Storage Acceleration, Driven by Autonomic Software

Dr. Sam Siewert, Formerly CTO Atrato, Inc. Presently with Intel Architecture Group
Increasing Performance Gap between Servers and Storage

- **Increasing server performance**
- **Traditional disk performance**

Comparison between servers/CPUs and disk-based storage systems from 2000 to 2010, showing a significant performance gap.

- **2000**:
 - Increasing server performance (blue)
 - Traditional disk performance (gray)

- **2010**:
 - 25x SSD Driven Performance
 - 2x Performance Gap

© 2010 Storage Developer Conference. Insert Your Company Name. All Rights Reserved.
NVRAM Scaling for Storage Virtualization Emerging Quickly

QPI Scaled DRAM to Terabytes Per Node
Nand Flash SLC/MLC to 10’s of Terabytes Today Per Node
PCI-e Nand Block NVRAM/Storage Devices
SAS/SATA Nand Solid-State Disk or SSD
PCMS – Stackable PCM, Around the Corner…?
Memristor, Racetrack, Nano-RAM, Further Out…?

<table>
<thead>
<tr>
<th>Approx Cost</th>
<th>Device Type</th>
<th>Rand Latency</th>
<th>Scaling</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100+/GB</td>
<td>QPI-DDR</td>
<td>640ns/sector (10ns/Word)</td>
<td>0.33TB/U (2TB/6U)</td>
<td>IBM 3690</td>
</tr>
<tr>
<td>$25+/GB</td>
<td>PCI-e SLC Nand</td>
<td>2 to 26 µsec per sector</td>
<td>0.8TB/U (320GB/Slot)</td>
<td>FusionIO, Micron</td>
</tr>
<tr>
<td>$5+/GB</td>
<td>SAS/SATA SLC SSD SSD</td>
<td>75 to 200 µsec per sector</td>
<td>1.2TB/U 24x100GB In 2U</td>
<td>Intel, Pliant, STEC</td>
</tr>
<tr>
<td>$1+/GB</td>
<td>2.5”/3.5” HDD</td>
<td>3 to 100 milliseconds</td>
<td>30TB/U (60x2TB 3.5”)</td>
<td>Atrato Inc.</td>
</tr>
</tbody>
</table>
The Best Thing That’s Happened To Storage Since…

RAID, Storage Area Networking, Virtualization

...

Solid-State Tier and Primary Storage

 Tiering and Cache For Enterprise – Solid-State Thin Provisioning, As Needed, Avoid
 Concern about Cost and Data Protection

Drive Replacement in Consumer (Laptop, Netbook) Space First

Storage Has Suffered with Moore’s Law for Capacity Alone (Not Access)

Storage Now Has Access Moore’s Law Potential

 Long and Rich Roadmap of Devices Along with Access-Hungry (IOPs Sensitive)
 Applications

 Cloud, Semantic-Web, Ontological Web, Business Intelligence, Analytics, OLTP,
 Meta-Data hosting, Desktop Virtualization
HSM Tiered Storage Architecture
Current Limitations

Sizing Storage Tiers?
- Over-provisioning of costly SSDs
- Unable to predict/show performance gains
- No metrics to measure improvement

Need Scalable High Capacity/Density Arrays
- Not bandwidth matched to scale capacity
- Does not leverage HDD=Capacity, SSD=Access
- Designed for Disk-to-Disk Tiers and Migration

Inefficient Management
- Slow Activation Policy, Not adaptive to changing access patterns
- Requires IT time and resources
- Extra IO for Migration
IO Page Cache Architecture

Current Limitations

RAM is Too Small, Too Fast
 • Highest $/GB
 • Many Orders of Magnitude Faster than Disk

Battery Backing / UPS Required
 • For Write-Back Ingest Cache
 • Costly to Mirror

Hard to Scale
 • TBs/Server at Best OTS

Why not Use Nand Flash?
Combine Cache and Tier Mgt?

