Sorry, you need to enable JavaScript to visit this website.

Ethernet Meets Enterprise Storage – Finally

Mike Jochimsen

May 27, 2014

title of post
Presumptuous, yes, because Ethernet has been a mainstay in enterprises since its early days over 40 years ago.   It initially grew to prominence as the local area network (LAN) connection in the enterprise. More recent advances have enabled Ethernet to become a standard for mission critical storage connectivity for block, file and object storage in many enterprises. Block storage in large enterprises has long been focused on Fibre Channel due to its performance capabilities.     In order to bring the same performance benefits to Ethernet, the IEEE 802.1 Data Center Bridging Task Group proposed a number of new standards to enhance Ethernet reliability.   For example, 802.1Qbb Priority-based Flow Control (PFC) provides a link level flow control mechanism to ensure lossless transmission under congestion, 802.1Qaz Enhanced Transmission Selection (ETS) provides a management framework for prioritized bandwidth and Data Center Bridging Exchange Protocol (DCBX) enabled these features to be used between neighbors to ensure consistency on the network. Collectively, these and other enhancements have brought those enterprise-class storage networking features to the Ethernet platform. In addition, the International Committee for Information Technology Services (INCITS) T11 Fibre Channel committee developed a specification for Fibre Channel over Ethernet (FCoE) in its FC-BB-5 standard in 2009, which allows the Fibre Channel protocol to run directly on top of Ethernet, eliminating the TCP/IP stack and allowing for efficient performance of the Fibre Channel protocol.   FCoE also depends on the Data Center Bridging standards from IEEE 802.1 in order to ensure the "losslessness" and flow control needed by Fibre Channel. An alternative to FCoE, iSCSI, was designed to run over standard Ethernet with TCP/IP and was designed to tolerate the "lossy" aspects of Ethernet.   Its architecture and the additional layers of encapsulation involved can impact latency and performance. However, more recent innovations in iSCSI have enabled it to run over a DCB Ethernet network, which enables iSCSI to inherit some of the enterprise storage features which have always been inherent in Fibre Channel.   For more on this, read last year's blog  "How DCB Makes iSCSI Better " from Allen Ordoubadian. In 2013, INCITS submitted the FC-BB-6 standard for review which introduced, among other things, the VN2VN standard.   The VN2VN proposal will allow FCoE to work in a standard DCB switching environment without the presence of a Fibre Channel Forwarder (FCF).   An FCF allows for bridging between servers which are communicating with FCoE and storage devices which are communicating with traditional Fibre Channel.   As DCB switches and FCoE storage become more prevalent, the FC-BB-6 standard will allow for end-to-end FCoE connectivity in either a point to point (P2P) or DCB mesh environment. This will result in lower cost for FCoE environments. Products are beginning to appear which support VN2VN and over the next 18 months it is likely that all major vendors will support it. Check out our ESF Webcast "How VN2VN Will Help Accelerate Adoption of FCoE" for more details. The availability of CNAs with processing capability allows for offloading storage protocol processing from the host processor, though some CNAs use host-based storage protocol initiators in system software and do selective stateless offloads in the data path.   Both FCoE and iSCSI require the storage protocol to be encapsulated in a frame to be sent across the Ethernet network.   In an enterprise environment, especially a virtual server environment, CPU utilization is tracked closely and target CPU thresholds are often set.   Anything which can minimize spikes in CPU utilization can allow for more workloads to be placed on servers and allows for predictable energy consumption. For file storage, Ethernet has traditionally been the connectivity option of choice for file servers used as "shares" for centralized employee document storage. In the 21st century, usage of network attached storage (NAS) with the Network File System (NFS) has increased for enterprise databases and Hadoop clusters, especially with the availability of 10Gb Ethernet.   New features in NFS 4 and later introduced security and stateful protocol support after development of NFS was taken over by the Internet Engineering Task Force (IETF). Object storage, has been around for nearly 20 years as a repository for storing data as objects which include not only the original file, but also a globally unique identifier and metadata which describes the object and various parameters about the object.   It has been used to store many forms of unstructured data, but found niches in certain areas, such as legal documents with retention policies and archiving photos and videos.   More recently, there seems to be a resurgence in object storage as the amount of unstructured data generated by enterprises continues to skyrocket.   Open source object storage in Ceph and OpenStack are also helping to drive the adoption. SNIA ESF is hosting a live Webcast on object storage on June 11, 2014, called "Object Storage 101." I encourage you to register for this presentation for an unbiased look at the what, how and why of object storage technologies. When combined with the advances in link speed, throughput capabilities, latency and input/output operations per second (IOPS) in modern 10Gb/s and 40Gb/s Ethernet, these existing and emerging Ethernet standards and storage architectures are having a profound effect on the ability of Ethernet as an enterprise class storage networking platform.   Vendors and customers are seeing the advantage in one wire, the Ethernet cable, carrying all LAN, WAN and storage traffic.      

