
Status of Clustered CIFS using Samba

Volker Lendecke

vl@samba.org

SerNet / Samba Team

2010-09-15



Outline

Outline

1 Introduction

2 Clustering CIFS
Posix vs CIFS semantics
CTDB architecture

3 Challenges aka lessons learned

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 2 / 24



Introduction

Who am I?

Co-founder SerNet - Service Network GmbH

Free Software as a successful business model

Network Security for the industry and the public sector

Samba-Support/Development in Germany

For almost 20 years concerned with Free Software

First patches to Samba in 1994

Consultant for industry in IT questions

Co-founder emlix GmbH (Embedded Systems)

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 4 / 24



Introduction

SerNet

SLA based support for more than 650 customers

network security for industrial and public customers

firewalls, VPN, certificates, audits

based on open standards wherever possible

Support for many OS: Linux, Cisco IOS, Windows etc.

Compliant with BSI Grundschutz and ISO 27001 and other
international regulations

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 5 / 24



Introduction

SerNet and Samba

technological leadership of SerNet worldwide

involved in almost every big European Samba project

5 out of 6 European developers work for SerNet

SerNet distributes up-to-date Samba packages

samba eXPerience

The international Samba conference

> 150 developers & users from > 15 countries

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 6 / 24



Clustering CIFS

Clustering CIFS

The easy part: Active/Passive clusters

The holy grail: Share the same clustered file system via different
Samba nodes, and scale linearly

NFS is relatively easy: No locking around

GFS/GPFS do it for Posix semantics

Samba needs to fake SMB semantics, which are particularly hard to
get right and fast

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 8 / 24



Clustering CIFS

CTDB

None of the existing lock managers provided the semantics needed for
CIFS clustering

Samba requires locks with associated data, a big share of Samba is to
implement the correct locking

Many lock managers are much too slow

Ctdb is the clustered tdb lock manager

... and also does IP failover, service start/stop, monitoring, TCP
tickle acks, etc

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 9 / 24



Clustering CIFS Posix vs CIFS semantics

Posix vs CIFS semantics

Unix historically (VERY early) did not have proper IPC

Applications had to cope with very few atomic operations like
creating a file

Locking until today is very rudimentary

SMB/CIFS was designed for compatibility

Existing single tasking applications needed to be protected against
each other

Share Modes provide exclusive access to open files

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 10 / 24



Clustering CIFS Posix vs CIFS semantics

Share Modes

On Posix, opening a file is an isolated operation that no other cluster
node needs to know about

Easy to get fast in a cluster file system

Modifying a directory (create, rename, unlink) requires exclusive
access, this gets slow

For CIFS, every file open needs to be communicated

Does another node have a conflicting file open mode?

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 11 / 24



Clustering CIFS Posix vs CIFS semantics

The ctdb trick

Samba uses a trivial database to hold file open information

Ctdb is clustered tdb

Traditional clustered databases provide very high consistency
guarantees ⇒ several orders of magnitude too slow for Samba

CTDB can lose data!

If a node dies, the files held by that node are closed by definition

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 12 / 24



Clustering CIFS CTDB architecture

CTDB architecture

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 13 / 24



Clustering CIFS CTDB architecture

Other CTDB tasks

Complete HA solution

Cluster membership detection via a byte range lock on a shared file

IP Address takeover

Service control

Start, stop, monitoring of services

TCP tickle acks

Necessary for fast recovery of Windows clients, they might be stuck in
a state where they wait for data from a dead node

Why did we not use a classic HA solution like Linux-HA or others?

Not invented here?
CTDB as a HA solution was not planned, it just “happened”.
TCP tickle acks were not readily available (are they today?)