Tiering
(HSM Data *Migration*)
- Cost to Host Data
- How Active?, $/GB
- Tier Down to Save
- Policy Driven
- Slow Activation (Every Day)
- Extra IOs

Cache
(Data *Replication*/Ingest)
- Access Cost (Latency, $/IOP)
- Replication of Hot Data
- No Added Capacity
- Every IO (Page Replacement)
- Write-Back for Fast Ingest
- Read-Ahead for Sequential

AppSmart Unified Intelligent Block Mgt

Combined Tiering/Cache
- Fast Access, High Capacity
- Low $/GB
- Low $/IOP
- Scalable
- Thinly Provisioned SSD
New Data Center Storage

ApplicationSmart Self-Optimization

Storage Page Cache and HSM Limitations: Cache is limited in scale/scope, HSM is slowly activated

- RAM Too Small
 - GB, need TB
 - Limited Spatial/Temporal Scaling

- Traditional Storage Arrays

- Bandwidth Mismatch w/ Cache & HDD

- Missed Penalty, Too High
 - Over-provisioning of cache
 - Too much rack space for HDD
 - HSM migration with SSD is slow and steals bandwidth

- ApplicationSmart Provides Data Access Acceleration: Manages purpose-built set-cache Solid-State Tier

Identifies Cache-ability by Application and Computes Speed-up

Extracts Spatial and Temporal Patterns from Semi-Random Access Truly Random Requires Spindles and SSD

- Data Storage for Random Data Access

- Profile Monitors Access Changes

- Terascale
 - SSD

- Petascale
 - HDD

- Tier 0 Replication (TME), Log-Structured Write-Back (IA)
Autonomic Storage Tiering

Customer Benefit Description

<table>
<thead>
<tr>
<th>Customer Benefit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sizes SSD requirements</td>
<td>• Analyzes and recommends amount of SSD prior to purchase</td>
</tr>
<tr>
<td></td>
<td>• Only what is needed for applications, based on profile</td>
</tr>
<tr>
<td></td>
<td>• No over-buying or over-provisioning</td>
</tr>
<tr>
<td>No added management</td>
<td>• Enables autonomic data tiering, no policies to set</td>
</tr>
<tr>
<td></td>
<td>• Anticipates SSD needs based on data access patterns</td>
</tr>
<tr>
<td>Eliminates overhead</td>
<td>• Data is replicated but remains resident on HDDs</td>
</tr>
<tr>
<td></td>
<td>• Avoids migration to and from HDD and SSD</td>
</tr>
<tr>
<td></td>
<td>• No unnecessary IO, all tiering is opportunistic</td>
</tr>
</tbody>
</table>

Hybrid VLUN spans SSDs and HDDs
The Bottom Line - Hybrid Storage Delivers Flexibility to Solve Problems

Fundamental Storage Customer Requirements

<table>
<thead>
<tr>
<th>Performance</th>
<th>Capacity Scalability</th>
<th>Cost</th>
</tr>
</thead>
</table>

- RAM Scaling
- SSD Scaling
- SSD + HDD Scaling
- HDD Scaling

Add HDD Back-end

Add SSD TME/IA
Add RAM TME/EA
Performance Increase with SSDs

- HDD IOPs
- SSD IOPs
- Bandwidth

IO Request Size:
- 512b
- 4K
- 32K
- 64K
- 128K
- 512K
- 1MB

IOPs (IO/sec):
- 400 K
- 20 K

BW (MB/sec):
- 2 GB/s
Multi-Tiered Management Software

ApplicationSmart™

Access Profiler
- Adaptive histogram, highly compressed, scales to PB
- Drives TME to accelerate IO for high access content

TME (Tiered Management Engine)
- Dynamic block replication with access pattern changes
- Optimal FBR (or plug-in heuristic) set replacement
- Mapped to LUNs or pools of LUNs

Ingest Accelerator
- Log-Structured Write-Back FIFO, Low Latency Completion
- Tuned for RAID (aggregation & RAID Set IO reforming)
- Check-point for Replay, Mirroring

Egress Accelerator
- Detector for sequential/random initiator streams
- Read-ahead cache with auto enable/disable

SLM (SSD LUN Manager)
- Full AVS VLUN creation and management
- SSD storage pool, data lifetime protection options
Data Access Profiler

