
Swordfish Scalable Storage Management API
Users Guide

Version: 1.2.8

ABSTRACT:

The Swordfish Scalable Storage Management API defines a RESTful interface and a standardized data model to
provide a scalable, customer-centric interface for managing storage and related data services.

SNIA Approved Publication

This document has been released and approved by SNIA. The SNIA believes that the ideas,
methodologies, and technologies described in this document accurately represent SNIA goals
and are appropriate for widespread distribution. Suggestion for revision should be directed to
http://www.snia.org/feedback.

http://www.snia.org/feedback

Table of Contents

USAGE . 5
About SNIA . 11
Acknowledgements. 11
1 Introduction . 13

1.1 Audience . 13
1.2 Documentation structure . 13
1.3 Implementation scope assumptions . 14
1.4 Base implementation assumptions . 14
1.5 Knowledge assumptions. 14
1.6 Related documents . 15

2 Introduction . 16
2.1 Audience. 16
2.2 Documentation structure . 16
2.3 Implementation scope assumptions. 17
2.4 Base implementation assumptions . 17
2.5 Knowledge assumptions . 17
2.6 Related documents. 18

3 General query syntax. 19
3.1 Query method . 19
3.2 Query Headers . 19
3.3 Service root . 21
3.4 Resource path . 22
3.5 Query options . 22
3.6 Filter expressions . 23
3.7 HTTP status codes . 23

4 Actors . 24
4.1 Overview . 24
4.2 CloudAdmin . 24
4.3 DevOps. 26
4.4 StorageAdmin . 27

5 Management Domains . 29
5.1 Management Domain Overview . 29
5.2 Application storage management domain. 29
5.3 Block storage management domain . 30
5.4 File system storage management domain . 31
5.5 Service catalog management domain . 31

6 User Guidance . 35
7 Features . 36

7.1 Overview. 36
7.2 Access management feature . 36
7.3 Block provisioning feature. 37
7.4 Capacity management feature. 37
7.5 Class of Service Features . 38
7.6 Connectivity management feature . 38
7.7 Event notification feature . 38

2 Version 1.2.8

7.8 File provisioning feature . 39
7.9 Block IO performance feature . 39
7.10 Block mapping and masking feature . 39
7.11 NVMe Support feature . 40
7.12 Registries feature . 40
7.13 Replication Feature. 41
7.14 Security Management Features. 41

8 Alphabetic list of use cases . 43
8.1 Add Multiple Drives to an Existing Storage Pool. 43
8.2 Apply an NVMe firmware image to a given controller . 44
8.3 Attach a Namespace . 51
8.4 Can a new Namespace be created? . 53
8.5 Can a new Namespace be created? . 55
8.6 Can a new Volume be created? . 56
8.7 Change only the RAID Type of an Existing Volume . 57
8.8 Change only the span count of an existing volume . 62
8.9 Confirm valid LBA formats . 68
8.10 Create a new connection to an existing volume. 71
8.11 Create a new endpoint . 73
8.12 Create a new endpoint group . 76
8.13 Create a New Replication Relationship by Assigning an existing Target Consistency Group 78
8.14 Create a New Replication Relationship by Assigning a Target Volume . 80
8.15 Create an on-demand snapshot of a Volume . 82
8.16 Create class of service . 85
8.17 Create ConsistencyGroup . 87
8.18 Create file share . 89
8.19 Create file system . 91
8.20 Create file system with a class of service . 94
8.21 Create line of service . 97
8.22 Create storage pool and specify a pool type . 100
8.23 Create storage pool . 102
8.24 Create storage pool using Specified Set of Drives and RAIDTypes . 105
8.25 Create storage pool using specified set of drives. 108
8.26 Create Volume from an Existing Storage Pool . 110
8.27 Create Volume specifying Class of Service . 112
8.28 Create Volume using Default Class of Service . 115
8.29 Delete an endpoint . 118
8.30 Delete Multiple Drives from an Existing Storage Pool. 120
8.31 Delete Volume . 121
8.32 Deprovision a Namespace . 123
8.33 Detach a Namespace . 124
8.34 Expand capacity of a storage volume. 128
8.35 Make a New Replication Relationship by Creating a Target Consistency Group . 133
8.36 Make a New Replication Relationship by Creating a Target Volume . 135
8.37 Provision a Namespace from NVM Set. 136
8.38 Provision a Namespace . 139
8.39 Provision a Namespace with a specific LBA format . 142
8.40 Query Supported Security Protocols . 145
8.41 Receive Security Protocol Data . 147
8.42 Remove Replication Relationship for a Consistency Group . 148
8.43 Remove Replication Relationship . 150

Version 1.2.8 3

8.44 Report Namespace Capacity . 151
8.45 Report Remaining Life for a Namespace . 154
8.46 Resume the Replication Synchronization Activity for a Consistency Group. 157
8.47 Resume the Replication Synchronization Activity . 159
8.48 Retrieve latest instance of storage metrics information . 160
8.49 Reverse a Replication Relationship for Consistency Groups. 162
8.50 Reverse a Replication Relationship . 164
8.51 Review Metrics Trends . 165
8.52 Send Security Protocol Data . 167
8.53 Split a Replica. 169
8.54 Split a set of Replicas in Consistency Groups . 170
8.55 Subscribe to Threshold Events . 172
8.56 Suspend Replication Synchronization Activity between Consistency Groups . 174
8.57 Suspend Replication Synchronization Activity . 175
8.58 Update access rights on an existing volume . 177
8.59 Use Features Registry to confirm functionality . 181

4 Version 1.2.8

List of Tables

Table 1: Revision history . 8
Table 2: Contributors . 11
Table 3: Guidelines for the Use Case Template . 13
Table 4: Additional References . 15
Table 5: Guidelines for the Use Case Template . 16
Table 6: Query methods . 19
Table 7: Request headers . 19
Table 8: Response headers . 20
Table 9: Query Options . 22

USAGE

Copyright (c) 2016 - 2025 Storage Networking Industry Association. All rights reserved. All other
trademarks or registered trademarks are the property of their respective owners.

Storage Networking Industry Association (SNIA) hereby grants permission for individuals to use this
document for personal use only, and for corporations and other business entities to use this document for
internal use only (including internal copying, distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced must be reproduced in its entirety with no
alteration, and,

2. Any document, printed or electronic, in which material from this document (or any portion
hereof) is reproduced must acknowledge SNIA copyright on that material, and must credit SNIA
for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, or any
portion thereof, or distribute this document to third parties. All rights not explicitly granted are expressly
reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by
emailing tcmd@snia.org. Please include the identity of the requesting individual and/or company and a
brief description of the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under
the following license:

BSD 3-Clause Software License

Copyright (c) 2025, Storage Networking Industry Association.

Version 1.2.8 5

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

• Neither the name of Storage Networking Industry Association nor the names of its contributors
may be used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

DISCLAIMER

The information contained in this publication is subject to change without notice. SNIA makes no warranty
of any kind with regard to this publication, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing, performance, or use.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Current Revision

SNIA is actively engaged in expanding and refining the Swordfish documentation. The most current
revision can be found on the SNIA web site at
https://www.snia.org/tech_activities/standards/curr_standards/swordfish.

6 Version 1.2.8

Contact SNIA

Current SNIA practice is to make updates and other information available through their web site at
http://www.snia.org.

FEEDBACK AND INTERPRETATIONS

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome.
They should be sent via the SNIA Feedback Portal at http://www.snia.org/feedback/ or by mail to SNIA,
5201 Great America Parkway, Suite 320, Santa Clara, CA 95054, USA.

INTENDED AUDIENCE

This document is intended for use by individuals and companies engaged in storage management.

VERSIONING POLICY

This document is versioned material. Versioned material shall have a three-level revision identifier,
comprised of a version number ‘v’, a release number ‘r’ and an errata number ‘e’. Future publications of
this document are subject to specific constraints on the scope of change that is permissible from one
revision to the next and the degree of interoperability and backward compatibility that should be assumed
between products designed to this standard. This versioning policy applies to all SNIA Swordfish versioned
materials.

Version Number: Versioned material having version number ‘v’ shall be backwards compatible with all of
revisions of that material that have the same version number ‘v’. There is no assurance of interoperability
or backward compatibility between revisions of a versioned material with different version numbers.

Release Number: Versioned material with a version number ‘v’ and release number ‘r’ shall be backwards
compatible with previous revisions of the material with the same version number, and a lower release
number. A minor revision represents a technical change to existing content or an adjustment to the scope
of the versioned material. Each minor revision causes the release number to be increased by one.

Errata Number: Versioned material having version number ‘v’, a release number ‘r’, and an errata number
‘e’ should be backwards compatible with previous revisions of the material with the same version number
and release number (“errata versions”). An errata revision of versioned material is limited to minor
corrections or clarifications of existing versioned material. An errata revision may be backwards
incompatible, if the incompatibility is necessary for correct operation of implementations of the versioned
material.

Revision History

The evolution of this document is summarized in Table 1.

Version 1.2.8 7

Table 1: Revision history

Date Rev Notes

19 September 2016 1.0.0 Initial Release

12 October 2016 1.0.1 General clean up and formatting
consistency

A discussion of unused CoS and LoS
entries in ServiceCatalog

Improve purpose for many use cases

1 November 2016 1.0.2 Corrected XREF link formatting

24 January 2017 1.0.3 Additional use cases and new document
section addressing client considerations

25 April 2017 1.0.4 Update cross-references

3 October 2017 1.0.5 Minor updates and corrections

13 February 2018 1.0.6 Added on-demand replication use cases

12 October 2018 1.0.7 Editorial cleanup of JSON

22 August 2019 1.1.0 Restructured to add features and feature
cross references, and many new use cases
added:

Create Volume for multiple scenarios
(including Redfish Storage)

Create Storage Pool for multiple
scenarios

Replication use cases using single
Volume

Replication use cases using Consistency
Groups

12 November 2019 1.1.0 Released as Technical Position

12 November 2019 1.1.0a Released as Corrected Technical Position

Formatting fixes – word wrap in pdf doc
format to fix truncated lines

Added cross referencing of Features to
use cases

Editorial changes and cleanup

18 August 2020 1.2.1 Added NVMe-specific use cases

31 October 2020 1.2.1c Released as SNIA Approved Publication

2 March 2021 1.2.2 Added cross-references to NVMe mapping

8 Version 1.2.8

Date Rev Notes

document

Added new use cases for StoragePool
actions.

Errata fixes.

14 June 2021 1.2.2a Released as SNIA Approved Publication

30 August 2021 1.2.3 Update references in examples

Add use cases for ChangeRAIDType,
ChangeSpanCount

5 December 2021 1.2.3 Release as SNIA Approved Publication

12 April 2022 1.2.4 Release as Working Draft. Add multiple
new use cases for access management and
volume creation through capabilities.
Enhance language and examples responses
throughout. Add use of content-type
headers.

12 July 2022 1.2.4a Release as SNIA Standard.

16 March 2023 1.2.5 Add Create Consistency Group use case

Add new section for security related use
cases. New use cases include:

Query Supported Security Protocols

SecuritySend Usage (NVMe example)

SecurityReceive Usage (NVMe example)

Add Etag headers to use case responses

Errata Fixes:

Correct return value in Create New
Connection use case

20 June 2023 1.2.5a Release as a SNIA Standard

Remove erroneous use case entry.

22 January 2024 1.2.6 Release as Working Draft.

Copyrights updated to 2024.

Updates SNIA Front Matter.

Simplified and updated Management
Domains, Actors.

Add new use cases (access management):

• Create Endpoint

Version 1.2.8 9

Date Rev Notes

• Delete Endpoint

• Create Endpoint Group

Add new use cases (block provisioning):

• Delete Volume from Storage Pool

Add new use cases (capacity management):

• Review Metric Trends

Add new use cases (NVMe):

• Namespace Creation Permission

Updated use cases (IOPerformance):

• Retrieve Volume Metrics

Updated use cases (Security Management):

• Security Send

• Security Receive

Errata corrections to use cases:

• Create New Connection, Create
Consistency Group, Create Volume from
Storage Pool.

9 April 2024 1.2.6 Release as SNIA Standard

21 May 2024 1.2.7 Release as Working Draft

Add Apply Firmware Image for NVMe
controller use case

Add body elements to POST responses

Cleanup of overview sections

Reincorporated actor and management
domains sections.

13 August 2024 1.2.7 Release as SNIA Standard

28 January 2025 1.2.8 Release as Working Draft

Add Create FileShare / FileSystem Use
Cases

Updated CreateConsistencyGroup Use
Case to use ConsistencyGroup and
move to MappingMasking section

22 May 2025 1.2.8 Release as SNIA Standard

10 Version 1.2.8

About SNIA

SNIA is a not-for-profit global organization made up of corporations, universities, startups, and
individuals. The members collaborate to develop and promote vendor-neutral architectures, standards,
and education for management, movement, and security for technologies related to handling and
optimizing data. SNIA focuses on the transport, storage, acceleration, format, protection, and optimization
of infrastructure for data. Learn more at www.snia.org.

Acknowledgements

The SNIA Scalable Storage Management Technical Work Group, which developed and reviewed this work
in progress, would like to recognize the significant contributions made by the following members listed in
Table 2.

Table 2: Contributors

Member Representatives (* – prior employer)

Broadcom Inc. Richelle Ahlvers *

Celestica Krishnakumar Gowravaram

Cisco Systems, Inc. Krishnakumar Gowravaram *

Code Construct Jeremy Kerr

Dell Inc. Patrick Boyd

George Ericson

Jim Pendergraft

Sean McGinnis

Michael Raineri

Rich Roscoe

Futurewei Inc. Sean McGinnis *

Hitachi Data Systems Eric Hibbard

Hewlett Packard Enterprise Curtis Ballard

Jeff Hilland

Chris Lionetti

John Mendonca

Doug Voigt

Inova Development Inc. Karl Schopmeyer

Intel Corporation Richelle Ahlvers

Version 1.2.8 11

Member Representatives (* – prior employer)

Rajalaxmi Angadi

Klaudia Jablonska

Phil Cayton

Mariusz Krzywienski

Slawek Putyrski

Paul von Behren

Microsemi Corporation Anand Nagarjan

Microsoft Corporation Hector Linares

Jim Pinkerton

Michael Pizzo

Scott Seligman

NetApp, Inc. Don Deel

Fred Knight

Nilesh Maheshwari

ScienceLogic Patrick Strick

VMware, Inc. Murali Rajagopal

12 Version 1.2.8

1 Introduction

1.1 Audience

This guide is intended to provide a common repository of best practices, common tasks and education for
the users of the Swordfish API. Each use case includes an indication of the classes of API users who are
most likely to find the case useful.

1.2 Documentation structure

This document begins with a set of information intended to provide a solid foundation for readers new to
restful APIs in general and Swordfish in particular. While this material is no replacement for a thorough
understanding of the Swordfish specification and the material that it references, it is intended as a stand
alone document that can provide a solid introduction to Swordfish.

Based on that foundational material, this document then presents a set of Use Cases intended to capture
common tasks and best practices that can be used to exercise the breadth and strength of the Swordfish
API. In general, the guide is structured to provide more basic use cases first, and examine common
refinements and options at the same time. More advanced tasks are handled later in the guide, and assume
the prior skills and assumptions have been mastered.

For each use case, this guide will use a common template. Table 3 lists each field of the template and its
description.

Table 3: Guidelines for the Use Case Template

Name Description

Title A description of the high-level scope of the Use Case

Summary A high-level summary of the use case

Purpose The intended goals or motivations for the use case

Triggers A description of likely business conditions or goals that would make this
use case useful

Detailed Context A detailed description of the operations environment and configuration
assumptions for this use case

Preconditions Pre-existing knowledge, configurations or capabilities

Version 1.2.8 13

Name Description

Inputs A set of parameters and values that are used to adapt a generic use case
to a specific business needs. Where appropriate, the parameter
description will include a data type (e.g., {CAPACITY}: desired storage
capacity (int64))

Basic Course of Events A sequence of API requests, including required headers, the body of the
request, and the expected reply

Configuration Impacts Changes to the storage configurations caused by the use case

Failure Scenario Common failure conditions encountered in this use case

See Also Other Use Cases that may be of interest

1.3 Implementation scope assumptions

The precise scope of a given Swordfish implementation can vary widely. Some installations will opt to
deploy a basic level of the API that only extends the Redfish standard slightly. Others will decide to
implement a number of features, providing a broader range of functionality. While this guide cannot
provide examples of all possible configurations and situations, it does attempt to cover a range of possible
functionality options. Use cases that assume functionality that correspond to specific features are clearly
identified.

In the same vein, the example query responses are not intended to perfectly reproduce what would be
returned from any given implementation. Rather, they focus on illustrating a particular functionality or
approach, and include only the information that is essential to that end.

1.4 Base implementation assumptions

This document assumes that some fundamental configuration issues have been properly implemented, and
will not need to be addressed in any detail. In particular, this document assumes:

• An appropriate security infrastructure (e.g., TLS 1.2)
• A functional Swordfish/Redfish installation, in either a standalone, aggregator, or distributed

configuration
• Any required login credentials

1.5 Knowledge assumptions

The Swordfish API conforms to the standards defined in the Redfish API. More generally, it is provides a
RESTful interface. The reader is assumed to be familiar with common conventions for RESTful APIs.
Those readers who are interested in additional background information are encouraged to refer to the
following sources:

• For RESTful APIs: Wikipedia

14 Version 1.2.8

http://redfish.dmtf.org/
https://en.wikipedia.org/wiki/Representational_state_transfer

• For Redfish standards and related material: Redfish home page
• For HTTP standards: Wikipedia

1.6 Related documents

This User’s Guide is part of the documentation suite for the Swordfish API. Readers are encouraged to
refer to the documents listed in Table 4 for additional information.

Table 4: Additional References

Title (Version) URL

Swordfish API Specification http://www.snia.org/swordfish-specification/release/latest

Redfish Scalable Platforms
Management API Specification
(v1.21.0)

https://www.dmtf.org/sites/default/files/standards/
documents/DSP0266_1.21.0.pdf

Swordfish School Tutorials
Playlist]

https://www.youtube.com/playlist?list=PLH_ag5Km-
YUatZHCzjHbvoWcVC96dnkn-

Swordfish NVMe Mapping
Guide

http://www.snia.org/swordfish-nvme-mapping-guide/release/
latest

Swordfish Profile Bundle http://www.snia.org/swordfish-profile-bundle/release/latest

Version 1.2.8 15

http://redfish.dmtf.org/
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://www.snia.org/swordfish-specification/release/latest
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.21.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.21.0.pdf
https://www.youtube.com/playlist?list=PLH_ag5Km-YUatZHCzjHbvoWcVC96dnkn-
https://www.youtube.com/playlist?list=PLH_ag5Km-YUatZHCzjHbvoWcVC96dnkn-
http://www.snia.org/swordfish-nvme-mapping-guide/release/latest
http://www.snia.org/swordfish-nvme-mapping-guide/release/latest
http://www.snia.org/swordfish-profile-bundle/release/latest

2 Introduction

2.1 Audience

This guide is intended to provide a common repository of best practices, common tasks and education for
the users of the Swordfish API. Each use case includes an indication of the classes of API users who are
most likely to find the case useful.

2.2 Documentation structure

This document begins with a set of information intended to provide a solid foundation for readers new to
restful APIs in general and Swordfish in particular. While this material is no replacement for a thorough
understanding of the Swordfish specification and the material that it references, it is intended as a stand
alone document that can provide a solid introduction to Swordfish.

Based on that foundational material, this document then presents a set of Use Cases intended to capture
common tasks and best practices that can be used to exercise the breadth and strength of the Swordfish
API. In general, the guide is structured to provide more basic use cases first, and examine common
refinements and options at the same time. More advanced tasks are handled later in the guide, and assume
the prior skills and assumptions have been mastered.

For each use case, this guide will use a common template. Table 5 lists each field of the template and its
description.

Table 5: Guidelines for the Use Case Template

Name Description

Title A description of the high-level scope of the Use Case

Summary A high-level summary of the use case

Purpose The intended goals or motivations for the use case

Triggers A description of likely business conditions or goals that would make this
use case useful

Detailed Context A detailed description of the operations environment and configuration
assumptions for this use case

Preconditions Pre-existing knowledge, configurations or capabilities

16 Version 1.2.8

Name Description

Inputs A set of parameters and values that are used to adapt a generic use case
to a specific business needs. Where appropriate, the parameter
description will include a data type (e.g., {CAPACITY}: desired storage
capacity (int64))

Basic Course of Events A sequence of API requests, including required headers, the body of the
request, and the expected reply

Configuration Impacts Changes to the storage configurations caused by the use case

Failure Scenario Common failure conditions encountered in this use case

See Also Other Use Cases that may be of interest

2.3 Implementation scope assumptions

The precise scope of a given Swordfish implementation can vary widely. Some installations will opt to
deploy a basic level of the API that only extends the Redfish standard slightly. Others will decide to
implement a number of features, providing a broader range of functionality. While this guide cannot
provide examples of all possible configurations and situations, it does attempt to cover a range of possible
functionality options. Use cases that assume functionality that correspond to specific features are clearly
identified.

In the same vein, the example query responses are not intended to perfectly reproduce what would be
returned from any given implementation. Rather, they focus on illustrating a particular functionality or
approach, and include only the information that is essential to that end.

2.4 Base implementation assumptions

This document assumes that some fundamental configuration issues have been properly implemented, and
will not need to be addressed in any detail. In particular, this document assumes:

• An appropriate security infrastructure (e.g., TLS 1.2)
• A functional Swordfish/Redfish installation, in either a standalone, aggregator, or distributed

configuration
• Any required login credentials

2.5 Knowledge assumptions

The Swordfish API conforms to the standards defined in the Redfish API. More generally, it is provides a
RESTful interface. The reader is assumed to be familiar with common conventions for RESTful APIs.
Those readers who are interested in additional background information are encouraged to refer to the
following sources:

• For RESTful APIs: Wikipedia

Version 1.2.8 17

http://redfish.dmtf.org/
https://en.wikipedia.org/wiki/Representational_state_transfer

• For Redfish standards and related material: Redfish home page
• For HTTP standards: Wikipedia

2.6 Related documents

This User’s Guide is part of the documentation suite for the Swordfish API. Readers are encouraged to
refer to the following for additional information: - Swordfish API Specification - Swordfish Tutorials -
Swordfish NVMe Mapping Guide - Swordfish Profile Bundle - Redfish Specification

18 Version 1.2.8

http://redfish.dmtf.org/
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://snia.org/swordfish-specification/release/latest
http://www.snia.org/swordfish
https://snia.org/swordfish-nvme-mapping-guide/release/latest
https://snia.org/swordfish-profile-bundle/release/latest
https://redfish.dmtf.org/essentials

3 General query syntax

3.1 Query method

Swordfish queries support four query methods. Each query URL must include exactly one of of the query
methods listed in Table 6.

Table 6: Query methods

Method Action

GET Retrieve the current state or settings of the named Resource Path as seen through the
Service Root

POST Create a new object under the named Resource Path

PUT Replace the object referenced by the named Resource Path

DELETE Delete the object referenced by the named Resource Path

PATCH Update the object referenced by the named Resource Path

HEAD Validates a GET request against the named Resource Path without returning the HTML
headers for the response without the result of the query

3.2 Query Headers

All HTTP requests and responses in a compliant Swordfish implementation support the HTTP headers
required by the Redfish Protocol Specification. The supported headers are reproduced here for
convenience.

3.2.1 Request headers

HTTP request headers that are commonly used in Swordfish queries are summarized in Table 7.

Table 7: Request headers

Header
Supported

Values
Notes

Accept RFC 7231 Indicates to the server what media type(s) this client is prepared
to accept. Services shall support requests for resources with an

Version 1.2.8 19

https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.21.0.pdf
http://redfish.dmtf.org/schemas/DSP0266_21.0.html#ietf-rfc7231

Header
Supported

Values
Notes

Accept header including application/json or application/
json;charset=utf-8. Services shall support requests for metadata
with an Accept header including application/xml or application/
xml;charset=utf-8.

Content-Type RFC 7231 Describes the type of representation used in the message body.
Content-Type shall be required in requests that include a
request body. Services shall accept Content-Type values of
application/json or application/json;charset=utf-8.

OData-
Version

4.0 Services shall reject requests which specify an unsupported
OData version. If a service encounters a version that it does not
support, the service should reject the request with status code
412. If client does not specify an Odata-Version header, the
client is outside the boundaries of this specification.

Authorization RFC 7617,
Section 4.2

Required for Basic Authentication

User-Agent RFC 7231 Required for tracing product tokens and their version. Multiple
product tokens may be listed.

Host RFC 7230 Required to allow support of multiple origin hosts at a single IP
address.

Origin W3C CORS,
Section 5.7

Used to allow web applications to consume Redfish Service
while preventing CSRF attacks.

If-Match RFC 7232 If-Match shall be supported on PUT and PATCH requests for
resources for which the service returns ETags, to ensure clients
are updating the resource from a known state.

X-Auth-
Token

Opaque
encoded
octet strings

Used for authentication of user sessions. The token value shall
be indistinguishable from random.

3.2.2 Response headers

HTTP response headers that are commonly used in Swordfish queries are summarized in Table 8.

Table 8: Response headers

Header
Supported

Values
Notes

OData-
Version

4.0 Describes the OData version of the payload that the response
conforms to.

Content- RFC 7231 Describes the type of representation used in the message body.

20 Version 1.2.8

http://redfish.dmtf.org/schemas/DSP0266_21.0.html#ietf-rfc7231
http://redfish.dmtf.org/schemas/DSP0266_21.0.html#ietf-rfc7617
http://redfish.dmtf.org/schemas/DSP0266_21.0.html#ietf-rfc7231
http://redfish.dmtf.org/schemas/DSP0266_21.0.html#ietf-rfc7230
https://www.w3.org/TR/2020/SPSD-cors-20200602/#origin-request-header
https://www.w3.org/TR/2020/SPSD-cors-20200602/#origin-request-header
http://redfish.dmtf.org/schemas/DSP0266_21.0.html#ietf-rfc7232
http://redfish.dmtf.org/schemas/DSP0266_21.0.html#ietf-rfc7231

Header
Supported

Values
Notes

Type Services shall specify a Content-Type of application/json when
returning resources as JSON, and application/xml when
returning metadata as XML. ;charset=utf-8 shall be appended to
the Content-Type if specified in the chosen media-type in the
Accept header for the request.

ETag RFC 7232 An identifier for a specific version of a resource, often a message
digest. Etags shall be included on responses to GETs of
ManagerAccount objects.

Server RFC 7231 Required to describe a product token and its version. Multiple
product tokens may be listed.

Link Link headers shall be returned as described in the clause on Link
Headers

Location RFC 7231 Indicates a URI that can be used to request a representation of
the resource. Shall be returned if a new resource was created.
Location and X-Auth-Token shall be included on responses
which create user sessions.

Cache-
Control

RFC 7234 This header shall be supported and is meant to indicate whether
a response can be cached or not.

Access-
Control-
Allow-
Origin

W3C CORS,
Section 5.7

Prevents or allows requests based on originating domain. Used to
prevent CSRF attacks.

Allow POST, PUT,
PATCH,
DELETE,
GET, HEAD

Shall be returned with a 405 (Method Not Allowed) response to
indicate the valid methods for the specified Request URI. Should
be returned with any GET or HEAD operation to indicate the
other allowable operations for this resource.

WWW-
Authenticate

RFC 7234,
Section 4.1

Required for Basic and other optional authentication
mechanisms. See the Security clause for details.

X-Auth-
Token

Opaque
encoded
octet strings

Used for authentication of user sessions. The token value shall be
indistinguishable from random.

3.3 Service root

This is the base of all Swordfish URL’s. A GET request to the Service Root will return an overview of the
services provided by a given Swordfish service. In addition, the Service Root will include versioning
information.

All Service Root URLs that are compliant with the Swordfish specification will be of the form

Version 1.2.8 21

http://redfish.dmtf.org/schemas/DSP0266_21.0.html#ietf-rfc7232
http://redfish.dmtf.org/schemas/DSP0266_21.0.html#ietf-rfc7231
http://redfish.dmtf.org/schemas/DSP0266_21.0.html#link-header
http://redfish.dmtf.org/schemas/DSP0266_21.0.html#link-header
http://redfish.dmtf.org/schemas/DSP0266_21.0.html#ietf-rfc7231
http://redfish.dmtf.org/schemas/DSP0266_21.0.html#ietf-rfc7234
https://www.w3.org/TR/2020/SPSD-cors-20200602/#origin-request-header
https://www.w3.org/TR/2020/SPSD-cors-20200602/#origin-request-header
http://redfish.dmtf.org/schemas/DSP0266_21.0.html#ietf-rfc7234
http://redfish.dmtf.org/schemas/DSP0266_21.0.html#security

https://hostName/redfish/v1, where hostName specifies the system (and optionally port
number), of the Swordfish service provider.

