Introducing and Validating SNIA SSS Performance Test Suite

Esther Spanjer
SMART Modular
Abstract

- SSS Performance Benchmarking Learning Objectives
 - Get a good understanding of the various parameters that influence the performance characteristics of SSDs
 - Get a full understanding of the proposed SNIA Performance Measurement Specification
 - Provide step-by-step guidance on how to set up a test benchmark that enables comparison among the various SSS devices
Definition of SSS

SSS = Solid State Storage
The Performance Landscape

IOPS?

Random Precondition

Sustained Speed?

Up to?

MB/s or Mb/s?

Random or

Sustained?

Block Size?

PEAK/Sustained IOPS - Sector 4KB aligned (random preconditioned Sustained speed)

<table>
<thead>
<tr>
<th>Sector Size</th>
<th>PEAK IOPS 4KB READ</th>
<th>PEAK IOPS 4KB WRITE</th>
<th>Sustained 4KB READ</th>
<th>Sustained 4KB WRITE</th>
<th>Sustained 8KB READ</th>
<th>Sustained 8KB WRITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4KB</td>
<td>50K / 50K</td>
<td>50K / 50K</td>
<td>50K / 32K</td>
<td>50K / 11K</td>
<td>50K / 11K</td>
<td>28K / 28K</td>
</tr>
<tr>
<td>8KB</td>
<td>23K / 23K</td>
</tr>
</tbody>
</table>

Performance

- Average Access Time: 20-120 microseconds
- Sustained Read Throughput: 240,000 Mb/s
- Sustained Write Throughput: 300 MB/s

- Random IOPS Read Operations: 45,000 / 10/sec, sustained
- Random IOPS Write Operations: 16,000 / 10/sec, sustained

Prominent product specifications include:

- Up to 52,000 Sustained Random Read IOPS
- Up to 17,000 Sustained Random Write IOPS
- Sequential read: Up to 250 MB/sec
- Sequential write: 170 MB/sec
Market Segmentation

Client SSD
- Low cost
- C-MLC
- 0-7% over provisioning
- No supercap
- No Enterprise features
- No customization
- Warranty 1-3 yrs

Enterprise SSD
- Higher cost
- E-MLC/SLC
- 28-50% over provisioning
- Supercap support
- Enterprise features
- Customization
- Warranty 5 yrs
Performance Comparison
Enterprise vs. Client SSD

Sequential Read

- Enterprise SSD (SATA)
- Enterprise SSD (SAS)
- Client SSD 1 (SATA)
- Client SSD 2 (SATA)

Sequential Write

- Enterprise SSD (SATA)
- Enterprise SSD (SAS)
- Client SSD 1 (SATA)
- Client SSD 2 (SATA)

Random Read

- Enterprise SSD (SATA)
- Enterprise SSD (SAS)
- Client SSD 1 (SATA)
- Client SSD 2 (SATA)

Random Write

- Enterprise SSD (SATA)
- Enterprise SSD (SAS)
- Client SSD 1 (SATA)
- Client SSD 2 (SATA)
Variables Influencing Performance

- Platform
 - Test Hardware (CPU, interface, chipset, etc)
 - Software (OS, drivers)
- SSSS Device Architecture
 - Flash geometry, cache, flash management algorithm, etc
Variables Influencing Performance

- **Platform**
 - Test Hardware (CPU, interface, chipset, etc)
 - Software (OS, drivers)
- **SSS Device Architecture**
 - Flash geometry, cache, flash management algorithm, etc
- **Workload**
 - Write history & preconditioning: State of device before testing
The need for preconditioning

Performance States for Various SSDs

- NM (MLC)
- NS (SLC)
- JS (SLC)
- PSM (MLC)
- JM (MLC)

FOB
Transition
Steady State
(desirable test range)
Write History - 1

4K Random to 128K Sequential Transition

- F.O.B. (~1hr)
- Random to Sequential Transition (~1.5hr)
- 4K Steady State
- 128K Steady State

IOPS vs. Time (Minutes)
128K Sequential to 4K Random Transition

128K Steady State

F.O.B.

