Sorry, you need to enable JavaScript to visit this website.

Object Storage is a Big Deal (and Ethernet Matters)

Ingo Fuchs

Jan 14, 2013

title of post

A significant challenge in managing large amounts of data (or Big Data) is a lack of what I like to call “total data awareness”. It’s a situation where you know (or suspect) that you have data – you just can’t find it. When you think about many current IT environments, they are often not built for total data awareness. This starts with core elements of the IT infrastructure, such as file systems. Traditional file systems and access methods were not designed to store hundreds of millions or billions of files in a single namespace. This leads to admins storing data in multiple file systems, multiple shares, complex directory structures – not because the data should be logically organized in that way, but simply because of limitations in file system architectures. This issue becomes even more pressing when data sits in multiple locations, maybe even across on-premise and off-premise, cloud-based storage.

Is object-based storage the answer?

Think about how you find data on your computer. Do you navigate complex directory structures, trying to remember the file name of the file that hopefully has the data you are looking for – or have you moved on and just use search tools like Spotlight? Imagine you have hundreds of millions of files, scattered across dozens or hundreds of sites. How about just searching across these sites and immediately finding the data you are looking for? With object storage technology you have the ability to store data in objects, along with metadata that describes the object. Now you can just search for your data based on metadata tags (like a filename – or even better an account number and document type) – as well as manage data based on policies that leverage that metadata.

However, this often means that you have to consider interfacing with your storage system through APIs, as opposed to NFS and CIFS – so your applications need to support whatever API your storage vendor offers.

CDMI to the rescue?

Today, storage vendors often use proprietary APIs. This means that application vendors would have to support a plethora of APIs from a number of different vendors, leading to a lack of commitment from application vendors to support more innovative, object-based storage architectures.

A key path to solve this issue is to leverage technology and standards that have been specifically developed to provide this idea of a single namespace for billions of data sets and across locations and even managed services that might reside off-premise.

Relatively new on the standards side you have CDMI (http://www.snia.org/cdmi), the Cloud Data Management Interface. CDMI is a standard developed by SNIA (http://www.snia.org), the Storage Networking Industry Association, with heavy involvement from a number of leading storage vendors. CDMI not only introduces a standard interface to ingest and retrieve data into and out of a large-scale repository, it also enables applications to easily manage this repository and where the data sits.

CDMI is the new NFS

Forgive the provocation, but when it comes to creating and managing large, distributed content repositories it quickly becomes clear that NFS and CIFS are not ideally suited for this use case. This is where CDMI shines, especially with an object-based storage architecture behind it that was built to support multi-petabyte environments with billions of data sets across hundreds of sites and accommodates retention policies that can reach to “forever”.

CDMI and NFS have something in common – Ethernet

One of the key commonalities between CDMI and NFS is that they both are ideally suited to be deployed in an Ethernet infrastructure. CDMI, specifically, is a RESTful HTTP interface, so it runs on standard Ethernet networks. Even for object storage deployments that don’t support CDMI, practically all of these multi-site, long-term repositories support HTTP (and thus Ethernet) through proprietary APIs based on REST or SOAP.

Why does this matter

Ethernet infrastructure is a great foundation to run any number of workloads, including access to data that sits in large, multi-site content repositories that are based on object storage technologies. So if you are looking at object storage, chances are that you will be able to leverage existing Ethernet infrastructure.

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

Object Storage is a Big Deal (and Ethernet Matters)