3.4 Resource path

The Resource Path identifies the specific object (or collection of objects) that is the target of the Swordfish
query. Swordfish Resource Paths can identify:

• A singleton object (e.g., a specific storage LUN or Volume)
• A collection of objects (e.g., the list of all LUNs provided by a specific storage array)

At the highest level, Swordfish systems are discoverable in the Storage Systems collection in the
ServiceRoot.

3.5 Query options

Swordfish queries can include arbitrary sets of query options to further refine the target of given query or
the actions being requested of that target. These general query options are summarized in Table 9.

Note: Additional query options may be supported (or constrained) for a specific query
target or resource path. These target-specific query options will be addressed in specific use
case descriptions, as required.

Table 9: Query Options

Parameter Name Arguments Notes

$skip=n Integer Omit the first n entries in the collection from the
returned set of objects (required by redfish)

$top=n Integer Return, at most, the first n entries in the returned
set of objects (required by redfish)

$filter=condition Filter
Expression

Returns only the members of the named
collection that match the provided logical
expression (required by swordfish)

$expand=target Expand
Expression

Expand additional detail on the target property(s)
in the returned result set (required by swordfish)

$select=property list Comma-
separated list
of object
properties

Return the named properties for each object in
the result set, rather than the entire object
(required by swordfish)

$orderby=filter condition Filter
Expression

sort the result set by the output values from the
filter expression (required by swordfish)

22 Version 1.2.8

https://swordfishmockups.com/docraptor//275508042/swordfish_users_guide/redfish.dmtf.org
https://swordfishmockups.com/docraptor//275508042/swordfish_users_guide/redfish.dmtf.org
https://swordfishmockups.com/docraptor//275508042/swordfish_users_guide/snia.org/swordfish
http://docs.oasis-open.org/odata/odata/v4.0/errata03/os/complete/part2-url-conventions/odata-v4.0-errata03-os-part2-url-conventions-complete.html#_Toc453752359
http://docs.oasis-open.org/odata/odata/v4.0/errata03/os/complete/part2-url-conventions/odata-v4.0-errata03-os-part2-url-conventions-complete.html#_Toc453752359
https://swordfishmockups.com/docraptor//275508042/swordfish_users_guide/snia.org/swordfish
https://swordfishmockups.com/docraptor//275508042/swordfish_users_guide/snia.org/swordfish
https://swordfishmockups.com/docraptor//275508042/swordfish_users_guide/snia.org/swordfish

3.6 Filter expressions

Simple example:

$filter=(age gt 30) A group of people never to trust.

For more information see Filter Expression in the OData specification.

3.7 HTTP status codes

Swordfish clients may receive any of the standard HTTP status codes. Both the Redfish specification and
the Swordfish specification define a detailed mapping from the generic HTTP codes to domain-specific
situations, and probable causes. In addition, the server can return extended status information as a simple
JSON object to further clarify the handling and outcome of a particular API request. For more information,
see the Swordfish Specification and the Redfish Specification.

Version 1.2.8 23

http://docs.oasis-open.org/odata/odata/v4.0/errata03/os/complete/part2-url-conventions/odata-v4.0-errata03-os-part2-url-conventions-complete.html#_Toc453752356
https://snia.org/swordfish-specification/release/latest
http://redfish.dmtf.org/

4 Actors

4.1 Overview

This document covers a broad range of common use cases and storage management operations.

In an attempt to serve as both a introductory text and as a reference tool, the use cases have been grouped
in a number of different ways:

• Alphabetically. Each use case is ordered according to a self-expanatory title, to make it easier for
an experienced user to find a specifc piece of guidance.

• By management domain. While each organization will allocate responsibilities differently, there
are general broad classes of storage management that share tasks. These are called management
domains.

• By actor. Similarly, the precise titles and responsibilities within storage management
organizations will differ from one organization to the next, but this guide has identified three
broad functional roles, and identfied the use cases that are most applicable to those roles:

◦ Cloud Admin: tasked with managing all aspects of cloud-based infrastructure including
storage;

◦ Storage Admin: tasked with operational storage tasks, such as storage lifecycle planning
and day-to-day storage administration;

◦ DevOps: tasked with leveraging storage configurations to automate and scale business
operations.

4.2 CloudAdmin

4.2.1 Overview

A Cloud Administrator (CloudAdmin) is a converged infrastructure administrator, working with systems
that are:

• Hyper-converged
• Rack-converged
• Hyper-scale

The CloudAdmin role in an enterprise or service provider is the individual or group primarily responsible
for managing the operational lifecycle of a cloud, virtualization, converged environment that consists of the

24 Version 1.2.8

workloads, resource abstractions, storage, networking, and compute.

Also referred to as a “cloud architect”, this role:

• designates a group of people to build and maintain a virtualized, converged, and/or cloud
environment

• spans compute, storage, and networking disciplines as their job is to manage the operational
lifecycle of the entire environment

• focuses on automation that involves scripting and potentially formal programming
• This role’s value is to keep the environment that hosts applications available and responding.

Deep subject matter expertise is less valuable unless it helps solve an issue.
• The focus for this role is to streamline the deployment of applications into the infrastructure

including all the network and storage configuration.
• This role gets involved in the physical deployment of capacity in the datacenter.
• This role deals with software defined infrastructure deployment and management.
• Applications can span physical, virtual machine, container, PaaS building blocks. This role is

expected to know how to best configure the “stack” to consume the underlying physical
infrastructure.

4.2.2 Alphabetic List of Use Cases

• Update access rights on an existing volume
• Can a new Namespace be created?
• Report Remaining Life for a Namespace
• Apply an NVMe firmware image to a given controller
• Detach a Namespace
• Provision a Namespace with a specific LBA format
• Report Namespace Capacity
• Provision a Namespace
• Confirm valid LBA formats
• Deprovision a Namespace
• Attach a Namespace
• Provision a Namespace from NVM Set
• Create an on-demand snapshot of a Volume
• Create Volume specifying Class of Service
• Create Volume using Default Class of Service
• Create file share
• Subscribe to Threshold Events
• Can a new Namespace be created?
• Create Volume from an Existing Storage Pool
• Can a new Volume be created?

Version 1.2.8 25

4.3 DevOps

4.3.1 Overview

A member of the DevOps group:

• Consumes infrastructure capacity offered as a service/building blocks.
• Develops and deploys programmatic requests for capacity (fully automated, no ticketing or

human intervention)
• Provisions storage as a virtual appliance on-premises or in the cloud as part of a larger application

deployment
• Deploys ‘cloud born apps’ to consume object storage APIs (S3, Swift)

This role is typically aligned with the business unit. Their focus is the delivery, deployment, and
maintenance of apps on IaaS and PaaS resources. This role is not typically a deep subject matter expert in
compute, storage, or networking. From a development perspective, their desire is to treat the infrastructure
as a programmable subsystem that presents resources on-demand.

This role:

• does not get involved in the physical deployment of capacity in the datacenter
• is responsible for automating infrastructure provisioning as part of the E2E deployment and

management of an application with minimal or no human intervention
• consumes higher level services and protocols from the infrastructure; understanding how the

device works is not interesting
• expects to consume the programmable interfaces of a device using their existing tools (REST,

Python, Ansible, Puppet, Chef, Ruby etc.)

4.3.2 Alphabetic List of Use Cases

• Create an on-demand snapshot of a Volume
• Create Volume specifying Class of Service
• Create Volume using Default Class of Service
• Create file share
• Subscribe to Threshold Events
• Retrieve latest instance of storage metrics information
• Can a new Namespace be created?
• Create Volume from an Existing Storage Pool
• Can a new Volume be created?

26 Version 1.2.8

4.4 StorageAdmin

4.4.1 Overview

A storage administrator designs storage solutions for modern environments, including:

• Virtualization (traditional virtualization VMware, Hyper-V)
• private cloud (self-service portal)
• hybrid cloud (can span private, colo, hosted, and public cloud)
• IaaS/PaaS stacks (modern app/devops)

The storage admin role in an enterprise or service provider can have responsibility for managing the
operational lifcycle of storage in the datacenter. In particular:

• Organizations can have one or more people exclusively assigned to operating lifecycle of storage
in the datacenter.

• The storage admin role is typically tasked with “figuring out” storage needs for the company
• The admin role can consist of level 2 operators and level 3 engineers and architects.
• The admin role deals with multiple storage devices from multiple vendors across one or more

datacenters.
• Storage devices attached to multiple operating systems (Linux, Windows, Mainframe, Unix,

virtualized, bare metal).
• The Admin role consists of deep storage subject matter expertise, may or may have general

practitioners across all disciplines
• Members of this role are typically skilled at scripting and formal programming
• In a converged environment (storage, compute, and networking converged in to a rack), the

storage admin role may choose to avoid/minimize involvement in the support of storage WITHIN
the rack. (e.g. in virtualization, a single physical port can host 1000s of VMs).

4.4.2 Alphabetic List of Use Cases

• Update access rights on an existing volume
• Can a new Namespace be created?
• Report Remaining Life for a Namespace
• Apply an NVMe firmware image to a given controller
• Detach a Namespace
• Provision a Namespace with a specific LBA format
• Report Namespace Capacity
• Provision a Namespace
• Confirm valid LBA formats
• Deprovision a Namespace
• Attach a Namespace
• Provision a Namespace from NVM Set

Version 1.2.8 27

• Create an on-demand snapshot of a Volume
• Create Volume specifying Class of Service
• Create storage pool
• Create class of service
• Create file system with a class of service
• Create line of service
• Create Volume using Default Class of Service
• Create file system
• Create file share
• Subscribe to Threshold Events
• Can a new Namespace be created?
• Change only the span count of an existing volume
• Create Volume from an Existing Storage Pool
• Change only the RAID Type of an Existing Volume
• Can a new Volume be created?
• Delete Multiple Drives from an Existing Storage Pool
• Add Multiple Drives to an Existing Storage Pool
• Delete Volume
• Create storage pool using Specified Set of Drives and RAIDTypes
• Review Metrics Trends
• Create storage pool using specified set of drives
• Expand capacity of a storage volume
• Create storage pool and specify a pool type
• Send Security Protocol Data
• Receive Security Protocol Data
• Query Supported Security Protocols

28 Version 1.2.8

5 Management Domains

5.1 Management Domain Overview

This document covers a broad range of common use cases and storage management operations.

In an attempt to serve as both a introductory text and as a reference tool, the use cases have been grouped
in a number of different ways:

• Alphabetically. Each use case is ordered according to a self-expanatory title, to make it easier for
an experienced user to find a specifc piece of guidance.

• By actor. While the precise titles and responsibilities within storage management organizations
will differ from one organization to the next, this guide has identified three broad functional roles,
known as actorsand identfied the use cases that are most applicable to those roles;

• By management domain. Similarly, while each organization will allocate responsibilities
differently, there are general broad classes of storage management that share tasks. This guide
has identified four management domains:

◦ Application Storage Management: which manages the interface between applications
and the storage that they rely upon;

◦ Block Storage Management: focused on the management of resources that provide
block-based access to storage;

◦ Service Catalog Management: which supports access to, and management of, a catalog of
service options;

◦ File system storage management domain: which supports file system management and
manipulation, and file-based access to storage.

5.2 Application storage management domain

5.2.1 Overview

This domain manages the interface between applications and the storage that they rely upon.

StorageGroups provide a means to collectively manage the Volumes and FileShares utilized by an
Application. The StorageGroup specifies whether the collected resources are managed so that storage is

Version 1.2.8 29

updated or replicated consistently across all members. Additionally, the StorageGroup provides the means
to atomically expose (or hide) the collected resources to (or from) host endpoints.

5.2.2 Alphabetic List of Use Cases

• Subscribe to Threshold Events

5.3 Block storage management domain

5.3.1 Overview

Many devices and services provide their storage capacity to external devices and applications through
block-based protocols to storage devices. This domain includes the management of resources that provide
block-based access to storage.

Block-based storage is represented by a Volume. This domain provides for the discovery and provisioning
of Volumes and for maintaining relationships to Device, Endpoint, StorageService, StorageGroup,
StoragePool, and ComputerSystem resources.

5.3.2 Alphabetic List of Use Cases

• Update access rights on an existing volume
• Can a new Namespace be created?
• Report Remaining Life for a Namespace
• Apply an NVMe firmware image to a given controller
• Detach a Namespace
• Provision a Namespace with a specific LBA format
• Report Namespace Capacity
• Provision a Namespace
• Confirm valid LBA formats
• Deprovision a Namespace
• Attach a Namespace
• Provision a Namespace from NVM Set
• Create an on-demand snapshot of a Volume
• Create Volume specifying Class of Service
• Create storage pool
• Create class of service
• Create line of service
• Create Volume using Default Class of Service
• Subscribe to Threshold Events
• Can a new Namespace be created?
• Change only the span count of an existing volume
• Create Volume from an Existing Storage Pool

30 Version 1.2.8

• Change only the RAID Type of an Existing Volume
• Can a new Volume be created?
• Delete Multiple Drives from an Existing Storage Pool
• Add Multiple Drives to an Existing Storage Pool
• Delete Volume
• Create storage pool using Specified Set of Drives and RAIDTypes
• Review Metrics Trends
• Create storage pool using specified set of drives
• Expand capacity of a storage volume
• Create storage pool and specify a pool type
• Send Security Protocol Data
• Receive Security Protocol Data
• Query Supported Security Protocols

5.4 File system storage management domain

5.4.1 Overview

FileSystems provide access to byte-accessible storage through file-based protocols. This domain includes
the management of resources that provide file-based access to storage.

File-based storage is represented by a FileSystem resources. Remote access to portions of a FileSystem is
provided by FileShare resources.

5.4.2 Alphabetic List of Use Cases

• Create file system with a class of service
• Create file system
• Create file share

5.5 Service catalog management domain

5.5.1 Overview

Swordfish supports access to, and management of, a catalog of service options, (see ITIL glossary and
abbreviations), supported by storage services.

When the Swordfish Class of Service Feature is implemented, the ClassOfService resource represents a
service option that may be used to specify requirements for utility or warranty when provisioning a
resource. Currently ClassOfService is defined for use in the Block Storage, File System, and
ApplicationStorage domains.

Version 1.2.8 31

https://www.axelos.com/Corporate/media/Files/Glossaries/ITIL_2011_Glossary_GB-v1-0.pdf
https://www.axelos.com/Corporate/media/Files/Glossaries/ITIL_2011_Glossary_GB-v1-0.pdf

The service catalog for each StorageService is represented by a collection of references to supported
ClassOfService resources. Each ClassOfService is known minimally by a Name and a unique Identifier.
When a ClassOfService is specified for a resource, the StorageService shall attempt to maintain that
resource in compliance to the requirements of that ClassOfService. The requirements may be specified
informally by text in the Description property or may be specified formally by the property values of
embedded options related to specific lines of service.

The embedded service options are described by values of complex types representing lines of service.

Over time, as the service catalog is continually updated to match evolving user needs and service provider
offerings, it is expected that the catalog will contain entries (one or more ClassOfSerice or LineOfService
instances) that are not currently active.

5.5.2 Data protection

The primary storage is described by a ClassOfService resource. That ClassOfService may aggregate any
number of data protection service options. Each instance of a data protection service option describes the
characteristics a replication session that shall be maintained for the containing primary storage resource.

For additional information, see the definitions for DataProtectionLineOfService and
DataProtectionLoSCapabilities.

5.5.3 Data security

An instance of a data security service option describes an optional set of data security requirements. A data
security Service option is typically aggregated into a ClassOfService resource that is associated with
storage. At most one data security service option may be aggregated into a ClassOfService resource. When
storage is provisioned with that ClassOfService, it will provide the currently specified data security
characteristics.

A data security service option may specify data security characteristics that enable the storage system to be
used in an environment where compliance with an externally-specified security standard or standards is
required. Examples of such standards include FIPS-140, HIPAA and PCI. In this case, the names of the
standard or standards can usefully be included in the user/admin-visible name of the instance. With the
notable exception of FIPS-140, compliance requires measures well beyond the means of a storage system to
provide (e.g., both HIPAA and PCI impose significant requirements on administration and operation of the
data center), so this approach promises that the storage system will do its part in supporting compliance,
but does not (and cannot) promise that the storage system will deliver full compliance by itself.

The description attribute value may include human readable information including:

• Whether encryption keys are drive or array resident or externally managed (e.g., via KMIP).

• Information on how the array supports compliance to a standard identified in the name of the
Service option. (e.g., specific algorithms employed that are FIPS-140 compliant, information

32 Version 1.2.8

about the validated cryptographic module and its validation certificate, relationship of the
security functionality to specific PCI or HIPAA requirements).

NOTE For comparable cryptographic strengths, (see NIST SP 800-57 part 1)

NOTE For symmetric encryption algorithm key sizes, 112 bits is the 3DES key size and 128,
192, and 256 bits are options for AES key sizes.`

NOTE MediaEncryptionStrength includes the case where metadata about the data must be
encrypted. (e.g. data presence vs. absence in a thin volume, array filesystem metadata) The
implementation may be self-encrypting drives or encryption in the storage system’s drive
controller. Keys may be drive or array resident or externally managed (e.g., via KMIP).

For additional information, see the definitions for DataSecurityLineOfService and
DataSecurityLoSCapabilities.

5.5.4 Data storage

Each data storage service option describes characteristics of the storage at a particular location. A class of
service will have at most one data storage service option, which describes the storage specified by that class
of Service.

For additional information, see the DataStorageLineOfService and DataProtectionLoSCapabilities.

5.5.5 IO connectivity

An IO connectivity service option specifies the characteristics of storage connectivity. For each value of
AccessProtocol, at most one IO connectivity service option may be aggregated into a class of service.

NOTE: If used within a ClassOfService for Storage Provisioning, this value constrains the
set of connections used to expose that storage.

For additional information, see the IOConnectivityLineOfService and IOConnectivityLoSCapabilities.

5.5.6 IO performance

An IO performance service option specifies a choice of performance characteristics as viewed through the
data path to the storage. This is affected by choices of storage and connection technologies.
At most one IO performance service option may be aggregated into a ClassOfService for a storage resource.
When storage is provisioned with that ClassOfService, it should provide at least the specified performance.

For additional information, see the IOConnectivityLineOfService and IOConnectivityLoSCapabilities.

Version 1.2.8 33

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

5.5.7 Alphabetic List of Use Cases

• Create class of service
• Create line of service

34 Version 1.2.8

6 User Guidance

Swordfish supports a range of possible features. Clients use the Features registry to determine what
SupportedFeatures a specific instance of an implementation is capable of. These range from discovery
(read-only functionality), to event notification, to performance instrumentation, to multiple levels of block
and file provisioning capabilities.

Supporting the granular feature definition is a detailed profile description that includes precise definitions
of what functionality must be implemented in order to advertise support for each feature.

For use cases specified in this document, there is an expectation that specific features have been
implemented to support the corresponding use case. For example, the “AssignReplicaTarget” use case
highlights functionality for either local or remote replication, depending on the selected target volume’s
system (either the same or different than the source volume). In either case, the client is working with the
presumption that the feature has been advertised.

Version 1.2.8 35

7 Features

7.1 Overview

This guide covers use cases for both installations that have opted to deploy a basic level of the API, and
only extends the Redfish standard slightly, and those that implement a number of advanced features,
providing a broader range of functionality. Use cases that assume functionality or features beyond a basic
Swordfish implementation are clearly identified below, and are grouped with one another.

This version of the Users’ Guide incorporates the functionality defined in the Swordfish specification,
which defines a number of features. In addition to basic use cases, this document includes cases that rely
on the implementation of each of those features:

• Access management
• Block provisioning
• Capacity management
• Class of Service
• Event notification
• File provisioning
• Block IO performance
• Mapping and masking
• NVMe
• Registries
• Replication (both local and remote)
• Security Management

7.2 Access management feature

7.2.1 Overview

This feature provides access management configuration and control. This set of use cases focuses on access
control examples.

7.2.2 Alphabetic List of Use Cases

• Create a new endpoint

36 Version 1.2.8

• Delete an endpoint
• Create a new endpoint group
• Create a new connection to an existing volume

7.3 Block provisioning feature

7.3.1 Overview

This feature provides basic, block-based storage provisioning. The use cases cover a range of functionality
for both traditional RAID storage as well as NVMe devices.

7.3.2 Alphabetic List of Use Cases

• Add Multiple Drives to an Existing Storage Pool
• Change only the RAID Type of an Existing Volume
• Change only the span count of an existing volume
• Create Volume from an Existing Storage Pool
• Delete Multiple Drives from an Existing Storage Pool
• Delete Volume
• Can a new Namespace be created?
• Can a new Volume be created?

7.4 Capacity management feature

7.4.1 Overview

This feature provides the management and alteration of storage once it has been allocated. Use cases cover
multiple permutations for storage pool creation, online volume expansion, and capacity metrics review.

7.4.2 Alphabetic List of Use Cases

• Create storage pool using specified set of drives
• Create storage pool using Specified Set of Drives and RAIDTypes
• Create storage pool and specify a pool type
• Expand capacity of a storage volume
• Review Metrics Trends

Version 1.2.8 37

7.5 Class of Service Features

7.5.1 Overview

This feature provides support for automated storage management based on ClassOfService and
LineOfService modeling. Use cases in the section show create examples for various objects in a Class of
Service based configuration.

If a pool, storage volume or other construct is created with no specified class of service
when a class of service exists, the implementation will attempt to apply the
DefaultClassOfService.

7.5.2 Alphabetic List of Use Cases

• Create class of service
• Create file system with a class of service
• Create line of service
• Create storage pool
• Create Volume specifying Class of Service
• Create Volume using Default Class of Service
• Create an on-demand snapshot of a Volume

7.6 Connectivity management feature

7.6.1 Overview

This feature and its associated use cases illustrate the use and management of Connections.

7.6.2 Alphabetic List of Use Cases

None defined.

7.7 Event notification feature

7.7.1 Overview

This feature provides basic eventing.

The use cases defined here are limited to event functionality required for storage management with
Swordfish, and do not attempt to cover the full breadth of eventing support provided by Redfish. That

38 Version 1.2.8

information can be found in the Redfish specification.

7.7.2 Alphabetic List of Use Cases

• Subscribe to Threshold Events

7.8 File provisioning feature

7.8.1 Overview

This feature provides file-based storage provisioning.

This section provides use cases highlighting examples creating file systems and file shares.

7.8.2 Alphabetic List of Use Cases

• Create file share
• Create file system

7.9 Block IO performance feature

7.9.1 Overview

This feature provides basic performance metrics.

The use cases in this section provide examples to access performance metrics. For additional information,
including usage of the Redfish/Swordfish telemetry service, refer to the Swordfish Metrics White Paper.

7.9.2 Alphabetic List of Use Cases

• Retrieve latest instance of storage metrics information

7.10 Block mapping and masking feature

7.10.1 Overview

This feature provides block-based mapping and assignment of storage volumes.

Version 1.2.8 39

https://snia.org/swordfish-metrics-whitepaper/release/latest

7.10.2 Alphabetic List of Use Cases

• Create ConsistencyGroup

7.11 NVMe Support feature

7.11.1 Overview

This feature provides NVMe-specific use cases.

The detailed mapping between Swordfish objects and the NVMe object model can be found in Swordfish
NVMe Model Overview and Mapping Guide.

7.11.2 Alphabetic List of Use Cases

• Apply an NVMe firmware image to a given controller
• Attach a Namespace
• Confirm valid LBA formats
• Deprovision a Namespace
• Detach a Namespace
• Can a new Namespace be created?
• Provision a Namespace with a specific LBA format
• Provision a Namespace
• Provision a Namespace from NVM Set
• Report Namespace Capacity
• Report Remaining Life for a Namespace
• Update access rights on an existing volume

7.12 Registries feature

7.12.1 Overview

This feature provides management and manipulation for Swordfish registries, and related functionality,
including: - the FeaturesRegistry - Profiles

7.12.2 Alphabetic List of Use Cases

• Use Features Registry to confirm functionality

40 Version 1.2.8

https://snia.org/swordfish-nvme-mapping-guide/release/latest
https://snia.org/swordfish-nvme-mapping-guide/release/latest

7.13 Replication Feature

7.13.1 Overview

This set of features (local replication and remote replication) provides support for a broad range of storage
redundancy protections.

Replication can be implemented many ways. The use cases defined for this feature illustrate two possible
approaches, one using volumes and the other using consistency groups. Those use cases employing
consistency groups will include “CG” in their titles, to avoid confusion, and are grouped separately in the
table below.

7.13.2 Alphabetic List of Use Cases

• Create a New Replication Relationship by Assigning a Target Volume
• Make a New Replication Relationship by Creating a Target Volume
• Remove Replication Relationship
• Resume the Replication Synchronization Activity
• Reverse a Replication Relationship
• Split a Replica
• Suspend Replication Synchronization Activity
• Create a New Replication Relationship by Assigning an existing Target Consistency Group
• Make a New Replication Relationship by Creating a Target Consistency Group
• Remove Replication Relationship for a Consistency Group
• Resume the Replication Synchronization Activity for a Consistency Group
• Reverse a Replication Relationship for Consistency Groups
• Split a set of Replicas in Consistency Groups
• Suspend Replication Synchronization Activity between Consistency Groups

7.14 Security Management Features

7.14.1 Overview

This set of features provides an interface to the security protocol functions of a storage controller.

7.14.2 SecuritySend / SecurityReceive

Storage controllers typically rely upon specialized, secure communication protocols, and a pair of send/
receive functions to exchange security-related data (e.g., encryption keys) with the device.

For example:

Version 1.2.8 41

• SPC-5 defines SECURITY PROTOCOL IN and SECURITY PROTOCOL OUT commands
• NVMe defines Security Send and Security Receive commands
• UFS defines “Security Protocol In/Out” commands

The security features defined by Swordfish provide a simple, generalized interface to these commands,
providing a standardized, protocol-independent way to pass data to and from the storage device securely.

Swordfish restricts the allowable security protocol numbers to 0, 1 or 2 for the Security Receive action, and
1 or 2 for the Security Send action.

7.14.3 Alphabetic List of Use Cases

• Query Supported Security Protocols
• Receive Security Protocol Data
• Send Security Protocol Data

42 Version 1.2.8

8 Alphabetic list of use cases

8.1 Add Multiple Drives to an Existing Storage Pool

Summary: Add multiple drives to an Storage Pool.

Purpose: Add multiple drives to an Storage Pool to provide additional capacity.

Who: StorageAdmin

Management Domain: Block storage management

Triggers: Expand resources available to a pool; this could be performance, capacity or application
triggered.

Detailed Context: The storage admin needs to increase the underlying available capacity within an
existing pool. This use case makes the following assumptions about the “implementation” servicing the
request:

• The implementation manages, or does not have any, constraints on the inclusion of multiple
drives into the target storage pool.

Preconditions: User has already selected a Pool.

Feature(s): Block provisioning

Inputs:

• URL for Storage Pool: /redfish/v1/Storage/1/StoragePools/PrimaryPool

• Drives to add:

[{"@odata.id": "/redfish/v1/Chassis/1/Drives/1"}, {"@odata.id": "/redfish/v1/
Chassis/1/Drives/2"}]

Basic Course of Events:

1. Use the “AddDrives” Action on the PrimaryPool storage pool, passing the selected drives as
input.

Version 1.2.8 43

Request: POST /redfish/v1/Storage/1/StoragePools/PrimaryPool.AddDrives

• Headers: Content-type : application/json

• Body:

{

"Drives" : [

{"@odata.id": "/redfish/v1/Chassis/1/Drives/1"},

{"@odata.id": "/redfish/v1/Chassis/1/Drives/2"}

]

}

Response: Response is dependent on implementation’s capability.

If the implementation is able to return immediately:

• HTTP Status: 200 (OK)

• Headers: None.

• Body: None.

If the implementation requires a background task (using the Redfish task service) to return status:

• HTTP Status: 202 (Accepted)

• Headers: Location : /redfish/v1/TaskService/Tasks/TaskID2

• Body: None.