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

New ESF Live Webcast – Object Storage 101

Jason Blosil

May 22, 2014

title of post

Understanding the what, how and why behind object storage technologies.

Object storage systems are gaining quite a bit of attention as workloads continue to push scalability and availability limits of massive unstructured data repositories.  For some emerging workloads, object counts are measured by the 100’s of billions and capacities start in petabytes!

Need a tutorial on object storage? Join us on June 11th at 2:00 p.m. ET, 11:00 a.m. PT for our live Webcast, “Object Storage 101” as we take an unbiased look at the what, how and why behind object storage technologies. In this object storage primer, we’ll cover:

  • What is object storage
  • Where is it being deployed successfully
  • Key attributes of today’s object storage solutions
  • How object storage differs from traditional file or block technologies
  • Common enterprise use-cases and deployment approaches
  • Key considerations before deploying an object store

This will be a vendor-neutral live and lively discussion. Register now and please bring your questions for our expert panel.

 

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

Getting Started with the CDMI Conformance Test Program

Alex McDonald

May 21, 2014

title of post

Together with our partner, TATA Consultancy Services, we recently had a great live Webcast to launch the Conformance Test Program (CTP) for the SNIA Cloud Data Management Interface (CDMI). CDMI is an ISO/IEC standard that offers end users simplicity and data storage interoperability across a wide range of cloud solutions. Interoperability and portability of data stored in the cloud has become a top IT priority. The CTP tests for conformance against the specification, and provides purchasers of certified cloud storage solutions the assurance that these solutions meet CDMI interoperability standards. Our Webcast is now available on demand. It details the benefits of the CDMI CTP program and explains how any cloud storage vendor or ISV can begin the CTP process. I encourage you to check it out to learn:

  • Key benefits of the CDMI standard for vendors and end users
  • Growing adoption of the CDMI standard
  • The suite of conformance tests required to achieve CDMI CTP certification
  • How to begin the CTP process

In addition to the Webcast replay, I encourage you to check out our CDMI CTP Frequently Asked Questions (FAQ). Getting started is easy. Just fill out the CTP form and you’ll be on your way.  

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

Getting Started with the CDMI Conformance Test Program

Alex McDonald

May 21, 2014

title of post
Together with our partner, TATA Consultancy Services, we recently had a great live Webcast to launch the Conformance Test Program (CTP) for the SNIA Cloud Data Management Interface (CDMI). CDMI is an ISO/IEC standard that offers end users simplicity and data storage interoperability across a wide range of cloud solutions. Interoperability and portability of data stored in the cloud has become a top IT priority. The CTP tests for conformance against the specification, and provides purchasers of certified cloud storage solutions the assurance that these solutions meet CDMI interoperability standards. Our Webcast is now available on demand. It details the benefits of the CDMI CTP program and explains how any cloud storage vendor or ISV can begin the CTP process. I encourage you to check it out to learn:
  • Key benefits of the CDMI standard for vendors and end users
  • Growing adoption of the CDMI standard
  • The suite of conformance tests required to achieve CDMI CTP certification
  • How to begin the CTP process
In addition to the Webcast replay, I encourage you to check out our CDMI CTP Frequently Asked Questions (FAQ). Getting started is easy. Just fill out the CTP form and you'll be on your way.  

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

Help Develop Next Generation SSDs and Win Cool Stuff!

Marty Foltyn

Apr 30, 2014

title of post
The SNIA Solid State Storage Initiative (SNIA SSSI) is working to better understand disk drive use in everyday computer actions. You can help by participating in our Workload I/O Capture Project - WIOCP - and get rewarded!   The WIOCP captures I/O statistics unobtrusively and without compromising your PC’s performance. No personal data or content is captured - only statistics on the types of data transfers that occur.  This helps the SNIA SSSI and the industry understand what actually takes place with your drive when you use your PC.   Collecting I/O statistics helps computer scientists determine the type of workloads your drive is experiencing.  By capturing statistics from a large number of computer users, designers can optimize both the drive and the host computer system to improve your overall computing experience.  You can be a part of history!   Participate NOW and return one set of statistics to qualify to win a $10 Amazon gift card and to be  entered in a drawing for a free Intel 120GB SSD.  Submit more sets and increase your chance of winning a SSD!   Go to http://www.snia.org/forums/sssi/wiocp for a FAQ and details on participating.  And see results at http://iotta.snia.org/

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

Help Develop Next Generation SSDs and Win Cool Stuff!