Provides real-time application storage access patterns

1000 Client VoD Workload

Histogram Analysis
- Identifies access hot-spots
- Notes when access changes are statistically significant
- Mapping integrates with virtualization engine

Histogram Groupings
- Drives TME IO acceleration
- Replicates blocks when statistically significant
- Provides continuous opportunistic updates
- Uses access visualization
Applications and Workloads are Semi-Random

Multi-Million OLTP Workload

Total Active Data Small Subset
- Too Dynamic for HSM
- Flash/SSD Cache with FBR
- Dynamic and Large Enough

Profiling of More Applications
- Build a Knowledge Base by Application
- Being “Application Smart”
- Combine with Application Aware Storage Concepts
Handles Full Spectrum of Workloads

Sequential

- Egress IO read-ahead
- Ingest IO reforming

Fully Predictable
- (Solid State FIFOs)

Hot-Spots

Semi-Predictable
- (Scalable Hybrid Flash/Disk)

Random

Non-Cacheable
- (Solved by Spindle Density or Random Access Solid-State Storage)
Tiered Management Engine (TME)

- Uses output from Access Profiler to drive TME
- Dynamic block replication (Read/Write-Thru Load & FBR)
- As patterns change, new blocks are replicated
- Overwrites less active data
TME Spatial Locality Features

- **Per LUN SSD Mapping**
 - Initiator-Target-LUN Scope
 - Exclusive Provisioning of SSD to a Hybrid LUN (Firewalled)

- **Per Storage-Pool SSD Mapping**
 - Group of LUNs Scope
 - Allows for Competition for Set/Page Loading Between Multiple Initiator-Target-LUN Contexts
Ingest Acceleration (IA), Write-Back

- Log Structured IO Reforming
 - Aggregation
 - Handle Single Threaded IO
 - Optimizes for RAID Backend

![Diagram of Ingest Acceleration (IA), Write-Back](image)
Hybrid Node Design - Scaling

- **240TB, 8GB/sec, 1.8M Rand Read IOPs**

- **Basic Pod is 2 Nodes:**
 - 80TB
 - 300K IOPs/Node, 1.4GB/sec Random read/Node

- **3 Pods (6 nodes):**
 - 12 x 10G iSCSI
 - 1.8M IOPs, 8+ GB/sec Total
Similar to AppSmart?

Numerous Intelligent Block Mgt, Page Cache and HSM Tiering Solutions for Virtualized Storage (To Name a Few)

Open Source - Flashcache, Memcached
Proprietary - IBM EasyTier, EMC FAST

Distinguishing Features To Look For

Efficiency - Page Replicaiton/Replacement Algorithms and Hit-Rates (LRU/MRU, FBR, MFU/LFU, Combined, Advanced Heuristics)

Intelligence - Profiling Algorithms (How Adaptive?, Overhead?)

Write and Read Cache - Log-Structured Aggregation and IO Reforming

Speed & Overhead - Read-Cache Look-Up, Meta-data Scaling, O(1)?

Scaling - Tier-0 and Main-Store Scaling (Terascale/Petascale?)

Data Protection (Mirroring on Ingest? Backed by RAID?, Dual-Controller?)

Solid-State Device Support, Thin/Hot-Plug Provisioning?
Performance Tiering Checklist

<table>
<thead>
<tr>
<th>Performance Optimization</th>
<th>Dynamic Management</th>
<th>Cost Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Benchmarks:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Integrates high velocity storage tiers (Tier 0, Tier 1)</td>
<td>• Understands access patterns and changes</td>
<td>• Integrates efficient storage architectures (Tier 0, Tier 1)</td>
</tr>
<tr>
<td>• Block level movement for increased granularity</td>
<td>• Moves data in real-time</td>
<td>• Recommends SSDs only when needed</td>
</tr>
<tr>
<td>• Works across multiple application workloads</td>
<td>• Supports multiple VLUN configuration options</td>
<td>• Fully autonomic, minimizes human intervention</td>
</tr>
</tbody>
</table>

http://spectrum.ieee.org/semiconductors/design/the-mysterious-memristor

IBM, Dr. Stuart Parkin, Racetrack Memory - http://www.youtube.com/watch?v=q5jRHZWQ0sc
Questions?