Postconditions: The new drives have been added to a capacity source (chosen by the implementation)
used by the selected storage pool.

Failure Scenario: None defined

See also: None defined.

8.2 Apply an NVMe firmware image to a given
controller

Summary: Select a firmware image and upload to a selected NVMe Controller

Purpose: Upload a selected firmware image to an NVMe Controller, and request its activation on reset.

Who: StorageAdmin; CloudAdmin

44 Version 1.2.8

Management Domain: Block storage management

Triggers: None defined.

Detailed Context: Locate a firmware image within the SoftwareInventory, and use the firmwareupdate
service to apply it to a given Admin or IO controller. The command cannot be sent to a discovery
controller. When sending the firmware image to the controller, use the “@Redfish.OperationApplyTime”
parameter to specify that the firmware should be activated by the device on reset.

Preconditions: The SoftwareInventory collection must be populated with at least one firmware
image.

Feature(s): NVMe

Inputs:

• None.

Basic Course of Events:

1. GET the list of available firmware images. Note: This is a well-known URI and query from the
UpdateService; this example assumes an implementation supporting the $expand query
parameter.

Request:

GET /redfish/v1/UpdateService/FirmwareInventory?$expand=.

◦ Headers: Content-type : application/json

◦ Body: None.

Response:

◦ HTTP Status: 200 (Success)

◦ Headers: Content-type : application/json

◦ Body

{
"@odata.context": "/redfish/

v1/$metadata#SoftwareInventoryCollection.SoftwareInventoryCollection",

"@odata.id": "/redfish/v1/UpdateService/FirmwareInventory",

Version 1.2.8 45

"@odata.type":
"#SoftwareInventoryCollection.SoftwareInventoryCollection",

"Description": "Collection of Firmware Inventory",

"Members": [

{
"@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/
Installed-0-20.06.05.11__SSD.1-1-1"

},

{
"@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/
Installed-0-20.06.05.11__SSD.1-2-1"

}

],

"Members@odata.count": 18,

"Name": "Firmware Inventory Collection"

}

2. GET the available controllers

Request:

GET /redfish/v1/Systems/Sys-1/Storage/SimplestNVMeSSD/Controllers

◦ Headers: Content-type : application/json

◦ Body: None.

Response:

◦ HTTP Status: 200 (Success)

◦ Headers: Content-type : application/json

◦ Body

{

"@odata.type": "#StorageControllerCollection.StorageControllerCollection",

"Name": "Storage Controller Collection",

"Description": "Storage Controller Collection",

"Members@odata.count": 1,

"Members": [

{
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/SimplestNVMeSSD/
Controllers/NVMeIOController"

}

46 Version 1.2.8

],

"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/SimplestNVMeSSD/Controllers",

"@Redfish.Copyright": "Copyright 2015-2023 SNIA. All rights reserved."

}

3. Call the FirmwareUpdate service

Request:

POST /redfish/v1/Systems/Sys-1/Storage/SimplestNVMeSSD/Controllers/

NVMeIOController/Actions/UpdateService.SimpleUpdate

◦ Headers: Content-type : application/json

◦ Body:

{
"ImageURI": "https://localhost/redfish/v1/UpdateService/

FirmwareInventory/Installed-0-20.06.05.11__SSD.1-2-1",

"@Redfish.OperationApplyTime": "OnTargetReset"

}

Response:

◦ HTTP Status: 202 (Accepted)

◦ Headers: Content-type : application/json Location: /redfish/v1/

TaskService/TaskMonitors/1792

◦ Body

{

"@odata.id": "/redfish/v1/TaskService/Tasks/1792",

"@odata.type": "#Task.v1_5_0.Task",

"Id": "1792",

"Name": "Task 1792",

"TaskState": "Running",

"StartTime": "2023-06-03T14:44+06:00",

"TargetUri": "/redfish/v1/UpdateService/Actions/SimpleUpdate",

"TaskMonitor": "/redfish/v1/TaskService/TaskMonitors/1792",

"TaskStatus": "OK",

"Messages": [

{

Version 1.2.8 47

"@odata.type": "#Message.v1_1_1.Message",

"MessageId": "Update.1.0.AwaitToActivate",
"Message": "Awaiting for an action to proceed with activating image

'Installed-0-20.06.05.11__SSD.1-2-1' on '/redfish/v1/Systems/
Sys-1/Storage/SimplestNVMeSSD/Controllers/NVMeIOController'.",

"Severity": "OK",

"MessageSeverity": "OK",

"Resolution": "None"

},

],

"Resolution": "None"

}

4. Monitor the task, and task await completion or the transition to the JobService Since the
installation of a new firmware image may be tied to device specific events or conditions (i.e., the
image should be applied at the next device reset, or within a specific maintenance window), the
stateless task may well be converted to a stateful Job.

Request:

GET /redfish/v1/TaskService/TaskMonitors/1792

◦ Headers: Content-type : application/json

◦ Body: None.

Response:

◦ HTTP Status: 200 (Success)

◦ Headers: Content-type : application/json

◦ Body

{

"error": {

"code": "Update.1.0.OperationTransitionedToJob",

"message": "The update operation has transitioned to the job at URI ...",

"@Message.ExtendedInfo": [

{

"@odata.type": "#Message.v1_1_1.Message",

"MessageId": "Update.1.0.OperationTransitionedToJob",

"Message": "The update operation has transitioned to the job at URI ...",

"Severity": "OK",

48 Version 1.2.8

"MessageSeverity": "OK",

"MessageArgs": [

"/redfish/v1/JobService/Jobs/1824"

],

"Resolution": "None"

}

]

}

}

5. Monitor the job, and await completion or the need for user intervention

Request:

GET /redfish/v1/JobService/Jobs/1824

◦ Headers: Content-type : application/json

◦ Body: None.

Response:

◦ HTTP Status: 200 (Success)

◦ Headers: Content-type : application/json

◦ Body

{

"@odata.id": "/redfish/v1/JobService/Jobs/1824",

"@odata.type": "#Job.v1_0_5.Job",

"Id": "1824",

"Name": "Job 1824",

"JobStatus": "OK",

"JobState": "UserIntervention",

"StartTime": "2020-10-15T14:44+06:00",

"PercentComplete": 85,

"CreatedBy": "admin",

"Payload": {

"TargetUri": "/redfish/v1/UpdateService/SimpleUpdate",

},

"Steps": {

"@odata.id": "/redfish/v1/JobService/Jobs/1824/Steps"

},

Version 1.2.8 49

"Messages": [

{

"@odata.type": "#Message.v1_1_1.Message",

"MessageId": "Update.1.0.UpdateInProgress",

"Message": "An update is in progress.",

"Severity": "OK",

"MessageSeverity": "OK",

"Resolution": "None"

},

{

"@odata.type": "#Message.v1_1_1.Message",

"MessageId": "Update.1.0.TargetDetermined",
"Message": "The target device 'NVMeIOController' will be updated with image

...",

"Severity": "OK",

"MessageSeverity": "OK",

"MessageArgs": [

"NVMeIOController",

"Installed-0-20.06.05.11__SSD.1-2-1"

],

"Resolution": "None"

},

{

"@odata.type": "#Message.v1_1_1.Message",

"MessageId": "Update.1.0.AwaitToActivate",

"Message": "Awaiting for an action to proceed with activating image ...",

"Severity": "OK",

"MessageSeverity": "OK",

"MessageArgs": [

"NVMeIOController"

],

"Resolution": "Perform the requested action to advance the update operation."

},

{

"@odata.type": "#Message.v1_1_1.Message",

"MessageId": "Base.1.10.ResetRequired",
"Message": "In order to complete the operation, a component reset is required

...",

"Severity": "Warning",

"MessageSeverity": "Warning",

"MessageArgs": [

"/redfish/v1/Systems/1/Actions/ComputerSystem.Reset",

"GracefulRestart"

],

"Resolution": "Perform the required reset action on the specified component."

}

]

}

50 Version 1.2.8

Request:

GET /redfish/v1/JobService/Jobs/1824/JobState

◦ Headers: Content-type : application/json

◦ Body:

{

"JobState": "Completed"

}

Postconditions: The identified controller(s) are now using the select firmware image.

Failure Scenario: See https://www.dmtf.org/sites/default/files/standards/documents/
DSP2062_1.0.1.pdf for a detailed discussion of task management and the proper parsing of error
conditions during an update operation.

See also: None defined.

8.3 Attach a Namespace

Summary: Attach a Namespace

Purpose: Provide visibility to a namespace by attaching it to an IO Controller.

Who: StorageAdmin; CloudAdmin

Management Domain: Block storage management

Triggers: None defined.

Detailed Context: Attach a Namespace to an IO Controller to make it visible to the hosts that connect to
that IO Conttoller, and accessible for block storage operations.

Preconditions: The IO Controller and Namespaces need to exist, and be fully defined.

Feature(s): NVMe

Inputs:

• URL for Namespace.

Basic Course of Events:

Version 1.2.8 51

1. PATCH the AttachedVolumes array in the IO Controller with the Namespace.

Request:

PATCH /redfish/v1/Systems/Sys-1/Storage/SimplestNVMeSSD/

Controllers/NVMeIOController/

• Headers: Content-type : application/json

• Body:

{

"Links": {

"AttachedVolumes": [

{
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/SimplestNVMeSSD/Volumes/
SimpleNamespace"

}

]

}

}

Response:

• HTTP Status: 200 (Success)

• Headers: Content-type : application/json

• Body

{

"@Redfish.Copyright": "Copyright 2015-2021 SNIA. All rights reserved.",
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/SimplestNVMeSSD/Controllers/

NVMeIOController",

"@odata.type": "#StorageController.v1_1_0.StorageController",

"Id": "NVMeIOController",

"Name": "NVMe I/O Controller",
"Description": "An NVM IO controller is a general-purpose controller that

provides access to logical block data and metadata stored on an NVM
subsystem’s non-volatile storage medium. IO Controllers may also
support management capabilities.",

"Status": {

"State": "Enabled",

"Health": "OK"

},

52 Version 1.2.8

"Manufacturer": "Best NVMe Vendor",

"Model": "Simple NVMe Device",

"SerialNumber": "NVME123456",

"PartNumber": "NVM44",

"FirmwareVersion": "1.0.0",

"SupportedControllerProtocols": [

"PCIe"

],

"SupportedDeviceProtocols": [

"NVMe"

],

"NVMeControllerProperties": {

"NVMeVersion": "1.3",

"NVMeControllerAttributes": {

"ReportsUUIDList": false,

"SupportsSQAssociations": false,

"ReportsNamespaceGranularity": false,

"SupportsTrafficBasedKeepAlive": false,

"SupportsPredictableLatencyMode": false,

"SupportsEnduranceGroups": false,

"SupportsReadRecoveryLevels": false,

"SupportsNVMSets": false,

"SupportsExceedingPowerOfNonOperationalState": false,

"Supports128BitHostId": false

}

},

"Links": {

"AttachedVolumes": [

{
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/SimplestNVMeSSD/

Volumes/SimpleNamespace"

}

]

}

}

Postconditions: The Namespace has been configured as an AttachedVolume to the IO Controller. This
means that the Namespace is visible to hosts connected to the IO Controller.

Failure Scenario: None defined.

See also: None defined.

8.4 Can a new Namespace be created?

Summary: Confirm that a new Namespace can be created.

Version 1.2.8 53

Purpose: Check VolumeCollection settings before attempting to create a new entry.

Who: CloudAdmin, StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need to create a new Namespace.

Detailed Context: Before attempting to create a new Namespace, the users wants to confirm that
creation is allowed against a given StoragePool. The Allow header returned for the VolumeCollection will
indicate whether Namespace creation is permitted or not.

Preconditions: None.

Feature(s): Block provisioning

Inputs:

• URL for Volumes collection: /redfish/v1/Storage/1/Volumes

Basic Course of Events:

1. Request the header information of the Volumes resource collection. > Note: This example use the
HTTP verb HEAD, though a request using GET would also return the required headers.

Request:

HEAD /redfish/v1/Storage/1/Volumes

• Headers: No additional headers required.

• Body: None.

Response: Response contains the header.

• HTTP Status: 200 (OK)

• Headers: Allow : GET, POST, HEAD

• Body: None.

Postconditions: None defined.

Failure Scenario: None defined

See also: Can a new Volume be created?

54 Version 1.2.8

8.5 Can a new Namespace be created?

Summary: Confirm that a new Namespace can be created.

Purpose: Check VolumeCollection settings before attempting to create a new entry.

Who: StorageAdmin CloudAdmin

Management Domain: Block storage management

Triggers: Need to create a new Namespace.

Detailed Context: Before attempting to create a new Namespace, the users wants to confirm that
creation is allowed against a given StoragePool. The Allow header returned for the VolumeCollection will
indicate whether Namespace creation is permitted or not.

Preconditions: None.

Feature(s): NVMe

Inputs:

• URL for Volumes collection: /redfish/v1/Storage/1/Volumes

Basic Course of Events:

1. Request the header information of the Volumes resource collection. > Note: This example use the
HTTP verb HEAD, though a request using GET would also return the required headers.

Request:

HEAD /redfish/v1/Storage/1/Volumes

• Headers: No additional headers required.

• Body: None.

Response: Response contains the header.

• HTTP Status: 200 (OK)

• Headers: Allow : GET, POST, HEAD

• Body: None.

Postconditions: None defined.

Failure Scenario: None defined

Version 1.2.8 55

See also: Can a new Volume be created?

8.6 Can a new Volume be created?

Summary: Confirm that a new Volume can be created.

Purpose: Check VolumeCollection settings before attempting to create a new Volume.

Who: CloudAdmin, StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need to create a new Volumes.

Detailed Context: Before attempting to create a new Volume, the users wants to confirm that creation is
allowed against a given StoragePool. The Allow header returned for the VolumeCollection will indicate
whether Volume creation is permitted or not.

Preconditions: None.

Feature(s): Block provisioning

Inputs:

• URL for Volumes collection: /redfish/v1/Storage/1/Volumes

Basic Course of Events:

1. Request the header information of the Volumes resource collection. > Note: This example use the
HTTP verb HEAD, though a request using GET would also return the required headers.

Request:

HEAD /redfish/v1/Storage/1/Volumes

• Headers: No additional headers required.

• Body: None.

Response: Response contains the header.

• HTTP Status: 200 (OK)

• Headers: Allow : GET, POST, HEAD

• Body: None.

Postconditions: None defined.

56 Version 1.2.8

Failure Scenario: None defined

See also: Can a new Namespace be created?

8.7 Change only the RAID Type of an Existing
Volume

Summary: Change only the RAID type of an existing Volume

Purpose: Change the RAID type of an existing Volume to meet new protection requirements, without a
change to the underlying Drives collection.

Who: StorageAdmin

Management Domain: Block storage management

Triggers: Change the RAID protection level of a Volume; this could be performance, capacity or
application triggered.

Detailed Context: The storage admin needs to alter the underlying RAID layout for an existing Volume.

Preconditions: Volume already exists, and employs drives sufficient to satisfy the requested RAID
geometry.

Feature(s): Block provisioning

Inputs:

• URL for Volume: /redfish/v1/Storage/1/StoragePools/PrimaryPool/
AllocatedVolumes/1

Basic Course of Events:

1. Use the ChangeRAIDLayout Action on the Volume, passing the requested RAIDType as input.

Request:

POST /redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1/Actions

/ChangeRAIDLayout

◦ Headers: Content-type: application/json

◦ Body:

Version 1.2.8 57

{

"RAIDType" : "RAID5"

}

Response: Response is dependent on implementation’s capability.

Case 1: If the implementation is able to return immediately:

◦ HTTP Status: 204 (No Content)

◦ Headers:

Location :

/redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1

◦ Body: None.

A GET on volume will show the updated RAIDType.

Request:

GET /redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1

Response:

▪ HTTP Status: 200 (OK)

▪ Headers: Location : /redfish/v1/Storage/1/StoragePools/

PrimaryPool/AllocatedVolumes/1 Content-type: application/

json ETag: "FD87EC46239"

▪ Body:

{

"@SSM.Copyright": "Copyright (c) 2014-2025 SNIA. All rights reserved.",

"@odata.context": "/redfish/v1/$metadata#Volume.Volume",
"@odata.id": "/redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1",

"@odata.type": "#Volume_1_6_0.Volume",

"Name": "MyVolume",

"Id": "1",

"Description": "Default Volume Description",

"RAIDType": "RAID5",

58 Version 1.2.8

"Identifiers": [

{

"DurableNameFormat": "NAA",

"DurableName": "65456765456761001234076100123487"

}

],

"Status": {

"State": "Enabled",

"Health": "OK"

},

"CapacityBytes": 1099511627776,

"Links": {

"StoragePool": "/redfish/v1/Storage/1/StoragePools/1"

}

}

Case 2: If the implementation requires a background task (using the Redfish task service) to
return status:

◦ HTTP Status: 202 (Accepted)

◦ Headers: Location : /redfish/v1/TaskService/Tasks/TaskID2 ETag:

"FD87EC46239"

◦ Body: None.

A GET on volume while task is pending will indicate the in-process change to RAIDType,
and that the transition to the new RAID layout is not complete, using Status.State
and Status.Health:

Request: GET /redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1

Response:

▪ HTTP Status: 200 (OK)

▪ Headers: Location : /redfish/v1/Storage/1/StoragePools/

PrimaryPool/AllocatedVolumes/1 Content-type: application/

json ETag: "FD87EC46239"

▪ Body:

{

Version 1.2.8 59

"@SSM.Copyright": "Copyright (c) 2014-2025 SNIA. All rights
reserved.",

"@odata.context": "/redfish/v1/$metadata#Volume.Volume",
"@odata.id": "/redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1",

"@odata.type": "#Volume_1_6_0.Volume",

"Name": "MyVolume",

"Id": "1",

"Description": "Default Volume Description",

"RAIDType": "RAID5",

"Identifiers": [

{

"DurableNameFormat": "NAA",

"DurableName": "65456765456761001234076100123487"

}

],

"Status": {

"State": "Updating",

"Health": "Warning"

},

"CapacityBytes": 1099511627776,

"Links": {
"StoragePool": "/redfish/v1/Storage/1/StoragePools/

PrimaryPool"

}

}

A subsequent GET on the Volume, once the task has completed, will reflect the new
values:

Request:

GET /redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1

Response:

▪ HTTP Status: 200 (OK)

▪ Headers:

Location : /redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1 Content-type: application/json ETag:

FD87EC46781

▪ Body:

60 Version 1.2.8

{
"@SSM.Copyright": "Copyright (c) 2014-2025 SNIA. All rights

reserved.",

"@odata.context": "/redfish/v1/$metadata#Volume.Volume",
"@odata.id": "/redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1",

"@odata.type": "#Volume_1_6_0.Volume",

"Name": "MyVolume",

"Id": "1",

"Description": "Default Volume Description",

"RAIDType": "RAID5",

"Identifiers": [

{

"DurableNameFormat": "NAA",

"DurableName": "65456765456761001234076100123487"

}

],

"Status": {

"State": "Enabled",

"Health": "OK"

},

"CapacityBytes": 1099511627776,

"Links": {

"StoragePool": "/redfish/v1/Storage/1/StoragePools/PrimaryPool"

}

}

Postconditions: None defined.

Failure Scenario: If the system is unable to complete the requrested change to the RAID layout for some
reason (e.g., insufficient Drives in the underlying StoragePool to support the requested RAID type), the
initial POST will result in an error. For example:

1. Use the ChangeRAIDLayout Action on the Volume, passing the requested RAIDType as input, as
in the initial scenario.

Request:

POST /redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1/

Actions/ChangeRAIDLayout

◦ Headers: Content-type : application/json

◦ Body:

Version 1.2.8 61

{

"RAIDType" : "RAID5"

}

Response:

• HTTP Status: 400 (Bad Request)

• Headers:

Content-type: application/json

• Body:

{

"error": {

"code": "Base.1.6.ActionParameterMissing",
"message": "The action ChangeRAIDLayout requires the parameter Drives to be
present in the request body.",

"@Message.ExtendedInfo" : [

{

"MessageId" : "Base.1.6.ActionParameterMissing",

"Message" : "The Drives paramter must be included in this request",

"RelatedProperties" : "Drives"

}

]

}

}

See also: None defined.

8.8 Change only the span count of an existing
volume

Summary: Change only the span count of an existing Volume

Purpose: Change the span count RAID type of an existing Volume, without a change to the underlying
Drives collection.

Who: StorageAdmin

Management Domain: Block storage management

Triggers: Change the span count of a Volume; this could be performance, capacity or application

62 Version 1.2.8

triggered.

Detailed Context: The storage admin needs to alter the underlying RAID layout for an existing Volume.

Preconditions: Volume already exists, and employs drives sufficient to satisfy the requested RAID
geometry.

Feature(s): Block provisioning

Inputs:

• URL for Volume: /redfish/v1/Storage/1/StoragePools/PrimaryPool/
AllocatedVolumes/1

Basic Course of Events:

1. Use the ChangeRAIDLayout Action on the Volume, passing the requested MediaSpanCount as
input.

Request:

POST /redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1/

Actions/ChangeRAIDLayout

• Headers: Content-type : application/json

• Body:

{

"MediaSpanCount" : 10

}

Response:

Response is dependent on implementation’s capability.

If the implementation is able to return immediately:

• HTTP Status: 204 (No Content)

◦ Headers:

Location : /redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1

Version 1.2.8 63

◦ Body: None.

A GET on volume will show the updated RAIDType.

Request:

`GET /redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1`

◦ Response: 200 (OK)

◦ Headers:

Location : /redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1 Content-type : application/json ETag: FD87EC46781

◦ Body:

{

"@SSM.Copyright": "Copyright (c) 2014-2025 SNIA. All rights reserved.",

"@odata.context": "/redfish/v1/$metadata#Volume.Volume",
"@odata.id": "/redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/

1",

"@odata.type": "#Volume_1_6_0.Volume",

"Name": "MyVolume",

"Id": "1",

"Description": "Default Volume Description",

"RAIDType": "RAID50",

"MediaSpanCount": 10,

"Identifiers": [

{

"DurableNameFormat": "NAA",

"DurableName": "65456765456761001234076100123487"

}

],

"Status": {

"State": "Enabled",

"Health": "OK"

},

"CapacityBytes": 1099511627776,

"Links": {

"StoragePool": "/redfish/v1/Storage/1/StoragePools/PrimaryPool"

}

}

If the implementation requires a background task (using the Redfish task service) to return
status:

64 Version 1.2.8

Response:

◦ HTTP Status: 202 (Accepted)

◦ Headers:

Location : /redfish/v1/TaskService/Tasks/TaskID2

◦ Body: None.

A GET on volume while task is pending will indicate the in-process change to RAIDType, and that
the transition to the new RAID layout is not complete, using Status.State and
Status.Health:

Request:

`GET /redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1`

Response:

◦ HTTP Status: 200 (OK)

◦ Headers: Location : /redfish/v1/Storage/1/StoragePools/

PrimaryPool/AllocatedVolumes/1 Content-type : application/json

ETag: FD87EC46781

◦ Body:

{

"@SSM.Copyright": "Copyright (c) 2014-2025 SNIA. All rights reserved.",

"@odata.context": "/redfish/v1/$metadata#Volume.Volume",
"@odata.id": "/redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1",

"@odata.type": "#Volume_1_6_0.Volume",

"Name": "MyVolume",

"Id": "1",

"Description": "Default Volume Description",

"RAIDType": "RAID50",

"MediaSpanCount": 10,

"Identifiers": [

{

"DurableNameFormat": "NAA",

"DurableName": "65456765456761001234076100123487"

}

],

"Status": {

Version 1.2.8 65

"State": "Updating",

"Health": "Warning"

},

"CapacityBytes": 1099511627776,

"Links": {
"StoragePool": "/redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1"

}

}

A subsequent GET on the Volume, once the task has completed, will reflect the new values:

Request:

`GET /redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1`

Response:

◦ HTTP Status: 200 (OK)

◦ Headers: Location : /redfish/v1/Storage/1/StoragePools/

PrimaryPool/AllocatedVolumes/1 Content-type : application/json

ETag: FD87EC469AE

◦ Body:

{

"@SSM.Copyright": "Copyright (c) 2014-2025 SNIA. All rights reserved.",

"@odata.context": "/redfish/v1/$metadata#Volume.Volume",
"@odata.id": "/redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1",

"@odata.type": "#Volume_1_6_0.Volume",

"Name": "MyVolume",

"Id": "1",

"Description": "Default Volume Description",

"RAIDType": "RAID50",

"MediaSpanCount": 10,

"Identifiers": [

{

"DurableNameFormat": "NAA",

"DurableName": "65456765456761001234076100123487"

}

],

"Status": {

"State": "Enabled",

66 Version 1.2.8

"Health": "OK"

},

"CapacityBytes": 1099511627776,

"Links": {

"StoragePool": "/redfish/v1/Storage/1/StoragePools/PrimaryPool"

}

}

Postconditions: None defined.

Failure Scenario: If the system is unable to complete the requested change to the RAID layout for some
reason (e.g., insufficient Drives in the underlying StoragePool to support the requested MediaSpanCount),
the initial POST will result in an error. For example:

1. Use the ChangeRAIDLayout Action on the Volume, passing the requested MediaSpanCount as
input, as in the initial scenario.

Request:

POST /redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1/

Actions/ChangeRAIDLayout

◦ Headers: Content-type : application/json

◦ Body:

{

"MediaSpanCount": 10

}

Response:

• HTTP Status: 400 (Bad Request)

• Headers: Content-type : application/json

• Body:

{

"error": {

"code": "Base.1.6.ActionParameterMissing",

Version 1.2.8 67

"message": "The action ChangeRAIDLayout requires the parameter Drives to be
present in the request body.",

"@Message.ExtendedInfo" : [

"MessageId": "Base.1.6.ActionParameterMissing",

"Message" : "The Drives paramter must be included in this request",

"RelatedProperties" : "Drives"

]

}

}

See also: None defined.

8.9 Confirm valid LBA formats

Summary: Confirm valid LBA formats

Purpose: Verify that a given LBA format is supported by a Volume collection.

Who: StorageAdmin CloudAdmin

Management Domain: Block storage management

Triggers: None defined.

Detailed Context: Querying the CollectionCapabilities object defined within the Controllers collection,
allows a user to confirm that a particulary LBA format is supported, even if the collection itself is empty
due to the ephemeral nature of NVMe Controllers.

Preconditions: None defined.

Feature(s): NVMe

Inputs:

• URL for Controller collection: /redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/
Controllers

Basic Course of Events:

1. Get the ControllerCollection and find the CapabilitiesObject property within the returned
JSON data:

Request:

GET /redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Controllers

68 Version 1.2.8

• Headers: No additional headers required.

• Body: None.

Response:

• HTTP Status: 200 (OK)

• Headers:

◦ Content-type : application/json

◦ ETag : "97AED48652"

• Body:

{

"@odata.type": "#StorageControllerCollection.StorageControllerCollection",

"Name": "Storage Controller Collection",

"Description": "Storage Controller Collection",

"Members@odata.count": 0,

"Members": [],

"@Redfish.CollectionCapabilities": {

"@odata.type": "#CollectionCapabilities.v1_3_0.CollectionCapabilities",

"Capabilities": [{

"CapabilitiesObject": {
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Volumes/
Capabilities"

},

"Links": {

"TargetCollection": {

"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Controllers"

}

}

}]

},

"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Controllers",

"@Redfish.Copyright": "Copyright 2022 SNIA. All rights reserved."

}

2. Get the CollectionCapabilities, and confirm that the desired LBA format is included in the
collection of supported formats.

Request:

GET /redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Volumes/Capabilities

• Headers: No additional headers required.

Version 1.2.8 69

• Body: None.

Response:

• HTTP Status: 200 (OK)

• Headers:

◦ Content-type : application/json

◦ ETag : "1AB7994D"

• Body:

{

"@odata.type": "#Volume.v1_9_0.Volume",

"Id": "Capabilities",

"Name": "Capabilities for the Volume",

"Name@Redfish.RequiredOnCreate": true,

"Name@Redfish.SetOnlyOnCreate": true,

"Description@Redfish.OptionalOnCreate": true,

"Description@Redfish.SetOnlyOnCreate": true,

"NVMeNamespaceProperties": {

"LBAFormatsSupported@Redfish.AllowableValues": [

"LBAFormat0",

"LBAFormat1",

],

"LBAFormats": [

{

"LBAFormatType": "LBAFormat0",

"RelativePerformance": "Best",

"LBADataSizeBytes": 4096,

"LBAMetadataSizeBytes": 0

},

{

"LBAFormatType": "LBAFormat1",

"RelativePerformance": "Good",

"LBADataSizeBytes": 512,

"LBAMetadataSizeBytes": 0

}

]

},

"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Volumes/Capabilities",

"@Redfish.Copyright": "Copyright 2022 SNIA. All rights reserved."