Ingo Fuchs

Jan 14, 2013

title of post
A significant challenge in managing large amounts of data (or Big Data) is a lack of what I like to call "total data awareness". It's a situation where you know (or suspect) that you have data - you just can't find it. When you think about many current IT environments, they are often not built for total data awareness. This starts with core elements of the IT infrastructure, such as file systems. Traditional file systems and access methods were not designed to store hundreds of millions or billions of files in a single namespace. This leads to admins storing data in multiple file systems, multiple shares, complex directory structures – not because the data should be logically organized in that way, but simply because of limitations in file system architectures. This issue becomes even more pressing when data sits in multiple locations, maybe even across on-premise and off-premise, cloud-based storage. Is object-based storage the answer? Think about how you find data on your computer. Do you navigate complex directory structures, trying to remember the file name of the file that hopefully has the data you are looking for – or have you moved on and just use search tools like Spotlight? Imagine you have hundreds of millions of files, scattered across dozens or hundreds of sites. How about just searching across these sites and immediately finding the data you are looking for? With object storage technology you have the ability to store data in objects, along with metadata that describes the object. Now you can just search for your data based on metadata tags (like a filename - or even better an account number and document type) – as well as manage data based on policies that leverage that metadata. However, this often means that you have to consider interfacing with your storage system through APIs, as opposed to NFS and CIFS – so your applications need to support whatever API your storage vendor offers. CDMI to the rescue? Today, storage vendors often use proprietary APIs. This means that application vendors would have to support a plethora of APIs from a number of different vendors, leading to a lack of commitment from application vendors to support more innovative, object-based storage architectures. A key path to solve this issue is to leverage technology and standards that have been specifically developed to provide this idea of a single namespace for billions of data sets and across locations and even managed services that might reside off-premise. Relatively new on the standards side you have CDMI (http://www.snia.org/cdmi), the Cloud Data Management Interface. CDMI is a standard developed by SNIA (http://www.snia.org), the Storage Networking Industry Association, with heavy involvement from a number of leading storage vendors. CDMI not only introduces a standard interface to ingest and retrieve data into and out of a large-scale repository, it also enables applications to easily manage this repository and where the data sits. CDMI is the new NFS Forgive the provocation, but when it comes to creating and managing large, distributed content repositories it quickly becomes clear that NFS and CIFS are not ideally suited for this use case. This is where CDMI shines, especially with an object-based storage architecture behind it that was built to support multi-petabyte environments with billions of data sets across hundreds of sites and accommodates retention policies that can reach to "forever". CDMI and NFS have something in common - Ethernet One of the key commonalities between CDMI and NFS is that they both are ideally suited to be deployed in an Ethernet infrastructure. CDMI, specifically, is a RESTful HTTP interface, so it runs on standard Ethernet networks. Even for object storage deployments that don't support CDMI, practically all of these multi-site, long-term repositories support HTTP (and thus Ethernet) through proprietary APIs based on REST or SOAP. Why does this matter Ethernet infrastructure is a great foundation to run any number of workloads, including access to data that sits in large, multi-site content repositories that are based on object storage technologies. So if you are looking at object storage, chances are that you will be able to leverage existing Ethernet infrastructure.

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

How is 10GBASE-T Being Adopted and Deployed?

David Fair

Jan 8, 2013

title of post

For nearly a decade, the primary deployment of 10 Gigabit Ethernet (10GbE) has been using network interface cards (NICs) supporting enhanced Small Form-Factor Pluggable (SFP+) transceivers. The predominant transceivers for 10GbE are Direct Attach (DA) copper, short range optical (10GBASE-SR), and long-range optical (10GBASE-LR). The Direct Attach copper option is the least expensive of the three. However, its adoption has been hampered by two key limitations:

- DA’s range is limited to 7m, and

- because of the SFP+ connector, it is not backward-compatible with existing 1GbE infrastructure using RJ-45 connectors and twisted-pair cabling.

10GBASE-T addresses both of these limitations.

10GBASE-T delivers 10GbE over Category 6, 6A, or 7 cabling terminated with RJ-45 jacks. It is backward-compatible with 1GbE and even 100 Megabit Ethernet. Cat 6A and 7 cables will support up to 100m. The advantages for deployment in an existing data center are obvious. Most existing data centers have already installed twisted pair cabling at Cat 6 rating or better. 10GBASE-T can be added incrementally to these data centers, either in new servers or via NIC upgrades “without forklifts.” New 10GBASE-T ports will operate with all the existing Ethernet infrastructure in place. As switches get upgraded to 10GBASE-T at whatever pace, the only impact will be dramatically improved network bandwidth.

Market adoption of 10GBASE-T accelerated sharply with the first single-chip 10GBASE-T controllers to hit production. This integration become possible because of Moore’s Law advances in semiconductor technology, which also enabled the rise of dense commercial switches supporting 10GBASE-T. Integrating PHY and MAC on a single piece of silicon significantly reduced power consumption. This lower power consumption made fan-less 10GBASE-T NICs possible for the first time. Also, switches supporting 10GBASE-T are now available from Cisco, Dell, Arista, Extreme Networks, and others with more to come. You can see the early market impact single-chip 10GBASE-T had by mid-year 2012 in this analysis of shipments in numbers of server ports from Crehan Research:

 

Server-class Adapter & LOM 10GBASE-T Shipments

Note, Crehan believes that by 2015, over 40% of all 10GbE adapters and controllers sold that year will be 10GBASE-T.

