
2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Analyzing Metadata Caching in the

Windows SMB2 Client

David Kruse, Mathew George

Microsoft Corporation

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Agenda

 Understand what kind of metadata is cached by

existing Windows SMB2 clients

 Discuss the coherency guarantees provided for these

metadata caches.

 Analyzing protocol performance under different

metadata intensive workloads.

 Outline possible protocol extensions to improve

metadata caching in SMB2 through directory leases.

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Why is metadata caching important?

 Handle based I/O semantics & simplified SMB2 command set
=> more round trips to achieve a given operation.

 CREATE + QUERY/SET + CLOSE

 Compounding (predictive or lazy) can be to reduce round
trips.

CREATE

QUERY

CLOSE

CREATE

QUERY

CLOSE

CREATE

QUERY

CLOSE

CREATE

QUERY

CLOSE

Client Server Client Server

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Why is metadata caching important?

 Metadata intensive “home folders” workload
characterized by FSCT.

 Significant fraction (60%) of the network round
trips involve metadata queries.

 Significant reduction in server load (improved
server scalability.)

Reduction in network traffic.

Overall improvement in user perceived response
times (especially over high latency links.)

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

What is “best effort” caching?

 Maintaining metadata cache on the client without

associated state on the server.

No explicit metadata cache coherency support in

the SMB2 protocol.

Leverage existing protocol to achieve “near

consistent” view of metadata.

 Strike a balance between correctness and

performance by caching metadata for the shortest

possible time.

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

What is a “near coherent” cache?

6

 Present a consistent view of the

cache to single client apps.

Update or invalidate cache

on I/O (writes, deletes,

renames, set-attributes)

 Short cache lifetimes.

 Leverage protocol exchanges as

much as possible.

 Avoid name aliasing issues as

much as possible.

Metadata

Cache Timeout

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Scaling cache timeouts

 Scaling based on network characteristics

Windows 7 client extends cache lifetimes on high

latency links

 Scaling based on protocol exchanges.

Windows clients extend cache lifetimes if there

are outstanding change notifications posted.

Network Latency Cache Timeout

< 50 msec 10 sec (default)

< 200 msec 120 sec

>= 200 msec 300 sec

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

The 3 metadata caches :

File Information Cache

 Caches file metadata (attributes, size, timestamps)

 FileNetworkOpenInformation structure.

 One entry per file identified by a128-bit ID.

 ID returned via the QFid create context.

 Default lifetime is 10 sec.

 Cache updated via CREATE, CLOSE, QUERY responses

 Cache is invalidated when

 File is locally modified by client app.

 Oplock/Lease break notification from the server.

 Directory change notification from the server.

 Application queries for FileNetworkOpenInformation,
FileBasicInformation and FileStandardInformation satisfied from
cache.

 Serves as a file existence cache.

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

The 3 metadata caches :

File Not Found Cache

 Caches names of files which are known not to exist
on the server.

Allows the client to locally short circuit repeated
opens to the same name.

 Populated on a CREATE which fails with a “object
not found” error.

 Very short lifetime (5 sec.)

 Invalidated when the client creates a new file or
when the server notifies a directory change.

 Very useful in a “compile over network” workload.

~ 2000 / 6000 creates failed !

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

The 3 metadata caches:

Directory Cache

 Each directory cache entry caches an entire
directory enumeration.

 FileIdBothDirectoryInformation is cached.

Populated when application enumerates directory.

 Can satisfy information queries for individual files.

 Individual files within a directory cache entry can be
updated / deleted when the client fetches updated
file information from the server.

 Default lifetime is 10 secs.

 Can serve as a file existence / non-existence cache.

 Invalidation is similar to the file information cache.

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Pitfalls to watch out for!

 Distributed Applications

 Very typical in HPC scenarios which require data sharing
between concurrently running tasks on multiple nodes.

 Producer / consumer type of scenario

 Workaround is to force apps (or system) to use
mechanisms like change notifications.

 Legacy Applications

 Applications which mix long and short names.

 Applications coded for specific behavior patterns.

 Access based enumeration (ABE)

 Different views of a directory based on user.

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Caching Parameters

 Cache size

Maximum number of entries

Elastic thresholds to handle bursts of activity

Dynamic trimming of cache over time.

 Cache lifetime

Fixed vs. dynamic

Tradeoff between performance and correctness.

 Cache eviction policy

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Scenario 1 : File browsing

The following chart shows the impact (in terms of the # of network frames

exchanged) of the file-info and directory caches for a simple file browsing

scenario of a directory with 60 files.

0
50

100
150
200
250
300
350

No

metadata

caching

FileInfo

cache

Dir+FileInfo

Cache

Frame Count

Frame Count

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Scenario 2 : Engineering workload

 The data (frame counts) in the below table was provided by Marc Ullman

and Ken Harris from MathWorks to highlight the effect of the metadata

cache sizes for a “compile over the network” workload typical of large

engineering environments.