}

Postconditions: None.

70 Version 1.2.8

Failure Scenario: None defined.

See also: None defined.

8.10 Create a new connection to an existing volume

Summary: Create a new connection to an existing Volume, using a pre-existing Endpoint to grant read/
write access to the Volume.

Purpose: Use existing Endpoints to provide a new access path to an existing volume.

Who: StorageAdmin, CloudAdmin

Management Domain: Block storage management

Triggers: None defined.

Detailed Context: Create a new connection to an existing Volume, to allow it to be accessed from a given
host by way of the selected Endpoints.

Preconditions: User has already identified the Endpoints that will be used for the new Connection.

Feature(s): Access Management

Inputs:

• Name for new connection: “Connection info for host 1”

• Volume Id: “/redfish/v1/Storage/IPAttachedDrive1/Volumes/SimpleNamespace”

• Initiator endpoint: /redfish/v1/Fabrics/NVMeoF/Endpoints/Initiator1

• Target endpoint: /redfish/v1/Fabrics/NVMeoF/Endpoints/D1-E1

• Volume access information:

{

"AccessCapabilities": [

"Read",

"Write"

],

"Volume": {
"@odata.id": "/redfish/v1/Storage/IPAttachedDrive1/Volumes/

SimpleNamespace"

}

}

Version 1.2.8 71

Basic Course of Events:

1. Create the new Connection

Request:

POST /redfish/v1/Fabrics/NVMeoF/Connections

◦ Headers: Content-type : application/json

◦ Body:

{

"Name": "Connection info for host 1",

"VolumeInfo": [

{

"AccessCapabilities": [

"Read",

"Write"

],

"Volume": {
"@odata.id": "/redfish/v1/Storage/IPAttachedDrive1/Volumes/

SimpleNamespace"

}

},

],

"Links": {

"InitiatorEndpoints": [

{

"@odata.id": "/redfish/v1/Fabrics/NVMeoF/Endpoints/Initiator1"

}

],

"TargetEndpoints": [

{

"@odata.id": "/redfish/v1/Fabrics/NVMeoF/Endpoints/D1-E1"

}

]

}

}

Response:

◦ HTTP Status: 201 (Created)

◦ Headers:

Content-type: application/json

72 Version 1.2.8

Location: /redfish/v1/Fabrics/NVMeoF/Connections/1

◦ Body:

{

"Name": "Connection info for host 1",

"VolumeInfo": [

{

"AccessCapabilities": [

"Read",

"Write"

],

"Volume": {
"@odata.id": "/redfish/v1/Storage/IPAttachedDrive1/Volumes/

SimpleNamespace"

}

},

],

"Links": {

"InitiatorEndpoints": [

{
"@odata.id": "/redfish/v1/Fabrics/NVMeoF/Endpoints/

Initiator1"

}

],

"TargetEndpoints": [

{

"@odata.id": "/redfish/v1/Fabrics/NVMeoF/Endpoints/D1-E1"

}

]

}

}

Postconditions: None defined.

Failure Scenario: None defined

See also: None defined.

8.11 Create a new endpoint

Summary: Create a new Endpoint.

Purpose: Create an Endpoint to direct access to a system’s resources to a particular interface and
protocol.

Who: StorageAdmin, CloudAdmin

Version 1.2.8 73

Management Domain: Block storage management

Triggers: None defined.

Detailed Context: Create an Endpoint to direct access to a system’s resources to a particular interface
and protocol.

Preconditions: None.

Feature(s): Access Management

Inputs:

• Endpoint role: “Initiator”
• Supported protocol: “iSCSI”,
• Related transport details:

{

"IPv4Address": {

"Address": "192.168.1.63"

}

}

Basic Course of Events:

1. Create the new Endpoint

Request:

POST /redfish/v1/Storage/MidrangeStorageSystem/Endpoints

◦ Headers: Content-type : application/json

◦ Body:

{

"Name": "InitiatorEndpoint1"

"EntityRole": "Initiator"

"EndpointProtocol": "iSCSI"

"IPTransportDetails":

{

"IPv4Address": {

"Address": "192.168.1.63"

}

}

}

74 Version 1.2.8

Response:

◦ HTTP Status: 201 (Created)

◦ Headers:

Content-type: application/json

Location: /redfish/v1/Storage/MidrangeStorageSystem/

EndpointGroups/TargetEndpoints

◦ Body:

{

"@odata.type": "#Endpoint.v1_7_0.Endpoint",

"Id": "InitiatorEndpoint1",

"Name": "InitiatorEndpoint1",

"Description": "iSCSI target Endpoint 1",

"Identifiers": [

{

"DurableName": "4289a3dd-ba52-41b8-9d3d-38de196e059c",

"DurableNameFormat": "UUID"

}

],

"ConnectedEntities": [

],

"EndpointProtocol": "iSCSI",

"IPTransportDetails": [

{

"IPv4Address": {

"Address": "192.168.1.63"

}

}

],

"Status": {

"State": "Enabled",

"Health": "OK"

},
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/Endpoints/

InitiatorEndpoint1",

"@Redfish.Copyright": "Copyright 2015-2025 SNIA. All rights reserved."

}

Postconditions: None defined.

Failure Scenario: None defined

See also: None defined.

Version 1.2.8 75

8.12 Create a new endpoint group

Summary: Create a new EndpointGroup, using a pre-existing Endpoints.

Purpose: Create an EndpointGroup to simplify future management of a group of existing Endpoints.

Who: StorageAdmin CloudAdmin

Management Domain: Block storage management

Triggers: None defined.

Detailed Context: Grouping a set of existing Endpoints into a single EndpointGroup simplifies access
management by allowing multiple Endpoints to be managed with a single API request.

Preconditions: User has already identified the Endpoints that will included in the new EndpointGroup.

Feature(s): Access Management

Inputs:

• A set of pre-existing Endpoints:

{

[

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/Endpoints/

TargetEndpoint1"

},

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/Endpoints/

TargetEndpoint2"

},

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/Endpoints/

TargetEndpoint3"

},

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/Endpoints/

TargetEndpoint4"

}

]

}

• Name of new EndpointGroup: “TargetEndpoints”

• Type of Endpoints in new EndpointGroup: “Target”

76 Version 1.2.8

Basic Course of Events:

1. Create the new EndpointGroup

Request:

POST /redfish/v1/Storage/MidrangeStorageSystem/EndpointGroups

◦ Headers: Content-type : application/json

◦ Body:

{

"Name": "TargetEndpoints"

"GroupType": "Target"

"Endpoints": [

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/Endpoints/
TargetEndpoint1"

},

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/Endpoints/
TargetEndpoint2"

},

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/Endpoints/
TargetEndpoint3"

},

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/Endpoints/
TargetEndpoint4"

}

]

Response:

◦ HTTP Status: 201 (Created)

◦ Headers:

Content-type: application/json

Location: /redfish/v1/Storage/MidrangeStorageSystem/

EndpointGroups/TargetEndpoints

◦ Body:

Version 1.2.8 77

{

"@odata.type": "#EndpointGroup.v1_2_0.EndpointGroup",

"Name": "TargetEndpoints"

"Id": "TargetEndpoints"
"Description": "Group of target endpoints for the midrange storage
system",

"AccessState": "Optimized",

"TargetEndpointGroupIdentifier": 3,

"GroupType": "Server",

"Endpoints": [

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/Endpoints/

TargetEndpoint1"

},

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/Endpoints/

TargetEndpoint2"

},

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/Endpoints/

TargetEndpoint3"

},

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/Endpoints/

TargetEndpoint4"

}

],
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/EndpointGroups/
TargetEndpoints",

"@Redfish.Copyright": "Copyright 2015-2025 SNIA. All rights reserved."

}

Postconditions: None defined.

Failure Scenario: None defined

See also: None defined.

8.13 Create a New Replication Relationship by
Assigning an existing Target Consistency Group

Summary: Establish a replication relationship by assigning an existing consistency group to serve as the
target in the replication relationship for an existing consistency group.

Purpose: Leverage an existing consistency group resource to provide expanded data protection by
creating a replication relationship with the specified source consistency group.

78 Version 1.2.8

Who: StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need to provide expanded data protection through a replica relationship with the specified
source consistency group.

Detailed Context: The admin needs to provide expanded data protection for the specified source
consistency group, and the configuration includes a pre-existing consistency group that can be repurposed
as the replication target.

Preconditions: User has already identified an existing consistency group to use for the target replicas
(including the target system and storage pool properties), the type of replica(s), and the replica update
mode (sync vs async).

Feature(s): Replication (both local and remote)

Inputs:

• URL for target volume: /redfish/v1/Storage/1/ConsistencyGroup/CG_DB2

• Requested replica type: Mirror

• ReplicaUpdateMode: Synchronous

Basic Course of Events:

1. Post (as an Action) the request on the source ConsistencyGroup.

This instructs the service to use the identified ConsistencyGroup as the source ConsistencyGroup
for the specified replication relationship. For any additional details required, the service will rely
on default values.

Request:

POST

/redfish/v1/Storage/1/ConsistencyGroup/CG_DB1/

ConsistencyGroup.AssignReplicaTarget

• Headers: Content-type : application/json

• Body:

{

"ReplicaUpdateMode": "Synchronous",

Version 1.2.8 79

"TargetConsistencyGroup": "/redfish/v1/Storage/1/ConsistencyGroup/CG_DB2",

"ReplicaType": "Mirror"

}

Response:

• HTTP Status: 204 (No Content)

• Headers: Location : /redfish/v1/Storage/1/ConsistencyGroup/CG_DB1

• Body: None.

Postconditions: The selected ConsistencyGroup has an updated ReplicaTargets entry for the new
relationship. Elsewhere, there is a ConsistencyGroup “CG_DB2” in the system that has a ReplicaInfo which
points back to this ConsistencyGroup and which contains all of the Replica configuration information.

Failure Scenario: None defined

See also: Assign Replica Target.

8.14 Create a New Replication Relationship by
Assigning a Target Volume

Summary: Establish a replication relationship by assigning an existing volume to serve as a target replica
for an existing source volume.

Purpose: Leverage an existing volume resource to provide expanded data protection through a replica
relationship with the specified source volume.

Who: StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need to provide expanded data protection through a replica relationship with the specified
source volume.

Detailed Context: The admin needs to provide expanded data protection for the specified source volume,
and the configuration includes pre-existing volume that can be repurposed as a replication target.

Preconditions: User has already identified an existing volume to use for the target replica (including the
target system and storage pool properties), the type of replica, and the replica update mode (sync vs async).

Feature(s): Replication (both local and remote)

Inputs:

80 Version 1.2.8

• URL for target volume: /redfish/v1/Storage/1/StoragePools/PrimaryPool/
AllocatedVolumes/650973452245

• Requested replica type: Mirror

• ReplicaUpdateMode: Synchronous

Basic Course of Events:

1. Post (as an Action) the request on the source Volume.

This instructs the service to use the identified Volume as the source Volume for the specified replication
relationship. For any additional details required, the service will rely on default values.

Request:

POST /redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1/

Volume.AssignReplicaTarget

• Headers: Content-type : application/json

• Body:

{

"ReplicaUpdateMode": "Synchronous",
"TargetVolume": "/redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/650973452245",

"ReplicaType": "Mirror"

}

Response:

◦ HTTP Status: 204 (No Content)

◦ Headers: Location : /redfish/v1/Storage/1/StoragePools/

PrimaryPool/AllocatedVolumes/1

◦ Body: None.

Postconditions: The selected volume has an updated ReplicaTargets entry for the new relationship.
Elsewhere, there is a volume “650973452245” in the system that has a ReplicaInfo which points back to
this volume and which contains all of the Replica configuration information.

Failure Scenario: None defined

Version 1.2.8 81

See also: Assign Replica Target (CG).

8.15 Create an on-demand snapshot of a Volume

Summary: Create an on-demand snapshot of a volume

Purpose: Create a snapshot of an existing volume. The resulting snapshot can then be used either as a
backup or as a separate copy to test against.

Who: CloudAdmin, StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need an on-demand snapshot of a Volume

Detailed Context: To take a snapshot of a volume, we need to find a DataProtectionLineOfService that
can describe the new Snapshot.

The DataProtectionLineOfService must have no schedule set to be able to provide on-demand behavior.

Preconditions: None.

Feature(s): Class of Service

Inputs:

• URL for storage service: /redfish/v1/StorageServices/1
• URL for the volume: /redfish/v1/StorageServices/1/StoragePools/BasePool/
AllocatedVolumes/1

Basic Course of Events:

1. The first step is to get the current supported DataProtectionLineOfService entries, and find one
that provides appropriate snapshot support (i.e., has no schedule set, and meets any other criteria
the client may have).

Request:

GET /redfish/v1/StorageServices/1/Links/DataProtectionLoSCapabilities/

SupportedLinesOfService

• Headers:
No additional headers required.

• Body:

82 Version 1.2.8

None

Response:

• HTTP Status: 200 (Success)

• Headers:

Content-type : application/json ETag : "97AED48652"

• Body:

{

"SupportedLinesOfService": [

{
"@odata.id": "/redfish/v1/StorageServices/1/Links/

DataProtectionLoSCapabilities/SupportedLinesOfService/
OnDemandSnapshot",

"Name": "OnDemandSnapshot",

"RecoveryGeographicObjective": "Server",

"ReplicaType": "Snapshot",

}

]

}

2. This looks like the right line of service for an on-demand snap. Note that since this is an on-
demand snapshot, it has no schedule specified. So, let’s use this to create the snapshot. We’ll copy
by value.

Request:

POST /redfish/v1/StorageServices/1/Links/DataProtectionLoSCapabilities/

SupportedLinesOfService/OnDemandSnapshot.CreateReplicas

• Headers:

Content-type : application/json ETag : "97AED48652"

• Body:

{

"ReplicaRequests": [{
"ReplicaSource": {"@odata.id": "/redfish/v1/StorageServices/1/
StoragePools/BasePool/AllocatedVolumes/1"},

"ReplicaName": "MySnapshot"

Version 1.2.8 83

}]

}

Response:

• HTTP Status: 200 (Success)

• Headers:

◦ Content-type : application/json

◦ ETag : "97AED48881"

• Body:

[{

"ReplicaPriority": "Same",

"ReplicaReadOnlyAccess": "ReplicaElement",

"UndiscoveredElement": null,

"WhenSynced": "20171024T142000-00500",

"SyncMaintained": null,

"ReplicaRecoveryMode": null,

"ReplicaUpdateMode": "Synchronous",

"PercentSynced": 100,

"FailedCopyStopsHostIO": null,

"WhenActivated": "20171024T142000-00500",

"WhenDeactivated": null,

"WhenEstablished": "20171024T142000-00500",

"WhenSuspended": null,

"WhenSynchronized": null,

"ReplicaSkewBytes": null,

"ReplicaType": "Snapshot",

"ReplicaProgressStatus": "Completed",

"ReplicaState": "Synchronized",

"ConsistencyEnabled": false,

"ConsistencyType": null,

"ConsistencyState": null,

"ConsistencyStatus": null,

"ReplicaRole": "Target",
"Replica": {"odata.id": "/redfish/v1/StorageServices/1/StoragePools/

BasePool/AllocatedVolumes/MySnapshot"},
"DataProtectionLineOfService": "/redfish/v1/StorageServices/1/Links/

DataProtectionLoSCapabilities/SupportedLinesOfService/
OnDemandSnapshot"}

]

Postconditions:
The original Volume (/redfish/v1/StorageServices/1/StoragePools/BasePool/AllocatedVolumes/1) now

84 Version 1.2.8

has a snapshot volume (/redfish/v1/StorageServices/1/StoragePools/BasePool/AllocatedVolumes/
MySnapshot) that is available through its ReplicaTargets collection. All replication information
(ReplicaInfo) is available on the snapshot (/redfish/v1/StorageServices/1/Volumes/MySnapshot) volume
to describe the relationship.

Failure Scenario:
None defined.

See also:
None defined.

8.16 Create class of service

Summary: Create a class of service

Purpose: Create a new class of service in the service catalog to match a newly available type of storage

Who: StorageAdmin

Management Domain: Block storage management, Service catalog management

Triggers: The administrator has determined that a new class of service needs to be created to reflect a
new class of SSD storage in the infrastructure.

Detailed Context: This is a simple scenario where the primary characteristic is the enhanced
performance available from SSD drives.

Preconditions: None defined.

Feature(s): Class of Service

Inputs:

• URL for Storage Service: /redfish/v1/StorageServices(1)

• New class of service characteristics

◦ Name: "SSD"

◦ Description: "Minimal SSD class of service."

◦ IOPerformanceLineOfService

▪ “Name”: "SSDLoS"
▪ “IOOperationsPerSecondIsLimited”: false
▪ “MaxIOOperationsPerSecondPerTerabyte”: 100000
▪ “AverageIOOperationLatencyMicroseconds”: 10

Version 1.2.8 85

Basic Course of Events:

1. Create ClassOfService

Request: POST /redfish/v1/StorageServices(1)/ClassesOfService/Members

◦ Headers: Content-type : application/json

◦ Body:

{

"Name": "SSD",

"Description": "Minimal SSD class of service.",

"LinesOfService": {

"IOPerformanceLinesOfService": [{

"Name": "SSDLoS",

"IOOperationsPerSecondIsLimited": false,

"MaxIOOperationsPerSecondPerTerabyte": 100000,

"AverageIOOperationLatencyMicroseconds": 10

}]

}

}

Response:

◦ HTTP Status: 201 (Created)

◦ Headers:

Location : /redfish/v1/StorageServices(1)/ClassesOfService(SSD)

◦ Body:

{

"@odata.type": "#ClassOfService.v1_2_0.ClassOfService",

"Id": "SSD",

"Name": "SSD",

"Description": "Minimal SSD class of service.",

"ClassOfServiceVersion": "01.20.00",

"IOPerformanceLinesOfService": [

{

"IOOperationsPerSecondIsLimited": false,

"MaxIOOperationsPerSecondPerTerabyte": 100000,

"AverageIOOperationLatencyMicroseconds": 10

}

],

86 Version 1.2.8

"@odata.id": "/redfish/v1/StorageServices/1/ClassesOfService/SSD",

"@Redfish.Copyright": "Copyright 2015-2023 SNIA. All rights reserved."

}

Postconditions: The requested class of service is added to the ClassesOfService collection.

Failure Scenario: None defined.

See also: None defined.

8.17 Create ConsistencyGroup

Summary: Create a ConsistencyGroup

Purpose: Create a ConsistencyGroup

Who: StorageAdmin, CloudAdmin

Management Domain: Block storage management

Triggers: None defined.

Detailed Context: Create a collection of application storage that is exposed to an application and
managed as a unit.

Preconditions: None defined.

Feature(s): Mapping and masking

Inputs:

• URL for storage system: /redfish/v1/Storage
• The proposed name of the new ConsistencyGroup (string): “Consistency group 1”
• A description of the new ConsistencyGroup (string): “Consistency group for VSS”
• The consistency method and type, replica info (replica type and replica fault domain) for the new

ConsistencyGroup.
• Pointers to the volumes and replica targes that are members of this group.

Basic Course of Events:

1. Create ConsistencyGroup

Request:

POST /redfish/v1/Storage/MidrangeStorageSystem/ConsistencyGroups

Version 1.2.8 87

• Headers: Content-type : application/json

• Body:

{

"Name": "Consistency group 1",

"Description": "Consistency group for VSS",

"ConsistencyMethod": "VSS",

"ConsistencyType": "ApplicationConsistent",

"Volumes": [

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/StoragePools/

StoragePool1/AllocatedVolumes/Volume2"

}

],

"ReplicaInfo": {

"ReplicaType": "Snapshot",

"ReplicaFaultDomain": "Local"

},

"ReplicaTargets": [

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/StoragePools/

StoragePool1/AllocatedVolumes/Volume2-Snap1"

},

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/StoragePools/

StoragePool1/AllocatedVolumes/Volume2-Snap2"

},

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/StoragePools/

StoragePool1/AllocatedVolumes/Volume2-Snap3"

},

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/StoragePools/

StoragePool1/AllocatedVolumes/Volume2-Snap4"

}

]

}

Response:

{

"@odata.type": "#ConsistencyGroup.v1_0_1.ConsistencyGroup",

"Id": "ConsistencyGroup1",

"Name": "Consistency group 1",

"Description": "Consistency group for VSS",

"IsConsistent": true,

"ConsistencyMethod": "VSS",

88 Version 1.2.8

"ConsistencyType": "ApplicationConsistent",

"Volumes": [

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/StoragePools/

StoragePool1/AllocatedVolumes/Volume2"

}

],

"ReplicaInfo": {

"ReplicaType": "Snapshot",

"ReplicaFaultDomain": "Local"

},

"ReplicaTargets": [

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/StoragePools/

StoragePool1/AllocatedVolumes/Volume2-Snap1"

},

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/StoragePools/

StoragePool1/AllocatedVolumes/Volume2-Snap2"

},

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/StoragePools/

StoragePool1/AllocatedVolumes/Volume2-Snap3"

},

{
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/StoragePools/

StoragePool1/AllocatedVolumes/Volume2-Snap4"

}

],
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/ConsistencyGroups/

ConsistencyGroup1"

}

• HTTP Status: 200 (OK)

Postconditions: The requested ConsistencyGroup is added to the Storage instance.

Failure Scenario: None defined.

See also: None defined.

8.18 Create file share

Summary: Create a file share

Purpose: Share an existing file system as Shares/MyShare

Who: CloudAdmin, StorageAdmin, DevOps

Version 1.2.8 89

Management Domain: File system storage management

Triggers: None defined.

Detailed Context: Create a share starting at Shares/MyShare.

Preconditions: None defined.

Feature(s): File provisioning

Inputs:

• URL for the filesystem: /redfish/v1/Storage/1/FileSystems/QuickFiles
• The path to the shared filesystem: "./MyShare"
• Description: "Share of files under MyShare."

Basic Course of Events:

1. Create a file share

Request:

POST /redfish/v1/Storage/1/FileSystems/QuickFiles/ExportedShares

• Headers: Content-type : application/json

• Body:

{

"Name" : "MyShare",

"Description" : "Share of files under MyShare.",

"SharedFilePath" : "./MyShare"

}

Response:

• HTTP Status: 201 (Created)

• Headers:

Location : /redfish/v1/Storage/1/FileSystems/QuickFiles/ExportedShares/

MyShare Content-type : application/json

• Body:

90 Version 1.2.8

{

"@odata.type": "#FileShare.v1_2_0.FileShare",

"Id": "MyShare",

"Name": "MyShare",

"Description": "My File Share.",

"FileSharePath": "QuickFiles/ExportedShares/MyShare"

"FileSharingProtocols": [

"SMBv3_1_1"

],

"Status": {

"State": "Enabled",

"Health": "OK",

"HealthRollup": "OK"

},

"DefaultAccessCapabilities": [

"Read",

"Write",

"Execute"

],

"ExecuteSupport": true,

"RootAccess": true,

"CASupported": true,

"Links": {

"FileSystem": {

"@odata.id": "/redfish/v1/Storage/StorageSystem/FileSystems/FS1"

}

},
"@odata.id": "/redfish/v1/Storage/StorageSystem/FileSystems/FS1/ExportedFileShares/

MyShare",

"@Redfish.Copyright": "Copyright 2015-2025 SNIA. All rights reserved."

}

Postconditions: The requested file share is added to the ExportedShares collection for the file system.

Failure Scenario: None defined.

See also: None defined.

8.19 Create file system

Summary: Create a file system

Purpose: Create a file system with a given capacity.

Who: StorageAdmin

Management Domain: File system storage management

Version 1.2.8 91

Triggers: None defined.

Detailed Context: Create a 100 TB file system.

Preconditions: None defined.

Feature(s): File provisioning

Inputs:

• URL for storage system: /redfish/v1/Storage/1

• Name for the new file system: "QuickFiles"

• Description: "100 TB FileSystem."

• File system capacity (in bytes): 100000000000000

{

"Name" : "QuickFiles",

"Capacity" : 100000000000000

}

Basic Course of Events:

1. Create FileSystem

Request: POST /redfish/v1/Storage/1/FileSystems

◦ Headers: Content-type : application/json

◦ Body:

{

"Name": "QuickFiles",

"Description": "100 TB FileSystem.",

"Capacity": 100000000000000

}

Response:

◦ HTTP Status: 201 (Created)

◦ Headers:

Location : /redfish/v1/Storage/1/FileSystems/QuickFiles Content-

92 Version 1.2.8

type : application/json

◦ Body:

{

"@odata.type": "#FileSystem.v1_4_2.FileSystem",

"Id": "QuickFiles",

"Name": "QuickFiles",

"Description": "100 TB FileSystem.",

"BlockSizeBytes": 8192,

"Capacity": {

"Data": {

"ConsumedBytes": 0,

"AllocatedBytes": 0,

"ProvisionedBytes": 1000000000000

},

"Metadata": {

"ConsumedBytes": 0,

"AllocatedBytes": 0,

"ProvisionedBytes": 0

},

"Snapshot": {

"ConsumedBytes": 0,

"AllocatedBytes": 0,

"ProvisionedBytes": 0

}

},

"Metrics": {
"@odata.id": "/redfish/v1/Storage/StorageSystem/FileSystems/QuickFiles/

Metrics"

},

"LowSpaceWarningThresholdPercents": [

60,

90

],

"AccessCapabilities": [

"Read",

"Write"

],

"CaseSensitive": false,

"CasePreserved": false,

"CharacterCodeSet": [

"ASCII",

"Unicode"

],

"MaxFileNameLengthBytes": 256,

"ClusterSizeBytes": 256,

"ExportedShares": {

Version 1.2.8 93

"@odata.id": "/redfish/v1/Storage/StorageSystem/FileSystems/QuickFiles/
ExportedFileShares"

},

"Links": {},

"@odata.id": "/redfish/v1/Storage/StorageSystem/FileSystems/QuickFiles",

"@Redfish.Copyright": "Copyright 2015-2025 SNIA. All rights reserved."

}

Postconditions: The requested file system is added to the FileSystems collection for the Storage instance.

Failure Scenario: None defined.

See also: None defined.

8.20 Create file system with a class of service

Summary: Create a file system with a class of service

Purpose: Create a file system with a given capacity and performance level.

Who: StorageAdmin

Management Domain: File system storage management

Triggers: None defined.

Detailed Context: Create a 100 TB file system based on SSD class storage.

Preconditions: None defined.

Feature(s): Class of Service

Inputs:

• URL for storage service: /redfish/v1/StorageServices/1

• Name for the new file system: "QuickFiles"

• Description: "100 TB FileSystem having SSD class storage."