Early concerns about the reliability and robustness of 10GBASE-T technology have all been addressed in the most recent silicon designs. 10GBASE-T meets all the bit-error rate (BER) requirements of all the Ethernet and storage over Ethernet specifications. As I addressed in an earlier SNIA-ESF blog, the storage networking market is a particularly conservative one. But there appear to be no technical reasons why 10GBASE-T cannot support NFS, iSCSI, and even FCoE. Today, Cisco is in production with a switch, the Nexus 5596T, and a fabric extender, the 2232TM-E that support “FCoE-ready” 10GBASE-T. It’s coming – with all the cost of deployment benefits of 10GBASE-T.

Note: There is a poll embedded within this post, please visit the site to participate in this post's poll. Note: There is a poll embedded within this post, please visit the site to participate in this post's poll. Note: There is a poll embedded within this post, please visit the site to participate in this post's poll.

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

How is 10GBASE-T Being Adopted and Deployed?

David Fair

Jan 8, 2013

title of post
For nearly a decade, the primary deployment of 10 Gigabit Ethernet (10GbE) has been using network interface cards (NICs) supporting enhanced Small Form-Factor Pluggable (SFP+) transceivers. The predominant transceivers for 10GbE are Direct Attach (DA) copper, short range optical (10GBASE-SR), and long-range optical (10GBASE-LR). The Direct Attach copper option is the least expensive of the three. However, its adoption has been hampered by two key limitations: - DA's range is limited to 7m, and - because of the SFP+ connector, it is not backward-compatible with existing 1GbE infrastructure using RJ-45 connectors and twisted-pair cabling. 10GBASE-T addresses both of these limitations. 10GBASE-T delivers 10GbE over Category 6, 6A, or 7 cabling terminated with RJ-45 jacks. It is backward-compatible with 1GbE and even 100 Megabit Ethernet. Cat 6A and 7 cables will support up to 100m. The advantages for deployment in an existing data center are obvious. Most existing data centers have already installed twisted pair cabling at Cat 6 rating or better. 10GBASE-T can be added incrementally to these data centers, either in new servers or via NIC upgrades "without forklifts." New 10GBASE-T ports will operate with all the existing Ethernet infrastructure in place. As switches get upgraded to 10GBASE-T at whatever pace, the only impact will be dramatically improved network bandwidth. Market adoption of 10GBASE-T accelerated sharply with the first single-chip 10GBASE-T controllers to hit production. This integration become possible because of Moore's Law advances in semiconductor technology, which also enabled the rise of dense commercial switches supporting 10GBASE-T. Integrating PHY and MAC on a single piece of silicon significantly reduced power consumption. This lower power consumption made fan-less 10GBASE-T NICs possible for the first time. Also, switches supporting 10GBASE-T are now available from Cisco, Dell, Arista, Extreme Networks, and others with more to come. You can see the early market impact single-chip 10GBASE-T had by mid-year 2012 in this analysis of shipments in numbers of server ports from Crehan Research:   [caption id="attachment_184" align="alignnone" width="262"] Server-class Adapter & LOM 10GBASE-T Shipments[/caption] Note, Crehan believes that by 2015, over 40% of all 10GbE adapters and controllers sold that year will be 10GBASE-T. Early concerns about the reliability and robustness of 10GBASE-T technology have all been addressed in the most recent silicon designs. 10GBASE-T meets all the bit-error rate (BER) requirements of all the Ethernet and storage over Ethernet specifications. As I addressed in an earlier SNIA-ESF blog, the storage networking market is a particularly conservative one. But there appear to be no technical reasons why 10GBASE-T cannot support NFS, iSCSI, and even FCoE. Today, Cisco is in production with a switch, the Nexus 5596T, and a fabric extender, the 2232TM-E that support "FCoE-ready" 10GBASE-T. It's coming – with all the cost of deployment benefits of 10GBASE-T. [poll id="4"] [poll id="5"] [poll id="6"]