 Windows 7

Default Settings

FileInfoCacheEntries = 64

DirectoryCacheEntries = 16

FileNotFoundCacheEntries=128

Cache lifetime = 10s, 10s, 5s

DormantFileLimit = 1024

CacheFileTimeout = 10 sec

Windows 7

FileInfoCacheEntries = 32K

DirectoryCacheEntries = 32K

FileNotFoundCacheEntries=32K

Cache lifetime = 60s, 60s, 60s

DormantFileLimit = 4096

CacheFileTimeout = 10 sec

Windows 7

(Large MTU enabled)

FileInfoCacheEntries = 32K

DirectoryCacheEntries = 32K

FileNotFoundCacheEntries=32K

Cache lifetime = 60s, 60s, 60s

DormantFileLimit = 4096

CacheFileTimeout = 600 sec

Windows 7

(Large MTU enabled)

FileInfoCacheEntries = 32K

DirectoryCacheEntries = 32K

FileNotFoundCacheEntries=32K

Cache lifetime = 600s, 600s, 600s

DormantFileLimit = 16384

CacheFileTimeout = 3600 sec

CREATE 180302 53860 52920 48396

CLOSE 173078 47030 46631 42359

QUERY_DIR 68580 21103 19536 13495

READ 19340 16474 16448 15976

QUERY_INFO 763 225 217 198

Total Ops 449575 146126 143208 127858

% Improvement

over default N/A 67% 68% 72%

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Looking Forward…

15

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Caching Inefficiency

 A timeout based caching approach forces us to

release a potentially correct cache entry due to

uncertainty of its validity

 A timeout also results in us maintain (and return) an

incorrect cache entry for a period of time, resulting

in application or user confusion

 Both of these issues would exist with file data as

well, but coherency is reinforced with opportunistic

locking and leasing.

16

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Directory Leasing

File Leasing Directory Leasing

Handle Caching The client is permitted to cache a

handle to the file. Revoked if

server receives a conflicting open,

etc.

Same

Read Caching The client is permitted to cache

data read from the file. Revoked if

a write or byte-range lock is taken

on the file by another client.

The client is permitted to cache

directory enumeration results from

the directory. Revoked if a meta-data

modifying operation is received for

this directory from another client.

Write Caching The client is granted exclusive

access to the directory, and

permitted to cache writes and byte

range locks. Revoked if another

client attempts to access the file.

17

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Directory Leasing

 Leasing model allows multiple clients to obtain RH

cache in collaboration or publication scenarios

 In scenarios with a single client (MyDocuments), the

directory cache lifetime will often be infinite

 When a modification is made by another client or a

local user, notification is sent immediately to

improve coherency of clients

18

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

File Lease Key

 Client associates a lease key

for a file with a cache

 Client provides that key for

all opens to the same file

 Server ensures access on an

open do not break leases or

oplocks with a matching key

 Coherency is preserved

even if the client is not

aware that File A is the

same as File B.

19

File A

Lease Key { K(f1) }

Cached

Data

Open #1 Open #2 Open #3

File B

Lease Key { K(f2) }

Cached

Data

Open #4 Open #5

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Directory Leasing Keys

 For directories, operations on the children modify

the metadata of the parent (create, delete, modify)

 The children may themselves be a directory which

also has children

 Read caching is revoked by a change in my children

 Handle caching is revoked by a conflicting open to

myself

 Client selects lease keys to match their caching

structure (as seen previously)

20

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Directory Leasing Keys

 Client provides lease key pair { Kself, Kparent }

21

{ Ka1, 0 }

{ Kb1, Ka1} { Kb2, Ka1 }

{ Kc1, Kb1} { Kc2, Kb1}

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Directory Leasing Key

 Client maintains directory

cache on directory object,

associates key

 Opens to children provide

key of parent directory as

Kparent

 Modification of child will

not revoke read lease on

parent directory if Kparent of

modified open is equal to

Kself of parent directory

22

Directory A

Lease Key { K(d1), K(parent) }

Cached

Directory

Open #1 Open #2

File B

Lease Key { K(f1), K(d1) }

Cached

Data

Open #4

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Lease Break Algorithm

 Handle Caching

 Handle caching is revoked if Kself of new open is not equal

to Kself of conflicting open at create time. (Same as

specified for opens to files.)

 Delete and rename of folders is the most common issue

that handle caching helps resolve.

 Read Caching

 Read caching is revoked on directory metadata update if

Kparent of the child who triggered the modification is not

equal to Kself of the open on which the least was obtained.

 Create new, modification of metadata, deletion of a file, or

updating timestamps on close would be most common.

 23

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Modeled Performance Results

 Modeled reduction of frames in FSCT scenarios

assuming directory oplock is held and cache is

synchronized before running scenario

24

Directory Oplocks Change Notify Close Create Query Directory

CmdLineFileDelete -2 -3 -2
CmdLineFileDownload -2 -2 -2
CmdLineFileUpload -1 -2
CmdLineNavigate -3 -4 -4
ExplorerDragDropFileDownload -4 -7 -2
ExplorerDragDropFileUpload -6 -8 -4
ExplorerFileDelete -2 -13 -14 -10
ExplorerNavigate -8 -11 -4
ExplorerSelect -1 -1 -2
WordEditAndSave -3 -6
WordFileClose -2 -17 -19 -8
WordFileOpen -21 -25 -14

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Extrapolated Perf Results

25

 36% client latency improvement compared to

SMB 2.1 with directory caching

Relative FSCT Latency

SMB 2.1 SMB vNext - DirOplock

100.0% 63.7%

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Key Takeaways

 If you are implementing an SMB2 client (or a SMB2 protocol
accelerator), you could employ some of the strategies we use
to ensure “best effort” consistency of the cached metadata.

 Depending on the application workload, the reduction in
network traffic / server load can be very significant.

 The metadata caching parameters can be tweaked on the
Windows SMB2 clients.

 Be aware that there will always be applications that require
very strict metadata consistency guarantees and “best effort”
caching may not work in those cases.

 Directory leasing could solve many issues relating to cache
coherency and helps clients to cache metadata for longer
periods of time, resulting in significant meta-data traffic
reductions.

2010 Storage Developer Conference. Microsoft Corporation. All Rights Reserved.

Questions?

Thanks!

27