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 14 / 24



Clustering CIFS CTDB architecture

Persistent databases

Not all tdb files are as highly dynamic as locking db’s are.

secrets.tdb: Domain membership

registry.tdb: Holds Samba version of registry

Persistent tdb’s are handled differently: Everyone has an up-to-date
copy, writes are broadcast

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 15 / 24



Clustering CIFS CTDB architecture

Registry configuration

Parsing and writing smb.conf files with GUI tools is awkward at best

Samba 3 has to implement a registry, clients expect to find certain
keys to determine the server type

Registry data model matches exactly smb.conf format, it was
designed as a .ini file replacement

HKLM/Software/Samba/smbconf

Enabled only if config backend = registry is enabled in the
smb.conf text file

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 16 / 24



Challenges aka lessons learned

Challenges

File system assumptions

Persistent tdb transactions

CLEAR IF FIRST is gone

Scalability of brlock.tdb

Long-running system calls

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 18 / 24



Challenges aka lessons learned

File system assumptions

Samba/ctdb does not use the underlying file system for its own
operations

ctdb used to depend on an fnctl lock on a file stored in shared storage
for split brain detection
Changing the reclockfile requires a global ctdb restart
The filesystem holding the reclockfile can not be unmounted
Can run without the central reclockfile, provided hooks into the cluster
exist for split brain detection

Tridge’s ping-pong test checks fcntl lock coherence

With -rw command line switch it checks that writes are properly
propagated
To safely store CIFS data on clustered Samba, -rw must pass

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 19 / 24



Challenges aka lessons learned

Persistent tdb transactions

Persistent tdb’s are mostly read, writes need to, well, persist

Tdb can do transactions using proper fsync calls

Changes to clustered tdbs need to be written everywhere

Fail and retry turned out to be not successful

Global lock required, which ctdb does not provide

New tdb g lock.tdb provides semantics similar to fcntl cluster-wide

Transaction writes are broadcast under a lock

Inconsistencies are cleaned up by cluster recovery: Last writer wins

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 20 / 24



Challenges aka lessons learned

CLEAR IF FIRST is gone

locking.tdb and others store per-file / per-process information

Representation of locked files, with the PID of the smbd holding locks

Wrapping PIDs (16-bit PID space still common) make files locked
forever when a smbd crashes

CLEAR IF FIRST is a tdb mechanism to wipe databases at startup

At smbd startup all PID-based information is gone

With ctdb around also accessing the tdb, restarting smbd does not
wipe tdbs

New tdb serverid.tdb holds a random 64-bit ID per active process

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 21 / 24



Challenges aka lessons learned

Scalability of brlock.tdb

Posix byte-range locks are advisory, CIFS expects mandatory locks

Every read/write request needs to access brlock.tdb

Popular use case: Read a 10GB file from multiple clients

Right now the way ctdb is written, we play ping-pong with a
brlock.tdb record

Scalability of reading 10GB is less than optimal

Plan: “level II oplocks” on ctdb records

Multiple nodes hold a r/o copy of the brlock.tdb record holding the
locks for a file
Changes to that (i.e. Locking&X calls) call back that cache

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 22 / 24



Challenges aka lessons learned

Long-running system calls

Cluster file systems can be very slow sometimes

Node failures will trigger recoveries, cleanups, etc.
Posix API is synchronous. Open, unlink etc can take ages.

Samba does Posix calls while holding a lock on locking.tdb

Nodes being (possibly partly) stuck can block regular ctdb operations

ctdb walks tdb files for cleanup and recoveries after node failures
smbd locking them can cause nice deadlocks ⇒ nodes get unhappy

Samba could be changed to never do Posix calls under tdb locks

Performance penalty?
Fcntl lock cleanup semantics is lost

Windows clients time out after 30 seconds (or so...)

Async echo handler helps, but even a fully multi-threaded server will
will eventually make Windows clients unhappy

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 23 / 24



Thank you!

Questions?

Thank you very much!
vl@samba.org

Volker Lendecke (SerNet / Samba Team) Status of clustered CIFS 2010-09-15 24 / 24


	Outline
	Introduction
	Clustering CIFS
	Posix vs CIFS semantics
	CTDB architecture

	Challenges aka lessons learned
	Thank you!

