Analyzing Large-scale Network Boot Workload for Windows

Qiang Wang
Microsoft Corporation
Agenda

- Network Boot Basics
 - Windows iSCSI Diskless Boot
- Challenges of Large-scale Network Boot
- Workload Profiling and Visualization
 - Deployment and Boot of Diskless Windows Clients with Microsoft iSCSI Software Target
- Optimization for Boot
 - Hardware and Software Considerations
 - Microsoft iSCSI Software Target Scalability
Network Boot Basics

- Benefits of Booting from Network
 - Lower Capital and Operating Expenses
 - Better Manageability

- Network Boot Usages
 - Diskless Workstations
 - Thin Clients

- iSCSI Network Boot
 - Diskless Boot over Ethernet Fabric (RFC 4173)
 - Surfacing a Remote Virtual Hard Disk (VHD) as a Local SCSI Disk
iSCSI Bootstrapping

INT13

iSCSI Boot Initiator

Network Stack

iSCSI Boot Firmware Table

Pre-Boot

Windows

Boot Parameter Driver

Storage Stack

iSCSI Software Initiator

Network Stack

Standard Ethernet NIC
Challenges of Network Boot Scalability

- Server Service
 - High Throughput with Large Number of Active Sessions
- Storage I/O
 - Burst of Concurrent I/O Requests
 - Intensive Read Operations
- Network I/O
 - Load Balancing among Clients
- Management
 - Client Deployment
 - Client Servicing
Service Scalability - Threading

- Asynchronous Operations to Improve Processing Efficiency
 - Long I/O Operations
 - Network and Storage
 - I/O Completion Port
 - Queue for Completion Notifications

- Worker Thread Pool to Minimize Lifecycle Overhead
 - Serving Asynchronous Completion Notifications
 - Optimal Number of Worker Threads
 - Based on Number of Cores
 - Avoid High Unbalance

- Well-Designed Locking to Maximize Concurrent Processing
 - Lock-Free Data Structures and Algorithms
Service Scalability – Memory & CPU

- Memory Management
 - Memory Pool
 - Recovery from High Watermark
 - Disk Caching
 - Reducing Disk Physical Access
 - Leveraging OS Disk Caching
 - Tradeoff between Lower Memory Footprint and Higher Parallelism
 - Improving Lock Contention

- CPU Usage
 - CPU Cycles per Byte
 - Minimize Buffer Copy for Network and Storage I/O
 - Multi-Core Aware
 - Worker Threads to Core Mapping
 - Reducing Thread Context Switch Cost
 - Core Affinity
 - Network Receive-Side Scaling (RSS)
 - Session-to-Core Affinity
Scalability Tuning

- A Goal to Achieve Better than Linear Scalability
- Identifying Bottlenecks
 - Client Network Stack ↔ Server Network Stack ↔ Storage Service ↔ Storage Stack
 - Performance Counters
 - XPerf from Windows Performance Tools Kit
- Profile-Guided Improvement Iterations
 - Workload Profiling
 - End-to-End Analysis
 - Fully Understand Improvement and Degradation
Workload Profiling

- **Operation Types**
 - Read
 - Write
 - Management Task

- **Access Patterns**
 - Sequential
 - Random
 - Size
 - Burst
 - Locality

- **Network Load ≠ Storage Load**
 - Multicast Reducing Network Load
 - Disk Cache Reducing Storage Load
 - Multiple Disk I/O Operations in Response to a Single Network I/O Request
Boot Disk Workload

Disk Workload (Deploy2, all)

© 2010 Storage Developer Conference. © 2010 Microsoft Corporation. All Rights Reserved.
Understand Disk Workload Visualization

- **X-Axis**: Time
- **Y-Axis**: Logical Block Address (LBA)
- **Red Square** – Read
- **Blue Square** – Write
- **Gray Line** – Pseudo Disk Head Movement
 - Barely Visible for Sequential I/O
 - Easily Visible for Random I/O
- **Square Size** – I/O Size
- **LBA-to-File Mapping**
 - NTFS File Sector Information Utility
 - http://support.microsoft.com/kb/253066

- **Data Collection**
 - XPerf
 - Custom Low-Overhead Tracing

- **Chart Generation**
 - XPerf Disk I/O Detail View
 - Your Favorite Graphing Tool