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

SSSI Highlighting PCIe SSDs at the Storage Visions Conference

Marty Foltyn

Jan 3, 2013

title of post
Join the SSSI at the Storage Visions Conference, January 6-7,2013 at the Riviera Hotel in Las Vegas, NV.  With a theme of Petabytes are the new Terabytes, the 2013 conference will explore the convergent needs of digital storage to support cloud content distribution and sharing, user- generated content capture and use, and professional media and entertainment applications. The SSSI booth is #6 on the Exhibit floor, and will showcase a PCIe SSD display of drives from SSSI members BitMicro, Fusion-io, IDT, Marvell, Micron, STEC, and Virident, and a live demonstration by Fusion-io.  The latest information gathered by the WIOCP Project will be presented.  Featured SSSI member speakers at Storage Visions include Jim Handy of Objective Analysis, who will examine how new storage developments are driving new storage systems with panelists Jim Pappas of Intel, Paul Wassenberg of Marvell, Mike Fitzpatrick of Toshiba, Paul Luse of Intel, and Sumit Puri of LSI; and Jim Pappas of Intel, who will moderate a panel on new frontiers in storage software with SSSI member panelists Walt Hubis of Fusion-io, Doug Voigt of HP, and Bob Beauchamp of EMC. Follow our activities on Twitter at twitter.com/#!/sniasolidstate

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

SSSI Highlighting PCIe SSDs at the Storage Visions Conference

Marty Foltyn

Jan 3, 2013

title of post

Join the SSSI at the Storage Visions Conference, January 6-7,2013 at the Riviera Hotel in Las Vegas, NV.  With a theme of Petabytes are the new Terabytes, the 2013 conference will explore the convergent needs of digital storage to support cloud content distribution and sharing, user- generated content capture and use, and professional media and entertainment applications.

The SSSI booth is #6 on the Exhibit floor, and will showcase a PCIe SSD display of drives from SSSI members BitMicro, Fusion-io, IDT, Marvell, Micron, STEC, and Virident, and a live demonstration by Fusion-io.  The latest information gathered by the WIOCP Project will be presented.  Featured SSSI member speakers at Storage Visions include Jim Handy of Objective Analysis, who will examine how new storage developments are driving new storage systems with panelists Jim Pappas of Intel, Paul Wassenberg of Marvell, Mike Fitzpatrick of Toshiba, Paul Luse of Intel, and Sumit Puri of LSI; and Jim Pappas of Intel, who will moderate a panel on new frontiers in storage software with SSSI member panelists Walt Hubis of Fusion-io, Doug Voigt of HP, and Bob Beauchamp of EMC.

Follow our activities on Twitter at

twitter.com/#!/sniasolidstate

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

Ethernet Storage Forum – 2012 Year in Review and What to Expect in 2013

Jason Blosil

Dec 20, 2012

title of post

As we come to a close of the year 2012, I want to share some of our successes and briefly highlight some new changes for 2013. Calendar year 2012 has been eventful and the SNIA-ESF has been busy. Here are some of our accomplishments:

  • 10GbE – With virtualization and network convergence, as well as the general availability of LOM and 10GBASE-T cabling, we saw this is a “breakout year” for 10GbE. In July, we published a comprehensive white paper titled “10GbE Comes of Age.” We then followed up with a Webcast “10GbE – Key Trends, Predictions and Drivers.” We ran this live once in the U.S. and once in the U.K. and combined, the Webcast has been viewed by over 400 people!
  • NFS – has also been a hot topic. In June we published a white paper “An Overview of NFSv4” highlighting the many improved features NFSv4 has over NFSv3. A Webcast to help users upgrade, “NFSv4 – Plan for a Smooth Migration,” has also been well received with over 150 viewers to date.  A 4-part Webcast series on NFS is now planned. We kicked the series off last month with “Reasons to Start Working with NFSv4 Now” and will continue on this topic during the early part of 2013. Our next NFS Webcast will be “Advances in NFS – NFSv4.1 and pNFS.” You can register for that here.
  • Flash – The availability of solid state devices based on NAND flash is changing the performance efficiencies of storage. Our September Webcast “Flash – Plan for the Disruption” discusses how Flash is driving the need for 10GbE and has already been viewed by more than 150 people.

We have also added to expand membership and welcome new membership from Tonian and LSI to the ESF. We expect with this new charter to see an increase in membership participation as we drive incremental value and establish ourselves as a leadership voice for Ethernet Storage.