Marty Foltyn

Apr 30, 2014

title of post

The SNIA Solid State Storage Initiative (SNIA SSSI) is working to better understand disk drive use in everyday computer actions. You can help by participating in our Workload I/O Capture Project – WIOCP – and get rewarded!

 

The WIOCP captures I/O statistics unobtrusively and without compromising your PC’s performance. No personal data or content is captured – only statistics on the types of data transfers that occur.  This helps the SNIA SSSI and the industry understand what actually takes place with your drive when you use your PC.

 

Collecting I/O statistics helps computer scientists determine the type of workloads your drive is experiencing.  By capturing statistics from a large number of computer users, designers can optimize both the drive and the host computer system to improve your overall computing experience.  You can be a part of history!

 

Participate NOW and return one set of statistics to qualify to win a $10 Amazon gift card and to be  entered in a drawing for a free Intel 120GB SSD.  Submit more sets and increase your chance of winning a SSD!

 

Go to http://www.snia.org/forums/sssi/wiocp for a FAQ and details on participating.  And see results at http://iotta.snia.org/

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

The IETF, Consensus and NFSv4

AlexMcDonald

Apr 9, 2014

title of post

The Internet Engineering Task Force is one of the older – and more unusual – internet organizations. It first met in 1986, and has regularly met since then several times a year. The last meeting was the March 2-7, 2014 IETF89 in London,  and I was fortunate to be in attendance.

What Makes the IETF Unique

What’s unusual about the IETF? From my perspective as someone who spends most of his working day dealing with more traditional standards bodies, two things stand out.

One, (in its own words) “it exists as a collection of happenings, but is not a corporation and has no board of directors, no members, and no dues.” The non-members divide themselves into loosely organized groups that agree on an agenda, discuss the stuff of the internet on mailing lists, generate documents that reflect consensus, and then agree to them as standards.

Two, the London IETF89 meeting was not a conference. The IETF doesn’t do conferences; there are no formal papers given by luminaries or industry experts. There is an agenda, agreed beforehand by consensus (there’s that word again) and then a few short and brief presentations on topics of interest. There are questions from the floor, discussions, and agreement of one form or another. I didn’t see a single formal vote; just that ill-defined and unquantifiable consensus where the outcome is just, well, agreed on.

Why the IETF Works

Revolution! Anarchy! This is unusual for a standards body, and it sounds like a recipe for disaster. But strangely, it isn’t, and from what I saw of the process, I think I see why.

It’s because it’s attended by software and network engineers who see code as the concrete representation of a good idea. They value running code, or stuff that works. That’s a powerful advantage over academic discussions, or codifying and formalizing a good (sometimes not-so-good) idea that no-one has yet implemented or is ever likely to.

Why face to face though? I reckon that even revolutionaries and anarchists need validation and a sense of community, and there was much of that in evidence in the corridors and public spaces outside of the formal meeting. Everyone talks like there’s no tomorrow. Ideas everywhere, grounded in what can be shown to actually work.

I attended, amongst others, the NFSv4 workgroup meetings. The agenda and notes from the meeting give some flavor of this consensus, and I am truly impressed by the process. I’m also thankful that there is some organization; Sorin Faibish (EMC) took notes, Tome Haynes (NetApp) chaired the meeting and kept it moving along, and all in all it was a great illustration of the best the industry can do.

As to the technical content… well, you can read the minutes. There are notes on security discussions led by Andy Adamson, on features proposed for NFSv4.2, and getting an RFC in place that accurately reflects implementations of earlier versions of NFSv4 and more. I’ll be blogging about this and more over the next few months. In the meanwhile, in the spirit of the IETF that favors working code over ideas and the concrete over the abstract, I’ll be presenting “Practical Steps to Implementing pNFS and NFSv4.1” at DSIcon on April 22-24 in Santa Clara, CA. OK, this one’s a conference, and anarchy will be in short supply, but we can still have great discussions and arguments in the corridors and public spaces outside of the formal meetings. I look forward to seeing you there!

