SNIA Developer Conference September 15-17, 2025 | Santa Clara, CA
As you know, the Storage Performance Development Kit (SPDK) provides a set of tools and libraries for writing high performance, scalable, user-mode storage applications. Kalray’s MPPA® manycore architecture proposes a unique 80-cores system.
A manycore processor is characterized by an apparent grouping from a software point of view of cores and their portion of the memory hierarchy into computing units. This grouping can delimit the scope of cache consistency and inter-core synchronization operations, include explicitly addressed local working memories (as opposed to caches), or even specific data movement engines and other accelerators. Computing units interact and access external memories and processor I/O through a communi¬cation device that can take the form of a network-on-chip (NoC).
The advantage of the manycore architecture is that a processor can scale to massive parallelism by replicating the computing units and extending the network on chip, whereas for a multi-core processor the replication applies to the core level. For storage purposes, the internal processor clusters are configured with one dedicated cluster as a control and management plane, and the remaining four clusters as four independent data planes.
We have implemented SPDK so that it provides a unique scalable platform that can deliver high performances on an 80-core system.This presentation will explain how we have ported SPDK on our processor core, and what unique pieces of technologies have been developed in order to coordinate with the processor internals. We will also explain how the platform can scale.
NVMe-over-Fabrics (NVMe-oF) offers DH-HMAC-CHAP as its in-band method for authenticating hosts and subsystems. To enhance authentication capabilities, the specification recently introduced the Authentication Verification Entity (AVE) – a logical entity designed to manage and verify the authentication process. AVE enables centralized or semi-centralized authentication, simplifying the management of authentication keys and improving security in large fabrics deployments.
However, the specification lacks comprehensive guidelines on implementing authentication mechanisms, particularly in determining when to use single versus multiple authentication keys. This ambiguity existed before AVE and still persists after its addition. The absence of clear recommendations poses challenges for implementers, especially in managing security risks, key isolation, and scalability.
In this talk, we address these gaps by discussing all the recommendations that we identified in the NVMe specification and the open-source ecosystem during our product development.
As SSD capacities increase beyond 16TB, the time to randomly precondition these drives has also increased from several hours to several days. Traditional methods involve a sequential write followed by multiple random writes to reach a steady state. We present Sprandom (SanDisk Pseudo Random) – a novel approach to random preconditioning that uses the Flexible I/O Tester (fio) to achieve near steady-state performance with just a single physical drive write. Our experiments show that using the Sprandom method, the random preconditioning time of large (> 64TB) drives can be reduced from days to hours.
This presentation explains how an NVMe™ PCIe SSD supporting multiple NVMe controllers can be used to create and migrate virtual NVMe SSDs (i.e., Exported NVM Subsystems). The commands used by a host managing these virtual SSDs are fully illustrated using animation and demonstrates the interoperability between different SSD vendors during migration. Come and see how the virtual NVMe SSD is abstracted from the underlying NVMe SSD for the migrating Virtual Machine.