• URL for class of service: /redfish/v1/StorageServices/1/Links/ClassesOfService/
SSD

• File system capacity:

94 Version 1.2.8

{

"Data":

{

"ProvisionedBytes": 100000000000000,

"IsThinProvisioned": true

}

}

Basic Course of Events:

1. Create FileSystem

Request: POST /redfish/v1/StorageServices/1/FileSystems

• Headers: Content-type : application/json

• Body:

{

"Name": "QuickFiles",

"Description": "100 TB FileSystem having SSD class storage.",

"Capacity": {

"Data": {

"ProvisionedBytes": 100000000000000

},

"IsThinProvisioned": true

},

"Links" : {

"ClassOfService": {"odata.id":

"/redfish/v1/StorageServices/1/Links/ClassesOfService/SSD"}

}

}

Response:

• HTTP Status: 201 (Created)

• Headers:

Location : /redfish/v1/StorageServices/1/FileSystems/QuickFiles

• Body:

{

Version 1.2.8 95

"@odata.type": "#FileSystem.v1_2_2.FileSystem",

"Id": "QuickFiles",

"Name": "QuickFiles",

"Description": "100 TB FileSystem having SSD class storage.",

"BlockSizeBytes": 8192,

"Capacity": {

"Data": {

"ConsumedBytes": 0,

"AllocatedBytes": 0,

"ProvisionedBytes": 100000000000000

},

"Metadata": {

"ConsumedBytes": 0,

"AllocatedBytes": 0,

"ProvisionedBytes": 0

},

"Snapshot": {

"ConsumedBytes": 0,

"AllocatedBytes": 0,

"ProvisionedBytes": 0

}

},

"CapacitySources": [

{

"@odata.type": "#Capacity.v1_2_0.CapacitySource",

"Id": "Source1",

"Name": "Source1",

"ProvidedCapacity": {

"Data": {

"ConsumedBytes": 500000000000,

"AllocatedBytes": 1000000000000,

"ProvisionedBytes": 3000000000000

},

"Metadata": {

"ConsumedBytes": 0,

"AllocatedBytes": 0,

"ProvisionedBytes": 0

},

"Snapshot": {

"ConsumedBytes": 0,

"AllocatedBytes": 0,

"ProvisionedBytes": 0

}

},

"ProvidedClassOfService": {
"@odata.id": "/redfish/v1/StorageServices/FileService/ClassesOfService/

GoldDallas"

},

"ProvidingPools": {

96 Version 1.2.8

"@odata.id": "/redfish/v1/StorageServices/1/FileSystems/QuickFiles/
CapacitySources/Source1/ProvidingPools"

},
"@odata.id": "/redfish/v1/StorageServices/1/FileSystems/QuickFiles/

CapacitySources/Source1"

}

],

"AccessCapabilities": [

"Read",

"Write"

],

"Links": {

"ClassOfService": {
"@odata.id": "/redfish/v1/StorageServices/FileService/ClassesOfService/

GoldDallas"

}

},

"@odata.id": "/redfish/v1/StorageServices/1/FileSystems/QuickFiles",

"@Redfish.Copyright": "Copyright 2015-2023 SNIA. All rights reserved."

}

Postconditions: The requested file system is added to the FileSystems collection for the Storage Service.

Failure Scenario: None defined.

See also: None defined.

8.21 Create line of service

Summary: Create a line of service to reflect the performance characteristics of SSD storage

Purpose: The definition is created here in preparation of creating ClassOfService instances that include a
requirement for SSD storage performance.

Who: StorageAdmin

Management Domain: Block storage management, Service catalog management

Triggers: None defined.

Detailed Context: SSD storage is introduced and need a new performance line of service to reflect their
capability.

Preconditions: None defined.

Feature(s): Class of Service

Version 1.2.8 97

Inputs:

• URL for Storage Service: /redfish/v1/StorageServices/1

• New IO performance line of service

{

"Name": "NewSSDLoS",

"IoOperationsPerSecondIsLimitedBoolean": false,

"MaxIoOperationsPerSecondPerTerabyte": 100000,

"AverageIoOperationLatencyMicroseconds": 10

}

Basic Course of Events:

1. Get existing supported lines of service

Request:

GET /redfish/v1/StorageServices/1/Links/IOPerformanceLoSCapabilities/

SupportedIOPerformanceLinesOfService

• Headers: No additional headers required.

Response:

• HTTP Status: 200 (OK)

• Headers:

ETag: "123-a" Content-type : application/json

• Body:

{

"Value": [{

"Name": "LoS1",

"IoOperationsPerSecondIsLimitedBoolean": false,

"SamplePeriodSeconds": 60,

"MaxIoOperationsPerSecondPerTerabyte": 83,

"AverageIoOperationLatencyMicroseconds": 8000,

},

{

"Name": "LoS2",

98 Version 1.2.8

"IoOperationsPerSecondIsLimitedBoolean": "false",

"SamplePeriodSeconds": 60,

"MaxIoOperationsPerSecondPerTerabyte": 133,

"AverageIoOperationLatencyMicroseconds": 5000,

"IOWorkload": {

"Name": "Duplicon: OLTP"

}

}]

}

2. Create new line of service

Request:

PATCH /redfish/v1/StorageServices/1/Links/IOPerformanceLoSCapabilities

• Headers:

If-Match: "123-a" Content-type : application/json

• Body:

{

"SupportedIOPerformanceLinesOfService":[{

"Name": "LoS1",

"IoOperationsPerSecondIsLimitedBoolean": false,

"SamplePeriodSeconds": 60,

"MaxIoOperationsPerSecondPerTerabyte": 83,

"AverageIoOperationLatencyMicroseconds": 8000

},

{

"Name": "LoS2",

"IoOperationsPerSecondIsLimitedBoolean": "false",

"SamplePeriodSeconds": 60,

"MaxIoOperationsPerSecondPerTerabyte": 133,

"AverageIoOperationLatencyMicroseconds": 5000,

"IOWorkload": {

"Name": "Duplicon: OLTP"

}

},

{

"Name": "NewSSDLoS",

"IoOperationsPerSecondIsLimitedBoolean": "false",

"MaxIoOperationsPerSecondPerTerabyte": 100000,

"AverageIoOperationLatencyMicroseconds": 10

}]

Version 1.2.8 99

}

Response:

• HTTP Status: 204 (No Content)

• Headers: None defined.

• Body: None defined.

Postconditions: The requested line of service is added to the SupportedIOPerformanceLinesOfService of
the Storage Service.

Failure Scenario: None defined.

See also: None defined.

8.22 Create storage pool and specify a pool type

Summary: Create a StoragePool and select SupportedPoolTypes

Purpose: In addition to creating a StoragePool, this query sets a value for the optional property
SupportedPoolTypes.

Who: StorageAdmin

Management Domain: Block storage management

Triggers: Users need to allocate storage.

Detailed Context: Create a storage pool containing an amount of storage that can be used to create
volumes. In this case, the query includes a value for SupportedPoolTypes, which can only be set by a client
during pool creation.

Preconditions: The user has the information about the set of drives.

Feature(s): None.

Inputs:

• URL for storage pool collection:

◦ /redfish/v1/Storage/1/StoragePools

◦ Alternate: /redfish/v1/StorageServices/1/StoragePools

100 Version 1.2.8

• Name for the new storage pool: "Storage Pool 1"

• Id for the new storage pool: "SP1"

• Description: "Storage Pool for block storage"

• Set of Drives, and additional parameter to indicate supported pool type(s):

{

"Drives": [

{"odata.id": "/redfish/v1/Chassis/1/Drives/1"}

],

"SupportedPoolTypes": ["Block"]

}

Basic Course of Events:

1. Create StoragePool

Request: POST /redfish/v1/Storage/1/StoragePools/

• Headers: No additional headers required.

• Body:

{

"Name": "Storage Pool 1",

"Id": "SP1",

"Description": "Storage Pool for block storage",

"Drives": [

{"odata.id": "/redfish/v1/Chassis/1/Drives/1"}

],

"SupportedPoolTypes": [

"Block"

]

}

Response:

• HTTP Status: 201 (Created)

• Headers: Location : /redfish/v1/Storage/1/StoragePools/SP1

• Body:

Version 1.2.8 101

{

"@Redfish.Copyright": "Copyright 2015-2025 SNIA. All rights reserved.",

"@odata.id": "/redfish/v1/Storage/1/StoragePools/SP1",

"@odata.type": "#StoragePool.v1_6_0.StoragePool",

"Id": "SP1",

"Name": "SSD",

"Description": "Storage Pool 1",

"RemainingCapacityPercent": 100,

"Capacity": {

"Data": {

"AllocatedBytes": 600135780272,

"ConsumedBytes": 0

}

},

"CapacitySources": [

{
"@odata.id": "/redfish/v1/Storage/1/StoragePools/SP1/CapacitySources/

Source1"

}

],

"Links": {

"OwningStorageResource": {

"@odata.id": "/redfish/v1//Storage/1"

}

}

}

Post-Conditions: The requested StoragePool is added to the collection for Storage.

Failure Scenario: None defined.

See also: Create storage pool using specified set of drives

8.23 Create storage pool

Summary: Create a StoragePool

Purpose: Create a StoragePool

Who: StorageAdmin

Management Domain: Block storage management

Triggers: Users need to allocate storage with characteristics satisfied by a class of service.

Detailed Context: Create a storage pool containing an amount of storage that can be used to create a
requested class of service. The storage pool implementation will attempt to find and allocate enough

102 Version 1.2.8

storage that will satisfy the request. No metadata or snapshot storage is reserved.

Preconditions: None defined.

Feature(s): Class of Service

Inputs:

• URL for storage service: /redfish/v1/StorageServices/1

• Name for the new storage pool: "SSD"

• Description: "100 TB pool of SSD class storage."

• URL for class of service: /redfish/v1/StorageServices/1/ClassesOfService/SSD

• Storage pool capacity:

{

"Data": {

"ProvisionedBytes": 100000000000000,

"IsThinProvisioned": false

}

}

Basic Course of Events:

1. Create StoragePool

Request: POST /redfish/v1/StorageServices/1/StoragePools/Members

• Headers: Content-type : application/json

• Body:

{

"Name": "SSD",

"Description": "100 TB pool of SSD class storage.",

"Capacity": {

"Data": {

"ProvisionedBytes": 100000000000000

},

"IsThinProvisioned": false

},

"ClassesOfService": {

"Members": [{

Version 1.2.8 103

"@odata.id": "/redfish/v1/StorageServices/Members/1/
ClassesOfService/SSD"

}]

}

}

Response:

• HTTP Status: 201 (Created)

• Headers:

Location : /redfish/v1/StorageServices/1/StoragePools/SSD

• Body:

{

"@odata.type": "#StoragePool.v1_7_1.StoragePool",

"@odata.id": "/redfish/v1/StorageServices/1/StoragePools/SSD",

"Id": "SSD",

"Name": "SSD",

"Description": "Simple Storage Pool for Simple System",

"RemainingCapacityPercent": 100,

"Capacity": {

"Data": {

"AllocatedBytes": 0,

"ConsumedBytes": 0

}

},

"CapacitySources": [

{

"Id": "Source1",

"Name": "CapacitySource Source1",

"@odata.type": "#Capacity.v1_2_0.CapacitySource",

"ProvidedCapacity": {

"Data": {

"ConsumedBytes": 100000000000000,

"AllocatedBytes": 100000000000000

}

},

"ProvidingDrives": {
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/

DirectAttachStorageSystem/StoragePools/SimpleSystemPool/
CapacitySources/Source1/ProvidingDrives"

},

104 Version 1.2.8

"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/
DirectAttachStorageSystem/StoragePools/SimpleSystemPool/
CapacitySources/Source1"

}

],

"AllocatedVolumes": {

},

"Links": {

"OwningStorageResource": {
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/
DirectAttachStorageSystem"

}

},

"@Redfish.Copyright": "Copyright 2015-2023 SNIA. All rights reserved."

}

Post-Conditions: The requested StoragePool is added to the collection for the Storage Service.

Failure Scenario: None defined.

See also: None defined.

8.24 Create storage pool using Specified Set of
Drives and RAIDTypes

Summary: Create a StoragePool

Purpose: Create a StoragePool using a specified set of drives and a specified set of supported RAIDTypes

Who: StorageAdmin

Management Domain: Block storage management

Triggers: Users need to allocate storage.

Detailed Context: Create a storage pool containing an amount of storage that can be used to create
volumes with the specified set of RAIDTypes. This use case expects that the implementation will
automatically create the CapacitySource object specified as part of the StoragePool object creation
process.

Preconditions: The user has the information about the set of drives. These will be used to create a new
CapacitySource named "CapacitySource1".

Feature(s): None.

Inputs:

Version 1.2.8 105

• URL for storage pool collection:

◦ /redfish/v1/Storage/1/StoragePools

• Name for the new storage pool: "SSD"

• Description: "SSD Storage Pool"

• Set of Drives:

{

"CapacitySource1": [{

"ProvidingDrives": [

{"odata.id": "/redfish/v1/Storage/1/Drive/1"},

{"odata.id": "/redfish/v1/Storage/1/Drive/2"},

{"odata.id": "/redfish/v1/Storage/1/Drive/3"},

{"odata.id": "/redfish/v1/Storage/1/Drive/4"},

{"odata.id": "/redfish/v1/Storage/1/Drive/5"},

{"odata.id": "/redfish/v1/Storage/1/Drive/6"},

{"odata.id": "/redfish/v1/Storage/1/Drive/7"},

{"odata.id": "/redfish/v1/Storage/1/Drive/8"}

]

}]

}

• Set of Supported RAIDTypes:

{

"SupportedRAIDTypes": ["RAID1","RAID5","RAID50"]

}

Basic Course of Events:

1. Create StoragePool

Request: POST /redfish/v1/Storage/1/StoragePools/

• Headers: No additional headers required.

• Body:

{

"Name": "SSD",

"Description": "Storage Pool for RAID1, 5 or 50.",

106 Version 1.2.8

"RAIDTypes": ["RAID1","RAID5","RAID50"],

"CapacitySource1": [{

"ProvidingDrives": [

{"odata.id": "/redfish/v1/Storage/1/Drive/1"},

{"odata.id": "/redfish/v1/Storage/1/Drive/2"},

{"odata.id": "/redfish/v1/Storage/1/Drive/3"},

{"odata.id": "/redfish/v1/Storage/1/Drive/4"},

{"odata.id": "/redfish/v1/Storage/1/Drive/5"},

{"odata.id": "/redfish/v1/Storage/1/Drive/6"},

{"odata.id": "/redfish/v1/Storage/1/Drive/7"},

{"odata.id": "/redfish/v1/Storage/1/Drive/8"}

]

}]

}

Response:

• HTTP Staus: 201 (Created)

• Headers: Location : redfish/v1/Storage/1/StoragePools/SP111

• Body:

{

"@Redfish.Copyright": "Copyright 2015-2025 SNIA. All rights reserved.",

"@odata.id": "/redfish/v1/Storage/1/StoragePools/SP111",

"@odata.type": "#StoragePool.v1_6_0.StoragePool",

"Id": "SP111",

"Name": "SSD",

"Description": "Storage Pool for RAID1, 5 or 50.",

"SupportedRAIDTypes": [

"RAID1",

"RAID5",

"RAID50"

],

"RemainingCapacityPercent": 100,

"Capacity": {

"Data": {

"AllocatedBytes": 600135780272,

"ConsumedBytes": 0

}

},

"CapacitySources": [

{
"@odata.id": "/redfish/v1/Storage/1/StoragePools/SP111/CapacitySources/

CapacitySource1"

}

Version 1.2.8 107

],

"Links": {

"OwningStorageResource": {

"@odata.id": "/redfish/v1//Storage/1"

}

}

}

Post-Conditions: The requested StoragePool is added to the collection for Storage.

Failure Scenario: None defined.

See also: None defined.

8.25 Create storage pool using specified set of
drives

Summary: Create a StoragePool

Purpose: Create a StoragePool using a specified set of drives

Who: StorageAdmin

Management Domain: Block storage management

Triggers: Users need to allocate storage.

Detailed Context: Create a storage pool containing an amount of storage that can be used to create
volumes with the specified set of RAIDTypes.

Preconditions: The user has the information about the set of drives.

Feature(s): None.

Inputs:

• URL for storage pool collection:

◦ NSB: /redfish/v1/Storage/1/StoragePool

◦ (Also applicable to SB: /redfish/v1/StorageServices/1/StoragePool)

• Name for the new storage pool: "SP1"

• Description: "Storage Pool 1"

108 Version 1.2.8

• Set of Drives:

{

"Drives": [

{"odata.id": "/redfish/v1/Storage/1/Drive/1"}

]

}

Basic Course of Events:

1. Create StoragePool

Request: POST /redfish/v1/Storage/1/StoragePools/

• Headers: No additional headers required.

• Body:

{

"Name": "SSD",

"Description": "Storage Pool 1",

"Drives": [

{"odata.id": "/redfish/v1/Storage/1/Drive/1"}

]

}

Response:

• HTTP Status: 201 (Created)

• Headers:

Location : /redfish/v1/Storage/1/StoragePools/SP111

• Body:

{

"@Redfish.Copyright": "Copyright 2015-2025 SNIA. All rights reserved.",

"@odata.id": "/redfish/v1/Storage/1/StoragePools/SP111",

"@odata.type": "#StoragePool.v1_6_0.StoragePool",

"Id": "SP111",

"Name": "SSD",

"Description": "Storage Pool 1",

"RemainingCapacityPercent": 100,

Version 1.2.8 109

"Capacity": {

"Data": {

"AllocatedBytes": 600135780272,

"ConsumedBytes": 0

}

},

"CapacitySources": [

{
"@odata.id": "/redfish/v1/Storage/1/StoragePools/SP111/CapacitySources/
Source1"

}

],

"Links": {

"OwningStorageResource": {

"@odata.id": "/redfish/v1//Storage/1"

}

}

}

Post-Conditions: The requested StoragePool is added to the collection for Storage.

Failure Scenario: None defined.

See also: None defined.

8.26 Create Volume from an Existing Storage Pool

Summary: Create a new Volume from a Storage Pool.

Purpose: Create a new volume, with a specified capacity, from a previously created StoragePool.

Who: CloudAdmin, StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need to allocate storage for a new application.

Detailed Context: The admin needs to satisfy a user or application request to provide a given amount of
capacity with a specified RAIDType, and wants to leverage a preconfigured Storage Pool.

Preconditions: User has already selected a Pool and checked the supported RAIDType properties.

Feature(s): Block provisioning

Inputs:

• URL for Storage Pool: /redfish/v1/Storage/1/StoragePools/PrimaryPool

110 Version 1.2.8

• Requested volume size in bytes (1 TiB, here): 1099511627776
• Requested name of volume: "MyVolume"
• RAIDType: RAID1

Basic Course of Events:

1. Post the definition of the new volume to the AllocatedVolumes resource collection.

This instructs the service to use the identified StoragePool to allocate a new volume of the requested size
that meets the requirements of the specified protection level. Since additional details are not provided, the
service will rely on default values as required.

Request:

POST /redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes

• Headers: Content-type : application/json

• Body:

{

"Name" : "MyVolume",

"CapacityBytes" : 1099511627776,

"RAIDType" : "RAID1"

}

Response: Response contains the details of the created volume.

• HTTP Status: 201 (Created)

• Headers:

Location : /redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1

Content-type : application/json

• Body:

{

"@SSM.Copyright": "Copyright (c) 2014-2025 SNIA. All rights reserved.",

"@odata.context": "/redfish/v1/$metadata#Volume.Volume",
"@odata.id": "/redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1",

"@odata.type": "#Volume_1_6_0.Volume",

"Name": "MyVolume",

"Id": "1",

Version 1.2.8 111

"Description": "Default Volume Description",

"RAIDType": "RAID1",

"Identifiers": [

{

"DurableNameFormat": "NAA",

"DurableName": "65456765456761001234076100123487"

}

],

"Status": {

"State": "Enabled",

"Health": "OK"

},

"CapacityBytes": 1099511627776,

"Links": {

"StoragePool": "/redfish/v1/Storage/1/StoragePools/1"

}

}

Postconditions: The selected volume is added to the AllocatedVolumes collection within the selected
storage pool.

Failure Scenario: None defined

See also: None defined.

8.27 Create Volume specifying Class of Service

Summary: Create a Volume

Purpose: Create a Volume with a known capacity and class of service.

Who: CloudAdmin, StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need to allocate storage for a new application.

Detailed Context: The admin needs to satisfy a service request to provide a given amount of storage to
an application, and to assure a given class of service.

Preconditions: None.

Feature(s): Class of Service

Inputs:

112 Version 1.2.8

• URL for Storage Service: /redfish/v1/StorageServices/1

• Requested volume size in bytes (for 1TiB in this example): 1099511627776

• URL for requested class of service:

/redfish/v1/StorageServices/1/ClassesofService/BostonBunker

• Requested name of volume (string): "Snapshot1"

Basic Course of Events:

1. Post the definition of the new volume to the Volumes resource collection.

This instructs the service to allocate a new volume of the requested size that meets the requirements of the
specified class of service. Since additional details are not provided, the service is free to allocate the storage
from any of its storage pools that can satisfy the request.

Request: POST /redfish/v1/StorageServices/1/Volumes/Members

• Headers: Content-type : application/json

• Body:

{

"Name": "Snapshot1",

"CapacityBytes": 1099511627776,

"Links": {

"ClassOfService": {"odata.id":

"/redfish/v1/StorageServices/1/ClassesofService/BostonBunker"}

}

}

Response:

• HTTP Status: 201 (Created)

• Headers:

Location : /redfish/v1/StorageServices/1/Volumes/3 Content-type :

application/json

• Body:

{

Version 1.2.8 113

"\@SSM.Copyright": "Copyright (c) 2014-2025 SNIA. All rights reserved.",

"\@odata.context": "/redfish/v1/\$metadata\#Volume.Volume",

"\@odata.id": "/redfish/v1/StorageServices/1/Volumes/3",

"\@odata.type": "\#Volume_1_0_0.Volume",

"Name": "Snapshot1",

"Id": "3",

"Description": "",

"Identifiers": [

{

"DurableNameFormat": "NAA6",

"DurableName": "65456765456761001234076100123487"

}

],

"Manufacturer": "SuperDuperSSD",

"Model": "Drive Model string",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"AccessCapabilities": [

"Read",

"Write",

"Append",

"Streaming"

],

"BlockSizeBytes": 512,

"CapacitySources": [

{

"ConsumedBytes": 0,

"AllocatedBytes": 10737418240,

"GuaranteedBytes": 536870912,

"ProvisionedBytes": 1099511627776,

"Links": {

"ClassOfService": {
"\@odata.id": "/redfish/v1/StorageServices/1/Links/ClassesOfService/

SilverBoston"

},

"ProvidingPool": {
"\@odata.id": "/redfish/v1/StorageServices/1/StoragePools/

SpecialPool"

}

}

}

],

"CapacityBytes": 1099511627776,

"Capacity": {

"Data": {

"ConsumedBytes": 0,

"AllocatedBytes": 10737418240,

114 Version 1.2.8

"GuaranteedBytes": 1099511627776,

"ProvisionedBytes": 1099511627776

},

"Metadata": {

"ConsumedBytes": 536870912,

"AllocatedBytes": 536870912

}

},

"Links": {

"ClassofService": {

"\@odata.id":

"/redfish/v1/StorageServices/1/Links/ClassesofService/BostonBunker"

}

}

}

Postconditions: The selected volumes are added to the collection for the Storage Group.

Failure Scenario: None defined

See also: None defined.

8.28 Create Volume using Default Class of Service

Summary: Create a Volume using the Default Class of Service

Purpose: Create a Volume with a known capacity and without specifying the class of service, invoking the
DefaultClassOfService.

Who: CloudAdmin, StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need to allocate storage for a new application.

Detailed Context: The admin needs to satisfy a service request to provide a given amount of storage to
an application, but does not specify a given class of service. The system will attempt to provision the system
with the specified ClassOfService in DefaultClassOfService in either the given StoragePool or the
StorageService as available.

Preconditions: The DefaultClassOfService property is set in either the StoragePool or StorageService.

Feature(s): Class of Service

Inputs:

Version 1.2.8 115

• URL for Storage Service: /redfish/v1/StorageServices/1
• Requested volume size in in bytes (for 1 TiB, here) : 1099511627776
• Requested name of volume: "Snapshot1"

Basic Course of Events:

1. Post the definition of the new volume to the Volumes resource collection.

This instructs the service to allocate a new volume of the requested size that meets the requirements of the
specified class of service. Since additional details are not provided, the service is free to allocate the storage
from any of its storage pools that can satisfy the request.

Request: POST /redfish/v1/StorageServices/1/Volumes

• Headers: Content-type : application/json

• Body:

{

"Name": "Snapshot1",

"CapacityBytes": 1099511627776

}

Response:

• HTTP Status: 201 (Created)

• Headers:

Location : /redfish/v1/StorageServices/1/Volumes/3 Content-type :

application/json

• Body:

{

"\@SSM.Copyright": "Copyright (c) 2014-2025 SNIA. All rights reserved.",

"\@odata.context": "/redfish/v1/\$metadata\#Volume.Volume",

"\@odata.id": "/redfish/v1/StorageServices/1/Volumes/3",

"\@odata.type": "\#Volume_1_0_0.Volume",

"Name": "Snapshot1",

"Id": "3",

"Description": "",

"Identifiers": [

{

"DurableNameFormat": "NAA6",

116 Version 1.2.8

"DurableName": "65456765456761001234076100123487"

}

],

"Manufacturer": "SuperDuperSSD",

"Model": "Drive Model string",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"AccessCapabilities": [

"Read",

"Write",

"Append",

"Streaming"

],

"BlockSizeBytes": 512,

"CapacitySources": [

{

"ConsumedBytes": 0,

"AllocatedBytes": 10737418240,

"GuaranteedBytes": 536870912,

"ProvisionedBytes": 1099511627776,

"Links": {

"ClassOfService": {
"\@odata.id": "/redfish/v1/StorageServices/1/Links/ClassesOfService/
SilverBoston"

},

"ProvidingPool": {

"\@odata.id": "/redfish/v1/StorageServices/1/StoragePools/SpecialPool"

}

}

}

],

"Capacity": {

"Data": {

"ConsumedBytes": 0,

"AllocatedBytes": 10737418240,

"GuaranteedBytes": 1099511627776,

"ProvisionedBytes": 1099511627776

},

"Metadata": {

"ConsumedBytes": 536870912,

"AllocatedBytes": 536870912

}

},

"Links": {

"ClassofService": {
"\@odata.id":"/redfish/v1/StorageServices/1/Links/ClassesofService/

BostonBunker"

Version 1.2.8 117

}

}

}

Postconditions: The selected volumes are added to the collection for the Storage Group.

Failure Scenario: None defined

See also: None defined.

8.29 Delete an endpoint

Summary: Delete an Endpoint.

Purpose: Delete an Endpoint.

Who: StorageAdmin, CloudAdmin

Management Domain: Block storage management

Triggers: None defined.

Detailed Context: Delete an Endpoint.

Preconditions: None.

Feature(s): Access Management

Inputs:

• Endpoint Name: “InitiatorEndpoint1”

Basic Course of Events:

1. Delete the Endpoint from the Endpoints collection.

Request:

Delete /redfish/v1/Storage/MidrangeStorageSystem/Endpoints/

InitiatorEndpoint1

◦ Headers: Content-type : application/json

◦ Body:

No headers required.

118 Version 1.2.8

Response:

◦ HTTP Status: 200 (OK)

◦ Headers:

Content-type: application/json

◦ Body:

{

"@odata.type": "#Endpoint.v1_7_0.Endpoint",

"Id": "InitiatorEndpoint1",

"Name": "InitiatorEndpoint1",

"Description": "iSCSI target Endpoint 1",

"Identifiers": [

{

"DurableName": "4289a3dd-ba52-41b8-9d3d-38de196e059c",

"DurableNameFormat": "UUID"

}

],

"ConnectedEntities": [

],

"EndpointProtocol": "iSCSI",

"IPTransportDetails": [

{

"IPv4Address": {

"Address": "192.168.1.63"

}

}

],

"Status": {

"State": "Enabled",

"Health": "OK"

},
"@odata.id": "/redfish/v1/Storage/MidrangeStorageSystem/Endpoints/

InitiatorEndpoint1",

"@Redfish.Copyright": "Copyright 2015-2025 SNIA. All rights reserved."

}

Postconditions: None defined.

Failure Scenario: None defined

See also: None defined.

Version 1.2.8 119

8.30 Delete Multiple Drives from an Existing
Storage Pool

Summary: Delete multiple drives from an Storage Pool.

Purpose: Remove multiple drives from a Storage Pool

Who: StorageAdmin

Management Domain: Block storage management

Triggers: Re-assign resources in a pool; this could be performance, capacity or application triggered.

Detailed Context: The storage admin needs to decrease the underlying available capacity within an
existing pool. This use case makes the following assumptions about the “implementation” servicing the
request:

• The implementation manages, or does not have any, constraints on the removal of multiple drives
from the target storage pool.

Preconditions: User has already selected a Pool, and the Drives to be removed.

Feature(s): Block provisioning

Inputs:

• URL for Storage Pool: /redfish/v1/Storage/1/StoragePools/PrimaryPool
• Drives to remove:

[

{"@odata.id": "/redfish/v1/Chassis/1/Drives/1"},

{"@odata.id": "/redfish/v1/Chassis/1/Drives/2"}

]

Basic Course of Events:

1. Use the “RemoveDrives” Action on the PrimaryPool storage pool, passing the selected drives as
input.

Request: POST /redfish/v1/Storage/1/StoragePools/PrimaryPool.RemoveDrives

• Headers: Content-type : application/json

• Body:

120 Version 1.2.8

{

"Drives" : [

{"@odata.id": "/redfish/v1/Chassis/1/Drives/1"},

{"@odata.id": "/redfish/v1/Chassis/1/Drives/2"}

]

}

Response: Response is dependent on implementation’s capability.