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

The IETF, Consensus and NFSv4

Alex McDonald

Apr 9, 2014

title of post
The Internet Engineering Task Force is one of the older – and more unusual – internet organizations. It first met in 1986, and has regularly met since then several times a year. The last meeting was the March 2-7, 2014 IETF89 in London,  and I was fortunate to be in attendance. What Makes the IETF Unique What's unusual about the IETF? From my perspective as someone who spends most of his working day dealing with more traditional standards bodies, two things stand out. One, (in its own words) "it exists as a collection of happenings, but is not a corporation and has no board of directors, no members, and no dues." The non-members divide themselves into loosely organized groups that agree on an agenda, discuss the stuff of the internet on mailing lists, generate documents that reflect consensus, and then agree to them as standards. Two, the London IETF89 meeting was not a conference. The IETF doesn't do conferences; there are no formal papers given by luminaries or industry experts. There is an agenda, agreed beforehand by consensus (there's that word again) and then a few short and brief presentations on topics of interest. There are questions from the floor, discussions, and agreement of one form or another. I didn't see a single formal vote; just that ill-defined and unquantifiable consensus where the outcome is just, well, agreed on. Why the IETF Works Revolution! Anarchy! This is unusual for a standards body, and it sounds like a recipe for disaster. But strangely, it isn't, and from what I saw of the process, I think I see why. It's because it's attended by software and network engineers who see code as the concrete representation of a good idea. They value running code, or stuff that works. That's a powerful advantage over academic discussions, or codifying and formalizing a good (sometimes not-so-good) idea that no-one has yet implemented or is ever likely to. Why face to face though? I reckon that even revolutionaries and anarchists need validation and a sense of community, and there was much of that in evidence in the corridors and public spaces outside of the formal meeting. Everyone talks like there's no tomorrow. Ideas everywhere, grounded in what can be shown to actually work. I attended, amongst others, the NFSv4 workgroup meetings. The agenda and notes from the meeting give some flavor of this consensus, and I am truly impressed by the process. I'm also thankful that there is some organization; Sorin Faibish (EMC) took notes, Tome Haynes (NetApp) chaired the meeting and kept it moving along, and all in all it was a great illustration of the best the industry can do. As to the technical content... well, you can read the minutes. There are notes on security discussions led by Andy Adamson, on features proposed for NFSv4.2, and getting an RFC in place that accurately reflects implementations of earlier versions of NFSv4 and more. I'll be blogging about this and more over the next few months. In the meanwhile, in the spirit of the IETF that favors working code over ideas and the concrete over the abstract, I'll be presenting "Practical Steps to Implementing pNFS and NFSv4.1" at DSIcon on April 22-24 in Santa Clara, CA. OK, this one's a conference, and anarchy will be in short supply, but we can still have great discussions and arguments in the corridors and public spaces outside of the formal meetings. I look forward to seeing you there!

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

Relentless Advance Of Ethernet – And Ethernet Storage Networking

David Fair

Mar 31, 2014

title of post

As one Cisco colleague once said to me, “After the nuclear holocaust, there will be two things left: cockroaches and Ethernet.”  Not sure I like Ethernet’s unappealing company in that statement, but the truth it captures is that Ethernet, now entering its fifth decade (wow!), is ubiquitous and still continuing to advance at a breathtaking pace.  And as it advances, it advances the capabilities of storage networking based on the Ethernet backbone, be it file storage like NFS or SMB or block storage like iSCSI or FCoE.

Most recent evidence of Ethernet’s continuing and relentless evolution is illustrated in the 28 March 2014 announcement from the Ethernet Alliance congratulating the IEEE on formation of their IEEE P802.3bs™ Task Force:

The new group is chartered with the development of the IEEE P802.3bs 400 Gigabit Ethernet (GbE) project, which will define Ethernet Media Access Control (MAC) parameters, physical layer specifications, and management parameters for the transfer of Ethernet format frames at 400 Gb/s. As the leading voice of the Ethernet ecosystem, the Ethernet Alliance is ideally positioned to support this latest move towards standardizing and advancing 400Gb/s technologies through efforts such as the launch of the Ethernet Alliance’s own 400 GbE Subcommittee.