As we move into 2013, we expect two hot trends to continue – the broader use of file protocols in datacenter applications, and the continued push toward datacenter consolidation with the use of Ethernet as a storage network. In order to better address these two trends, we have modified our charter for 2013. Our NFS SIG will be renamed the File Protocol SIG and will focus on promoting not only NFS, but also SMB / CIFS solutions and protocols. The iSCSI SIG will be renamed to the Storage over Ethernet SIG and will focus on promoting data center convergence topics with Ethernet networks, including the use of block and file protocols, such as NFS, SMB, FCoE, and iSCSI, over the same wire. This modified charter will allow us to have a richer conversation around storage trends relevant to your IT environment.

So, here is to a successful 2012, and excitement for the coming year.

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

Why NFSv4.1 and pNFS are Better than NFSv3 Could Ever Be

AlexMcDonald

Dec 18, 2012

title of post

NFSv4 has been a standard file sharing protocol since 2003, but has not been widely adopted; party because NFSv3 was “just good enough”. Yet, NFSv4 improves on NFSv3 in many important ways; and NFSv4.1 is a further improvement on that. In this post, I explain the how NFSv4.1 is better suited to a wide range of datacenter and HPC use than its predecessor NFSv3 and NFSv4, as well as providing resources for migrating from NFSv3 to NFSv4.1. And, most importantly, I make the argument that users should, at the very least, be evaluating and deploying NFSv4.1 for use in new projects; and ideally, should be using it wholesale in their existing environments.

The background to NFSv4.1
NFSv2 (specified in RFC-1813, but never an Internet standard) and its popular successor NFSv3 was first released in 1995 by Sun. NFSv3 has proved a popular and robust protocol over the 15 years it has been in use, and with wide adoption it soon eclipsed some of the early competitive UNIX-based filesystem protocols such as DFS and AFS. NFSv3 was extensively adopted by storage vendors and OS implementers beyond Sun’s Solaris; it was available on an extensive list of systems, including IBM’s AIX, HP’s HP-UX, Linux and FreeBSD. Even non-UNIX systems adopted NFSv3; Mac OS, OpenVMS, Microsoft Windows, Novell NetWare, and IBM’s AS/400 systems. In recognition of the advantages of interoperability and standardization, Sun relinquished control of future NFS standards work, and work leading to NFSv4 was by agreement between Sun and the Internet Society (ISOC), and is undertaken under the auspices of the Internet Engineering Task Force (IETF).

In April 2003, the Network File System (NFS) version 4 Protocol was ratified as an Internet standard, described in RFC-3530, which superseded NFSv3. This was the first open filesystem and networking protocol from the IETF. NFSv4 introduces the concept of state to ameliorate some of the less desirable features of NFSv3, and other enhancements to improved usability, management and performance.

But shortly following its release, an Internet draft written by Garth Gibson and Peter Corbett outlined several problems with NFSv4; specifically, that of limited bandwidth and scalability, since NFSv4 like NFSv3 requires that access is to a single server. NFSv4.1 (as described in RFC-5661, ratified in January 2010) was developed to overcome these limitations, and new features such as parallel NFS (pNFS) were standardized to address these issues.

Now NFSv4.2 is now moving towards ratification. In a change to the original IETF NFSv4 development work, where each revision took a significant amount of time to develop and ratify, the workgroup charter was modified to ensure that there would be no large standards documents that took years to develop, such as RFC-5661, and that additions to the standard would be an on-going yearly process. With these changes in the processes leading to standardization, features that will be ratified in NFSv4.2 (expected in early 2013) are available from many vendors and suppliers now.

Adoption of NFSv4.1
Every so often, I and others in the industry run Birds-of-a-Feather (BoFs) on the availability of NFSv4.1 clients and servers, and on the adoption of NFSv4.1 and pNFS. At our latest BoF at LISA ’12 in San Diego in December 2012, many of the attendees agreed; it’s time to move to NFSv4.1.

While there have been many advances and improvements to NFS, many users have elected to continue with NFSv3. NFSv4.1 is a mature and stable protocol with many advantages in its own right over its predecessors NFSv3 and NFSv2, yet adoption remains slow. Adequate for some purposes, NFSv3 is a familiar and well understood protocol; but with the demands being placed on storage by exponentially increasing data and compute growth, NFSv3 has become increasingly difficult to deploy and manage.