If the implementation is able to return immediately:

• HTTP Status: 204 (No Content)

• Headers: Location : /redfish/v1/Storage/1/StoragePools/PrimaryPool

• Body: None.

If the implementation requires a background task (using the Redfish task service) to return
status:

• HTTP Status: 202 (Accepted)

• Headers: Location : /redfish/v1/TaskService/Tasks/TaskID2

• Body: None.

Postconditions: The identified drives have been removed from a capacity source used by the selected
storage pool.

Failure Scenario: None defined

See also: None defined.

8.31 Delete Volume

Summary: Delete an existing Volume

Purpose: Delete an existing volume, returning its capacity to the underlying StoragePool.

Who: StorageAdmin

Management Domain: Block storage management

Triggers: Need to re-allocate storage for a new application.

Detailed Context: The admin needs to repurpose the capacity in a storage poool to satisfy a user or

Version 1.2.8 121

application request.

Preconditions: User has already selected a Volume

Feature(s): Block provisioning

Inputs:

• URL for the Volume: /redfish/v1/Storage/1/StoragePools/AllocatedVolumes/1

Basic Course of Events:

1. Delete the Volume from the AllocatedVolumes resource collection.

This instructs the service to use the identified StoragePool to allocate a new volume of the requested size
that meets the requirements of the specified protection level. Since additional details are not provided, the
service will rely on default values as required.

Request:

DELETE /redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1

• Headers: Content-type : application/json

• Body: None.

Response: Response contains the details of the deleted volume.

• HTTP Status: 200 (OK)

• Headers:

Content-type : application/json

• Body:

{

"@SSM.Copyright": "Copyright (c) 2014-2025 SNIA. All rights reserved.",

"@odata.context": "/redfish/v1/$metadata#Volume.Volume",
"@odata.id": "/redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1",

"@odata.type": "#Volume_1_6_0.Volume",

"Name": "MyVolume",

"Id": "1",

"Description": "Default Volume Description",

"RAIDType": "RAID1",

"Identifiers": [

{

122 Version 1.2.8

"DurableNameFormat": "NAA",

"DurableName": "65456765456761001234076100123487"

}

],

"Status": {

"State": "Enabled",

"Health": "OK"

},

"CapacityBytes": 1099511627776,

"Links": {

"StoragePool": "/redfish/v1/Storage/1/StoragePools/1"

}

}

Postconditions: None defined.

Failure Scenario: None defined

See also: None defined.

8.32 Deprovision a Namespace

Summary: Deprovision a Namespace

Purpose: Deprovision (delete) a Namespace that is no longer needed.

Who: StorageAdmin CloudAdmin

Management Domain: Block storage management

Triggers: None defined.

Detailed Context: Delete the namespace and free resources reserved for it. This can happen regardless of
the controller attachment state of the namespace.

Preconditions: None defined.

Feature(s): NVMe

Inputs:

• URL for the namespace, either within the containing NVM set (a storage pool) or directly from the
containing subsystem.

Basic Course of Events:

Version 1.2.8 123

1. Delete the Namespace.

Request:

DELETE /redfish/v1/Systems/Sys-1/Storage/SimplestNVMeSSD/Volumes/

SimpleNamespace

• Headers: No additional headers required.

• Body: None defined.

Response:

• HTTP Status: 204 (No Content)

• Headers: No additional headers required.

• Body: None defined.

Postconditions: The requested namespace has been deprovisioned.

Failure Scenario: None defined.

See also: Delete Volume for a similar use case that applies to Volumes rather than to Namespaces.

8.33 Detach a Namespace

Summary: Detach a Namespace

Purpose: Remove visibility to a namespace by detaching it from an IO Controller.

Who: StorageAdmin CloudAdmin

Management Domain: Block storage management

Triggers: None defined.

Detailed Context: Need to detach a namespace from an IO Controller. The user no longer wants the
namespace to be accessible from the host connected to the IO Controller.

Preconditions: The IO Controller and Namespace need to exist and be fully defined. The Namespace
must be attached to the IO Controller.

Feature(s): NVMe

Inputs:

124 Version 1.2.8

• URL for Namespace.
• IO Controller.

Basic Course of Events:

1. Get the list of all Attached Namespaces attached to the given IO Controller.

Request:

GET /redfish/v1/Systems/Sys-1/Storage/SimplestNVMeSSD/Volumes/

SimpleNamespace

◦ Headers: No additional headers required.

◦ Body: None.

Response:

◦ HTTP Status: 200 (OK)

◦ Headers:

▪ Content-type : application/json

▪ ETag : "7765ADC9"

◦ Body:

{

"@Redfish.Copyright": "Copyright 2014-2025 SNIA. All rights reserved.",
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/SimplestNVMeSSD/Controllers/

NVMeIOController",

"@odata.type": "#StorageController.v1_0_0.StorageController",

"Id": "NVMeIOController",

"Name": "NVMe I/O Controller",

"Description": "Single NVMe I/O Controller presented to host.",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"Manufacturer": "Best NVMe Vendor",

"Model": "Simple NVMe Device",

"SerialNumber": "NVME123456",

"PartNumber": "NVM44",

"FirmwareVersion": "1.0.0",

"SupportedControllerProtocols": [

"PCIe"

Version 1.2.8 125

],

"SupportedDeviceProtocols": [

"NVMe"

],

"NVMeControllerProperties": {

"NVMeVersion": "1.3",

"NVMeControllerAttributes": {

"ReportsUUIDList": false,

"SupportsSQAssociations": false,

"ReportsNamespaceGranularity": false,

"SupportsTrafficBasedKeepAlive": false,

"SupportsPredictableLatencyMode": false,

"SupportsEnduranceGroups": false,

"SupportsReadRecoveryLevels": false,

"SupportsNVMSets": false,

"SupportsExceedingPowerOfNonOperationalState": false,

"Supports128BitHostId": false

}

},

"Links": {

"AttachedVolumes": [

{
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/SimplestNVMeSSD/

Volumes/SimpleNamespace"

}

]

}

}

2. Delete the Attached Namespace from the AttachedVolumes array by PATCHing the IO Controller
with an edited set of AttachedVolumes. (Note: This example shows an AttachedVolumes array
with only one namespace; therefore the patch command is sent with an empty array.)

Request:

PATCH /redfish/v1/redfish/v1/Systems/Sys-1/Storage/SimplestNVMeSSD/Controllers/

NVMeIOController/

◦ Headers: Content-type : application/json

◦ Body:

{

"Links": {

"AttachedVolumes": [

126 Version 1.2.8

{ }

]

}

}

Response:

◦ HTTP Status: 200 (OK)

◦ Headers: Content-type : application/json

◦ Body:

{

"@Redfish.Copyright": "Copyright 2014-2025 SNIA. All rights reserved.",
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/SimplestNVMeSSD/Controllers/

NVMeIOController",

"@odata.type": "#StorageController.v1_0_0.StorageController",

"Id": "NVMeIOController",

"Name": "NVMe I/O Controller",

"Description": "Single NVMe I/O Controller presented to host.",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"Manufacturer": "Best NVMe Vendor",

"Model": "Simple NVMe Device",

"SerialNumber": "NVME123456",

"PartNumber": "NVM44",

"FirmwareVersion": "1.0.0",

"SupportedControllerProtocols": [

"PCIe"

],

"SupportedDeviceProtocols": [

"NVMe"

],

"NVMeControllerProperties": {

"NVMeVersion": "1.3",

"NVMeControllerAttributes": {

"ReportsUUIDList": false,

"SupportsSQAssociations": false,

"ReportsNamespaceGranularity": false,

"SupportsTrafficBasedKeepAlive": false,

"SupportsPredictableLatencyMode": false,

"SupportsEnduranceGroups": false,

"SupportsReadRecoveryLevels": false,

"SupportsNVMSets": false,

Version 1.2.8 127

"SupportsExceedingPowerOfNonOperationalState": false,

"Supports128BitHostId": false

}

},

"Links": {

"AttachedVolumes": [

]

}

}

Postconditions: The Namespace has been removed from the AttachedVolumes array.

Failure Scenario: None defined.

See also: None defined.

8.34 Expand capacity of a storage volume

Summary: Retrieve storage capacity information for a storage pool to check available capacity before
expanding a storage volume.

Purpose:

• Application monitoring tool warns the admin that a storage volume used by a critical application
is at 80% capacity

• Storage volumes can be expanded during the week without approval during non-business hours
• Administrator checks the available capacity on the storage pool based on the class of service

required to ensure the storage volume expansion is possible
• During proper maintenance window, administrator expands storage volume based on predefined

SLA established with application owner

Who: StorageAdmin

Management Domain: Block storage management

Trigger: Low available capacity warning

Detailed context: The enterprise administrator offers managed storage services to business units in her
organization. The administrator has established an SLA with application owners for storage volume
expansion:

• Low storage capacity warning and critical alerts only apply to storage volumes with application
data (the storage administrator is not responsible for the OS disks of the servers)

• Administrator can expand the storage volume by 25% up to 3 times without additional approvals
for a maintenance window as long as the work is done during non-business hours (business hours

128 Version 1.2.8

are 7AM - 7PM local).
• Storage volumes for this application cannot exceed 2TB.
• Storage volume will be tagged with metadata to indicate the original size of the volume.
• Administrator is responsible for informing the application owner if the storage system is running

low and overall capacity putting the SLA at risk. Administrator and application owner must plan
for a migration of the application if waiting for additional storage disks/shelves to arrive is not
feasible.

The application monitoring tool sends a warning alert to the administrator’s datacenter monitoring tool
indicating that a storage volume’s capacity is at 80% and must be increased to ensure the application does
not experience unplanned downtime. The administrator first checks the available capacity on the storage
pool for a given storage class of service. Since the storage system is new, there is sufficient capacity
available. Next the administrator figures out that the storage volume has never been expanded based on
the original size tag. At the start of the maintenance window, non-business hours, the administrator
initiates the expand action. For this particular storage system, the expand is a long running action so the
administrator tracks the progress using the associated task.

Preconditions:

• Storage system has at least one storage pool with at least one storage volume
• Storage pool has enough available capacity to expand the storage volume by 25%

Feature(s): Block capacity management

Inputs:

• URL for the Swordfish service: /redfish/v1/StorageService/1
• Storage pool name: BasePool
• Storage volume name: 61001234876545676100123487654567

Basic Course of Events:

1. Use GET operations to look at information about storage volume and confirm low capacity and
the current size is less than 2TB

Request:

GET /redfish/v1/StorageServices/1/Volumes/

61001234876545676100123487654567

Response:

◦ HTTP Status: 200 (OK)

◦ Headers:

▪ Content-type : application/json

Version 1.2.8 129

▪ ETag: FD87EC469AE

◦ Body:

{

"@Redfish.Copyright": "Copyright 2015-2025 SNIA. All rights reserved.",

"@odata.context": "/redfish/v1/$metadata#Volume.Volume",
"@odata.id": "/redfish/v1/StorageServices/1/Volumes/

61001234876545676100123487654567",

"@odata.type": "#Volume_1_0_0.Volume",

"Id": "61001234876545676100123487654567",

"Name": "Volume 1",

"Description": "application storage",

"Identifiers": [

{

"DurableNameFormat": "NAA6",

"DurableName": "61001234876545676100123487654567"

}

],

"Manufacturer": "SuperDuperStorageProvider",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"BlockSizeBytes": 512,

"LowSpaceWarningThresholdPercent": [

80,

null,

null,

null,

null

],

"Capacity": {

"Data": {

"ConsumedBytes": 879609302221,

"AllocatedBytes": 879609302221,

"GuaranteedBytes": 549755813888,

"ProvisionedBytes": 1099511627776

},

}

}

2. Use GET operations to look at information about storage pool to confirm it has more than 25%
available capacity

Request:

GET /redfish/v1/StorageServices/1/StoragePools/BasePool

130 Version 1.2.8

Response:

◦ HTTP Status: 200 (OK)

◦ Headers:

▪ Content-type : application/json

▪ ETag: FD87EC469AE

◦ Body:

{

"@Redfish.Copyright": "Copyright 2015-2016 SNIA. All rights reserved.",

"@odata.context": "/redfish/v1/$metadata#StoragePool.StoragePool",

"@odata.id": "/redfish/v1/StorageServices/1/StoragePools/BasePool",

"@odata.type": "#StoragePool.1_0_0.StoragePool",

"Id": "BasePool",

"Name": "BasePool",

"Description": "Base storage pool for this storage service",

"Status": {

"State": "Enabled",

"Health": "OK",

"HealthRollUp": "Degraded"

},

"BlockSizeBytes": 8192,

"Capacity": {

"Data": {

"ConsumedBytes": 824633720832,

"AllocatedBytes": 1099511627776

},

"Metadata": null,

"Snapshot": null

},

"CapacitySources": [

{

"ProvidedCapacity": {

"ConsumedBytes": 70368744177664,

"AllocatedBytes": 140737488355328,

"GuaranteedBytes": 17592186044416,

"ProvisionedBytes": 562949953421312

},

"Links": {

"ClassOfService": {

"@odata.id": "/redfish/v1/StorageServices/1/ClassesOfService/GoldBoston"

},

"ProvidingPool": null,

"ProvidingVolume": null

}

Version 1.2.8 131

}

],

"LowSpaceWarningThresholdPercent": [

70,

80,

90

],

"Links": {

"AllocatedPools": [],

"AllocatedVolumes": [

{
"@odata.id": "/redfish/v1/StorageServices/1/Volumes/

61001234876545676100123487654567"

}

],

"SupportedClassesOfService": [

{

"@odata.id": "/redfish/v1/StorageServices/1/ClassesOfService/GoldBoston"

},

{

"@odata.id": "/redfish/v1/StorageServices/1/ClassesOfService/SilverBoston"

}

]

}

}

3. Use expand action to increase size of storage volume by 25%.

Note that there are two different properties that can be used to report available capacity,
depending on the implementation - either CapacityBytes or Capacity->Data-
>AllocatedBytes. This use case shows how to do this function using the latter property, but
would work equally if the implementation supported this function using the CapacityBytes
property instead.

Request:

PATCH /redfish/v1/StorageServices/1/Volumes/61001234876545676100123487654567

• Headers: Content-type : application/json

• Body:

{

"Capacity": {

132 Version 1.2.8

"Data": {

"AllocatedBytes": 1374389534720

}

}

}

Response:

• HTTP Status: 202 (Accepted)

• Headers:

`Location : redfish/v1/TaskService/Tasks//ExpandTask123`

Postconditions: The volume’s capacity expands by 25%. Administrator needs to track the associated task
to know when the volume expansion completes.

See also: None defined.

8.35 Make a New Replication Relationship by
Creating a Target Consistency Group

Summary: Create a new Consistency Group to serve as the target in the replication relationship for an
existing source Consistency Group.

Purpose: Create a new ConsistencyGroup resource to provide expanded data protection through a replica
relationship with the specified source ConsistencyGroup.

Who: StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need to create a replication relationship for a source ConsistencyGroup when there are no
existing ConsistencyGroups that can be assigned as the target.

Detailed Context: The admin needs to satisfy a user or application request for a copy of some sort of the
original ConsistencyGroup.

Preconditions: User has already selected the type of replica, the replica update mode (sync vs async),
and the target system and storage pool from which to create the new ConsistencyGroup to serve as the
replica.

Feature(s): Replication (both local and remote)

Version 1.2.8 133

Inputs:

• URL for Storage Pool: /redfish/v1/Storage/1/StoragePools/PrimaryPool

• Requested replica type: Mirror

• Requested name of ConsistencyGroup (string): CG_DB2

• ReplicaUpdateMode: Synchronous

Basic Course of Events:

1. Post (as an Action) the request on the source ConsistencyGroup.

This instructs the service to use the identified ConsistencyGroup as the source ConsistencyGroup for the
specified replication relationship. For any additional details required, the service will rely on default
values.

Request:

POST /redfish/v1/Storage/1/ConsistencyGroups/CG_DB1/

ConsistencyGroup.CreateReplicaTarget

• Headers: Content-type : application/json

• Body:

{

"ConsistencyGroupName" : "CG_DB2",

"ReplicaUpdateMode" : "Synchronous",

"TargetStoragePool" : "/redfish/v1/Storage/1/StoragePools/PrimaryPool",

"ReplicaType" : "Mirror"

}

Response:

• HTTP Status: 204 (No Content)

• Headers: Location : /redfish/v1/Storage/1/ConsistencyGroups/CG_DB1

• Body: None.

Postconditions: The selected ConsistencyGroup has a new ReplicaTargets property with the link to the
new ConsistencyGroup. Elsewhere, there is a new ConsistencyGroup in the system (Name == “CG_DB2”,
the id set by the system to 23423) that has a ReplicaInfo pointing back to this ConsistencyGroup and which

134 Version 1.2.8

contains all of the replication properties.

Failure Scenario: None defined

See also: Create Replica Target

8.36 Make a New Replication Relationship by
Creating a Target Volume

Summary: Create a new volume to serve as a target replica for an existing source volume.

Purpose: Create a new volume resource to provide expanded data protection through a replica
relationship with the specified source volume.

Who: StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need to create a replication relationship for a source volume when there are no existing
volumes that can be assigned as the target.

Detailed Context: The admin needs to satisfy a user or application request for a copy of some sort of the
original volume.

Preconditions: User has already selected the type of replica, the replica update mode (sync vs async),
and the target system and storage pool from which to create the new volume to serve as the replica.

Feature(s): Replication (both local and remote)

Inputs:

• URL for Storage Pool: /redfish/v1/Storage/1/StoragePools/PrimaryPool

• Requested replica type: Mirror

• Requested name of volume (string): Mirror of Volume 65

• ReplicaUpdateMode: Synchronous

Basic Course of Events:

1. Post (as an Action) the request on the source Volume.

This instructs the service to use the identified Volume as the source Volume for the specified replication
relationship. For any additional details required, the service will rely on default values.

Request:

Version 1.2.8 135

POST /redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1/

Volume.CreateReplicaTarget

• Headers: Content-type : application/json

• Body:

{

"VolumeName" : "Mirror of Volume 65",

"ReplicaUpdateMode" : "Synchronous",

"TargetStoragePool" : "/redfish/v1/Storage/1/StoragePools/PrimaryPool",

"ReplicaType" : "Mirror"

}

Response:

• HTTP Status: 204 (No Content)

• Headers: Location : /redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1

• Body: None.

Postconditions: The selected volume has a new ReplicaTargets property with the link to the new volume.
Elsewhere, there is a new volume in the system (Name == “Mirror of Volume 65”, the id set by the system
to 2345) that has a ReplicaInfo pointing back to this volume and which contains all of the replication
properties.

Failure Scenario: None defined

See also: Create Replica Target (CG)

8.37 Provision a Namespace from NVM Set

Summary: Provision a Namespace from an NVM Set

Purpose: Provision a Namespace from an NVMe device that supports Endurance Groups and NVM Sets.

Who: StorageAdmin CloudAdmin

Management Domain: Block storage management

Triggers: None defined.

136 Version 1.2.8

Detailed Context: Create a namespace, and allocate resources reserved for it, from an NVMe device that
supports Endurance Groups and NVM Sets. The Create Namespace request is performed on the NVM Set
in this configuration. The admin needs to satisfy a user or application request to provide a given amount of
capacity by creating a new Namespace. Note that this specific use case does not include the assignment of
this namespace to an IO Controller.

Preconditions: User has already selected the appropriate NVM Set and the desired capacity.

Feature(s): NVMe

Inputs:

• URL for Storage Pool: /redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/
StoragePools/DefaultSet0

• Requested volume size in bytes (1 TiB, here): 1099511627776
• Requested name of volume: "MyNamespace"

Basic Course of Events:

1. Post the definition of the new Namespace to the NVM Set resource collection, which is of type
StoragePoolCollection.

This instructs the service to use the identified NVMSet (StoragePool) to allocate a new Namespace of the
requested size. Any additional protection properties will be inherited from the NVM Set.

Request:

POST /redfish/v1/Storage/1/StoragePools/NVMSet

• Headers: Content-type : application/json

• Body:

{

"Name" : "MyNamespace",

"Capacity": {

"Data": {

"ProvisionedBytes": 1099511627776

}

}

}

Response:

Response contains the details of the created volume.

Version 1.2.8 137

• HTTP Status: 201 (Created)

• Headers:

`Location : /redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Volumes/MyNamespace"

Content-type : application/json`

• Body:

{

"@Redfish.Copyright": "Copyright 2014-2025 SNIA. All rights reserved.",
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Volumes/

MyNamespace",

"@odata.type": "#Volume.v1_9_0.Volume",

"Id": "1",

"Name": "MyNamespace",

"LogicalUnitNumber": 1,

"Status": {

"State": "Enabled",

"Health": "OK"

},

"Identifiers": [

{

"DurableNameFormat": "NQN",
"DurableName": "nqn.2014-08.org.nvmexpress:uuid:6c5fe566-4fb6-
aad4-8b4159029384"

}

],

"Capacity": {

"Data": {

"ConsumedBytes": 0,

"AllocatedBytes": 1099511627776,

"ProvisionedBytes": 1099511627776

},

"CapacitySources": [

{
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Volumes/

MyNamespace/CapacitySources/Source1"

}

],

"NVMeNamespaceProperties": {

"NamespaceId": "0x224",

"NamespaceFeatures": {

"SupportsThinProvisioning": false,

"SupportsAtomicTransactionSize": false,

"SupportsDeallocatedOrUnwrittenLBError": false,

"SupportsNGUIDReuse": false,

138 Version 1.2.8

"SupportsIOPerformanceHints": false

},

"LBAFormat": {

"LBAFormatType": "LBAFormat0",

"RelativePerformance": "Best",

"LBADataSizeBytes": 4096,

"LBAMetadataSizeBytes": 0

},

"MetadataTransferredAtEndOfDataLBA": false,

"NVMeVersion": "1.4"

}

}

}

Postconditions: The selected Namespace has been created and is added to the NVM Set.

Failure Scenario: None defined.

See also: NVMe use case to Attach a Namespace, and to Provision a Namespace without and NVMSet,
and Delete Volume which illustrates Volume deletion, the equivalent of deprovisioning.

8.38 Provision a Namespace

Summary: Provision a Namespace

Purpose: Provision a Namespace from a simple NVMe device that does not support Endurance Groups
and NVM Sets.

Who: StorageAdmin CloudAdmin

Management Domain: Block storage management

Triggers: None defined.

Detailed Context: Create a namespace, and allocate resources reserved for it, from an NVMe device that
does not support Endurance Groups and NVM Sets. The Create Namespace request is performed on the
Volume Collection in this configuration. The admin needs to satisfy a user or application request to provide
a given amount of capacity by creating a new Namespace. Note that this specific use case does not include
the assignment of this namespace to an IO Controller.

Preconditions: User has already selected the desired capacity.

Feature(s): NVMe

Inputs:

Version 1.2.8 139

• URL for Volume Collection: /redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/
Volumes

• Requested volume size in bytes (1 TiB, here): 1099511627776
• Requested name of volume: "MyNamespace"

Basic Course of Events:

1. Post the definition of the new Namespace to the Volume resource collection on the NVM
Subsystem.

This instructs the service to provision (create) a new Namespace of the requested size. Any
additional protection properties will be inherited from the NVM Subsystem.

Request:

POST /redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Volumes

◦ Headers: Content-type : application/json

◦ Body:

{

"Name" : "MyNamespace",

"Capacity": {

"Data": {

"ProvisionedBytes": 1099511627776

}

}

}

Response:

Response contains the details of the created volume.

◦ HTTP Status: 201 (Created)

◦ Headers:

Location : /redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Volumes/

MyNamespace" Content-type : application/json

◦ Body:

{

140 Version 1.2.8

"@Redfish.Copyright": "Copyright 2014-2025 SNIA. All rights
reserved.",

"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Volumes/
MyNamespace",

"@odata.type": "#Volume.v1_9_0.Volume",

"Id": "1",

"Name": "MyNamespace",

"LogicalUnitNumber": 1,

"Status": {

"State": "Enabled",

"Health": "OK"

},

"Identifiers": [

{

"DurableNameFormat": "NQN",
"DurableName":
"nqn.2014-08.org.nvmexpress:uuid:6c5fe566-10e6-4fb6-
aad4-8b4159029384"

}

],

"Capacity": {

"Data": {

"ConsumedBytes": 0,

"AllocatedBytes": 1099511627776,

"ProvisionedBytes": 1099511627776

}

},

"CapacitySources": [

{
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/
Volumes/MyNamespace/CapacitySources/Source1"

}

],

"NVMeNamespaceProperties": {

"NamespaceId": "0x224",

"NamespaceFeatures": {

"SupportsThinProvisioning": false,

"SupportsAtomicTransactionSize": false,

"SupportsDeallocatedOrUnwrittenLBError": false,

"SupportsNGUIDReuse": false,

"SupportsIOPerformanceHints": false

},

"LBAFormat": {

"LBAFormatType": "LBAFormat0",

"RelativePerformance": "Best",

"LBADataSizeBytes": 4096,

"LBAMetadataSizeBytes": 0

},

"MetadataTransferredAtEndOfDataLBA": false,

"NVMeVersion": "1.4"

Version 1.2.8 141

}

}

Postconditions: The selected Namespace has been created and is added to the NVM Subsystem.

Failure Scenario: None defined.

See also: NVMe use case to Attach a Namespace, to Provision a Namespace with NVMSet, and Create
Volume from an Existing Storage Pool for a similar use case that creates a Volume rather than a
Namespace.

8.39 Provision a Namespace with a specific LBA
format

Summary: Provision a Namespace with a specific LBA format

Purpose: Provision a Namespace from a simple NVMe device, using a specific LBA format

Who: StorageAdmin CloudAdmin

Management Domain: Block storage management

Triggers: None defined.

Detailed Context: Create a namespace, and allocate resources reserved for it, using a predefined LBA
format type. The Create Namespace request is performed on the Volume Collection in this configuration.
The admin needs to satisfy a user or application request to provide a given amount of capacity by creating a
new Namespace. Note that this specific use case does not include the assignment of this namespace to an
IO Controller.

Preconditions:

• User has already selected the desired capacity.
• User has already selected the desired LBA format, from the LBA formats supported by the

controller (through Confirm Valid LBA Formats)

Feature(s): NVMe

Inputs:

• URL for Volume Collection: /redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/
Volumes

• Requested volume size in bytes (1 TiB, here): 1099511627776
• Requested LBAFormatType: LBAFormat0

142 Version 1.2.8

• Requested name of volume: "MyNamespace"

Basic Course of Events:

1. Post the definition of the new Namespace to the Volume resource collection on the NVM
Subsystem.

This instructs the service to provision (create) a new Namespace of the requested size and LBA
format. Only the LBAFormatType property of the LBAFormat is required. Any additional
protection properties will be inherited from the NVM Subsystem.

Request:

POST /redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Volumes

◦ Headers: Content-type : application/json

◦ Body:

{

"Name" : "MyNamespace",

"Capacity": {

"Data": {

"AllocatedBytes": 1099511627776,

"ProvisionedBytes": 1099511627776

},

},

"NVMeNamespaceProperties": {

"LBAFormat": {

"LBAFormatType": "LBAFormat0"

}

}

}

Response:

Response contains the details of the created volume.