- **Visualization as Part of Analysis**
 - **Operation Type**
 - Read vs. Write
 - **Access Pattern**
 - Sequential vs. Random
 - Size
 - Burst
 - Locality
Boot Disk Workload Analysis

- **Raw Findings**
 - Dominance of Read Operations
 - Clear Disk Hot Spots
 - Identical I/O Pattern for all Clients

- **Addressing Read Scalability**
 - Decouple Read-Only and Read/Write Regions
 - Base OS Image Shared by All Clients for Read as a Base VHD
 - Each Client Has its Own Writable Region
 - Leveraging Differencing VHD Format
 - Diff VHD Stores Modified Data
 - Cache Disk Hot Spots
 - Leveraging NTFS Cache

- **Read/Write Size Histogram**
 - Bar chart showing read/write sizes from 1KB to 256KB
 - Frequencies range from 0 to 4000

Boot Disk Workload: Base vs. Diff

Disk Workload (Deploy2, base)

Disk Workload (Deploy2, diff)
Read Scalability Improvement

- 128 Clients Booting Simultaneously
 - Six Gigabit Ethernet Interfaces
 - One Logical Disk
- Green Line – % Disk Cache Hit
- Red Line – Disk Bytes Read/sec
- Six Dotted Lines – Network Bytes Sent/sec

- Disk Cache Hit Rate > 90%
- Aggregated Network Bytes Sent are 10x the mount of Disk Bytes Read
 - Most Network Bytes Sent Directly from Disk Cache
 - Remove Disk Read Bottleneck
Diskless Client Deployment

- Windows Deployment
 - Golden OS Image as Base
 - Sysprep’ed VHD
 - Used as Read-Only Parent VHD
 - Size for Windows 2008 R2 Server: Minimum 15GB
 - Differencing VHD for each Client
 - Read/Write
 - Modified Data Only
 - Typical Size after Deployment: 800MB
 - Grows as Needed by System
Deployment Disk Workload
Deployment Disk Workload Analysis

- Raw Findings
 - Similar Workload as Boot on Base VHD
 - Extensive Writes on Differencing VHD
 - Number of Differencing VHDs same as Number of Clients
 - Virtually any I/O Pattern on a Single Differencing VHD Becomes Random at System Level
- Addressing Write Scalability
 - Increase Number of Disk Spindles
 - Optimal Disk RAID Type
 - RAID 10 Performs Better than RAID 5 for Random Writes
 - Optimal Disk Controller Settings
 - Optimized for Write
 - Write Caching
Microsoft iSCSI Software Target Scalability

<table>
<thead>
<tr>
<th>Number of Clients</th>
<th>Deployment Time (min)</th>
<th>Boot Time (min)</th>
<th>Storage Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>30</td>
<td>4</td>
<td>20-Disk RAID 5</td>
</tr>
<tr>
<td>128</td>
<td>20</td>
<td>3</td>
<td>20-Disk RAID 10</td>
</tr>
<tr>
<td>256</td>
<td>58</td>
<td>6</td>
<td>20-Disk RAID 5</td>
</tr>
<tr>
<td>256</td>
<td>34</td>
<td>NA</td>
<td>20-Disk RAID 10</td>
</tr>
<tr>
<td>450</td>
<td>NA</td>
<td>9</td>
<td>20-Disk RAID 10</td>
</tr>
</tbody>
</table>

- Windows Storage Server 2008 R2
 - Single iSCSI Target Server
 - Twenty 10K RPM SAS Disks
 - Eight Gigabit Ethernet Interfaces
Summary

- iSCSI Network Boot
- Storage Server Scalability
 - Threading
 - Memory
 - CPU
- Workload Visualization and Analysis
 - Boot
 - Deployment
- Microsoft iSCSI Software Target Scalability
Appendix: Opportunities for Further Optimization

- What is the Silent Period in the Middle of a Deployment?
 - PnP Device Detection
 - Don’t Unnecessarily Generalize during Sysprep

- Which Files are the Hottest during Deployment?
 - Windows\System32\config\SYSTEM
 - Count: 3759 (12%)
 - Size: 4KB (88%)
 - $Mft
 - Count: 3710 (12%)
 - Size: 4KB (58%), 1KB (39%)
 - $LogFile
 - Count: 2373 (8%)
 - Size: 4KB (73%)