In essence, NFSv3 suffers from problems associated with statelessness. While some protocols such as HTTP and other RESTful APIs see benefit from not associating state with transactions – it considerably simplifies application development if no transaction from client to server depends on another transaction – in the NFS case, statelessness has led, amongst other downsides, to performance and lock management issues.

NFSv4.1 and parallel NFS (pNFS) address well-known NFSv3 “workarounds” that are used to obtain high bandwidth access; users that employ (usually very complicated) NFSv3 automounter maps and modify them to manage load balancing should find pNFS provides comparable performance that is significantly easier to manage.

So what’s the problem with NFSv3?
Extending the use of NFS across the WAN is difficult with NFSv3. Firewalls typically filter traffic based on well-known port numbers, but if the NFSv3 client is inside a firewalled network, and the server is outside the network, the firewall needs to know what ports the portmapper, mountd and nfsd servers are listening on. As a result of this promiscuous use of ports, the multiplicity of “moving parts” and a justifiable wariness on the part of network administrators to punch random holes through firewalls, NFSv3 is not practical to use in a WAN environment. By contrast, NFSv4 integrates many of these functions, and mandates that all traffic (now exclusively TCP) uses the single well-known port 2049.


Plus, NFSv3 is very chatty for WAN usage; and there may be many messages sent between the client and the server to undertake simple activities, such as finding, opening, reading and closing a file. NFSv4 can compound these operations into a single RPC (Remote Procedure Call) and reduce considerably the back-and-forth traffic across the network. The end result is reduced latency.

One of the most annoying NFSv3 “features” has been its handling of locks. Although NFSv3 is stateless, the essential addition of lock management (NLM) to prevent file corruption by competing clients means NFSv3 application recovery is slowed considerably. Very often stale locks have to be manually released, and the lock management is handled external to the protocol. NFSv4’s built-in lock leasing, lock timeouts, and client-server negotiation on recovery simplifies management considerably.

In a change from NFSv3, these locking and delegation features make NFSv4 stateful, but the simplicity of the original design is retained through well-defined recovery semantics in the face of client and server failures and network partitions. These are just some of the benefits that make NFSv4.1 desirable as a modern datacenter protocol, and for use in HPC, database and highly virtualized applications.
NFSv3 is extremely difficult to parallelise, and often takes some vendor-specific “pixie dust” to accomplish. In contrast, pNFS with NFSv4.1brings parallelization directly into the protocol; it allows many streams of data to multiple servers simultaneously, and it supports files as per usual, along with block and object support through an extensible layout mechanism. The management is definitely easier, as NFSv3 automounter maps and hand-created load-balancing schemes are eliminated and, by providing a standardized interface, pNFS ensures fewer issues in supporting multi-vendor NFS server environments.

Next post; the Advantages of NFSv4.1

FOOTNOTE: Parts of this blog were originally published in Usenix ;login: February 2012 under the title The Background to NFSv4.1. Used with permission.

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

dougoflaherty

Dec 12, 2012

title of post

Building an industry standard is a series of incremental steps – from the original concept through ratification, followed by education and promotion, and ultimately to the development of an ecosystem of solutions. For a number of years the SNIA Ethernet Storage Forum (ESF) has been successfully advocating and promoting the NFSv4.1 standard and pNFS extensions.

Today, we welcome the open-pnfs.org community in its goal of extending the work of the SNIA ESF in promoting pNFS and NFSv4.1. Open-pNFS adds to the progression from standard to solution, by focusing and highlighting the commercial products coming to market and the maturation of the ecosystem.

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

Doug O'Flaherty

Dec 12, 2012

title of post
Building an industry standard is a series of incremental steps – from the original concept through ratification, followed by education and promotion, and ultimately to the development of an ecosystem of solutions. For a number of years the SNIA Ethernet Storage Forum (ESF) has been successfully advocating and promoting the NFSv4.1 standard and pNFS extensions. Today, we welcome the open-pnfs.org community in its goal of extending the work of the SNIA ESF in promoting pNFS and NFSv4.1. Open-pNFS adds to the progression from standard to solution, by focusing and highlighting the commercial products coming to market and the maturation of the ecosystem.

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

Subscribe to