~10 hrs

4K Steady State

Sequential to Random Transition
Variables Influencing Performance

- **Platform**
 - Test Hardware (CPU, interface, chipset, etc)
 - Software (OS, drivers)

- **SSS Device Architecture**
 - Flash geometry, cache, flash management, algorithm, etc

- **Workload**
 - Write history & preconditioning: state of device before testing
 - Workload pattern: read/write mix, transfer size, sequential/random
Workload Pattern

Performance depends on
- Read/Write Mix
- Block Size
- Queue Depth (not shown)

Note: Shown 3D IOPS image courtesy of Calypso Systems
Dependency on data content

3D IOPS Surface Profile (IOMETER 2008)

3D IOPS Surface Profile (IOMETER 2006)
The need for industry standardization!

- SNIA Technical Working Group (TWG)
 - Created in early 2009
- Spec
 - Agnostic
 - Does not favor any one SSS technology
 - Repeatable & Practical
 - Complete with reasonable time and effort
- Spec 0.9 open for review now
- Spec 1.0 focuses on further detailed test metrics
Benchmark Suites

<table>
<thead>
<tr>
<th>Test Suite</th>
<th>Client SSD</th>
<th>Enterprise SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCMark</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>HDD Score, OS and application loading timing, user simulation (surfing web, windows media player, etc)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SysMark</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>System-level test. Measures performance based on average response time, gives score (0-250)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOMeter</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Sequential/Random performance, workload simulation (file server, web server workload, etc)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDTach/H2benchw</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Performance stability, Sequential/Burst performance, Access Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD Tune</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance stability, Sequential/Burst performance, Access Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Everest</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Random Access Time (Read/Write)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDBench</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Workload generator, performance on DAS and NAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calypso CTS</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Device (RAW) level, direct IO synthetic stimulus generator for both client and enterprise</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is NOT covered in spec

- Application Tests
- Matching to user workloads
- Energy efficiency
- Required Test platform (HW/SW tools)
- Certification
- Device endurance, data integrity, availability
Test Flow

1. **Prepare the Device**
 - Purge/Erase/Format → put SSD back into “original” state

2. **Set Conditions**
 - Set Active Range, Data Pattern, Demand Intensity

3. **Preconditioning**
 - Bring device to known state

4. **Steady State Testing**
 - Run Test Loop up until steady state is achieved (± 10% margin)
 - Testing for throughput, IOPS & latency

5. **Standardized Reporting**
 - Steady state convergence & verification
 - Performance measurement (2D/3D)
Preconditioning

- Preconditioning is key to get repeatable results
- Preconditioning needed to get drive in Steady State, after which performance can be measured
Preconditioning

- Preconditioning is key to get repeatable results
- Preconditioning needed to get drive in Steady State, after which performance can be measured

- Two types of preconditioning
 - Workload independent – write 2x capacity with 128KB sequential writes
 - Workload dependent – run workload itself until steady state is achieved
Steady State

- Measurement window is interval for last 5 measured rounds (i.e. test loops) that show steady state results
- Steady State is achieved if BOTH conditions are met:
 - Variation of y in measurement window is within 20% of average
 - Trending of y within measurement window is within 10% of average
Performance Workloads & Tests

Client Test

- Random IOPS
 - 100/0, 95/5, 65/35, 50/50, 35/65, 5/95, 0/100
 - 1024K, 128K, 64K, 32K, 16K, 8K, 4K, 0.5K
- Sequential MB/s
 - 100/0, 0/100
 - 1024K
- Latency (random access)
 - 100/0, 65/35, 0/100
 - 8K, 4K, 0.5K

Enterprise Test

- Random IOPS
 - 100/0, 95/5, 65/35, 50/50, 35/65, 5/95, 0/100
 - 1024K, 128K, 64K, 32K, 16K, 8K, 4K, 0.5K
- Sequential MB/s
 - 100/0, 0/100
 - 1024K
 - 64K, 8K, 4K, 0.5K
- Latency (random access)
 - 100/0, 65/35, 0/100
 - 8K, 4K, 0.5K

Version 1.0 will focus further on differentiating Client vs. Enterprise Testing
Steady State Convergence Plot