◦ HTTP Status: 201 (Created)

◦ Headers:

Location : /redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Volumes/

MyNamespace" Content-type : application/json

◦ Body:

Version 1.2.8 143

{
"@Redfish.Copyright": "Copyright 2014-2025 SNIA. All rights

reserved.",
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Volumes/

MyNamespace",

"@odata.type": "#Volume.v1_9_0.Volume",

"Id": "1",

"Name": "MyNamespace",

"LogicalUnitNumber": 1,

"Status": {

"State": "Enabled",

"Health": "OK"

},

"Identifiers": [

{

"DurableNameFormat": "NQN",
"DurableName":
"nqn.2014-08.org.nvmexpress:uuid:6c5fe566-10e6-4fb6-
aad4-8b4159029384"

}

],

"Capacity": {

"Data": {

"ConsumedBytes": 0,

"AllocatedBytes": 1099511627776,

"ProvisionedBytes": 1099511627776

}

},

"CapacitySources": [

{
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/
Volumes/MyNamespace/CapacitySources/Source1"

}

],

"NVMeNamespaceProperties": {

"NamespaceId": "0x224",

"NamespaceFeatures": {

"SupportsThinProvisioning": false,

"SupportsAtomicTransactionSize": false,

"SupportsDeallocatedOrUnwrittenLBError": false,

"SupportsNGUIDReuse": false,

"SupportsIOPerformanceHints": false

},

"LBAFormat": {

"LBAFormatType": "LBAFormat0",

"RelativePerformance": "Best",

"LBADataSizeBytes": 4096,

"LBAMetadataSizeBytes": 0

},

"MetadataTransferredAtEndOfDataLBA": false,

144 Version 1.2.8

"NVMeVersion": "1.4"

}

}

Postconditions: The selected Namespace has been created and is added to the NVM Subsystem.

Failure Scenario: None defined.

See also: NVMe use cases to Confirm Valid LBA Formats, Attach a Namespace, Provision a Namespace
with NVMSet, and Detele Volume which illustrates Volume deletion, the equivalent of deprovisioning.

8.40 Query Supported Security Protocols

Summary: Query the security protocols supported by a controller.

Purpose: Discover the security-related capabilities of a device, in order to perform further security-
related management.

Who: StorageAdmin

Management Domain: Block storage management

Triggers: Initial device provisioning and enumeration

Detailed Context: The storage admin requires a listing of the security protocols supported by a device, in
order to communicate with a device using any one of those supported protocols.

A supported protocol will typically be one of:

• 0x00: Security Protocol information
• 0x01 - 0x06: Trusted Computing Group protocols
• 0x40: Security Association Creation capabilities
• 0x41: IKEv2-SCSI
• 0xe9 - 0xea: NVMe Express securitity protocols

- but arbitrary protocol types are also available, including vendor-defined protocols.

This use-case uses Security Protocol 0 (“Security Protocol Information”) to query the other security
protocols implemented on the controller. The Security Send and Security Receive Controller actions
provide the transport for this protocol communication.

Preconditions: User has selected a storage device to query.

Features: Security Management

Version 1.2.8 145

Inputs:

• URL for Controller: /redfish/v1/Storage/1/Controllers/1
• Secure protocol request parameters: To query supported protocols use:

◦ SecurityProtocol (SP): 0
◦ SecurityProtocolSpecific (SPSP): 0

Basic Course of Events:

1. Invoke the SecurityReceive Action on the Controller, passing the SP and SPSP parameters.

Request: POST /redfish/v1/Storage/1/Controllers/1.SecurityReceive

◦ Headers: Content-type : application/json

◦ Body:

{

"SecurityProtocol": 0,

"SecurityProtocolSpecific": 0

}

Response:

◦ HTTP Status: 200 (OK)

◦ Headers: None.

◦ Body:

{

"Data": "AAAAAAAAAAIAAQ=="

}

2. Decode the base64 "Data" field, and parse the binary response data according to section 5.1.3 of
INCITS 501-2016.

In this example, the data returned is:

00 00 00 00 00 00 00 02 00 01

which indicates support for two security protocols, 0x00 and 0x01.

146 Version 1.2.8

Postconditions: None.

Failure Scenario: None defined.

See also: None defined.

8.41 Receive Security Protocol Data

Summary: Receive security protocol data from a storage device.

Purpose: As part of security-related device management, receive a block of security protocol data from a
device which supports that specific security protocol.

Who: StorageAdmin

Management Domain: Block storage management

Triggers: Initial device provisioning and enumeration, device reprovisioning

Detailed Context: The storage admin wishes to perform security-management related operations on a
storage controller device, through one of the controller’s supported security protocols. In order to perform
protocol interactions, data may need to be received from the device, using a “Security Receive” operation.

Preconditions:

• User has selected a storage device for security management operations
• Device supports the security protocol operations
• Security protocol number is 0, 1 or 2 (respectively, Security Protocol Information, and TCG

Storage Architecture protocol 1 and 2)
• Device implements the selected security protocol

Features: Security Management

Inputs:

• URL for Controller: /redfish/v1/Storage/1/Controllers/1
• Secure protocol request parameters (the following are the required parameters to send data):

◦ SecurityProtocol (SP): 2
◦ SecurityProtocolSpecific (SPSP): 4100

• Expected response length: 48

Basic Course of Events:

1. Invoke the SecurityReceive Action on the Controller, passing a Security Protocol (SP)
parameter, a Security Protocol Specific Parameter (SPSP), and an expected length for response
data.

Version 1.2.8 147

Request: POST /redfish/v1/Storage/1/Controllers/1.SecurityReceive

◦ Headers: Content-type : application/json

◦ Body:

{

"SecurityProtocol": 2,

"SecurityProtocolSpecific": 4100,

"AllocationLength": 48,

}

Security protocol data will be retured in the response as a base64-encoded string.

Response:

◦ HTTP Status: 200 (OK)

◦ Headers: None.

◦ Body: json { "Data":

"EAQAAAAAAAEAAAAiAAAAAgAA

" }

Postconditions: None.

Failure Scenario: None defined.

See also: None defined.

8.42 Remove Replication Relationship for a
Consistency Group

Summary: Disable data synchronization between a source and target Consistency Group, remove the
replication relationship, and optionally delete the target Consistency Group.

Purpose: The administrator wants to completely delete the relationship between the target and source
ConsistencyGroups.

Who: StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need to remove a replication relationship due to changing system or environment
requirements.

148 Version 1.2.8

Detailed Context: The identified replication relationship is no longer needed, and is to be completely
removed from the configuration.

Preconditions: User has already identified which replication relationship to delete, and whether or not
to retain the target ConsistencyGroup.

Feature(s): Replication (both local and remote)

Inputs:

• URL for target replica: /redfish/v1/Storage/1/ConsistencyGroups/CG_DB2
• Boolean value to determine whether target ConsistencyGroup should be retained or not: false

Basic Course of Events:

1. Post (as an Action) the request on the source ConsistencyGroup.

This instructs the service to delete the specified replication relationship. For any additional details
required, the service will rely on default values.

Request:

POST /redfish/v1/Storage/1/ConsistencyGroups/CG_DB1/

ConsistencyGroup.RemoveReplicaRelationship

• Headers: Content-type : application/json

• Body:

{

"TargetConsistencyGroup": "/redfish/v1/Storage/1/ConsistencyGroups/CG_DB2",

"DeleteTargetConsistencyGroup": "false"

}

Response:

• HTTP Status: 204 (No Content)

• Headers: Location : /redfish/v1/Storage/1/ConsistencyGroups/1

• Body: None.

Postconditions: The ConsistencyGroup will no longer have an entry in “ReplicaTargets” for the former
replication relationship (the property is not returned in the above example if it were null). Elsewhere, the
ConsistencyGroup “CG_DB2” in the system will still exist but will no longer have a StorageReplicaInfo

Version 1.2.8 149

which points back to this ConsistencyGroup.

Failure Scenario: None defined

See also: Remove Replication Relationship

8.43 Remove Replication Relationship

Summary: Disable data synchronization between a source and target volume, remove the replication
relationship, and optionally delete the target volume.

Purpose: The administrator wants to completely delete the relationship between the target and source
volumes.

Who: StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need to remove a replication relationship due to changing system or environment
requirements.

Detailed Context: The identified replication relationship is no longer needed, and is to be completely
removed from the configuration.

Preconditions: User has already identified which replication relationship to delete, and whether or not
to retain the target volume.

Feature(s): Replication (both local and remote)

Inputs:

• URL for target replica:

/redfish/v1/Storage/1/StoragePools/PrimaryPool/ AllocatedVolumes/

650973452245

• Boolean value to determine whether target volume should be retained or not: false

Basic Course of Events:

1. Post (as an Action) the request on the source Volume.

This instructs the service to delete the specified replication relationship. For any additional details
required, the service will rely on default values.

Request:

150 Version 1.2.8

POST /redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1/

Volume.RemoveReplicaRelationship

• Headers: Content-type : application/json

• Body:

{
"TargetVolume" : "/redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/

650973452245",

"DeleteTargetVolume" : "false"

}

Response:

• HTTP Status: 204 (No Content)

• Headers: Location : /redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1

• Body: None.

Postconditions: The volume will no longer have an entry in “ReplicaTargets” for the former replication
relationship (the property is not returned in the above example, as it is null). Elsewhere, the volume
“650973452245” in the system will still exist but will no longer have a StorageReplicaInfo which points
back to this volume.

Failure Scenario: None defined

See also: Remove Replication Relationship (CG)

8.44 Report Namespace Capacity

Summary: Report Namespace Capacity

Purpose: Report Namespace Capacity

Who: StorageAdmin CloudAdmin

Management Domain: Block storage management

Triggers: None defined.

Detailed Context: The namespace capacity information is provided as properties in the namespace

Version 1.2.8 151

object. The NVMe capacity information reported via the Redfish/Swordfish data structures maps the
NVMe native capacity information into the RF/SF capacity structures, showing the capacity presented by
the namespace to the consumer as AllocatedBytes (e.g., the addressable capacity), and the total available
capacity of the namespace as ProvisionedBytes (e.g., the amount of addressable capacity that may actually
be used). Note that for a thin provisioned system these values are expected to be different.

Preconditions: None defined.

Feature(s): NVMe

Inputs:

• URL for namespace: /redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Volumes/
Namespace1

Basic Course of Events:

1. Get the designated Namespace and find the Capacity.Data.AllocatedBytes property
within the returned JSON data:

Request:

GET /redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Volumes/Namespace1

• Headers: No additional headers required.

• Body: None.

Response:

• HTTP Status: 200 (OK)

• Headers:

◦ Content-type : application/json

◦ ETag : "97AAD42"

• Body:

{

"@Redfish.Copyright": "Copyright 2014-2025 SNIA. All rights reserved.",

"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Volumes/Namespace1",

"@odata.type": "#Volume.v1_9_0.Volume",

"Id": "1",

"Name": "Namespace 1",

"LogicalUnitNumber": 1,

"Status": {

152 Version 1.2.8

"State": "Enabled",

"Health": "OK"

},

"Identifiers": [

{

"DurableNameFormat": "NQN",
"DurableName":
"nqn.2014-08.org.nvmexpress:uuid:6c5fe566-10e6-4fb6-aad4-8b4159029384"

}

],

"Capacity": {

"Data": {

"ConsumedBytes": 0,

"AllocatedBytes": 10737418240,

"ProvisionedBytes": 10737418240

}

},

"CapacitySources": [

{
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/NVMeSSD-EG/Volumes/Namespace1/
CapacitySources/Source1"

}

],

"NVMeNamespaceProperties": {

"NamespaceId": "0x224",

"NamespaceFeatures": {

"SupportsThinProvisioning": false,

"SupportsAtomicTransactionSize": false,

"SupportsDeallocatedOrUnwrittenLBError": false,

"SupportsNGUIDReuse": false,

"SupportsIOPerformanceHints": false

},

"LBAFormat": {

"LBAFormatType": "LBAFormat0",

"RelativePerformance": "Best",

"LBADataSizeBytes": 4096,

"LBAMetadataSizeBytes": 0

},

"MetadataTransferredAtEndOfDataLBA": false,

"NVMeVersion": "1.4"

},

"Links": {

}

}

Postconditions: The requested capacity information is returned in the GET request:

Version 1.2.8 153

{

"Capacity": {

"Data": {

"ConsumedBytes": 0,

"AllocatedBytes": 10737418240,

"ProvisionedBytes": 10737418240

}

}

}

Failure Scenario: None defined.

See also: None defined.

8.45 Report Remaining Life for a Namespace

Summary: Report Remaining Life for a Namespace

Purpose: Report Remaining Life for a Namespace

Who: StorageAdmin CloudAdmin

Management Domain: Block storage management

Triggers: None defined.

Detailed Context: The namespace itself doesn’t have the notion of “remaining life”. Instead, the user
should go to the corresponding drive object, and retrieve the “PredictedMediaLifeLeftPercent” property.
Note, for a system that has endurance groups and sets, the endurance group also has this property, and the
namespace could take the related “PredictedMediaLifeLeftPercent” from its related endurance group as
well.

Preconditions: The namespace object has a direct link (in the Links property) to its related Drive. This
path may not exist in certain types of NVMe devices, such as an Opaque Array.

Feature(s): NVMe

Inputs:

• URL for Namespace

Basic Course of Events:

1. GET the Namespace of interest.

Request:

154 Version 1.2.8

https://swordfishmockups.com/docraptor//275508042/swordfish_users_guide/nvme-feature

GET /redfish/v1/Systems/Sys-1/Storage/SimplestNVMeSSD/Volumes/

SimpleNamespace

◦ Headers: No additional headers required.

Response:

◦ HTTP Status: 200 (OK)

◦ Headers:

▪ Content-type : application/json

▪ ETag : "97AAD42"

◦ Body:

{

"@Redfish.Copyright": "Copyright 2014-2025 SNIA. All rights reserved.",
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/SimplestNVMeSSD/Volumes/

SimpleNamespace",

"@odata.type": "#Volume.v1_9_0.Volume",

"Id": "1",

"Name": "Namespace 1",

"LogicalUnitNumber": 1,

"Status": {

"State": "Enabled",

"Health": "OK"

},

"Identifiers": [

{

"DurableNameFormat": "NQN",
"DurableName":

"nqn.2014-08.org.nvmexpress:uuid:6c5fe566-10e6-4fb6-aad4-8b4159029384"

}

],

"Capacity": {

"Data": {

"ConsumedBytes": 0,

"AllocatedBytes": 10737418240

},

"Metadata": {

"AllocatedBytes": 536870912

}

},

"NVMeNamespaceProperties": {

"NamespaceId": "0x22F",

"NamespaceFeatures": {

Version 1.2.8 155

"SupportsThinProvisioning": false,

"SupportsAtomicTransactionSize": false,

"SupportsDeallocatedOrUnwrittenLBError": false,

"SupportsNGUIDReuse": false,

"SupportsIOPerformanceHints": false

},

"LBAFormat": {

"LBAFormatType": "LBAFormat0",

"RelativePerformance": "Best",

"LBADataSizeBytes": 4096,

"LBAMetadataSizeBytes": 0

},

"MetadataTransferredAtEndOfDataLBA": false,

"NVMeVersion": "1.4"

},

"Links": {

"Drives": {
"@odata.id": "/redfish/v1/Chassis/SimplestNVMeSSD/Drives/

SimplestNVMeSSD"

}

}

}

2. GET the Drive related to the Namespace.

Request: GET /redfish/v1/Chassis/SimplestNVMeSSD/Drives/SimplestNVMeSSD

◦ Headers: No additional headers required.

Response:

◦ HTTP Status: 200 (OK)

◦ Headers:

▪ Content-type : application/json

▪ `ETag : “97ACD559”

◦ Body:

{
"@odata.id": "/redfish/v1/Chassis/SimplestNVMeSSD/Drives/

SimplestNVMeSSD",

"@odata.type": "#Drive.v1_9_0.Drive",

"IndicatorLED": "Lit",

"Model": "ST9146802SS",

"Revision": "S20A",

156 Version 1.2.8

"Status": {

"State": "Enabled",

"Health": "OK"

},

"CapacityBytes": 899527000000,

"FailurePredicted": false,

"PredictedMediaLifeLeftPercent": 18,

"Protocol": "NVMe",

"MediaType": "SSD",

"Manufacturer": "Contoso",

"SerialNumber": "72D0A037FRD26",

"PartNumber": "SG0GP8811253178M02GJA00",

"Identifiers": [

{

"DurableNameFormat": "NAA",

"DurableName": "500003942810D13A"

}

],

"Links": {

"Volumes": [

{
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/SimplestNVMeSSD/
Volumes/SimpleNamespace"

}

]

},

"Actions": {

"#Drive.Reset": {
"target": "/redfish/v1/Chassis/SimplestNVMeSSD/Drives/
SimplestNVMeSSD/Actions/Drive.Reset"

}

}

}

Postconditions: The drive object returned a “PredictedMediaLifeLeftPercent” value of 18. The user can
use this value as the apparent namespace life value.

Failure Scenario: None defined.

See also: None defined.

8.46 Resume the Replication Synchronization
Activity for a Consistency Group

Summary: Resume the active data synchronization between a source and target Consistency Group,
without otherwise altering the replication relationship.

Version 1.2.8 157

Purpose: The administrator wants to restore the relationship between the target and source
ConsistencyGroups, since the temporary condition that led to a suspension of replication has passed.

Who: StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need to re-activate a suspended replication relationship.

Detailed Context: The temporary condition that led to a suspension of replication has passed, and the
admin needs to resume replication using the existing replication relationship.

Preconditions: User has already identified which target ConsistencyGroup to resume, and
implementation preserves replication information what a relationship is suspended.

Feature(s): Replication (both local and remote)

Inputs:

• URL for target replica: /redfish/v1/Storage/1/ConsistencyGroups/CG_DB2

Basic Course of Events:

1. Post (as an Action) the request on the source ConsistencyGroup.

This instructs the service to use the identified ConsistencyGroup as the source ConsistencyGroup for the
specified replication relationship. For any additional details required, the service will rely on default
values.

Request:

POST /redfish/v1/Storage/1/ConsistencyGroups/DB_CG1/

ConsistencyGroup.ResumeReplication

• Headers: Content-type : application/json

• Body:

{

"TargetConsistencyGroup": "/redfish/v1/Storage/1/ConsistencyGroups/CG_DB2"

}

Response:

• HTTP Status: 204 (No Content)

158 Version 1.2.8

• Headers: Location : /redfish/v1/Storage/1/ConsistencyGroups/CG_DB1

• Body: None.

Postconditions: The selected ConsistencyGroup has an updated ReplicaTargets entry for the new
relationship. Elsewhere, there is a ConsistencyGroup “CG_DB2” in the system that has a ReplicaInfo which
points back to this ConsistencyGroup and which contains all of the Replica configuration information. The
replica state in the target ConsistencyGroup has been updated according to the requested action (e.g., from
“suspended” to “active”).

Failure Scenario: None defined

See also: Resume the Replication Synchronization Activity

8.47 Resume the Replication Synchronization
Activity

Summary: Resume the active data synchronization between a source and target volume, without
otherwise altering the replication relationship.

Purpose: The administrator wants to restore the relationship between the target and source volumes,
since the temporary condition that led to a suspension of replication has passed.

Who: StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need to re-activate a suspended replication relationship.

Detailed Context: The temporary condition that led to a suspension of replication has passed, and the
admin needs to resume replication using the existing replication relationship.

Preconditions: User has already identified which target volume to resume, and implementation
preserves replication information what a relationship is suspended.

Feature(s): Replication (both local and remote)

Inputs:

• URL for target replica: /redfish/v1/Storage/1/Volumes/650973452245

Basic Course of Events:

1. Post (as an Action) the request on the source Volume.

This instructs the service to use the identified Volume as the source Volume for the specified replication

Version 1.2.8 159

relationship. For any additional details required, the service will rely on default values.

Request:

POST /redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1/

Volume.ResumeReplication

• Headers: Content-type : application/json

• Body:

{
"TargetVolume" : "/redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/

650973452245"

}

Response:

• HTTP Status: 204 (No Content)

• Headers: Location : /redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1

• Body: None.

Postconditions: The selected volume has an updated ReplicaTargets entry for the new relationship.
Elsewhere, there is a volume “650973452245” in the system that has a ReplicaInfo which points back to
this volume and which contains all of the Replica configuration information. The replica state in the target
volume has been updated according to the requested action (e.g., from “suspended” to “active”).

Failure Scenario: None defined

See also: Resume the Replication Synchronization Activity (CG)

8.48 Retrieve latest instance of storage metrics
information

Summary: Retrieve storage metrics information for a storage volume.

Purpose:

• Baseline retrieval of performance metrics
• Input to an end-to-end diagnostics workflow to help identify potential bottlenecks

160 Version 1.2.8

Who: DevOps at an enterprise

Management domain: Block storage management

Trigger: Lower than expected application requests completed per second

Detailed context: Diagnostics scripts require retrieval of performance information from multiple layers
in the application stack, including infrastructure, to help identify potential bottlenecks during production
hours. The most basic retrieval collects Volume-level performance data that can be aggregated and
analyzed by a variety of tools. >Note: If information needs to be gathered over time, consider using the
telemetry service, as illustrated in Review Metrics Trends use case.

Preconditions: None.

Feature(s): Block IO performance

Inputs:

• URL of the selected Volume: /Systems/Sys-1/Storage/DirectAttachStorageSystem/
Volumes/Volume1/

Basic course of events:

1. uses GET operations to look at metrics of the storage volume

Request: GET /redfish/v1/Systems/Sys-1/Storage/DirectAttachStorageSystem/

Volumes/Volume1/Metics

• Headers: No additional headers required.

• Body: None defined.

Response:

• HTTP Status: 200 (Success)

• Headers:

◦ Content-type : application/json

◦ ETag : "97AED48652"

• Body:

{

"@odata.type": "#VolumeMetrics.v1_1_0.VolumeMetrics",

"Name": "Volume Metrics",

Version 1.2.8 161

"Id": "Metrics",

"CorrectableIOReadErrorCount": 184,

"UncorrectableIOReadErrorCount": 0,

"CorrectableIOWriteErrorCount": 184,

"UncorrectableIOWriteErrorCount": 0,

"ConsistencyCheckErrorCount": 0,

"ConsistencyCheckCount": 10,

"RebuildErrorCount": 0,

"StateChangeCount": 20,

"IOStatistics": {

"ReadIORequests": 107238423,

"ReadHitIORequests": 234445346,

"ReadIOKiBytes": 234456677,

"ReadIORequestTime": "P18S",

"WriteIORequests": 98273402234,

"WriteHitIORequests": 9723598345,

"WriteIOKiBytes": 2345325,

"NonIORequests": 23423466,

"NonIORequestTime": "P24S"

},

"Oem": {},
"@odata.id": "/redfish/v1/Systems/Sys-1/Storage/DirectAttachStorageSystem/

Volumes/Volume1/Metrics",

"@Redfish.Copyright": "Copyright 2015-2025 SNIA. All rights reserved."

}

Postconditions: None defined.

See also: - Metrics White Paper for more information on the telemetry system and metrics definition and
retrieval. - Review Metrics Trends use case for an example of metrics reporting

8.49 Reverse a Replication Relationship for
Consistency Groups

Summary: Reverse the replication relationship between a source and target Consistency Group.

Purpose: The administrator wants to reconfigure the relationship between the target and source
ConsistencyGroups, reversing their roles.

Who: StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need to reconfigure existing storage due to changing system or environment requirements.

Detailed Context: The admin needs to satisfy a user or application request swapping the target/source

162 Version 1.2.8

https://www.snia.org/sites/default/files/technical-work/swordfish/release/v1.2.5a/pdf/Swordfish_v1.2.5a_MetricsWhitePaper.pdf

roles in a replication relationship.

Preconditions: User has already identified which target ConsistencyGroup and replication relationship
to reverse.

Feature(s): Replication (both local and remote)

Inputs:

• URL for target replica: /redfish/v1/Storage/1/ConsistencyGroups/CG_DB2

Basic Course of Events:

1. Post (as an Action) the request on the source ConsistencyGroup.

This instructs the service to use the identified ConsistencyGroup as the source ConsistencyGroup for the
specified replication relationship. For any additional details required, the service will rely on default
values.

Request:

POST /redfish/v1/Storage/1/ConsistencyGroups/DB_CG1/

ConsistencyGroup.ReverseReplicationRelationship

• Headers: Content-type : application/json

• Body:

{

"TargetConsistencyGroup": "/redfish/v1/Storage/1/ConsistencyGroups/DB_CG2"

}

Response:

• HTTP Status: 204 (No Content)

• Headers: Location : /redfish/v1/Storage/1/ConsistencyGroups/1

• Body: None.

Postconditions: The selected ConsistencyGroup will now have an updated ReplicaInfo for the
relationship, which contains the replication attributes and a pointer to the source replica. Elsewhere, there
is a ConsistencyGroup “DB_CG2” in the system that now has an ReplicaTargets entry that points back to
this ConsistencyGroup ("@odata.id": "/redfish/v1/Storage/1/ConsistencyGroups/
DB_CG1").

Version 1.2.8 163

Failure Scenario: None defined

See also: Reverse a Replication Relationship

8.50 Reverse a Replication Relationship

Summary: Reverse the replication relationship between a source and target volume.

Purpose: The administrator wants to reconfigure the relationship between the target and source volumes,
reversing their roles.

Who: StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need to reconfigure existing storage due to changing system or environment requirements.

Detailed Context: The admin needs to satisfy a user or application request swapping the target/source
roles in a replication relationship.

Preconditions: User has already identified which target volume and replication relationship to reverse.

Feature(s): Replication (both local and remote)

Inputs:

• URL for target replica: /redfish/v1/Storage/1/StoragePools/PrimaryPool/
AllocatedVolumes/650973452245

Basic Course of Events:

1. Post (as an Action) the request on the source Volume.

This instructs the service to use the identified Volume as the source Volume for the specified replication
relationship. For any additional details required, the service will rely on default values.

Request:

POST /redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1/

Volume.ReverseReplicationRelationship

• Headers: Content-type : application/json

• Body:

164 Version 1.2.8

{
"TargetVolume" : "/redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/650973452245"

}

Response:

• HTTP Status: 204 (No Content)

• Headers: Location : /redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1

• Body: None.

Postconditions: The selected volume will now have an updated ReplicaInfo for the relationship, which
contains the replication attributes and a pointer to the source replica. Elsewhere, there is a volume
“650973452245” in the system that now has an ReplicaTargets entry that points back to this volume
(“@odata.id”: “/redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1”).

Failure Scenario: None defined

See also: Reverse a Replication Relationship (CG)

8.51 Review Metrics Trends

Summary: Retrieve capacity utilization data that has been gathered by a previously defined
MetricReportDefinition.

Purpose:

• Review recent data that has been retrieved and aggregated by the telemetry service

Who: StorageAdmin

Management Domain: Block storage management

Detailed context: Once appropriate metrics and reports have been defined in the Telemetry service,
detailed metrics (potentially including automatic calculations and aggregation) can be retrieved easily.

Preconditions:

• Telemetry service has been implemented and enabled.
• Appropriate metrics and metrics reports have been defined.

Feature(s): Block IO performance

Version 1.2.8 165

Inputs:

• URL of the selected MetricsReport: TelemetryService/MetricReports/
CapacityUtilization

Basic course of events:

1. uses GET request to collect the appropriate report information.

Request: GET /redfish/v1/TelemetryService/MetricReports/CapacityUtilization

• Headers: No additional headers required.

• Body: None defined.

Response:

• HTTP Status: 200 (Success)

• Headers:

◦ Content-type : application/json

◦ ETag : "97AED48652"

• Body:

{

"@odata.type": "#MetricReport.v1_4_2.MetricReport",

"Id": "CapacityUtilization",

"Name": "Capacity Utilization Performance Metric Report",

"ReportSequence": "15",

"MetricReportDefinition": {
"@odata.id": "/redfish/v1/TelemetryService/MetricReportDefinitions/

CapacityUtilization"

},

"MetricValues": [

{

"MetricId": "CapacityUtilization",

"MetricValue": "99",

"Timestamp": "2021-04-29T12:25:00-05:00",
"MetricProperty": "/redfish/v1/Systems/Sys-1/Storage/
DirectAttachStorageSystem/Volumes/Volume1/Capacity#/Data/
RemainingCapacityPercent"

},

{

"MetricId": "CapacityUtilization",

"MetricValue": "98",

"Timestamp": "2021-04-29T13:25:00-05:00",

166 Version 1.2.8

"MetricProperty": "/redfish/v1/Systems/Sys-1/Storage/
DirectAttachStorageSystem/Volumes/Volume1/Capacity#/Data/
RemainingCapacityPercent"

},

{

"MetricId": "CapacityUtilization",

"MetricValue": "97",

"Timestamp": "2021-04-29T14:25:00-05:00",
"MetricProperty": "/redfish/v1/Systems/Sys-1/Storage/
DirectAttachStorageSystem/Volumes/Volume1/Capacity#/Data/
RemainingCapacityPercent"

},

{

"MetricId": "CapacityUtilization",

"MetricValue": "96",

"Timestamp": "2021-04-29T15:25:00-05:00",
"MetricProperty": "/redfish/v1/Systems/Sys-1/Storage/
DirectAttachStorageSystem/Volumes/Volume1/Capacity#/Data/
RemainingCapacityPercent"

},

{

"MetricId": "CapacityUtilization",

"MetricValue": "95",

"Timestamp": "2021-04-29T16:25:00-05:00",
"MetricProperty": "/redfish/v1/Systems/Sys-1/Storage/
DirectAttachStorageSystem/Volumes/Volume1/Capacity#/Data/
RemainingCapacityPercent"

},

{

"MetricId": "CapacityUtilization",

"MetricValue": "94",

"Timestamp": "2021-04-29T17:25:00-05:00",
"MetricProperty": "/redfish/v1/Systems/Sys-1/Storage/
DirectAttachStorageSystem/Volumes/Volume1/Capacity#/Data/
RemainingCapacityPercent"

}

],

"@odata.id": "/redfish/v1/TelemetryService/MetricReports/CapacityUtilization",

"@Redfish.Copyright": "Copyright 2015-2025 SNIA. All rights reserved."

