The Evolution of Cloud Storage - From "Disk Drive in the Sky" to "Storage Array in the Sky"

Allen Samuels
Co-founder & Chief Architect
Cloud Storage Definition

- Not clustered NAS rebadged
- Not private cloud
- Utility public service – pay as you go
 - Amazon S3 is the prototypical example

For our discussion:
- Cloud storage is geographically remote from compute
Cloud Storage is Great!

- **Top names:** Amazon, AT&T, Iron Mountain, Google, Microsoft, Rackspace & more

- **Cheap:** ~$0.30 / GB / month and declining
 (In-house storage > $1 / GB / month, all-in)

- **Off-site:** Guaranteed business continuity

- **Never lost:** Up to 11-nines durability guarantee

- **No CapEx:** Pay only for what you need
But Cloud Storage Is Also…

- **Incompatible:** Doesn’t use enterprise storage protocols
- **Insecure:** Shared infrastructure, #1 enterprise concern
- **Slow:** Internet vs. high speed SAN
- **Incapable:** no thin provisioning, snapshots, etc.
- **Costly:** Interactive workloads drive transfer costs up

Result: Enterprises can’t use cloud storage “as is”!
What does this mean?

- Cloud storage is a great “bit bucket” if:
 - You can custom write your app to it
 - You have low expectations
- Cloud storage is analogous to a disk drive in the sky
- Why does the enterprise buy storage arrays when they can buy cheap disk and RAID cards at Frys?
- That same “value add” is what’s missing from the cloud
Fearless Prediction

- The enterprise cloud storage market will not expand rapidly without catalyst technology.
- Must preserve the benefits of cloud storage
 - Cheap
 - Elastic
- Must plug the holes
 - Secure
 - High Performance
 - Fully compatible with existing apps
- Must appear transparent to end-users – is it cloud or is it local?
Getting from here to there

- Catalyst technology must do several things
 - Interact with applications using standard storage protocols
 - Must be multi-cloud lingual – preserve choice of provider
 - Deliver high performance
 - Not require anything to change at the cloud provider
 - Minimize cloud storage service fees
 - Overcome security concerns
 - Provide on-site array features
 - Provide familiar management & administration
Cloud Storage Tower of Babel

- Every provider speaks a different language
- Every provider has different rules
- Not all providers are created equal – a partial sampling
- What’s an app developer to do?

<table>
<thead>
<tr>
<th>Provider</th>
<th>Eventual Consistency</th>
<th>Object replace operations</th>
<th>Object naming</th>
<th>Directory Levels Supported</th>
<th>API</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provider A</td>
<td>Immediate for objects and directories</td>
<td>Permitted</td>
<td>Permitted</td>
<td>3</td>
<td>Proprietary</td>
</tr>
<tr>
<td>Provider B</td>
<td>Immediate for objects; up to 30 minutes for directories</td>
<td>Not Permitted</td>
<td>Only in object metadata</td>
<td>0</td>
<td>Proprietary</td>
</tr>
<tr>
<td>Provider C</td>
<td>Immediate for objects and directories</td>
<td>Not Permitted</td>
<td>Not Permitted</td>
<td>Unlimited</td>
<td>Proprietary</td>
</tr>
</tbody>
</table>
Would data storage be a $20B market?

- If you had to custom write each app to a specific array vendor?
- If you couldn’t move data from one array to another?
- If there were no standards like SCSI and POSIX?
- If you had to intimately understand the nuances and characteristics of your storage system before you could do anything?
Catalyst technology Requirement #1

- Cloud API abstraction layer
- *No knowledge* of provider semantics required
- Maintain choice
- Mask complexity and limitations

- What about CDMI?
 - CDMI defines common API sets
 - Cloud object stores are different under the covers
 - Unique behavior manifests even with a common API
Getting from here to there

- Catalyst technology must do several things
 - Interact with applications using standard storage protocols
 - Must be multi-cloud lingual – preserve choice of provider
 - Deliver high performance
 - Not require anything to change at the cloud provider
 - Minimize cloud storage service fees
 - Overcome security concerns
 - Provide on-site array features
 - Provide familiar management & administration
The WAN is not a SAN!

Data Center → Internet

High Speed Interconnect

Lower Throughput
Higher Latency & Jitter

TCP/IP Internet Connection

Cloud Storage Service
How do you overcome bandwidth bottlenecks?

- Assume you can’t make the pipe bigger
- Assume you can’t change the speed of light
- Many time-tested, proven techniques
 - Avoid transfers - Caching (e.g. L1/L2/L3 CPU caches)
 - Transfer less - Compression (e.g. MPEG4)
 - Transfer more efficiently - Protocol optimization (e.g. TCP acceleration)
- Companies have made a lot of money leveraging these technologies:
 - Riverbed....Cisco
- In short….WAN Optimization
But how does WANOp work?