Steady State Verification
Performance Measurements 3D

Average Latency vs. Block Size and R/W Mix %
ActiveRange = (x,y); OIO/Thread = x; Thread Count = x; Data Pattern = x

Ave Latency (ms)

0/100 65/35 100/0
0.5KiB 4KiB 8KiB

Block Size

Performance Measurements 2D

Enterprise IOPS Test - Ave IOPS vs. Block Size & R/W Mix %
ActiveRange = (x,y); OIO/Thread = x; Thread Count = x; Data Pattern = x

IOPS

100,000 10,000 1,000 100 10

1 2 4 8 16 32 64 128 256 512 1,024

Block Size (KiB)
Sample Test Report included

<table>
<thead>
<tr>
<th>Device Under Test (DUT)</th>
<th>ABC Co.</th>
<th>SSS TWG PTS Summary Report</th>
<th>SNIA SSS TWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model No.:</td>
<td>ABC123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Form Factor:</td>
<td>2.5"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAND Capacity:</td>
<td>256 GB MLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUT Interface:</td>
<td>SATAI, SAS HBA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing Summary: Tests Run</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>Preparation</td>
<td>Test Loop Parameters</td>
<td></td>
</tr>
<tr>
<td>8.1 Client IOPS</td>
<td>Secure Erase</td>
<td>2X 128K SEQ</td>
<td>100%</td>
</tr>
<tr>
<td>8.2 Client IOPS OPT - AR</td>
<td>Secure Erase</td>
<td>2X 128K SEQ</td>
<td>10%</td>
</tr>
<tr>
<td>8.3 Client IOPS OPT - Data</td>
<td>Secure Erase</td>
<td>2X 128K SEQ</td>
<td>100%</td>
</tr>
</tbody>
</table>

General Device Description

<table>
<thead>
<tr>
<th>Device Under Test (DUT)</th>
<th>System Hardware Configuration</th>
<th>System Software Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>ABC Co.</td>
<td>System Mfg:</td>
</tr>
<tr>
<td>Model No.</td>
<td>ABC123</td>
<td>Calypso Systems, Inc.</td>
</tr>
<tr>
<td>Sata No.</td>
<td>123</td>
<td>Operating Sys:</td>
</tr>
<tr>
<td>Firmware Rev No.</td>
<td>1.12</td>
<td>Linux CentOS 5.4</td>
</tr>
<tr>
<td>User Capacity</td>
<td>256 GB</td>
<td></td>
</tr>
<tr>
<td>Interface/Speed</td>
<td>6Gbs SATAI</td>
<td></td>
</tr>
<tr>
<td>Form Factor</td>
<td>2.5"</td>
<td></td>
</tr>
<tr>
<td>Media Type</td>
<td>MLIC</td>
<td></td>
</tr>
<tr>
<td>Major Features</td>
<td>DUTFP</td>
<td></td>
</tr>
</tbody>
</table>

| Pre-conditioning Convergence Report - All Rounds |

8.1.1 Steady State Convergence Plot - All Block Sizes

8.1.2 Steady State Convergence Plot - 4K Block Sizes
Focus of Next Revision

- Random 4K Write Saturation
 - IOPS performance over time and with total amount of data written
- IOPS/W
 - Measure power efficiency
- Client Active Range restriction
 - Simulation of client usage, limit LBA range
- Cross Stimulus Recovery
 - Switching between random/sequential and large/small block
- Demand Intensity
 - Trade off between max. IOPS and max. response time
- SSD Figure of Merit
 - Direct comparison between SSD’s (similar to HDDs 10K, 15K RPM)
Other Standardization Initiatives

- SSSI Group of SNIA
 - Technical Work Group (TWG) → Performance Benchmark Spec
 - Tech Dev Group → Performance Test Platform
- JEDEC 64.8
 - Specification for SSD endurance measurement
- SSDA
 - Testing of reliability (power cycling, data retention, endurance, etc) and OS compatibility (Windows 7)
Summary

- SSS Performance is dependent on many variables
- Comparing vendors is not trivial → industry standard required
- SNIA performance spec allows apple to apples comparison
 - Spec for review at http://www.snia.org/tech_activities/publicreview
 - Send your feedback to http://www.snia.org/tech_activities/publicreview