}

Postconditions: None defined.

See also: - Metrics White Paper for more information on the telemetry system and metrics definition and
retrieval. - IO Performance Metrics use case for an example of metrics retrieval

8.52 Send Security Protocol Data

Summary: Send security protocol data to a storage device.

Version 1.2.8 167

https://www.snia.org/sites/default/files/technical-work/swordfish/release/v1.2.5a/pdf/Swordfish_v1.2.5a_MetricsWhitePaper.pdf

Purpose: As part of security-related device management, send a block of security protocol data to a device
that supports that specific security protocol.

Who: StorageAdmin

Management Domain: Block storage management

Triggers: Initial device provisioning and enumeration, device reprovisioning

Detailed Context: The storage admin wishes to perform security-management related operations on a
storage controller device, through one of the controller’s supported security protocols. In order to perform
protocol interactions, data may need to be transmitted to the device, using a “Security Send” operation.

Preconditions:

• User has selected a storage device for security management operations
• Device supports the security protocol operations
• Security protocol number is 1 or 2 (the TCG Storage Architecture protocols supported by

Swordfish)
• Device implements the selected security protocol

Features: Security Management

Inputs:

• URL for Controller: /redfish/v1/Storage/1/Controllers/1
• Secure protocol request parameters (these are the settings required to send data):

◦ SecurityProtocol (SP): 2
◦ SecurityProtocolSpecific (SPSP): 4100

• Security protocol data: 10 04 00 00 00 00 00 01, hex bytes.

Basic Course of Events:

1. Invoke the SecuritySend Action on the Controller, passing a Security Protocol (SP) parameter,
and a Security Protocol Specific Parameter (SPSP), and arbitrary protocol data, as a
base64-encoded string.

Request: POST /redfish/v1/Storage/1/Controllers/1.SecuritySend

◦ Headers: Content-type : application/json

◦ Body:

{

"SecurityProtocol": 2,

"SecurityProtocolSpecific": 4100,

168 Version 1.2.8

"Data": "EAQAAAAAAAE="

}

Response:

◦ HTTP Status: 204 (No Content)

◦ Headers: None.

◦ Body: None.

Postconditions: None.

Failure Scenario: None defined.

See also: None defined.

8.53 Split a Replica

Summary: Split the replication relationship and suspend data synchronization between a source and
target volume.

Purpose: The administrator wants to reconfigure the relationship between the target and source volumes.

Who: StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need to reconfigure existing storage due to changing system or environment requirements.

Detailed Context: The admin needs to satisfy a user or application request to change the existing
configuration between the target and source volumes in a replication relationship.

Preconditions: User has already identified which target volume and replication relationship to split.

Feature(s): Replication (both local and remote)

Inputs:

• URL for target replica: /redfish/v1/Storage/1/Volumes/650973452245

Basic Course of Events:

1. Post (as an Action) the request on the source Volume.

This instructs the service to use the identified Volume as the source Volume for the specified replication

Version 1.2.8 169

relationship. For any additional details required, the service will rely on default values.

Request:

POST /redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1/

Volume.SplitReplication

• Headers: Content-type : application/json

• Body:

{
"TargetVolume": "/redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/650973452245"

}

Response:

• HTTP Status: 204 (No Content)

• Headers: Location : /redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1

• Body: None.

Postconditions: The selected volume has a new ReplicaTargets property with the link to the volume.
Elsewhere, there is a volume “650973452245” in the system that has a ReplicaInfo pointing back to this
volume and which contains all of the Replica configuration information. The replica state in the target
volume has been updated according to the requested action (e.g., from “active” to “suspended / split”).

Failure Scenario: None defined

See also: Split a Replica (CG)

8.54 Split a set of Replicas in Consistency Groups

Summary: Split the replication relationship and suspend data synchronization between a source and
target ConsistencyGroup.

Purpose: The administrator wants to reconfigure the relationship between the target and source
ConsistencyGroups.

Who: StorageAdmin, DevOps

170 Version 1.2.8

Management Domain: Block storage management

Triggers: Need to reconfigure existing storage due to changing system or environment requirements.

Detailed Context: The admin needs to satisfy a user or application request to change the existing
configuration between the target and source ConsistencyGroups in a replication relationship.

Preconditions: User has already identified which target ConsistencyGroup and replication relationship
to split.

Feature(s): Replication (both local and remote)

Inputs:

• URL for target replica: /redfish/v1/Storage/1/ConsistencyGroups/CG_DB2

Basic Course of Events:

1. Post (as an Action) the request on the source ConsistencyGroup.

This instructs the service to use the identified ConsistencyGroup as the source ConsistencyGroup for the
specified replication relationship. For any additional details required, the service will rely on default
values.

Request:

POST /redfish/v1/Storage/1/ConsistencyGroups/CG_DB1/

ConsistencyGroup.SplitReplication

• Headers: Content-type : application/json.

• Body:

{

"TargetConsistencyGroup" : "/redfish/v1/Storage/1/ConsistencyGroups/CG_DB2"

}

Response:

• HTTP Status: 204 (No Content)

• Headers: Location : /redfish/v1/Storage/1/ConsistencyGroups/1

• Body: None.

Version 1.2.8 171

Postconditions: The selected ConsistencyGroup has a new ReplicaTargets property with the link to the
ConsistencyGroup. Elsewhere, there is a ConsistencyGroup “650973452245” in the system that has a
ReplicaInfo pointing back to this ConsistencyGroup and which contains all of the Replica configuration
information. The replica state in the target ConsistencyGroup has been updated according to the requested
action (e.g., from “active” to “suspended / split”).

Failure Scenario: None defined

See also: Split a Replica

8.55 Subscribe to Threshold Events

Summary: Subscribe to Trigger/Clear events for LowSpaceWarningThresholds for a named Volume.

Purpose: Provide an event stream to support utilization management. This is used in conjunction with
LowSpaceWarningThresholds to provide a means for on-going monitoring of resource consumption.

Who: CloudAdmin, StorageAdmin, DevOps

Management domain: Block storage management, Application storage management

Triggers: None defined.

Detailed Context: This provides the basis for monitoring capacity consumption.

Preconditions: None defined.

Feature(s): Event notification

Inputs:

• The URL of the StorageService: /redfish/v1/StorageServices/Simple1

• The Volume to be monitored: Vol1

• The subscription destination: "http://www.dnsname.com/Destination1"

• An array of events to be subscribed:

["LowSpaceWarningThresholdTriggered", "LowSpaceWarningThresholdCleared"]

Basic course of events:

1. Submit the event subscription, specifying the subscription destination.

Request:

172 Version 1.2.8

POST /redfish/v1/EventService/Subscriptions/Members

• Headers: Content-type : application/json

• Body:

{
"@Redfish.Copyright": "Copyright 2016-2025 SNIA, USA. All rights reserved. For

the full SNIA copyright policy, see http://www.snia.org/about/
corporate_info/copyright",

"@odata.context": "/redfish/v1/$metadata#EventDestination.EventDestination",

"@odata.type": "#EventDestination.v1_0_2.EventDestination",

"Name": "Volume1 Usage Threshold",

"Destination": "http://www.dnsname.com/Destination1",

"EventTypes": [

"Alert"

],

"Context": "WebUser3",

"Protocol": "Redfish",
"OriginResources": [{"odata.id" : "/redfish/v1/StorageServices/Simple1/Volumes/

Vol1"}],
"MessageIds": ["LowSpaceWarningThresholdTriggered",

"LowSpaceWarningThresholdCleared"]

}

Response:

• HTTP Status: 201 (Created)

• Headers:

Location : /redfish/v1/EventService/Subscriptions/1/Members/1e7da

• Body:

{
"@Redfish.Copyright": "Copyright 2016-2025 SNIA, USA. All rights reserved. For

the full SNIA copyright policy, see http://www.snia.org/about/
corporate_info/copyright",

"@odata.context": "/redfish/v1/$metadata#EventDestination.EventDestination",

"@odata.type": "#EventDestination.v1_0_2.EventDestination",

"@odata.id": "/redfish/v1/EventService/Subscriptions/1/Members/1e7da",

"Name": "Volume1 Usage Threshold",

"Destination": "http://www.dnsname.com/Destination1",

"EventTypes": [

"Alert"

],

Version 1.2.8 173

"Context": "WebUser3",

"Protocol": "Redfish",
"OriginResources": [{"odata.id" : "/redfish/v1/StorageServices/Simple1/

Volumes/Vol1"}],
"MessageIds": ["LowSpaceWarningThresholdTriggered",

"LowSpaceWarningThresholdCleared"]

}

Postconditions: Newly-created event subscription is added to the EventService.

Failure Scenario: None defined.

See also: None defined.

8.56 Suspend Replication Synchronization Activity
between Consistency Groups

Summary: Suspend active data synchronization between a source and target ConsistencyGroup, without
otherwise altering the replication relationship.

Purpose: Due to temporarily changed environmental constraints, the administrator wants to change the
level of data protection between the target and source ConsistencyGroups.

Who: StorageAdmin, DevOps

Management Domain: Block storage management

Triggers: Need to reconfigure existing storage due to changing system or environment requirements.

Detailed Context: The admin needs to satisfy a user or application request to change the existing
configuration between the existing target and source ConsistencyGroups in a replication relationship,
without deleting the relationship.

Preconditions: User has already identified which target ConsistencyGroup to suspend.

Feature(s): Replication (both local and remote)

Inputs:

• URL for target replica: /redfish/v1/Storage/1/ConsistencyGroups/CG_DB2

Basic Course of Events:

1. Post (as an Action) the request on the source ConsistencyGroup.

This instructs the service to use the identified ConsistencyGroup as the source ConsistencyGroup for the

174 Version 1.2.8

specified replication relationship. For any additional details required, the service will rely on default
values.

Request:

POST /redfish/v1/Storage/1/ConsistencyGroups/CG_DB1/

ConsistencyGroup.SuspendReplication

• Headers: Content-type : application/json

• Body:

{

"TargetConsistencyGroup": "/redfish/v1/Storage/1/ConsistencyGroups/CG_DB2"

}

Response:

• HTTP Status: 204 (No Content)

• Headers: Location : /redfish/v1/Storage/1/ConsistencyGroups/CG_DB1

• Body: None.

Postconditions: The selected ConsistencyGroup has an updated ReplicaTargets entry for the new
relationship. Elsewhere, there is a ConsistencyGroup “CG_DB2” in the system that has a ReplicaInfo which
points back to this ConsistencyGroup and which contains all of the Replica configuration information. The
replica state in the target ConsistencyGroup has been updated according to the requested action (e.g., from
“Active” to “Suspended”).

Failure Scenario: None defined

See also: Suspend Replication Synchronization Activity

8.57 Suspend Replication Synchronization Activity

Summary: Suspend active data synchronization between a source and target volume, without otherwise
altering the replication relationship.

Purpose: Due to temporarily changed environmental constraints, the administrator wants to change the
level of data protection between the target and source volumes.

Who: StorageAdmin, DevOps

Version 1.2.8 175

Management Domain: Block storage management

Triggers: Need to reconfigure existing storage due to changing system or environment requirements.

Detailed Context: The admin needs to satisfy a user or application request to change the existing
configuration between the existing target and source volumes in a replication relationship, without deleting
the relationship.

Preconditions: User has already identified which target volume to suspend.

Feature(s): Replication (both local and remote)

Inputs:

• URL for target replica: /redfish/v1/Storage/1/StoragePools/PrimaryPool/
AllocatedVolumes/650973452245

Basic Course of Events:

1. Post (as an Action) the request on the source Volume.

This instructs the service to use the identified Volume as the source Volume for the specified replication
relationship. For any additional details required, the service will rely on default values.

Request:

POST /redfish/v1/Storage/1/StoragePools/PrimaryPool/AllocatedVolumes/1/

Volume.SuspendReplication

• Headers: Content-type : application/json

• Body:

{
"TargetVolume": "/redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/650973452245"

}

Response:

• HTTP Status: 204 (No Content)

• Headers: Location : /redfish/v1/Storage/1/StoragePools/PrimaryPool/

AllocatedVolumes/1

176 Version 1.2.8

• Body: None.

Postconditions: The selected volume has an updated ReplicaTargets entry for the new relationship.
Elsewhere, there is a volume “650973452245” in the system that has a ReplicaInfo which points back to
this volume and which contains all of the Replica configuration information. The replica state in the target
volume has been updated according to the requested action (e.g., from “Active” to “Suspended”).

Failure Scenario: None defined

See also: Suspend Replication Synchronization Activity (CG)

8.58 Update access rights on an existing volume

Summary: Update existing Connection information to make an existing Volume read-only.

Purpose: Remove write permission from an existing Volume, by updating Connection information.

Who: StorageAdmin CloudAdmin

Management Domain: Block storage management

Triggers: None defined.

Detailed Context: Modify the AccessCapabilities entry within the Connections for a given Volume,
removing write permissions, and making the Volume read-only through that Connection.

Preconditions: User has already identified the Endpoints from which write permission will be removed.

Feature(s): NVMe

Inputs:

None.

Basic Course of Events:

1. Retrieve the current set of Connections

Request:

GET /redfish/v1/Systems/Sys-1/Fabrics/NVMeoF/Connections

• Headers: No additional headers required.

• Body:

None.

Version 1.2.8 177

Response:

• HTTP Status: 200 (OK)

• Headers:

Content-type : application/json `ETag : “97ACD559”

• Body:

{

"@odata.type": "#ConnectionCollection.ConnectionCollection",

"Name": "NVMeoF Connection Collection",

"Members@odata.count": 2,

"Members": [

{

"@odata.id": "/redfish/v1/Fabrics/NVMeoF/Connections/1"

},

{

"@odata.id": "/redfish/v1/Fabrics/NVMeoF/Connections/3"

}

],

"@odata.id": "/redfish/v1/Fabrics/NVMeoF/Connections",

"@Redfish.Copyright": "Copyright 2015-2021 SNIA. All rights reserved."

}

2. Retrieve individual Connections, filtering on the selected Initiator to locate the one to update.

Request:

GET /redfish/v1/Systems/Sys-1/Fabrics/NVMeoF/Connections/1

• Headers: No additional headers required.

• Body:

None.

Response:

• HTTP Status: 200 (OK)

• Headers:

Content-type : application/json `ETag : “11BBC933”

• Body:

178 Version 1.2.8

{

"@odata.type": "#Connection.v1_0_0.Connection",

"Id": "1",

"Name": "Connection info for host 1",

"ConnectionType": "Storage",

"VolumeInfo": [

{

"AccessCapabilities": [

"Read",

"Write"

],

"Volume": {
"@odata.id": "/redfish/v1/Storage/IPAttachedDrive1/Volumes/

SimpleNamespace"

}

},

{

"AccessCapabilities": [

"Read",

"Write"

],

"Volume": {
"@odata.id": "/redfish/v1/Storage/IPAttachedDrive2/Volumes/

SimpleNamespace"

}

}

],

"Links": {

"InitiatorEndpoints": [

{

"@odata.id": "/redfish/v1/Fabrics/NVMeoF/Endpoints/Initiator1"

}

],

"TargetEndpointGroups": [

{

"@odata.id": "/redfish/v1/Fabrics/NVMeoF/EndpointGroups/TargetEPs"

}

]

},

"@odata.id": "/redfish/v1/Fabrics/NVMeoF/Connections/1",

"@Redfish.Copyright": "Copyright 2015-2021 SNIA. All rights reserved."

}

3. Update the VolumeInfo entry to remove write permission on the Volume through this
Connection.

Request:

PATCH /redfish/v1/Systems/Sys-1/Fabrics/NVMeoF/Connections/1/VolumeInfo

Version 1.2.8 179

• Headers: Content-type : application/json. `ETag : “11BBC933”

• Body:

{

"AccessCapabilities": [

"Read"

],

"Volume": {
"@odata.id": "/redfish/v1/Storage/IPAttachedDrive2/Volumes/

SimpleNamespace"

}

}

Response:

• HTTP Status: 200 (OK)

• Headers:

Content-type : application/json `ETag : “11BBD004”

• Body:

{

"@odata.type": "#Connection.v1_0_0.Connection",

"Id": "1",

"Name": "Connection info for host 1",

"ConnectionType": "Storage",

"VolumeInfo": [

{

"AccessCapabilities": [

"Read",

"Write"

],

"Volume": {
"@odata.id": "/redfish/v1/Storage/IPAttachedDrive1/Volumes/

SimpleNamespace"

}

},

{

"AccessCapabilities": [

"Read"

],

"Volume": {
"@odata.id": "/redfish/v1/Storage/IPAttachedDrive2/Volumes/

SimpleNamespace"

180 Version 1.2.8

}

}

],

"Links": {

"InitiatorEndpoints": [

{

"@odata.id": "/redfish/v1/Fabrics/NVMeoF/Endpoints/Initiator1"

}

],

"TargetEndpointGroups": [

{

"@odata.id": "/redfish/v1/Fabrics/NVMeoF/EndpointGroups/TargetEPs"

}

]

},

"@odata.id": "/redfish/v1/Fabrics/NVMeoF/Connections/1",

"@Redfish.Copyright": "Copyright 2015-2021 SNIA. All rights reserved."

}

Postconditions: Write permission has been removed for accesses to the selected volume and the given
Connection.

Failure Scenario: None defined.

See also: None defined.

8.59 Use Features Registry to confirm functionality

Summary: Search features registry to confirm that a particular feature is supported by the
implementation.

Purpose: Need to confirm support for particular features before enabling related client functionality.

Triggers: None.

Detailed Context: The client interface needs to confirm support for replication before enabling the
related UI elements.

Preconditions: None.

Feature(s): None

Inputs: None

Basic Course of Events:

1. Locate the features registry for the instance

Version 1.2.8 181

Request: GET /redfish/v1/Registries

• Headers: No additional headers required.

• Body: None.

Response:

• HTTP Status: 200 (OK)

• Headers: ETag : "97A36E3"

• Body:

{

"@Redfish.Copyright": "Copyright 2015-2025 SNIA. All rights reserved.",

"@odata.id": "/redfish/v1/Registries",

"@odata.type": "#MessageRegistryFileCollection.MessageRegistryFileCollection",

"Name": "Registry File Collection",

"Description": "Registry Repository",

"Members@odata.count": 1,

"Members": [

{

"@odata.id": "/redfish/v1/Registries/AdvertisedFeatures.v1_0_0"

}

]

}

2. Use the appropriate entry to retrieve the features registry locations for Swordfish

Request: GET /redfish/v1/Registries/AdvertisedFeatures.v1_0_0

• Headers: No additional headers required.

• Body: None.

Response:

• HTTP Status: 200 (OK)

• Headers: ETag : "97A4498D"

• Body:

{

"@Redfish.Copyright": "Copyright 2015-2025 SNIA. All rights reserved.",

182 Version 1.2.8

"@odata.id": "/redfish/v1/Registries/AdvertisedFeatures.v1_0_0",

"@odata.type": "#MessageRegistryFile.v1_1_3.MessageRegistryFile",

"Id": "AdvertisedFeatures.v1_0_0",

"Name": "Swordfish Feature Registry File",

"Description": "Swordfish Feature Registry File locations",

"Registry": "SwordfishFeaturesRegistry.1.2.1",

"Location": [

{

"Language": "en",
"PublicationUri": "https://contoso.com/productX/featureinfo/

AdvertisedFeatures.v1_0_0.json",

"Uri": "/redfish/v1/Registries/AdvertisedFeatures.v1_0_0.json"

}

],

"Oem": {}

}

3. Use the URI property in location to retrieve the list of supported Features, and confirm the
presense of replication.

Request: GET /redfish/v1/Registries/AdvertisedFeatures.v1_0_0.json

• Headers: No additional headers required.

• Body: None.

Response:

• HTTP Status: 200 (OK)

• Headers: ETag : "1079DD4"

• Body:

{

"@odata.type": "#FeaturesRegistry.v1_1_0.FeaturesRegistry",

"Id": "AdvertisedFeatures.v1_0_0",

"Name": "Global Swordfish Features Registry",

"Language": "en",

"RegistryPrefix": "SwordfishFeatureRegistry",

"RegistryVersion": "1.2.0",

"OwningEntity": "SNIA",

"Features": [

{

"FeatureName": "SNIA.Swordfish.Discovery",

"Description": "Supports discovery of resources in a Swordfish system.",

"Version": "1.1.0",

Version 1.2.8 183

"CorrespondingProfileDefinition": "SwordfishDiscovery.json"

},

{

"FeatureName": "SNIA.Swordfish.Block.Provisioning",

"Description": "Supports the Block Provisioning Feature.",

"Version": "1.1.0",

"CorrespondingProfileDefinition": "SwordfishBlockProvisioning.json"

},

{

"FeatureName": "SNIA.Swordfish.Block.LocalReplication",

"Description": "Supports the Local Block Replication Feature.",

"Version": "1.1.0",

"CorrespondingProfileDefinition": "SwordfishBlockProvisioning.json"

}

],

"@Redfish.Copyright": "Copyright 2015-2025 SNIA. All rights reserved."

}

Postconditions: None defined.

Failure Scenario: None defined

See also: None defined.

184 Version 1.2.8

	Swordfish Scalable Storage Management API Users Guide
	Version: 1.2.8

	SNIA Approved Publication
	USAGE
	DISCLAIMER
	Current Revision
	Contact SNIA
	FEEDBACK AND INTERPRETATIONS
	INTENDED AUDIENCE
	VERSIONING POLICY
	Revision History

	About SNIA
	Acknowledgements

	1 Introduction
	1.1 Audience
	1.2 Documentation structure
	1.3 Implementation scope assumptions
	1.4 Base implementation assumptions
	1.5 Knowledge assumptions
	1.6 Related documents

	2 Introduction
	2.1 Audience
	2.2 Documentation structure
	2.3 Implementation scope assumptions
	2.4 Base implementation assumptions
	2.5 Knowledge assumptions
	2.6 Related documents

	3 General query syntax
	3.1 Query method
	3.2 Query Headers
	3.2.1 Request headers
	3.2.2 Response headers

	3.3 Service root
	3.4 Resource path
	3.5 Query options
	3.6 Filter expressions
	3.7 HTTP status codes

	4 Actors
	4.1 Overview
	4.2 CloudAdmin
	4.2.1 Overview
	4.2.2 Alphabetic List of Use Cases

	4.3 DevOps
	4.3.1 Overview
	4.3.2 Alphabetic List of Use Cases

	4.4 StorageAdmin
	4.4.1 Overview
	4.4.2 Alphabetic List of Use Cases

	5 Management Domains
	5.1 Management Domain Overview
	5.2 Application storage management domain
	5.2.1 Overview
	5.2.2 Alphabetic List of Use Cases

	5.3 Block storage management domain
	5.3.1 Overview
	5.3.2 Alphabetic List of Use Cases

	5.4 File system storage management domain
	5.4.1 Overview
	5.4.2 Alphabetic List of Use Cases

	5.5 Service catalog management domain
	5.5.1 Overview
	5.5.2 Data protection
	5.5.3 Data security
	5.5.4 Data storage
	5.5.5 IO connectivity
	5.5.6 IO performance
	5.5.7 Alphabetic List of Use Cases

	6 User Guidance
	7 Features
	7.1 Overview
	7.2 Access management feature
	7.2.1 Overview
	7.2.2 Alphabetic List of Use Cases

	7.3 Block provisioning feature
	7.3.1 Overview
	7.3.2 Alphabetic List of Use Cases

	7.4 Capacity management feature
	7.4.1 Overview
	7.4.2 Alphabetic List of Use Cases

	7.5 Class of Service Features
	7.5.1 Overview
	7.5.2 Alphabetic List of Use Cases

	7.6 Connectivity management feature
	7.6.1 Overview
	7.6.2 Alphabetic List of Use Cases

	7.7 Event notification feature
	7.7.1 Overview
	7.7.2 Alphabetic List of Use Cases

	7.8 File provisioning feature
	7.8.1 Overview
	7.8.2 Alphabetic List of Use Cases

	7.9 Block IO performance feature
	7.9.1 Overview
	7.9.2 Alphabetic List of Use Cases

	7.10 Block mapping and masking feature
	7.10.1 Overview
	7.10.2 Alphabetic List of Use Cases

	7.11 NVMe Support feature
	7.11.1 Overview
	7.11.2 Alphabetic List of Use Cases

	7.12 Registries feature
	7.12.1 Overview
	7.12.2 Alphabetic List of Use Cases

	7.13 Replication Feature
	7.13.1 Overview
	7.13.2 Alphabetic List of Use Cases

	7.14 Security Management Features
	7.14.1 Overview
	7.14.2 SecuritySend / SecurityReceive
	7.14.3 Alphabetic List of Use Cases

	8 Alphabetic list of use cases
	8.1 Add Multiple Drives to an Existing Storage Pool
	8.2 Apply an NVMe firmware image to a given controller
	8.3 Attach a Namespace
	8.4 Can a new Namespace be created?
	8.5 Can a new Namespace be created?
	8.6 Can a new Volume be created?
	8.7 Change only the RAID Type of an Existing Volume
	8.8 Change only the span count of an existing volume
	8.9 Confirm valid LBA formats
	8.10 Create a new connection to an existing volume
	8.11 Create a new endpoint
	8.12 Create a new endpoint group
	8.13 Create a New Replication Relationship by Assigning an existing Target Consistency Group
	8.14 Create a New Replication Relationship by Assigning a Target Volume
	8.15 Create an on-demand snapshot of a Volume
	8.16 Create class of service
	8.17 Create ConsistencyGroup
	8.18 Create file share
	8.19 Create file system
	8.20 Create file system with a class of service
	8.21 Create line of service
	8.22 Create storage pool and specify a pool type
	8.23 Create storage pool
	8.24 Create storage pool using Specified Set of Drives and RAIDTypes
	8.25 Create storage pool using specified set of drives
	8.26 Create Volume from an Existing Storage Pool
	8.27 Create Volume specifying Class of Service
	8.28 Create Volume using Default Class of Service
	8.29 Delete an endpoint
	8.30 Delete Multiple Drives from an Existing Storage Pool
	8.31 Delete Volume
	8.32 Deprovision a Namespace
	8.33 Detach a Namespace
	8.34 Expand capacity of a storage volume
	8.35 Make a New Replication Relationship by Creating a Target Consistency Group
	8.36 Make a New Replication Relationship by Creating a Target Volume
	8.37 Provision a Namespace from NVM Set
	8.38 Provision a Namespace
	8.39 Provision a Namespace with a specific LBA format
	8.40 Query Supported Security Protocols
	8.41 Receive Security Protocol Data
	8.42 Remove Replication Relationship for a Consistency Group
	8.43 Remove Replication Relationship
	8.44 Report Namespace Capacity
	8.45 Report Remaining Life for a Namespace
	8.46 Resume the Replication Synchronization Activity for a Consistency Group
	8.47 Resume the Replication Synchronization Activity
	8.48 Retrieve latest instance of storage metrics information
	8.49 Reverse a Replication Relationship for Consistency Groups
	8.50 Reverse a Replication Relationship
	8.51 Review Metrics Trends
	8.52 Send Security Protocol Data
	8.53 Split a Replica
	8.54 Split a set of Replicas in Consistency Groups
	8.55 Subscribe to Threshold Events
	8.56 Suspend Replication Synchronization Activity between Consistency Groups
	8.57 Suspend Replication Synchronization Activity
	8.58 Update access rights on an existing volume
	8.59 Use Features Registry to confirm functionality

