware to allow for graceful degradation

More Details and Future Work

- □ Paper at the 2008 International Symposium on Computer Architecture (ISCA)
- □ Future Work
 - Explore other points in the intra-disk parallelism design space (hardware, scheduling policies)
 - Build a prototype

Other Green Storage Research

Power Management is Challenging

- □ Figures of Merit: Performance, Energy, Capacity
- **□** Optimization Knobs
 - Static knobs: Platter size, number of platters
 - Dynamic knobs: Voltages of the spindle and arm motors
 - Optimal knob settings are workload-dependent
- Meed tools to help in the design and optimization of storage systems

Sensitivity-based Optimization of Disk Architectures (SODA)

- ☐ Figures of Merit:
 Energy (E), Performance
- ☐ Knobs: x, y

$$\frac{\partial E}{\partial x} = \frac{\partial E}{\partial y}$$

$$\frac{\partial D}{\partial x} = \frac{\partial D}{\partial y}$$

Optimality requires balancing the ratio of sensitivities with respect to each knob

Using SODA

- Design Time: Exploring workloaddependent tradeoffs between performance, energy, and capacity using static knobs [DAC'07]
- Run Time: To craft disk power management policies and analyze the effectiveness of existing policies [MASCOTS'08]

SSDs in Enterprise Storage

- □ SSDs provide significant performance and power benefits but Cost/GB is not yet competitive with HDDs at high capacities
 - ☐ Flash: \$3.58/GB
 - ☐ HDD: 38¢/GB
- ☐ Hybrid Enterprise Storage
 - Storage systems with mix of SSD and HDD-based devices

Hybrid Enterprise Storage Systems Design and Management

- Device Design: What SSD design would maximize performance for a given cost constraint?
- System Deployment: What mix of SSDs and HDDs would give me the best energy savings for given cost, capacity, and performance constraints?
- □ System Management: Is my power management policy providing the best energy savings for a given performance target?

Conclusions

- □ Storage power is a growing problem in data centers
- □ Intra-disk parallelism [ISCA'08]
 - □ 40%-60% reduction in power consumption
 - Preliminary analysis suggests that such drives are viable
- ☐ Sensitivity-based optimization [DAC'07, MASCOTS'08]
 - Allows us to systematically design and optimize storage systems
- PDF of papers available at: http://www.cs.virginia.edu/~gurumurthi

Thank You

E-mail: gurumurthi@cs.virginia.edu