- Puts a box on each end of the pipe

- What about a box in the cloud?
 - Not feasible most of the time
 - Leads to vendor lock-in.
 - Difficult when you don’t control both ends
 - Expensive (even when you can do it)
Catalyst technology Requirement #2

- Implement acceleration techniques that:
 - Improve WAN transfer rates
 - Mask/avoid WAN transfers
 - Optimize WAN transfers that must be made
- Require nothing in the cloud – physical or virtual
- New, asymmetric techniques must be developed
Getting from here to there

- Catalyst technology must do several things
 - Interact with applications using standard storage protocols
 - Must be multi-cloud lingual – preserve choice of provider
 - Deliver high performance
 - Not require anything to change at the cloud provider
 - Minimize cloud storage service fees
 - Overcome security concerns
 - Provide on-site array features
 - Provide familiar management & administration
What do cloud providers charge for?

- **Internet**
 - Internet Connection
 - What you transfer here

- **Data Center**
 - The API calls you make here

- **Cloud Storage Service**
 - What you store here
 - $ $$ $$
 - $ $$ $$
 - $ $$ $$
Catalyst technology Requirement #3

- Store less data in the cloud
- Move less data into the cloud
- Move less data out of the cloud
- Minimize API calls

- How do you do this?
 - Luckily asymmetric WANOp techniques help here
 - Dedupe/compress data prior to transmission to the cloud
 - Leave data in deduped/compressed state in the cloud
 - Optimize transfer sizes to balance cost vs. access latency
Getting from here to there

- Catalyst technology must do several things
 - Interact with applications using standard storage protocols
 - Must be multi-cloud lingual – preserve choice of provider
 - Deliver high performance
 - Not require anything to change at the cloud provider
 - Minimize cloud storage service fees
 - Overcome security concerns
 - Provide on-site array features
 - Provide familiar management & administration
Is this secure?

- Clear text at the provider?
Is this secure?

- Provider encrypts your data?
- Provider has the keys!
- Only protects against one side of the vulnerability

Cloud Storage Service

Your data

Your data

JS^#&$(!Z$!
Catalyst technology Requirement #4

- Must encrypt data prior to transmission to the cloud
- Cloud provider must not have the keys
- Customer must control the keys
Getting from here to there

- Catalyst technology must do several things
 - Interact with applications using standard storage protocols
 - Must be multi-cloud lingual – preserve choice of provider
 - Deliver high performance
 - Not require anything to change at the cloud provider
 - Minimize cloud storage service fees
 - Overcome security concerns

- Provide on-site array features
- Provide familiar management & administration
The Cloud is not a Storage Array!
The Cloud is not a Storage Array!

<table>
<thead>
<tr>
<th>Capability</th>
<th>Storage Array</th>
<th>Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Data Protection</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>iSCSI/FC/NFS/CIFS Access</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Mountable Logical Volumes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Thin Provisioning</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Snapshots</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Automated Tiering</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Remote Replication/Backup</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Standard SCSI/POSIX semantics</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

- Without these capabilities, existing applications, processes, and management practices break down
- Relegates the cloud to custom application development, not storage array alternative
Catalyst technology Requirement #5

- Must overlay local storage features onto the cloud
- Transparency is key – the user shouldn’t know…or care
Checklist Review

- For cloud storage to evolve from “disk capacity” in the sky to “storage array” in the sky, we need:
 - Cloud provider independence
 - Standards-based access
 - Asymmetric WAN acceleration technology
 - Cloud provider cost optimization
 - Encryption prior to transmission to the cloud
 - Full compliment of storage array features
Cloud Storage Controller

- Use cloud storage for any application
- Local SAN performance
- Fully secure
- Enterprise storage management features
- Reduced cloud storage costs
Cloud Storage Controller

Data Center

Internet

Cloud Storage Services

Cloud Storage Services

Servers/
Apps

Storage Virtualization
Local Cache
Deduplication
Compression
Encryption
Provider Optimization
Provider Management

Cloud Storage

Services

Internet

Cloud Storage

Services

2010 Storage Developer Conference. Cirtas Systems. All Rights Reserved.
Is Cloud Storage better than on-site storage?

- Not suitable for certain workloads (e.g. data warehousing)
- Does unlock new capabilities
 - Unlimited capacity provisioning
 - Primary storage with CDP-like benefits
 - Instantaneous disaster recovery from anywhere
 - Simplified technology refreshes
- Makes cloud storage economics compelling
- Easier management
Conclusion

- No one storage model works for everybody and every application

- Cloud storage is better as a means to an end for most use cases – not an end itself

- Cloud storage controllers let you
 - Get the benefits of cloud storage
 - Eliminate integration challenges of cloud storage
 - Combine the best of both cloud and local storage
Questions?
The Evolution of Cloud Storage - From "Disk Drive in the Sky" to "Storage Array in the Sky"

Allen Samuels
Co-founder & Chief Architect