Ethernet is in production today from multiple vendors at 40GbE and supports all storage protocols, including FCoE, at those speeds.  Market forecasters expect the first 100GbE adapters to appear in 2015.  Obviously, it is too early to forecast when 400GbE will arrive, but the train is assuredly in motion.  And support for all the key storage protocols we see today on 10GbE and 40GbE will naturally extend to 100GbE and 400GbE.  Jim O’Reilly makes similar points in his recent Information Week article, “Ethernet: The New Storage Area Network where he argues, “Ethernet wins on schedule, cost, and performance.”

Beyond raw transport speed, the rich Ethernet infrastructure offers techniques to catapult your performance even beyond the fastest single-pipe speed.  The Ethernet world has established techniques for what is alternately referred to as link aggregation, channel bonding, or teaming.  The levels available are determined by the capabilities provided in system software and what switch vendors will support.  And those capabilities, in turn, are determined by what they respectively see as market demand.  VMware, for example, today will let you bond eight 10GbE channels into a single 80GbE pipe.  And that’s today with mainstream 10GbE technology.

Ethernet will continue to evolve in many different ways to support the needs of the industry.  Serving as a backbone for all storage networking traffic is just one of many such roles for Ethernet.  In fact, precisely because of the increasing breadth of usage models Ethernet supports, it will also continue to offer cost advantages.  The argument here is a very simple volume argument:

Total Server-class Adapter and LOM Market Ports

crehan-relentless-ethernet-420

Enough said, except to also note that volume is what funds speed roadmaps.

 

 

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

Relentless Advance Of Ethernet – And Ethernet Storage Networking

David Fair

Mar 31, 2014

title of post
As one Cisco colleague once said to me, "After the nuclear holocaust, there will be two things left: cockroaches and Ethernet."   Not sure I like Ethernet's unappealing company in that statement, but the truth it captures is that Ethernet, now entering its fifth decade (wow!), is ubiquitous and still continuing to advance at a breathtaking pace.   And as it advances, it advances the capabilities of storage networking based on the Ethernet backbone, be it file storage like NFS or SMB or block storage like iSCSI or FCoE. Most recent evidence of Ethernet's continuing and relentless evolution is illustrated in the 28 March 2014 announcement from the Ethernet Alliance congratulating the IEEE on formation of their IEEE P802.3bsâ„¢ Task Force: The new group is chartered with the development of the IEEE P802.3bs 400 Gigabit Ethernet (GbE) project, which will define Ethernet Media Access Control (MAC) parameters, physical layer specifications, and management parameters for the transfer of Ethernet format frames at 400 Gb/s. As the leading voice of the Ethernet ecosystem, the Ethernet Alliance is ideally positioned to support this latest move towards standardizing and advancing 400Gb/s technologies through efforts such as the launch of the Ethernet Alliance's own 400 GbE Subcommittee. Ethernet is in production today from multiple vendors at 40GbE and supports all storage protocols, including FCoE, at those speeds.   Market forecasters expect the first 100GbE adapters to appear in 2015.   Obviously, it is too early to forecast when 400GbE will arrive, but the train is assuredly in motion.  And support for all the key storage protocols we see today on 10GbE and 40GbE will naturally extend to 100GbE and 400GbE.   Jim O'Reilly makes similar points in his recent Information Week article, "Ethernet: The New Storage Area Network" where he argues, "Ethernet wins on schedule, cost, and performance." Beyond raw transport speed, the rich Ethernet infrastructure offers techniques to catapult your performance even beyond the fastest single-pipe speed.   The Ethernet world has established techniques for what is alternately referred to as link aggregation, channel bonding, or teaming.   The levels available are determined by the capabilities provided in system software and what switch vendors will support.   And those capabilities, in turn, are determined by what they respectively see as market demand.   VMware, for example, today will let you bond eight 10GbE channels into a single 80GbE pipe.   And that's today with mainstream 10GbE technology. Ethernet will continue to evolve in many different ways to support the needs of the industry.   Serving as a backbone for all storage networking traffic is just one of many such roles for Ethernet.   In fact, precisely because of the increasing breadth of usage models Ethernet supports, it will also continue to offer cost advantages.   The argument here is a very simple volume argument: Total Server-class Adapter and LOM Market Ports crehan-relentless-ethernet-420 Enough said, except to also note that volume is what funds speed roadmaps.    

Olivia Rhye

Product Manager, SNIA

Find a similar article by tags

Leave a Reply

Comments

Name

Email Adress

Website

Save my name, email, and website in this browser for the next time I comment.

Subscribe to